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Abstract

Diffusion-based virtual staining methods of histopathology images have demon-
strated outstanding potential for stain normalization and cross-dye staining (e.g.,
hematoxylin-eosin to immunohistochemistry). However, achieving pathology-
correct cross-dye virtual staining with versatile tone controls poses significant
challenges due to the difficulty of decoupling the given pathology and tone con-
ditions. This issue would cause non-pathologic regions to be mistakenly stained
like pathologic ones, and vice versa, which we term “pathology leakage.” To ad-
dress this issue, we propose diffusion virtual staining Transformer (D-VST), a new
framework with versatile tone control for cross-dye virtual staining. Specifically,
we introduce a pathology encoder in conjunction with a tone encoder, combined
with a two-stage curriculum learning scheme that decouples pathology and tone
conditions, to enable tone control while eliminating pathology leakage. Further, to
extend our method for billion-pixel whole slide image (WSI) staining, we introduce
a novel frequency-aware adaptive patch sampling strategy for high-quality yet effi-
cient inference of ultra-high resolution images in a zero-shot manner. Integrating
these two innovative components facilitates a pathology-correct, tone-controllable,
cross-dye WSI virtual staining process. Extensive experiments on three virtual
staining tasks that involve translating between four different dyes demonstrate
the superiority of our approach in generating high-quality and pathologically
accurate images compared to existing methods based on generative adversarial
networks and diffusion models. Our code and trained models are available at
https://github.com/yangshurong/D-VST.

1 Introduction

Histological stainings are used to colorize tissue specimens, making the near-transparent tissue sec-
tions visible for pathological observations in clinical diagnostics and research [41]. Different types of
dyes manifest different colors in stained tissue and provide complementary information; for example,
hematoxylin-eosin (HE) can delineate the cellular structures, whereas immunohistochemistry (IHC)
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Figure 1: D-VST facilitates efficient (cf. runtime comparison in Table , high-quality, tone-
controllable, and pathology-correct virtual staining of ultra-high-resolution histopathology images,
featuring adaptive patch sampling to reduce inference overhead while eliminating mosaic artifacts
(cf. Figure[6]and Figure[AT2); versatile tone control by different tone-conditioning images; and
correct pathological status despite the status of the conditioning images (cf. quantitative and
qualitative analysis in Table[3] Figure[AT0] and Figure [ATI). HER2 scores: 0: no cancerous lesion,
and 1+, 2+, and 3+: increasing severity of cancerous lesions.

renders protein-specific expression to assist in tumor diagnosis and cancer prognosis [2]. However,
current chemical protocols allow only one staining per tissue section; additional tissue sections are
required for multiple stainings. This adds to the consumption of often limited tissue samples in clinics.
In addition, the staining process is time- and chemical-consuming. Therefore, multiple stainings are
resource-/labor-intensive and costly [12} 15 136 [74} [77].

Virtual staining [2]] provides a potential solution to multiple stainings—a cost-effective alternative
to the conventional chemical process. It digitally “translates” chemically stained histopathology
images using computational methods. Researchers leveraged generative adversarial networks (GANSs)
[37,1100] for virtual staining. Despite notable progress, GANs may encounter significant training
challenges, such as mode collapse [79]. Recently, diffusion models have demonstrated superior
quality to GANSs in controllable image generation [9, 160, (67, (90} |91] and started to be applied to
virtual staining of histopathology images. These applications can be divided into two groups: same-
dye stain normalization and cross-dye staining. The former addresses the appearance variations in
images stained with the same dye [38, 139, 70], likely originating from variations in institute, chemical
material, or manual operation [[12| [78 [80]. However, the generalization of these methods to the
latter—image translation between two different dyes—remains to be investigated.

Cross-dye virtual staining translates histopathology images stained with one dye (the source domain)
to new images that look like chemically stained with another (the target domain), e.g., HE to
IHC, ideally without structure distortion or pathology status alteration. However, existing methods
[20L 131} 133} 140} 153} 154} 186] cannot control the staining tones in the target domainﬂ leading to
unpredictable randomness and significant variations in the tones of the virtually stained images. A
potential solution is to condition the staining process [67, 95] with desirable tones. However, it is
challenging to describe the tones with text. Also, providing the tone condition with an image is
more complex than giving structure conditions with Canny edges. Specifically, the tone-conditioning
images often contain mixed tone and pathology information. For example, in Figure 2Ja), using
a cancerous IHC image to condition the virtual staining of a cancer-free HE image may result in
erroneous staining that falsely implies the presence of cancer pathology. We term this issue pathology
leakage. To realize effective tone conditioning without pathology leaks, decoupling the tone and
pathology information is crucial (Figure [2(b)).

This work presents diffusion virtual staining Transformer (D-VST), a diffusion model with a Trans-
former backbone for cross-dye virtual staining of histopathology images (Figure|[I). D-VST controls

“In this work, we refer to the primary color of a type of dye (e.g., the generic pink color of HE staining) as
hue, and the color variations of that dye as tones (e.g., dark to bright pink).
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Figure 2: Illustration of pathology leakage. (a) Without special treatment, conditioning the virtual
staining of a cancer-free HE image with a HER2 2+ IHC image may cause a leak of the cancerous
status from the tone-conditioning image to the virtually stained image, leading to pathology-faulty
staining. (b) Pathology-correct staining can be achieved by decoupling the tone and pathology
conditions. HER?2 scores: 0: no cancerous lesion, and 1+, 2+, and 3+: increasing severity of
cancerous lesions. GT: ground truth.

the staining tone in the target domain without pathology leaks by adopting separate pathology and tone
conditions. Concretely, it relies on the source-domain image to be re-stained for pathological structure
conditioning and a target-domain image for tone conditioning. To our knowledge, D-VST represents
the first endeavor to realize tone-controllable cross-dye virtual staining of histopathology images
with diffusion models. In addition, we design a two-stage curriculum learning scheme to effectively
decouple the model’s learning of the pathology and tone conditions in a progressive manner. The
first stage, pathology extraction, focuses on learning to extract pathology structure information from
source-domain images without injecting tone control signals. Then, the second stage, tone injection,
adds tone control while diminishing pathology information from the target-domain tone-conditioning
image. This involves applying random dropout and Gaussian blur to the tone-conditioning image.

In addition, the virtual staining of large histopathology images like whole slide images (W SIs) requires
processing ultra-high-resolution data. However, due to hardware constraints, directly denoising an
entire WSI is challenging for diffusion models. Current methods typically divide a WSI into patches,
process them individually, and then stitch them together [l [39] |45] 59} 164]. As the patches are
processed independently, this workaround often leads to discrepancies in color, brightness, and
contrast between the stitched patches—resulting in the “mosaic” artifact [75]]. The mosaic artifact
may harm or even invalidate the clinical usability of the virtually stained WSI. To address a similar
artifact of content discontinuity in a text-to-panorama application, MultiDiffusion [3]] proposed
denoising highly overlapping image patches yielded by a sliding-window process separately, followed
by fusing the denoising directions by averaging the denoised patches within the overlapped regions.
However, unlike natural panoramas, WSIs present significant variations in information density across
an image’s regions. As a result, the uniform sliding windows in MultiDiffusion may be sub-optimal
for WSI virtual staining.

In this work, we present an efficient and high-quality zero-shot inference strategy for virtual staining
of WSIs using diffusion models trained under a prevalent resolution, e.g., 512x512 pixels. Our
observation indicates that the mosaic artifact is more pronounced in low-frequency regions of the
virtually stained images. Leveraging this insight, we devise a frequency-aware adaptive patch
sampling strategy to improve the generation quality of low-frequency regions while controlling
computational overhead in high-frequency areas. This strategy enables efficient and rapid virtual
staining of billion-pixel WSIs without notable mosaic artifacts, significantly enhancing the capability
of our proposed D-VST framework.

Our contributions are summarized as follows:

* We propose D-VST, a novel Diffusion Transformer (DiT) [[60] based model for histopathol-
ogy image virtual staining. So far as we know, D-VST is the first diffusion model that
realizes tone control for cross-dye virtual staining.

* To address the unwanted pathology leakage issue accompanying the tone control, we design
an effective, two-step curriculum learning scheme with separate conditioning branches for
pathology and tone.



* We propose an adaptive frequency-aware patch sampling strategy for efficient and high-
quality zero-shot staining of billion-pixel WSIs.

 Last but not least, we conduct extensive experiments on three virtual staining tasks involving
four dyes to evaluate our D-VST against up-to-date approaches. We also assess a downstream
task and perform ablation studies on our method.

2 Related work

GAN-based virtual staining. Conventional methods predominantly employed GANS [7,194,137,[100]
for virtual staining of histopathology images. A large amount of work [5} 18} 121} 47,148l 149,150, 59} 61,
81, 182L 1851 [88]] facilitated the transfer of HE to IHC images. [1} 134} !4 1} 165166l showcased generating
HE images from formalin fixation and paraffin embedding (FFPE) ones. Moreover, [[11} [13}69]
implemented GAN-based image style transfer for stain normalization of histopathology images,
effectively mitigating color variations. However, GANs are known to be subject to the mode collapse
issue [79]] and challenging to train. The emerging diffusion models have recently demonstrated
superior training stability, generation controllability, image quality, and versatility to GANS.

Diffusion-based virtual staining. Recent advancements in diffusion models [9, 160, 67,90} 91] have
showcased impressive controllable generation capabilities in image synthesis tasks. Various studies
[38139,[70]] employed diffusion models for stain normalization of histopathology images. StainDiff
[70] proposed self-supervision to facilitate one-to-one color style transfer. StainFuser [39] leveraged
the ControlNet [95] to implement fast neural style transfer. [40, 53|54, |86] examined the potential of
diffusion models for cross-dye histopathology image virtual staining. [31,|33]] implemented cross-dye
virtual staining without relying on pathological category labels. VIMs [20]] introduced text-controlled
protein markers to facilitate virtual staining across multiple pathological categories. However, these
methods cannot control the tones for virtual staining, resulting in unpredictable appearance variations
among the re-stained images. In contrast, our method controls the staining tone with a target-domain
tone-conditioning image.

WSI generation. Virtual staining of WSIs, characterized by ultra-high resolution, presents significant
challenges to diffusion models. [26, 30,135,152 [71} 72| 184, 877, 189, 196] introduced additional global
control signals for direct high-resolution image generation by diffusion models. Yet, this approach
does not apply to WSIs due to computational limitations. Alternatively, the sliding window strategy
[13L (17, [19) [24) 128l 1461 [75]] offers a viable means. However, this strategy is impeded by substantial
inference times due to the highly redundant sliding windows with small sliding steps, or subject to a
performance drop in image quality with large sliding steps. [22] 99] proposed selecting patches at
varying timesteps to mitigate long inference duration, yet this mechanism may introduce instability
to the generated outcome. To facilitate efficient and high-quality WSI virtual staining, we propose a
novel adaptive patch sampling strategy based on image frequency variations.

3 Method

The framework of our method is shown in Figure E] (left). Primarily, D-VST tailors and extends
the Diffusion Transformer (DiT) [60] in PixArt-« [9] as its denoising Transformer. A pathology
encoder encodes the source image into pathological structure embeddings, which are injected into the
denoising Transformer as the structure condition after concatenating with the noise latent. Meanwhile,
a tone encoder (which we use the pretrained Vision Transformer (ViT) [18] in CLIP [[63]]) encodes
an auxiliary, tone-conditioning image from the target domain into tone embeddings. The tone
embeddings are also injected into the denoising Transformer via multi-head tone attention. The
denoising Transformer integrates the structure and tone conditions and denoises toward a re-stained
target histopathology image (latent).

The pipeline of D-VST proposes innovative designs for both training and inference schemes. To
prevent pathology leakage from the tone-conditioning image, we decompose the intricate virtual
staining task into a curriculum learning [4] streamline for progressive training [68]. To eliminate
the mosaic artifact at a low computational cost while staining high-resolution images, we propose a
frequency-aware adaptive patch sampling strategy for efficient inference.
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Figure 3: Left: framework of the proposed D-VST. Right: frequency-aware adaptive patch
sampling. (a) FFT-based local frequency computing. (b) Covering the entire image with tiled, non-
overlapping patches. (c) Additional patches sampled according to local frequency. We show only nine
patches here to illustrate that patches are more likely to be sampled from low- than high-frequency
regions. In fact, all sampled patches cover seven times the area of the input image. (d) Individually
denoising each patch. (e) Fusing by averaging overlapped regions.

1. Pathology Extraction Training 2. Tone Injection Training «N
Target Domain B2 =B 2O --~--===="="""7 i
\ A T xN Feedforward

1

1

:
1 . D t
' ropou 2

> Multi-Head
1 CLIP zero-
Feedforward 6 1 . Tone Attention 6
. : . Ga * Blur i
Spatial Attention ¢y ! ““*T“ Spatial Attention

ey RR
s e
f >
1
1
1
1

) )

Frozen Weight @ Channel Concat

3 > 6 Tunning Weight @ Pointwise Adding
Tone image
Figure 4: The two-stage curriculum learning scheme decouples pathology and tone conditions.
Initially, only the pathology condition is input to the model, emphasizing accurate pathology extraction
while ignoring the significant hue difference between the source and target domains. Next, we add
tone condition via cross-attention, with random dropout and Gaussian blur to diminish pathology
leakage from the tone-conditioning image.

3.1 Curriculum learning scheme decoupling pathology and tone conditions

As introduced in Figure 2] training with mingled pathology and tone controls often causes pathological
status to leak through tone conditioning, leading to incorrect staining outcomes. This occurs because
the model confuses the purposes of the conditioning images and mistakes the tone-conditioning image
for the source of the pathology status. Thus, the key to effectively preventing pathology leakage is to
decouple pathology and tone conditions by making the model learn both control signals precisely.
For this purpose, we design a novel two-stage curriculum learning [4] scheme. In the first stage,
pathology conditioning is first learned alone. Then, tone conditioning is introduced in the second
stage for further joint training.

Training stage 1: pathology extraction. Figure [d] (left) illustrates the first training stage. In this
stage, we only feed the pathology condition into the model via channel-wise concatenation with
the noise latent. Meanwhile, the denoising Transformer includes only the spatial attention and
feedforward modules. The training goal is to denoise the corrupted target-domain image (obtained by
adding Gaussian noise as in typical diffusion processes) in the latent space of a pretrained variational



autoencoder (VAEf] [43]], guided by the pathology structure embedding extracted from the paired
pathology-conditioning source-domain image. We follow [60] to train the model with the hybrid
mean squared error (MSE) and variational lower bound (VLB) losses [55]], where the former learns to
predict the sampled noise and the latter learns variances of the reverse diffusion process (cf. Appendix
for more details). Thus, the model learns to effectively extract and utilize the complex pathology
information in the pathology-conditioning image in this stage, ignoring the significant hue difference
between the source and target domains.

The pathology encoder uses a lightweight convolutional network with 4 x4 kernels, 2x2 strides, and
four layers of 16, 32, 64, and 128 channels. It encodes the pathology-conditioning image into an
embedding of the same shape as the noise latent. The embedding is concatenated with the noise latent
along the channel dimension and input to the denoising Transformer. Compared to the ControlNet
[93]] architecture used in StainFuser [39]], our lightweight pathology encoder is equally effective
in capturing detailed pathological information while substantially reducing model complexity and
computational cost.

Training stage 2: tone injection. The second stage introduces tone conditioning into the model
(Figure [ (right)). A random patch from the same WSI but different from (thus not paired with)
the target-domain image is used for tone conditioning. It provides a precise tone style but not
necessarily pathology information of the target image (different patches of a WSI may present
distinct pathological statuses). To emphasize tone features while minimizing pathological structural
information, we first apply a Gaussian blur to the tone-conditioning image. Then, we utilize the
pretrained ViT [18]] in OpenAI-CLIP [63] to encode the blurred image into a tone embedding. The
OpenAI-CLIP ViT was trained on massive data of versatile colors, making it a proper fone encoder
for optical pathology images (cf. Appendix for a comparison to the PathCLIP [76]). Next, in the
middle of the frozen feedforward and spatial attention modules, we insert a multi-head tone attention
module into each unit block of the denoising Transformer trained in the first stage. Lastly, using
cross-attention, we inject the tone embedding into the denoising Transformer via the inserted tone
attention modules. To further reduce pathology leakage, we apply a random dropout to the tone
embedding by replacing it with a zero embedding. The dropout rate is set to 20% according to
preliminary trials)’| The same training losses as in the first stage are used. Ablation studies confirm
the efficacy of the tone encoder’s components (Table ).

3.2 Frequency-aware adaptive patch sampling

From the “No-overlap" column of Figure[6] we observe that the mosaic artifact is more pronounced
in low-frequency regions of the virtually stained images. This occurs because, unlike areas with
complex textures that contain abundant clues guiding the virtual staining process, low-frequency
regions require more overlapping patches for consistent denoising results. To improve the generation
quality of the low-frequency regions while simultaneously controlling computational overhead, we
propose a frequency-aware adaptive patch sampling strategy. As the premise, we divide the input
image into a grid of n X n squares. We set n = 32 through a grid search (cf. Appendix). Then, for
each square I, we compute the natural logarithm of the magnitudes of its fast Fourier transform (FFT;
Figure [3] (right)-(a)):

L =log [abs (FFT(I))]. (1)

Next, we calculate the pixel-wise mean of L, denoted by [, as the frequency statistic for the square.
Finally, we convert [ to sampling probability by:

pi = (lmax + lmin _ li)a
! Z;il(lmax + Jmin _ li)a’

@

where [™2% and [™" are the maximum and minimum [ values of all n? squares, (I™% 4 [™® — ;)
makes low-frequency squares more likely to be sampled, and o € Z7 is a hyperparameter controlling
the difference in sampling probabilities between low- and high-frequency squares.

3In our preliminary experiments, when applying the VAE of Stable Diffusion (SD) 1.5 [67] to pathology image
reconstruction, we obtained an average peak signal-to-noise ratio of ~28 dB, comparable to the performance on
natural images (~25 dB). Therefore, we use the SD 1.5 VAE in this work.

SFurther optimization via rigorous ablation study may lead to better performance; we leave it for future work.



To ensure the entire input image is stained, we first fully cover the image with tiled, non-overlapping
patches (Figure [3] (right)-(b); note the patches are larger than the squares for FFT). Next, we sample
additional patches according to the sampling probabilities in Equation (2)) (Figure 3] (right)-(c)): a
square [ is first selected according to p;, and a random pixel within I is subsequently chosen as
the center of an additional patch. This way, more patches are adaptively sampled where necessary,
whereas fewer patches are sampled from high-frequency regions to maintain reasonable computational
costs. In this work, we define an integer 3 as the ratio of the total area of tiled and sampled patches
to the area of the stained image. The larger [ is, the more patches are sampled (the special case of
no-overlap sliding windows has 8 = 1). The patches are processed separately in every denoising
step, and the denoised patches are fused in overlapping areas by averaging (Figure [3 (right)-(d) and
(e)) [3]. Experiments show that compared with MultiDiffusion [3], our strategy improves the virtual
staining quality with only 12.5% computational overhead (8 = 8 versus 64; cf. Table[2).

4 Experiments

Datasets and evaluation metrics. We evaluate D-VST on three datasets to comprehensively validate
its performance on the virtual staining of various dyes. RegH2I [61] comprises 2,592 pairs of
registered images for HE to IHC staining (HE2IHC), [34] includes 5,098 pairs of aligned images
for FFPE to HE (FFPE2HE) staining, and HEMIT [5] contains 5,292 matched image pairs for
HE to multiplex immunohistochemistry (mIHC) staining (HE2mIHC). These datasets include two
organs/cancer types: breast cancer (HE2IHC and FFPE2HE) and colon cancer (HE2mIHC). We use
all datasets’ official train/test/validation splits. Unless otherwise specified, we report performance on
cropped images of 1024 x 1024 pixels as in [3, 34} |61]], and use a random patch from the same WSI
but not overlapping with the target image for tone conditioning. Note that the tone-conditioning and
target images may present different pathological statuses, and the no-overlap requirement ensures no
structural leak.

Following previous works [5, 34} 161]], we employ the structural similarity index measure (SSIM) and
peak signal-to-noise ratio (PSNR) for quality assessment of the virtually stained images. However,
for paired histopathology images stained with different dyes, perfect pixel-to-pixel matching is
practically impossible even after registration (see Appendix for more explanation). Therefore, for an
appropriate evaluation, we additionally employ three metrics that are more perceptually relevant than
the conventional SSIM and PSNR: deep image structure and texture similarity (DISTS) [16]], Fréchet
inception distance (FID), and kernel inception distance (KID) [6].

Implementation details. All experiments are conducted in Python 3.10.0 with PyTorch 2.0.0
[58]] on a GPU with 80 GB of memory. We follow [9] to use DiT-XL/2 [60] as the base network
architecture for our denoising Transformer, and the pretrained parameters from [9]. We employ
the AdamW [44]] optimizer with a learning rate of 10~° and a batch size 32. We train for 30,000
steps for the pathology extraction stage, and an additional 10,000 steps for the tone injection stage.
The diffusion time 7' is set to 1000. Our model trains and infers at the resolution of 512x512
pixels. For virtual staining of larger images, we use the model to denoise 512x512 patches sampled
according to the proposed frequency-aware adaptive patch sampling strategy (cf. Section[3.2)), and
fuse the patch-wise outcomes by averaging overlapped regions [3]. Unless otherwise specified, we
set « = 1 and B = 8 for the adaptive sampling. Our code and trained models are available at
https://github.com/yangshurong/D-VST.

Comparison with state-of-the-art (SOTA). We compare our D-VST with classical GAN-based
image translation methods: CycleGAN [100], pix2pix [37] and pix2pixHD [83]; medical image
diffusion model: SynDiff [56]; and SOTA GAN/diffusion models specialized in histopathology image
virtual staining: [34] and [61]]/StainFuser [39]. The comparisons with [34] and [61] are exclusively
on the FFPE2HE [34]] and HE2IHC [61] datasets, respectively, since the two methods were designed
for the specific tasks. As shown in Table [} D-VST achieves the best performance for all metrics
on the HE2THC and HE2mIHC datasets, indicating that the histopathology images virtually stained
by D-VST are superior both perceptually and structurally. On the FFPE2HE dataset, D-VST yields
slightly inferior PSNR and SSIM to the best numbers, yet is still competitive. We conjecture this is
because the micro-level correspondence (pixel- and structure-wise) between the paired images in this
dataset is not as good as the other two. Notwithstanding, D-VST again achieves the best performance
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Table 1: Evaluation of various methods on three
different datasets and virtual staining tasks.

Table 2: Evaluation of sampling strategies for zero-
shot staining of images larger than the training
resolution of diffusion models. (3 is the ratio of the

Method | DISTS] FID] KID] | PSNRT __ SSIMT . .
HE2IAC [61] total patch area to the area of the virtually stained
Pix2pix 371 | 0.192 47.77 0.0237]18.04%£3693 0401£0.126  : : : :
PixopieHD [§3] | 0.191 4177 00123 | 18.065373 03861012  1Mage. Givena fixed patch size, the la.rger fis, the
CycleGAN 0212 4091 0.0062|17.01+3524 0.365+0.19  more patches are sampled, thus the higher compu-
611 0.174 33.92 0.0058|18.02:3.706 0.385-£0.125 .
SyRDIT 5G] | 0348 2253 0228218 09 £40s0 0.d04c011s  tational cost.

StainFuser [39] | 0.255 104.5 0.0791|17.3043.949 0.40140.148

D-VST 0.154 33.16 0.0055 18.1153.574 0.40750.036 Sample strategy [ 5 ‘D'STSEEE}}% D“ PSNRT  SSIMP
HEZmIHC [5]
— No-overlap | 1] 0.1594 37.748 0.0092]18.0153.868 0.406:£0.136

Pix2pix[37] 1°0.133 2995 0.005827.26%3503 0.855£0063  gpoDiffusion [22]| 1 | 02256 93349 0.0664|14.08+2815 0.297+0.117

Pix2pixHD [83] | 0.170 28.92 0.0086|27.65+3916 0.816::0.062 MultiDiffusion [3] |64| 0.1566 34.661 0.0061|18.09+3.877 0.406::0.136

CycleGAN [I00]| 0300 83.16 0.0365|20.15:£1663 0.520:£0.049 D-VST 8 01548 33.162 0.005518.1153574 0.40750.136

SynDiff [56] | 0.318 316.1 0.4057|20.05+1423 0.70920038 HEImIHC [5]

StainFuser [39] | 0.289 99.20 0.0690|20.27+2.087 0.309-:0.040 No-overiap [ TT0.1063 21,866 0,002 27725455 08520005
D-VST 0.106 20.36 0.0016|28.01+4.123 0.861+0.045 SpotDiffusion [22] | 1 | 0.4285 111.35 0.0937|10.87+3.717 0.373-£0.059
. FFPE2HE [34] MultiDiffusion [3] [64] 0.1069 20.365 0.0016|27.96+4.260 0.858 0.045

Pix2pix [37] [ 0.109 17.88 0.0008]18.34+£2.009 0.536+0.113 D-VST 8 [ 0.1062 20.361 0.0016]28.01=4.123 0.861%0.045

Pix2pixHD [83] | 0.091 15.26 0.0008|19.08::2.046 0.586:£0.106 FFPEHE 3]

CycleGAN [100]| 0.171 3536 0.0087|14.4742.045 0.363£0.152 No-overlap | 1 0.0929 16.403 0.0012[17.60%2.183 0.517%0.120

0.126 31.56 0.0101|19.86+-2.082 0.644-+0.098 SpotDiffusion [22]| 1 | 0.1483 48.281 0.0256|15.4141408 0.467-£0.109
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Figure 5: Qualitative results for tone control. Case 1 is from the HE2IHC [61]] dataset, whereas Case
2 is from the FFPE2HE [34] dataset. Despite substantial discrepancies in pathological status between
the pathology- and tone-conditioning images, the pathological status is correctly transferred from the
pathology-conditioning images to the virtually stained ones. For example, in Case 1, the HER2 score
of the HE image is 3+, while the scores of Tone 1, 2, and 3 are all 0. GT: ground truth.

for the three perception-oriented metrics (DISTS, FID, and KID). In general, D-VST demonstrates
strong capabilities in virtually staining high-quality histopathology images of versatile dyes.

Tone control and downstream task. As the HE2mIHC [5] dataset has undergone color nor-
malization and thus cannot provide varying tone conditions, we conduct qualitative tone control
experiments on the other two datasets. As shown in Figure [5] when conditioned on histopathol-
ogy images of various tones of another dye, the virtually stained images exhibit varying tones
matching the tone-conditioning images while maintaining the same pathological status as the source
pathology-conditioning images. For example, Case 1 illustrates that even when there are substan-
tial discrepancies in pathological status between the pathology- and tone-conditioning images, the
pathological status is still correctly transferred from the pathology-conditioning image to the virtually
stained ones. These observations indicate that our D-VST can effectively prevent pathology leakage
for tone-conditioned cross-dye virtual staining. We provide more visualizations and comparisons
with other methods in Appendix.

To further quantitatively validate our method’s effectiveness in pathology leakage prevention while
using image-based tone conditioning, we perform a downstream classification task on HE2IHC [61]].
Concretely, we further split the 600 official test pairs into a sub-train and sub-test set of 480 and 120
pairs, respectively. Then, we train a ResNet50 [29] classifier on the THC images of the sub-train
set, with labels corresponding to the four HER2 scores (HER2 0: no cancerous lesions, and 1+, 2+,
and 3+: increasing severity of cancerous lesions, with higher scores indicating more pronounced
lesions and more advanced disease stages). Next, for each HE image in the sub-test set, we randomly
select an [HC image in the sub-test set that is not paired with the specific HE image as the tone
condition for virtual staining. Lastly, we apply the trained classifier to the virtually stained IHC



Table 3: Evaluation of downstream classification — Table 4: Ablation study on the HE2IHC [61]]

task on the HE2IHC [61]] dataset. dataset with both image generation and down-
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Figure 6: Comparison of sampling strategies for zero-shot virtual staining of large histopathology

images. Red ellipses outline regions where the mosaic artifacts are prominent (best viewed zoomed
in). GT: HE ground truth. More is provided in Appendix.
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images. Intuitively, if the pathology leakage happens, the classification results would notably deviate
from directly classifying the real IHC images in the sub-test set. Table 3] shows that our classifier
achieves high performance on real IHC images, and more importantly, the performance on virtually
stained IHC images by D-VST is also high and closely matches that on real ones. Meanwhile, D-VST
obtains substantially better results than the compared methods. These results demonstrate that our
method successfully decouples pathology and tone information for tone-conditioned cross-dye virtual
staining, and its virtually stained images are of high quality for potential clinical use.

Sampling strategy for zero-shot virtual staining of large histopathology images. As described
in the implementation details, our model trains and infers at the resolution of 512x512 pixels.
For the virtual staining of larger images, we use the model to denoise 512x512 patch samples,
followed by patch fusion. Here, we compare several sampling strategies in terms of performance and
computational cost: no-overlap (sliding windows without overlap), SpotDiffusion [22] (sampling
sliding windows that vary with timesteps), MultiDiffusion [3] (sliding windows with a high overlap
ratio), and our proposed frequency-aware adaptive patch sampling. Since different sampling strategies
are evaluated on the same network (our proposed), which takes about 1.081s and 6.4 GB memory to
infer a patch of 512 %512 pixels on our hardware, their relative computational costs can be compared
by 3 values. We conduct quantitative evaluations on the HE2IHC, FFPE2HE, and HE2mIHC
datasets, generating images of 1024 x 1024 pixels. As shown in Table 2] although no-overlap and
SpotDiffusion incur the least computational cost, their performance is the worst. MultiDiffusion
improves all evaluated metrics, though at 64 times the inference cost. In contrast, our strategy
achieves the best performance for all metrics on the three datasets, while incurring only 1/8 of the
inference computation of MultiDiffusion. For more insights, we additionally evaluate MultiDiffusion
with the same (8 = 8 as ours on HE2IHC. Its FID degrades from 34.66 to 34.99, markedly inferior to
our 33.16. These results demonstrate that our frequency-aware adaptive sampling strategy is not only
highly efficient but also capable of boosting the quality of virtual staining.

Figure [f] shows example results by the compared methods for qualitative analysis, virtually stained
at the resolution of 2048 %2048 pixels. No-overlap exhibits noticeable mosaic artifacts, whereas
SpotDiffusion presents anomalous tones—accounting for their unsatisfactory quantitative results.
With only 1/8 of the computational cost of MultiDiffusion, our strategy produces images of equal
visual quality to MultiDiffusion. We have also applied D-VST to the virtual staining of WSIs of
0.2—1.3 billion pixels (16,000 15,000 to 40,000x 32,000 pixels). However, as far as we know, no
suitable WSI dataset is currently available for reliable quantitative evaluation at scale. Therefore, we
only show the qualitative results in Appendix for an observational study.

Ablation studies. In Section 3.1} we have proposed two-stage curriculum learning, Gaussian blur
of tone-conditioning images, and random dropout of the tone condition to realize pathology and



tone decoupling and prevent pathology leakage. Here, we ablate one of them at a time (denoted by
w/o Curriculum, w/o Gaussian, and w/o Dropout) to study their efficacy on the HE2IHC dataset
using both image generation and downstream classification metrics. Table ] shows that removing
any of them leads to overall declines in all metrics (the only exception is the SSIM w/o Gaussian).
Especially, removing curriculum learning results in the most significant performance drops in three
of the four classification metrics. These results suggest that these components, especially the two-
stage curriculum learning scheme, effectively boost the performance of histopathology image virtual
staining. This is achieved by improving the perceptual quality via effective pathology and tone
condition disentanglement, thus fulfilling our design.

The Appendix includes further experiments determining the values of the hyperparameters « and 3
in the frequency-aware adaptive patch sampling (cf. Section [3.2).

5 Conclusion

This work presented D-VST, a diffusion Transformer based framework for efficient, high-quality,
and pathology-preserving cross-dye virtual staining of histopathology images with up to more than a
billion pixels. Extensive experiments on three virtual staining tasks involving four types of dyes and a
downstream cancer status classification task validated D-VST’s promising performance. Facilitating
efficient tone-controllable virtual staining, D-VST has the potential to make a broad impact on
algorithm development and the clinical pipeline of histopathology image analysis.

Limitations and future work. Our D-VST facilitates efficient virtual staining of ultra-high-resolution
histopathology images like WSIs by the proposed frequency-aware adaptive patch sampling strategy.
However, its inference speed is still constrained by the multi-step denoising process inherent in
diffusion models [32]]. Inspired by [42 51} 73], we plan to optimize the denoising scheduler and
reduce inference steps by flow rectification and consistency models, and further reduce computation
overhead and accelerate inference by model pruning and distillation retraining [93].

Obtaining paired cross-stain training data can be challenging and costly in real-world workflows,
which may limit the scalability and applicability of D-VST. While such data can improve virtual
staining performance with paired correspondence, unpaired data is substantially more scalable due
to orders of magnitude larger amounts. In future work, we plan to explore benefiting from both the
scalability of unpaired data and the quality of paired data via a combination of D-VST and approaches
[92] like CycleGAN-Turbo [27}157], which enable diffusion models to learn from unpaired data.

In this work, we have attempted to fine-tune the VAE alongside the Diffusion Transformer in our
experiments but obtained mixed results (similar PSNR and SSIM with poorer DISTS, FID, and KID),
likely due to the limited training data. In the future, we plan to explore whether substituting the
VAE with a histopathology-image-pretrained counterpart would further enhance our framework’s
performance.

Lastly, future work will investigate D-VST’s benefits for downstream segmentation tasks [97].
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction are consistent with the paper’s
contributions and scope. They outline the methodologies and key findings presented in the
study.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes, we discuss the limitations of our work in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information for reproducibility in the Experiments sec-
tion (e.g., compute resources and experimental settings) and the Appendix (e.g., some
hyperparameter settings).

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code upon paper acceptance, with sufficient instructions to
faithfully reproduce the main experimental results.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

19


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe all the necessary details in Section @] Experiments and the
Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the standard deviations for sample-wise metrics (PSNR and SSIM).
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide this information, e.g., type and number of GPU, time of inference
in Sectiondl

Guidelines:

20



9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in this paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No direct societal impact of the work expected.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: We anticipate no direct malicious use for an approach to virtual re-staining of
histopathology images.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have ensured that all assets used in our research are properly credited to
their original creators.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: As stated in the Abstract and Section 4, we will release our code and trained
models, plus detailed instructions on how to run the code to reproduce our results.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study does not involve human subjects, and therefore no IRB approval is
required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Al Training losses

We briefly describe the losses for training our framework. In denoising diffusion probabilistic
models (DDPMs) [32]], a forward process gradually applies noise to real data xo: q(x¢|zg) =
N (zy; v/axo, (1 — a;)I), where ¢ is the time step and constants &, are hyper-parameters. Ap-
plying the reparameterization trick, x; can be sampled by z; = /arxo + /1 — ay€r, where
€ ~ N(0,1). Inversely, a model learns the reverse process to gradually restore the noise-corrupted
real data by pg(z;_1|z:) = N(pe(zt),Xe(xs)), using neural networks to predict the statistics
of pp. The model is trained with the variational lower bound (VLB) of the log-likelihood of
Zo, which can be written as (omitting a training-irrelevant term): Lyvrg = —logpg(zo|z1) +
>+ Dk (q(zt_1|o:t, xo)||pe(zi—1 |xt)) where Dy, is the Kullback-Leibler (KL) divergence loss.
By parameterizing j9 as a noise prediction network eg, the model can be trained with the mean-
squared error loss between the predicted noise €4 (x;) and the ground-truth sampled Gaussian noise
er: Lyvse = |leg(mr) — €]|3. Meanwhile, to learn the covariance Yy, the full Ly needs to be
optimized. We follow [S5]] to train ey with Lysg, and Xy with Ly,p. Since the training losses are
not a focus of this paper, we refer interested readers to [S5]] for more details.

A2 Justification for non-perfect paired data

In virtual staining tasks, paired images are typically obtained from consecutive tissue sections and
algorithmically registered. Although the alignment does not perfectly match all pixels, most are
closely aligned and thus valid for structural correspondence learning. Before ours, many methods
successfully trained their virtual staining models on the datasets used in this work [S) 134, 161].

In the main text, we conjectured that D-VST’s lower PSNR/SSIM versus [34] on FFPE2HE “is
because the micro-level correspondence (pixel- and structure-wise) between the paired images in
this dataset is not as good as the other two.” Although this misalignment is inherent in all datasets
used in this work due to the consecutive slicing and chemical staining process, we visually find it
more serious in the FFPE2HE dataset. To quantify the structural (mis)alignment between paired
images, we resort to the following procedures. We apply the Canny edge detector and compute the
Hausdorff distance, intersection-over-union (IoU), and Dice similarity between edge maps of the
source and target images. Intuitively, lower Hausdorff distance and higher IoU and Dice metrics
indicate better structural alignment. As shown in Table[A3] FFPE2HE [34] shows consistently worse
alignment metrics, supporting our conjecture. In particular, the Hausdorff distance measures the
maximum deviation between two point sets, highlighting the worst-case alignment errors. Thus, the
substantially larger Hausdorff distances indicate more extreme misalignments.

Table A5: Quantification of structural (mis)alignment between paired images in the HE2IHC and
FFPE2HE datasets using Hausdorff distance, intersection-over-union (IoU), and Dice similarity.

Datasets ~ Hausdorff] ToUT Dice?
HE2IHC  30.92+12.05 0.150+0.026  0.2602£0.041
FFPE2HE 36.63+33.13 0.138%+0.011 0.242+0.016

A3 Additional experiments

Choice of tone encoder. For the tone encoder, we experimented with three image encoders: one
pretrained in OpenAI-CLIP [63] on massive data of broad spectrums; one pretrained in PathCLIP [76]
on 207K high-quality pathology image—caption pairs; and one pretrained in UNI [10] on over 200
million pathology HE and IHC images. Table [A6] presents their performance on the HE2IHC dataset
[61]. UNI and OpenAI-CLIP demonstrate comparable performance, and clearly outperform PathCLIP
in perception-oriented metrics while remaining comparable in PSNR and SSIM. We conjecture that
the difference in performance may be partly attributed to the function of the tone encoder. On the
one hand, while PathCLIP may be better prepared for downstream tasks on pathology images (e.g.,
classification), the tone encoder focuses more on color perception. As a result, OpenAI-CLIP may
be more suitable due to its more significant amount of training data that inherently includes more
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versatile color variations. Thus, we use OpenAI-CLIP within our D-VST framework. On the other
hand, while UNI offers strong pathological feature extraction, OpenAI-CLIP suffices for capturing
tone information in D-VST. Hence, pathology foundation models trained on multi-stains like UNI are
also excellent choices for the proposed D-VST framework. However, it is important to note that even
when using PathCLIP as the tone encoder, our performance remains competitive with other methods
in Table 1 of the main text.

Table A6: Performance comparison of using PathCLIP [76], UNI [10] and OpenAI-CLIP [63] as the
tone encoder on the HE2IHC [61] dataset.

Tone encoder | DISTS] FID| KIDJ PSNR?T SSIM?T
PathCLIP 0.190  40.01 0.0086 | 17.49+3.717 0.41140.136
UNI 0.157 3313 0.0048 | 18.03+£3.842 0.404+£0.130
OpenAI-CLIP | 0.154  33.16 0.0055 | 18.11+3.874 0.40740.136

Influence of hyper-parameter » for square split. The input images to be re-stained are divided into
a grid of n x n squares for local frequency estimate. We vary n from 4 to 128 and show the FIDs
for HE2IHC [61] in Table When n € {16, 32,64}, the results are the best and stable, whereas n
being too small or large deteriorates the performance. The empirical guideline is to select n properly
so that each square contains enough pixels for a reliable frequency estimate but not too many pixels
to remain a local estimate. We use n = 32 in our paper.

Table A7: Performance in FID with varying values for the hyper-parameter n on the HE2IHC [61]]
dataset.

n 4 8 16 32 64 128
FID| 33452 33444 33267 33.162 33.323 33.548

Ablation study on « and . « and 3 are important hyper-parameters in our proposed frequency-
aware adaptive patch sampling. Concretely, o controls the sampling probability discrepancy between
low- and high-frequency regions, whereas 3 trades off between computational cost and image quality.
Figure[A7 presents the impact of varying « and /3 values on the model performance focused on FID,
whose variations are more evident among the perception-oriented metrics.

The impact of o on FID The impact of § on FID
FID FID
33.6
33.5 37
33.4
36
33.3
35
33.2
331 34
33.0
1 0 02 05 1 2 3 6 33 1 2 4 8 16
. : . A 5

Figure A7: Performance plots (FID) of varying values of the hyper-parameters « (left) and 3 (right)
on the HE2IHC [61]] dataset. Note that the labels for the horizontal axes are indicative and do not
strictly follow the actual intervals between values.

As shown in Figure [A7] (left), the best performance occurs at o« = 1, while extreme values (o = 0 or
6) degrade performance. Notably, a = 0, which is effectively the random patch selection, yields the
second worst performance. In addition, we experiment with sampling more patches in high-frequency
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Table A8: Evaluation of various virtual staining methods on two external validation datasets (and
virtual staining tasks). For all methods, the models trained for the corresponding tasks in the main

text are directly used here for inference without any tuning.

Method  [DISTS] FID] KID] | PSNRT SSIMT
Ext-HE2IHC [61]

Pix2pix [37] | 0.2923 147.02 0.1065|16.6324+3.442 0.325040.126
Pix2pixHD [83] | 0.2792 104.96 0.0597|16.361+£3.390 0.3419-+0.128
CycleGAN [100] | 0.2823 149.61 0.1168 |16.918+3.484 0.3410=+0.117

[61] 0.2657 104.79 0.0796|15.708+2.234 0.345140.130

SynDiff [56] | 0.3584 251.49 0.250016.700+3.356 0.355240.099

StainFuser [39] | 0.2634 156.55 0.0932|16.131+3.336 0.343640.143
D-VST 0.2628 88.287 0.0396 | 16.713+3.598 0.3601+0.140
Ext-FFPEZHE [34]

Pix2pix [37] | 0.2066 44.919 0.0271[15.780+1.853 0.458010.076
Pix2pixHD [83] | 0.1708 28.332 0.0139|17.726+1.457 0.4789+0.084
CycleGAN [100]| 0.2913 99.343 0.0780 | 11.778+2.055 0.2774=+0.125

[34] 0.1908 51.966 0.0342|18.975+1.404 0.593240.073

SynDiff [56] | 0.3420 154.37 0.1344]6.8810+2.005 0.2219+0.114

StainFuser [39] | 0.2153 71.887 0.0408|12.538+1.051 0.232610.093
D-VST 0.1521 27.488 0.0108|17.179+1.036 0.4591+0.075
regions by setting o = —1. The performance is worse than that of random sampling (o = 0) and our

low-frequency-preferred sampling (o = 1), validating that mosaic artifacts impact low-frequency
regions more. We use o = 1 for experiment comparison with other methods in the main text.

As for 3, we study its impact with « fixed to 1. Figure[A7](right) shows that increasing the number
of sampled patches rapidly improves the performance, which is reasonable, until the saturation at
£ = 16—with a similar performance to 8 = 8. Considering that 5 = 16 doubles the amount of
computation of 5 = 8, we set 3 = 8 for performance comparison in the main text.

Validate sampling probability design. To validate our design of sampling probabilities in Eqn. (2),
we use the medium [ of images as the threshold for low- and high-frequency patches. It turns out that
our method samples 69% of patches in low-frequency squares versus 31% in high-frequency ones.
These numbers indicate that the sampling probabilities work as designed.

External validation. To further evaluate the generalizability of our method, we conduct external
validation on two datasets: (1) the external test set from [61]], comprising 285 HE-IHC image pairs
stained with SP3 [14] or CB11 [62] antibodies (Ext-HE2IHC); and (2) the external test set from
[34], containing 1,398 FFPE-HE image pairs (Ext-FFPE2HE). It is worth noting that for the external
validation, we directly use the models trained for the corresponding tasks in the main text without
further tuning. As shown in Table D-VST again achieves the best performance for the three
perception-oriented metrics (DISTS, FID, and KID) on both external test datasets, and competitive
performance for PSNR and SSIM (ranking top one to top three among all compared methods).
These results are consistent with those presented in the main text, demonstrating D-VST’s strong
generalizability in cross-dye virtual staining of histopathology images.

Additional comparison with existing methods. In this section, we compare our D-VST with two
additional state-of-the-art approaches to virtual staining, PSRVS [98]] and DeepLIIF [23]], on the
HE2IHC [61]] dataset. The former belongs to diffusion-based models, and the latter to GAN-based.
The results are shown in Table With the due caution that these two methods may not be fully
optimized for this task, we can see that D-VST substantially outperforms PSRVS and DeepLIIF in
DISTS, FID, and KID, and is comparable in PSNR and SSIM.

Additional qualitative results. We present additional qualitative tone control results on HE2IHC and
FFPE2HE in Figure[A9] under settings consistent with Table 1 and Figure 5 of the main text. We also
show qualitative visual comparisons with other methods in Figure[AT0|and Figure[ATT|under the same
settings. Figure[AT2]displays more qualitative comparisons between different sampling strategies
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Table A9: Additional performance comparison with PSRVS [98]] and DeepLIIF [23] on the HE2IHC
dataset.

Method DISTS] FID] KIDJ] PSNR?T SSIM?T
D-VST (ours) | 0.154  33.16 0.0055 | 18.11+3.874 0.407+0.136
PSRVS 0422 2303 0.2283 | 17.94+4.193 0.396+0.128
DeepLiiF 0.305 1403  0.1379 | 17.96+3.713  0.418+0.129

for zero-shot virtual staining of large histopathology images at the resolution of 2048 x 2048 pixels.
These results qualitatively demonstrate that D-VST can (1) precisely control the tones of the cross-dye
virtually stained histopathology images without pathology leakage, (2) generate high-quality large
histopathology images in an efficient manner, and (3) support virtual staining of ultra-high-resolution
WSIs, validating the versatile generative capacity and generalization ability of D-VST.

WSI validation. As far as we know, no suitable WSI dataset is currently available for reliable
quantitative evaluation at scale. Therefore, we mainly show the qualitative results in Figure
Figure [AT4] and Figure [AT5|for an observational study. Figure [AT3]|shows ultra-high-resolution
(16,384 x 16,384 pixels) HE2IHC virtual staining examples. Lastly, Figure and Figure
showcase virtual staining results of WSIs (16,000x 15,096 and 40,000 32,496 pixels) from Ext-
FFPE2HE, each conditioned with two different target tones. We have asked two board-certified
pathologists to blindly rank the WSIs virtually stained by our D-VST, a representative GAN-based
method (pix2pixHD [83]]), and two diffusion-based methods (SynDiff [56] and StainFuser [39]),
considering image quality and pathology correctness. The evaluated WSIs include two HE2IHC
and two FFPE2HE images, shown in in Figure[AT3] Figure [AT4] and Figure [AT5] respectively. The
mean ranking is: D-VST (1.0), pix2pixHD (2.5), StainFuser(3.0), and SynDiff (3.5), demonstrating
D-VST’s superior virtual staining quality.

As for timing, we record the generation times for the WSI in Figure|[T]of the main text (16,384 x 16,384
pixels; HE to IHC) using a representative GAN-based method (pix2pixHD [83]), two diffusion-based
methods (StainFuser [39] and SynDiff [S6]), and our D-VST. To avoid the unwanted mosaic artifacts,
we implement the MultiDiffusion [3] sampling strategy for the compared methods, whereas D-VST
uses its adaptive sampling strategy. As shown in Table[AT0] D-VST is orders of magnitude faster
than the other diffusion-based methods and comparable to the GAN-based approach, highlighting its
efficiency advantage for large WSI virtual staining over existing diffusion-based methods.

Table A10: Runtime comparison of Pix2pixHD [83|], StainFuser [39], SynDiff [56], and D-VST for
generating a WSI of 16,384 x 16,384 pixels.

Method Pix2pixHD  StainFuser SynDiff D-VST (ours)
Time (second) 1,127 840,499 172,032 8,862

Influence of fine-tuning variational autoencoder (VAE). D-VST inherits the Stable Diffusion (SD)
VAE [67] from PixArt-« [9]], as it adopts the Diffusion Transformer (DiT) from PixArt-« as the
denoising network. Our empirical evidence, both quantitative and qualitative, shows that D-VST with
the SD VAE outperforms various GAN- and diffusion-based approaches on both virtual staining and
downstream classification tasks. Thus, we argue that the SD VAE suffices for encoding and decoding
of pathology images in D-VST, despite being pretrained on natural images and probably not being
the optimal choice. We attribute this to SD VAE’s strong encoding/decoding ability from large-scale,
diverse training, and DiT’s high compatibility with it. Notably, other works (e.g., HistDiST [25]],
StainFuser [39]) also successfully used VAEs pretrained on natural images for histopathology virtual
staining.

We also experimented with fine-tuning the SD VAE on the HE2IHC dataset, but observed mixed
results: similar PSNR/SSIM but worse DISTS, FID, and KID. We visualize the reconstruction error
distributions in Figure[A8] The reconstructed images show blurred cell membranes in lesion regions.
As shown in the MSE maps, these lesion regions exhibit the highest intensity, indicating that the
reconstructed images deviate most from the ground truth in these areas. We speculate that this
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Figure A8: Reconstruct IHC denotes the generated images produced with the fine-tuned VAE,
whereas Real IHC represents the corresponding ground-truth images. MSE Result refers to the
pixel-wise mean squared error (MSE) maps between the reconstructed and real images, where regions
with higher temperature indicate larger discrepancies. The red ellipses outline some areas where the
reconstructed cell membranes in lesion regions appear noticeably blurred.

degradation is due to the limited training data, which prevented the VAE from learning pathological
structures effectively; however, further validation with more data is needed.

Impact of tone control image selection on the downstream task. To evaluate the robustness of
D-VST to tone control images, we conduct an additional set of experiments in which only a single
IHC conditioning patch is used. Specifically, we randomly select one IHC image from the sub-test
set as the sole tone conditioning patch and repeat the experiment three times with different selections,
reporting the averaged results in Table[ATT] Otherwise, these experiments follow the same setting as
Table[3]in the main text. As we can see, the performance with a single IHC conditioning patch is
comparable to that obtained using multiple patches (originally reported in Table[3). This demonstrates
that D-VST’s downstream task performance is robust to the number of tone conditioning images,
which we attribute to its effective disentanglement of tone and pathological conditions.

Table A11: Impact of tone control image selection on the downstream task.

No. tone patches ACC F1 Precision Recall
Multiple (original) 0.9417 0.9430 0.9470 0.9388
Single (avg. over 3 runs) 0.941540.0068 0.9427+£0.0064 0.948340.0050 0.9416+0.0068

A28



Tone 2 THC-Result 2 THC-Result 3

e
VA,

o, 3

FFPE Tone 1 HE-Result 1 Tone 2 HE-Result 2 Tone 3 HE-Result 3 GT

Figure A9: Additional qualitative results for tone control. Top: HE to IHC; and bottom: FFPE to HE.
The images are virtually stained at the resolution of 1024 x 1024 pixels. GT: ground truth.
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Figure A10: Qualitative comparison of HE to IHC virtual staining results by various methods that
cannot control the tone of the virtually stained images, including Peng et al. [61]], Pix2PixHD [83],
Pix2Pix [37], CycleGAN [100], and SynDiff [536]. Note that the corresponding results by a few
methods that control the tone of the re-stained images through image-based conditioning (including
ours) are presented in Figure [ATT|for comparison. The images are virtually stained at the resolution
of 1024 x 1024 pixels. GT: ground truth. By comparing the virtually stained images with the GT, we
can observe clear Type I (false positive, meaning hallucinated cancerous status) and Type II (false
negative, meaning hallucinated cancer-free status) errors for these methods.
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Figure A11: Qualitative comparison with other methods for HE to IHC virtual staining with tone
control, including StainFuser [39], baseline (training the same network in Figure 3 (left) as our
D-VST but without the proposed two-stage condition-decoupling curriculum learning). The “Tone”
row displays the tone-conditioning images. Note that the corresponding results by methods that
cannot control the tone of the re-stained images are shown in Figure for comparison. The
images are virtually stained at the resolution of 1024 x1024 pixels. GT: ground truth. By comparing
the virtually stained images with the GT, we can observe clear pathology leakages of Type I (false
positive, meaning hallucinated cancerous status) and Type II (false negative, meaning hallucinated
cancer-free status) errors for the compared methods. In contrast, the results of our D-VST align
closely with the pathological statuses and distributions of the GT, while accurately reflecting the
tones of the conditioning images.
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Figure A12: Comparison of sampling strategies for zero-shot virtual staining of large histopathology
images (2048 <2048 pixels). The red ellipses outline regions where the mosaic artifacts are prominent
(best viewed zoomed in). GT: Ground truth.
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Figure A13: Examples of ultra-high-resolution (16,384 x 16,384 pixels) HE2IHC virtual staining.
The central column shows the source-domain HE images, whereas the left and right columns show
the virtually stained IHC images conditioned on two different tone-control images from the target

domain. The top and bottom rows show two examples. HER2 scores: 0: no cancerous lesion, and 1+,
2+, and 3+: increasing severity of cancerous lesions.
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Figure A14: Virtual staining of an FFPE WSI in Ext-FFPE2HE, illustrated with two tone-conditioning
images (Tone 1 and Tone 2) from the target domain. The virtual staining results corresponding to
Tone 1 and Tone 2 are HE 1 and HE 2, respectively.
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Figure A15: Virtual staining of an FFPE WSI in Ext-FFPE2HE, illustrated with two tone-conditioning
images (Tone 1 and Tone 2) from the target domain. The virtual staining results corresponding to
Tone 1 and Tone 2 are HE 1 and HE 2, respectively.
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