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Abstract

Energy-based learning algorithms have recently gained a surge of interest due
to their compatibility with analog (post-digital) hardware. Existing algorithms
include contrastive learning (CL), equilibrium propagation (EP) and coupled learn-
ing (CpL), all consisting in contrasting two states, and differing in the type of
perturbation used to obtain the second state from the first one. However, these
algorithms have never been explicitly compared on equal footing with same models
and datasets, making it difficult to assess their scalability and decide which one
to select in practice. In this work, we carry out a comparison of seven learning
algorithms, namely CL and different variants of EP and CpL depending on the signs
of the perturbations. Specifically, using these learning algorithms, we train deep
convolutional Hopfield networks (DCHNs) on five vision tasks (MNIST, F-MNIST,
SVHN, CIFAR-10 and CIFAR-100). We find that, while all algorithms yield com-
parable performance on MNIST, important differences in performance arise as the
difficulty of the task increases. Our key findings reveal that negative perturbations
are better than positive ones, and highlight the centered variant of EP (which uses
two perturbations of opposite sign) as the best-performing algorithm. We also
endorse these findings with theoretical arguments. Additionally, we establish new
SOTA results with DCHNs on all five datasets, both in performance and speed. In
particular, our DCHN simulations are 13.5 times faster with respect to Laborieux
et al. [2021], which we achieve thanks to the use of a novel energy minimisation
algorithm based on asynchronous updates, combined with reduced precision (16
bits).

1 Introduction

Prior to the dominance of backpropagation-based machine learning, Hopfield, Hinton and others
proposed an alternative ‘energy-based’ learning (EBL) approach [Hopfield, 1984, Hinton et al., 1984].
In this approach, the learning model is described by a state variable whose dynamics is governed by
an energy function. An EBL model can be used to compute as follows: 1) clamp the model input,
2) let the model settle to equilibrium (that is, the configuration of lowest energy), and 3) read the
model output. The objective is to modify the weights of the model so that it computes a desired
input-to-output function. This is achieved thanks to an EBL algorithm. One of the earliest EBL
algorithms was constrastive learning (CL)[Movellan, 1991, Baldi and Pineda, 1991], which adjusts
the model weights by contrasting two states: a ‘free’ state where the model outputs are free, and a
perturbed (or ‘clamped’) state where the model outputs are clamped to desired values. In the machine
learning literature, interest in EBL algorithms has remained limited due to the widespread success of
backpropagation running on graphics processing units (GPUs). However, EBL algorithms have more
recently revived interest as a promising learning framework for analog learning machines [Kendall
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et al., 2020, Stern et al., 2021]. The benefit of these algorithms is that they use a single computational
circuit or network for both inference and training, and they rely on local learning rules (i.e. the weight
updates are local). The locality of computation and learning makes these algorithms attractive for
training adaptive physical systems in general [Stern and Murugan, 2023], and for building energy-
efficient analog AI in particular [Kendall et al., 2020]. Small-scale EBL-trained variable resistor
networks have already been built [Dillavou et al., 2022, 2023, Yi et al., 2023], projecting a possible
10,000× improvement in energy efficiency compared to GPU-based training of deep neural networks
[Yi et al., 2023].

In recent years, various EBL algorithms have been proposed, such as equilibrium propagation
(EP) [Scellier and Bengio, 2017], the centered variant of EP [Laborieux et al., 2021] and coupled
learning (CpL) [Stern et al., 2021]. These algorithms, which are variants of CL with modified
perturbation methods, are often evaluated on different models and different datasets without being
compared to CL and to one another.1 Due to the lack of explicit comparison between these algorithms,
and since the algorithmic differences between them are small, they are often gathered under the
‘contrastive learning’ (or ‘contrastive Hebbian learning’) umbrella name [Dillavou et al., 2022, Stern
and Murugan, 2023, Peterson and Lavin, 2022, Lillicrap et al., 2020, Luczak et al., 2022, Høier et al.,
2023]. Consequently, many recent follow-up works in energy-based learning indifferently pick one
of these algorithms without considering alternatives [Dillavou et al., 2022, Wycoff et al., 2022, Stern
et al., 2022, Kiraz et al., 2022, Watfa et al., 2023, Yi et al., 2023, Dillavou et al., 2023, Altman et al.,
2023]. The main contribution of the present work is to provide an explicit comparison of the above-
mentioned EBL algorithms and highlight the important differences arising when the difficulty of the
task increases. Nonetheless, comparing these algorithms comes with another challenge: simulations
are typically very slow. Due to this slowness, EBL algorithms have often been used to train small
networks on small datasets (by deep learning standards). 2 3 Likewise, experimental realizations of
EBL algorithms on analog hardware (“physical learning machines”) have thus far been performed on
small systems only. 4

In this work, we conduct a study to compare seven EBL algorithms, including the four above-
mentioned and three new ones. Depending on the sign of the perturbation, we distinguish between
‘positively-perturbed’ (P-), ‘negatively-perturbed’ (N-) and ‘centered’ (C-) algorithms. To avoid
the problem of slow simulations of analog circuits, we conduct our comparative study on deep
convolutional Hopfield networks (DCHNs)[Ernoult et al., 2019], an energy-based network that has
been emulated on Ising machines [Laydevant et al., 2023], and for which simulations are faster and
previously demonstrated to scale to tasks such as CIFAR-10 [Laborieux et al., 2021] and Imagenet
32x32 [Laborieux and Zenke, 2022]. Our contributions include the following:

• We train DCHNs with each of the seven EBL algorithms on five vision tasks: MNIST,
Fashion-MNIST, SVHN, CIFAR-10 and CIFAR-100. We find that all these algorithms
perform well on MNIST, but as the difficulty of the task increases, important behavioural
differences start to emerge. Perhaps counter-intuitively, we find that N-type algorithms
outperform P-type algorithms by a large margin on most tasks. The C-EP algorithm emerges
as the best performing one, outperforming the other six algorithms on the three hardest tasks
(SVHN, CIFAR-10 and CIFAR-100).

• We state novel theoretical results for EP, adapted from those of ‘agnostic EP’ [Scellier et al.,
2022], that support our empirical findings. While EP is often presented as an algorithm that
approximates gradient descent on the cost function [Scellier and Bengio, 2017, Laborieux
et al., 2021], we provide a more precise and stronger statement: EP performs (exact) gradient
descent on a surrogate function that approximates the (true) cost function. The surrogate

1For example, Kendall et al. [2020] and Watfa et al. [2023] train layered nonlinear resistive networks using
EP, while Stern et al. [2021] train randomly-connected elastic and flow networks using CpL.

2Kendall et al. [2020] use SPICE to simulate the training of a one-hidden-layer network (with 100 ‘hidden
nodes’) on MNIST, which takes one week for only ten epochs of training. Watfa et al. [2023] train resistive
networks with EP on Fashion-MNIST, Wine, and Iris. Similarly, Stern et al. [2021] simulate the training of
disordered networks of up to 2048 nodes on a subset of 200 images of the MNIST dataset.

3With some exceptions, e.g. Laborieux and Zenke [2022] perform simulations of energy-based convolutional
networks (DCHNs) on ImageNet 32x32.

4Dillavou et al. [2022] train a resistive network of 9 nodes and 16 edges on the IRIS dataset. Yi et al. [2023]
train a 24-33-7 memristive network on a 64× 64 array of memristors to classify Braille words. Laydevant et al.
[2023] train a 784-120-40 network (Ising machine) on a subset of 1000 images of the MNIST dataset.
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function of N-EP is an upper bound of the cost function, whereas the one of P-EP is a lower
bound (Theorem 2). Moreover, the surrogate function of C-EP approximates the true cost
function at the second order in the perturbation strength (Theorem 3), whereas the ones of
P-EP and N-EP are first-order approximations.

• We achieve state-of-the-art DCHN simulations on all five datasets, both in terms of perfor-
mance (accuracy) and speed. For example, a full run of 100 epochs on CIFAR-10 yields a
test error rate of 10.4% and takes 3 hours 18 minutes on a single A100 GPU ; we show that
this is 13.5x faster than the simulations of Laborieux et al. [2021] on the same hardware (a
A100 GPU). With further training (300 epochs), the test error rate goes down to 9.7% – to
be compared with 11.4% reported in Laborieux and Zenke [2022]. Our simulation speedup
is enabled thanks to the use of a novel energy minimization procedure for DCHNs based on
asynchronous updates and the use of 16 bit precision.

We note that our work also bears similarities with the line of works on energy-based models [Grath-
wohl et al., 2019, Nijkamp et al., 2019, Du and Mordatch, 2019, Geng et al., 2021]. Like our approach,
these studies involve the minimization of an energy function within the activation space (or input
space) of a network. However, unlike our approach, they do not typically exclude the use of the
backpropagation algorithm, employing it not only to compute the parameter gradients, but also to
execute gradient descent within the network’s activation space (or input space). In contrast, the
primary motivation of our work is to eliminate the need for backpropagation, and to perform inference
and learning by leveraging locally computed quantities, with the long term goal of building energy-
efficient processors dedicated to model optimization. Hence, our motivation diverges significantly
from traditional ‘energy-based models’.

Figure 1: Cartoon illustrating the seven energy-based learning (EBL) algorithms: contrastive learn-
ing (CL), positively-perturbed algorithms (P-), negatively-perturbed algorithms (N-) and centered
algorithms (C-). EP and CpL stand for equilibrium propagation and coupled learning, respectively.
The desired output is y. The model prediction is o⋆ i.e. the output configuration minimizing the
energy function. The strength of the perturbation is β. A positive perturbation pulls the model
output (oβ) towards y. A negative perturbation pushes the model output (o−β) away from y. Arrows
indicate the weight update: green (resp. red) arrows decrease (resp. increase) the energy value of the
corresponding configuration.
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2 Energy-based learning algorithms

This section introduces the concepts and notations, presents the seven energy-based learning algo-
rithms and states the theoretical results.

We consider the setting of image classification. In this setting, an energy-based learning (EBL) model
is composed of an input variable (x), a parameter variable (θ) a hidden variable (h) and an output
variable (o). A scalar function E called energy function assigns to each tuple (θ, x, h, o) a real number
E(θ, x, h, o). Given θ and x, among all possible configurations (h, o), the effective configuration of
the model is the equilibrium state (or steady state), denoted (h⋆, o⋆) which is implicitly defined as a
minimum of the energy function,

(h⋆, o⋆) := argmin
(h,o)

E(θ, x, h, o). (1)

The equilibrium value (or steady state value) of output variables, o⋆, represents a prediction of the
model, which we also denote o(θ, x) = o⋆ to emphasize that it depends on the input x and the model
parameter θ.

The goal of training an EBL model is to adjust θ so that, for any input x, the output o(θ, x) coincides
with a desired output y (the label associated to x). We refer to an algorithm for training an EBL
model as an EBL algorithm.

Remark. In the terminology of Stern and Murugan [2023], h and o are the ‘physical degrees of
freedom’, θ is the set of ‘learning degrees of freedom’ and E is the ‘physical cost function’.

2.1 Contrastive learning

Contrastive learning (CL) is the earliest EBL algorithm [Movellan, 1991]. The CL algorithm proceeds
in two phases. In the first phase, input variables x are clamped, while the hidden and output variables
are free to stabilize to the energy minimum (h⋆, o⋆) as in (1). In the second phase, the output variables
o are now also clamped to the desired output y, and the hidden variables h are free to stabilize to a
second energy minimum, denoted hCL

⋆ , characterized by

hCL
⋆ := argmin

h
E(θ, x, h, y). (2)

The contrastive learning rule for the model parameters reads

∆CLθ = η

(
∂E

∂θ
(θ, x, h⋆, o⋆)−

∂E

∂θ

(
θ, x, hCL

⋆ , y
))

, (3)

where η is a learning rate. The CL rule is illustrated in Figure 1.

2.2 Equilibrium propagation

Equilibrium propagation (EP) is another EBL algorithm [Scellier and Bengio, 2017]. One notable
difference in EP is that one explicitly introduces a cost function C(o, y) that represents the discrepancy
between the output o and desired output y. In its original formulation, EP is a variant of CL which
also consists of contrasting two states. In the first phase, similar to CL, input variables are clamped
while hidden and output variables are free to settle to the free state (h⋆, o⋆) characterized by (1).
In the second phase, in contrast with CL, EP proceeds by only perturbing (or nudging) the output
variables rather than clamping them. This is achieved by augmenting the model’s energy by a term
βC(o, y), where β ∈ R is a scalar – the nudging parameter. The model settles to another equilibrium
state, the perturbed state, characterized by

(hEP
β , oEP

β ) = argmin
(h,o)

[E(θ, x, h, o) + βC(o, y)] . (4)

In its classic form, the learning rule of EP is similar to CL:

∆EPθ =
η

β

(
∂E

∂θ
(θ, x, h⋆, o⋆)−

∂E

∂θ

(
θ, x, hEP

β , oEP
β

))
. (5)

The EP learning rule (5) comes in two variants depending on the sign of β. In Scellier and Bengio
[2017], EP is introduced in the variant with β > 0, which we call here positively-perturbed EP (P-EP).
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In this work, we introduce the variant with β < 0, which we call negatively-perturbed EP (N-EP). 5

We also consider the variant of EP introduced by Laborieux et al. [2021] whose learning rule reads

∆C−EPθ =
η

2β

(
∂E

∂θ

(
θ, x, hEP

−β , o
EP
−β

)
− ∂E

∂θ

(
θ, x, hEP

β , oEP
β

))
, (6)

which we call centered EP (C-EP). The EP learning rules are illustrated in Figure 1.

2.3 Coupled learning

Coupled learning (CpL) is another variant of contrastive learning [Stern et al., 2021]. In the first
phase, similar to CL and EP, input variables are clamped, while hidden and output variables are free
to settle to their free state value (h⋆, o⋆) characterized by (1). In the second phase, output variables
are clamped to a weighted mean of o⋆ and y, and the hidden variables are allowed to settle to their
new equilibrium value. Mathematically, the new equilibrium state is characterized by the following
formulas, where the weighted mean output (oCpL

β ) is parameterized by a factor β ∈ R \ {0}:

hCpL
β := argmin

h
E(θ, x, h, oCpL

β ), oCpL
β := (1− β)o⋆ + βy. (7)

Similarly to CL and EP, the learning rule of CpL reads

∆CpLθ =
η

β

(
∂E

∂θ
(θ, x, h⋆, o⋆)−

∂E

∂θ

(
θ, x, hCpL

β , oCpL
β

))
. (8)

In particular, for β = 1, one recovers the contrastive learning algorithm (CL). In their original
formulation, Stern et al. [2021] use β > 0 ; here we refer to this algorithm as positively-perturbed
CpL (P-CpL). Similarly to EP, we also introduce negatively-perturbed CpL (N-CpL, with β < 0) as
well as centered CpL (C-CpL):

∆C−CpLθ =
η

2β

(
∂E

∂θ

(
θ, x, hCpL

−β , oCpL
−β

)
− ∂E

∂θ

(
θ, x, hCpL

β , oCpL
β

))
. (9)

Figure 1 also depicts P-CpL, N-CpL and C-CpL.

2.4 Theoretical results

The EBL algorithms presented above have different theoretical properties. We start with CL.

Theorem 1 (Contrastive learning). The contrastive learning rule (3) performs one step of gradient
descent on the so-called contrastive function LCL,

∆CLθ = −η
∂LCL

∂θ
(θ, x, y), LCL(θ, x, y) := E

(
θ, x, hCL

⋆ , y
)
− E (θ, x, h⋆, o⋆) . (10)

Theorem 1 is proved in Movellan [1991]. However, it is not clear that the contrastive function LCL

has the desirable properties of an objective function from a machine learning perspective.

The equilibrium propagation (EP) learning rules have better theoretical properties. EP is often
presented as an algorithm that approximates the gradient of the cost function, e.g. in Scellier and
Bengio [2017], Laborieux et al. [2021]. In this work, we provide a more precise and stronger
statement: EP computes the exact gradient of a surrogate function that approximates the cost function.
Moreover, in N-EP, the surrogate function is an upper bound of the cost function (Theorem 2), and in
C-EP, the surrogate function approximates the cost function at the second order in β (Theorem 3).
Theorems 2 and 3 are adapted from Scellier et al. [2022] 6 – see Appendix A for proofs.

5Another variant of EP proposed in Scellier and Bengio [2017] combines N-EP and P-EP, where the sign of
the nudging parameter β is chosen at random for each example in the training set. However, N-EP wasn’t used
and tested as is.

6In ‘agnostic equilibrium propagation’ (AEP) [Scellier et al., 2022], the function LEP
β is proved to be a

Lyapunov function for AEP, but AEP does not perform exact gradient descent on LEP
β . In contrast, EP performs

exact gradient descent on LEP
β , but LEP

β is not a Lyapunov function for EP.
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Theorem 2 (Equilibrium propagation). There exists some function LEP
β such that the learning rule

(5) performs one step of gradient descent on LEP
β :

∆EPθ = −η
∂LEP

β

∂θ
(θ, x, y). (11)

The function LEP
β is a lower bound of the ‘true’ cost function if β > 0 (P-EP), and an upper bound if

β < 0 (N-EP), i.e.

LEP
β (θ, x, y) ≤ C (o(θ, x), y) ≤ LEP

−β(θ, x, y), ∀β > 0, (12)

where o(θ, x) = o⋆ is the free equilibrium value of output variables given θ and x, as in (1).
Furthermore, LEP

β approximates the ‘true’ cost function up to O(β) when β → 0,

LEP
β (θ, x, y) = C (o(θ, x), y) +O(β). (13)

Theorem 3 (Centered EP). There exists some function LEP
−β;+β such that the learning rule (6)

performs one step of gradient descent on LEP
−β;+β:

∆C−EPθ = −η
∂LEP

−β;+β

∂θ
(θ, x, y). (14)

Moreover, the function LEP
−β;+β approximates the ‘true’ cost function up to O(β2) when β → 0,

LEP
−β;+β(θ, x, y) = C (o(θ, x), y) +O(β2). (15)

Finally, the analysis of the coupled learning rules (P-CpL, N-CpL and C-CpL) is more complicated.
Stern et al. [2021] introduce the following function as a candidate loss function for coupled learning:

L(1)
CpL(θ, x, y) := (y−o(θ, x))⊤·∂

2G

∂o2
(θ, x, o(θ, x))·(y−o(θ, x)), G(θ, x, o) := min

h
E(θ, x, h, o).

(16)
Stern et al. [2021] argue that the P-CpL rule (8) optimizes both LCpL and the squared error
LMSE(θ, x, y) := (o(θ, x)− y)2. Besides, Stern et al. [2022, 2023] argue that the learning rule (8)
performs gradient descent on

L(2)
CpL :=

1

β

(
E(θ, x, hCpL

β , oCpL
β )− E(θ, x, h⋆, o⋆)

)
. (17)

In Appendix B, we demonstrate that the coupled learning rules (8) and (9) do not optimizeL(1)
CpL or

LMSE, and do not perform gradient descent on L(2)
CpL.

3 Deep convolutional Hopfield networks

To compare the EBL algorithms presented in section 2, we consider the EBL model of Ernoult et al.
[2019], which we call deep convolutional Hopfield network (DCHN). We consider specifically the
network architecture of Laborieux et al. [2021].

Network architecture. The network has an input layer, four hidden layers, and an output layer.
Since we consider classification tasks, the output layer has M units, where M is the number of
categories for the task. Successive layers are interconnected by convolutional interactions with kernel
size 3×3, padding 1, and max pooling. Except for the last hidden layer and the output layer, which
are interconnected by a dense interaction.

Energy function. We denote the state of the network s = (s0, s1, s2, s3, s4, s5), where x = s0
is the input layer, h = (s1, s2, s3, s4) is the hidden variable and o = s5 is the output variable. The
energy function of the network is

E(θ, s) :=

5∑
k=1

1

2
∥sk∥2+

4∑
k=1

Econv
k (wk, sk−1, sk)+Edense

5 (w5, s4, s5)+

5∑
k=1

Ebias
k (bk, sk), (18)
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where θ = {wk, bk | 1 ≤ k ≤ 5} is the set of model parameters, and Econv
k , Edense

k and Ebias
k are

energy terms defined as

Econv
k := −sk • P (wk ⋆ sk−1) , Edense

k := −s⊤k wksk−1, Ebias
k := −b⊤k sk. (19)

Specifically, Econv
k is the energy function of a convolutional interaction between layers k − 1 and

k, parameterized by the kernel wk (the weights), where ⋆ is the convolution operation, P is the
max pooling operation, and • is the scalar product for pairs of tensors. Edense

k is the energy of a
dense interaction between layers k − 1 and k, parameterized by the dim(sk−1)× dim(sk) matrix
wk. Finally, Ebias

k is the energy term of bk, the bias of layer k.

Cost function. For the equilibrium propagation learning rules, we use the squared error cost
function C(o, y) = ∥o− y∥2, where o = s5 is the output layer and y is the one-hot code of the label
(associated to image x).

State space. Given an input x, the steady state of the model is (h⋆, o⋆) = argmin
(h,o)∈S

E(θ, x, h, o),

where S is the state space, i.e. the space of configurations for the hidden and output variables. We
use S =

∏4
k=1[0, 1]

dim(sk) × Rdim(s5), where [0, 1] is the closed interval of R with bounds 0 and 1,
and dim(sk) is the number of units in layer k.

Energy minimization via asynchronous updates. In order to compute the steady states (free state
and perturbed states) of the learning algorithms presented in section 2, we use a novel procedure
for DCHNs using ‘asynchronous updates’ for the state variables, as opposed to the ‘synchronous
updates’ used in other works [Ernoult et al., 2019, Laborieux et al., 2021, Laydevant et al., 2021,
Laborieux and Zenke, 2022]. This asynchronous procedure proceeds as follows: at every iteration,
we first update the layers of even indices in parallel (the first half of the layers) and then we update
the layers of odd indices (the other half of the layers). Updating all the layers once (first the even
layers, then the odd layers) constitutes one ‘iteration’. We repeat as many iterations as necessary
until convergence to the steady state. See Appendix C for a detailed explanation of the asynchronous
procedure, and for a comparison with the synchronous procedure used in other works. Although we
do not have a proof of convergence of this asynchronous procedure for DCHNs when P is the max
pooling operation, we find experimentally that it converges faster than the synchronous procedure
(for which there is no proof of convergence anyway).

4 Simulations

4.1 Comparative study of EBL algorithms

Setup. We compare with simulations the seven energy-based learning (EBL) algorithms of section 2
on the deep convolutional Hopfield network (DCHN) of section 3. To do this, we train a DCHN on
MNIST, Fashion-MNIST, SVHN, CIFAR-10 and CIFAR-100 using each of the seven EBL algorithms.
We also compare the performance of these algorithms to two baselines: recurrent backpropagation
(RBP) and truncated backpropagation (TBP), detailed below. For each simulation, the DCHN is
trained for 100 epochs. Each run is performed on a single A100 GPU. A run on MNIST and
FashionMNIST takes 3 hours 30 minutes ; a run on SVHN takes 4 hours 45 minutes ; and a run
on CIFAR-10 and CIFAR-100 takes 3 hours. All these simulations are performed with the same
network using the same initialization scheme and the same hyperparameters. Details of the training
experiments are provided in Appendix D and the results are reported in Table 1. 7

First baseline: recurrent backpropagation (RBP). As the equilibrium state o⋆ of an EBL model
is defined implicitly as the minimum of an energy function, the gradient of the cost C(o⋆, y) can
be computed via implicit differentiation, or more specifically via an algorithm called recurrent
backpropagation [Almeida, 1987, Pineda, 1987].

Second baseline: truncated backpropagation (TBP). Our second baseline uses automatic differ-
entiation (i.e. backpropagation) as follows. First, we compute the free state (h⋆, o⋆). Then, starting

7The code is available at https://github.com/rain-neuromorphics/energy-based-learning
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from the free state (h0, o0) = (h⋆, o⋆) we perform K iterations of the fixed point dynamics ; we
arrive at (hK , oK), which is also equal to the free state. We then compute the gradient of C(oK , y)
with respect to the parameters (θ), without backpropagating through (h0, o0). This is a truncated
version of backpropagation, where we only backpropagate through the last K iterations but not
through the minimization of the energy function. This baseline is also used by Ernoult et al. [2019].

Table 1: Results obtained by training the deep convolutional Hopfield network (DCHN) of Section 3
with the EBL algorithms of Section 2: contrastive learning (CL), equilibrium propagation (EP) and
coupled learning (CpL). EP and CpL are tested in their positively-perturbed (P-), negatively-perturbed
(N-) and centered (C-) variants. We also report two baselines: truncated backpropagation (TBP) and
recurrent backpropagation (RBP). Train and Test refer to the training and test error rates, in %. For
each of these 45 experiments, we perform three runs and report the mean values. See Appendix D for
the complete results with std values. The hyperparameters used for this study are reported in Table 5.

MNIST FashionMNIST SVHN CIFAR-10 CIFAR-100

Test Train Test Train Test Train Test Train Test Train

TBP 0.42 0.23 6.12 3.09 3.76 2.37 10.1 3.1 33.4 17.2
RBP 0.44 0.33 6.28 3.70 3.87 3.43 10.7 5.2 34.4 18.2

CL 0.61 2.39 10.10 15.49 6.1 15.8 31.4 45.2 71.4 88.6
P-EP 1.66 2.29 90.00 89.99 83.9 81.9 72.6 79.5 89.4 95.5
N-EP 0.42 0.19 6.22 3.87 80.4 81.1 11.9 6.2 44.7 40.1
C-EP 0.44 0.20 6.47 4.01 3.51 3.01 11.1 5.6 37.0 26.0

P-CpL 0.66 0.59 64.70 65.31 40.1 50.8 46.9 57.7 77.9 91.0
N-CpL 0.50 0.88 6.86 6.27 80.4 81.1 13.5 10.2 51.9 50.6
C-CpL 0.44 0.38 6.91 5.29 4.23 5.05 14.9 14.6 46.5 37.9

We draw several lessons from Table 1.

Algorithms perform alike on MNIST. Little difference is observed in the test performance of
the algorithms on MNIST, ranging from 0.42% to 0.66% test error rate for six of the seven EBL
algorithms. This result confirms the current trend in the literature, often skewed towards simple tasks,
which sometimes goes to treat all EBL algorithms as one and the same.

Weak positive perturbations perform worse than strong ones. P-EP fails on most datasets
(Fashion-MNIST, SVHN, CIFAR-10 and CIFAR-100). P-CpL (the other weakly positively-perturbed
algorithm) performs better than P-EP on all tasks, but also fails on CIFAR-100 (91% training error).
It is noteworthy that CL, which employs full clamping to the desired output (i.e. a strong positive
perturbation), performs better than these two algorithms on all tasks, sometimes by a very large
margin (Fashion-MNIST and SVHN).

Negative perturbations yield better results than positive ones. On Fashion-MNIST, CIFAR-
10 and CIFAR-100, algorithms employing a negative perturbation (N-EP and N-CpL) perform
significantly better than those employing a positive perturbation (CL, P-EP and P-CpL). Theorem 2
sheds light on why N-EP performs better than P-EP: N-EP optimizes an upper bound of the cost
function, whereas P-EP optimizes a lower bound. We note however that on SVHN, the results
obtained with N-EP and N-CpL are much worse than CL – in Appendix E we perform additional
simulations where we change the weight initialization of the network ; we find that N-EP and N-CpL
generally perform much better than CL, P-EP and P-CpL, supporting our conclusion.

Two-sided perturbations (i.e. centered algorithms) yield better results than one-sided per-
turbations. While little difference in performance between the centered (C-EP and C-CpL) and
negatively-perturbed (N-EP and N-CpL) algorithms is observed on MNIST, FashionMNIST and
CIFAR-10, the centered algorithms unlock training on SVHN and significantly improve the test error
rate on CIFAR-100 (by ≥ 5.4%). Theorem 3 sheds light on why C-EP performs better than N-EP:
the loss function LEP

−β;+β of C-EP better approximates the cost function (up to O(β2)) than the loss
function LEP

−β of N-EP (up to O(β)).
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The EP perturbation method yields better results than the one of CpL. While little difference in
performance is observed between C-EP and C-CpL on MNIST and FashionMNIST, C-EP significantly
outperforms C-CpL on CIFAR-10 and CIFAR-100, both in terms of training error rate (≥ 11.9%
difference) and test error rate (≥ 3.8% difference). The same observations hold between N-EP and
N-CpL. We also note that the CpL learning rules seem to be less theoretically grounded than the EP
learning rules, as detailed in Appendix B.

4.2 State-of-the-art DCHN simulations (performance and speed)

The comparative study conducted in the previous subsection highlights C-EP as the best EBL algo-
rithm among the seven algorithms considered in this work. Using C-EP, we then perform additional
simulations on MNIST, CIFAR-10 and CIFAR-100, where we optimize the hyperparameters of train-
ing (weight initialization, initial learning rates, number of iterations, value of the nudging parameter
and weight decay) to yield the best performance. We use the hyperparameters reported in Table 5
(Appendix D). We report in Table 2 our fastest simulations (100 epochs) as well as the ones that yield
the lowest test error rate (300 epochs), averaged over three runs each. We also compare our results
with existing works on deep convolutional Hopfield networks (DCHNs).

Table 2: We achieve state-of-the-art results (both in terms of speed and accuracy) with C-EP-trained
DCHNs on MNIST, CIFAR-10 and CIFAR-100. The results are averaged over 3 runs, and compared
with the existing literature on DCHNs. Top1 (resp. Top5) refers to the test error rate for the Top1
(resp. Top5) classification task. Wall-clock time (WCT) is reported as HH:MM. The hyperparameters
used for these simulations are reported in Table 5 (Appendix D).

MNIST CIFAR-10 CIFAR-100

Top1 WCT Top1 WCT Top1 Top5 WCT

Ernoult et al. [2019] 1.02 8:58
Laborieux et al. [2021] 11.68 N.A.
Laydevant et al. [2021] 0.85 N.A. 13.78 ∼ 120:00

Luczak et al. [2022] 20.03 N.A.
Laborieux and Zenke [2022] 11.4 ∼ 24:00 38.4 14.0 ∼ 24:00

This work (100 epochs) 0.44 3:30 10.40 3:18 34.2 14.2 3:02
This work (300 epochs) 9.70 9:54 31.6 14.1 9:04

Table 2 shows that we achieve better simulation results than existing works on DCHNs on all three
datasets, both in terms of performance and speed. For instance, our 100-epoch simulations on
CIFAR-10 take 3 hours 18 minutes, which is 7 times faster than those reported in [Laborieux and
Zenke, 2022] (1 day), and 36 times faster than those reported in Laydevant et al. [2021] (5 days), and
our 300-epoch simulations on CIFAR-10 yield 9.70% test error rate, which is significantly lower than
[Laborieux and Zenke, 2022] (11.4%). On CIFAR-100, it is interesting to note that our 300-epoch
simulations yield a significantly better Top-1 error rate than Laborieux and Zenke [2022] (31.6% vs
38.4%), but a slightly worse Top-5 error rate (14.1% vs 14.0%) ; we speculate that this might be due
to our choice of using the mean-squared error instead of the cross-entropy loss used in Laborieux and
Zenke [2022]. Since no earlier work on DCHNs has performed simulations on Fashion-MNIST and
SVHN, our results reported in Table 1 are state-of-the-art on these datasets as well.

Our important speedup comes from our novel energy-minimization procedure based on “asynchronous
updates”, combined with 60 iterations at inference (free phase) and the use of 16-bit precision. In
comparison, Laborieux et al. [2021] used “synchronous updates” with 250 iterations and 32-bit
precision. We show in Appendix C that these changes result in a 13.5x speedup on the same device (a
A100 GPU) without degrading the performance (test error rate).

We also stress that there still exists an important gap between our SOTA DCHN results and SOTA
computer vision models. For example, Dosovitskiy et al. [2020] report 0.5% test error rate on
CIFAR-10, and 5.45% top-1 test error rate on CIFAR-100.
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5 Conclusion

Our comparative study of energy-based learning (EBL) algorithms delivers a few key take-aways: 1)
simple tasks such as MNIST may suggest that all EBL algorithms work equally well, but more difficult
tasks such as CIFAR-100 magnify small algorithmic differences, 2) negative perturbations yield
better results than positive ones, 3) two-sided (centered) perturbations perform better than one-sided
perturbations, and 4) the perturbation technique of equilibrium propagation yields better results than
the one of coupled learning. These findings highlight the centered variant of equilibrium propagation
(C-EP) as the best EBL algorithm among those considered in the present work, outperforming the
second-best algorithm on CIFAR-100 (N-EP) by a significant margin. Our results also challenge
some common views. First, it is noteworthy that CL (which uses clamping to the desired output,
i.e. a strong positive perturbation) yields better results than P-CpL and P-EP (which use weak
positive perturbations): this is contrary to the prescription of Stern et al. [2021] to use small positive
perturbations, and opens up questions in the strong perturbation regime [Meulemans et al., 2022].
Second, it is interesting to note that CL [Movellan, 1991, Baldi and Pineda, 1991], EP [Scellier and
Bengio, 2017] and CpL [Stern et al., 2021] were originally introduced around the same intuition of
bringing the model output values closer to the desired outputs ; the fact that the four best-performing
algorithms of our study (C-EP, N-EP, C-CpL and N-CpL) all require a negative perturbation suggests
on the contrary that the crucial part in EBL algorithms is not to pull the model outputs towards the
desired outputs, but to push away from the desired outputs. Third, Laborieux et al. [2021] explained
the very poor performance of P-EP by it approximating the gradient of the cost function up to O(β),
but our observation that N-EP considerably outperforms P-EP while also possessing a bias of order
O(β) shows that this explanation is incomplete ; Theorem 2 provides a complementary explanation:
P-EP optimizes a lower bound of the cost function, whereas N-EP optimizes an upper bound.

Our work also establishes new state-of-the-art results for deep convolutional Hopfield networks
(DCHNs) on all five datasets, both in terms of performance (accuracy) and speed. In particular, thanks
to the use of a novel “asynchronous” energy-minimization procedure for DCHNs, we manage to
reduce the number of iterations required to converge to equilibrium to 60 - compared to 250 iterations
used in Laborieux et al. [2021]. Combined with the use of 16-bit precision (instead of 32-bit), this
leads our simulations to be 13.5 times faster than those of Laborieux et al. [2021] when run on the
same hardware (a A100 GPU).

While our theoretical and simulation results seem conclusive, we also stress some of the limiting
aspects of our study. First, our comparative study of EBL algorithms was conducted only on the
DCHN model ; further studies will be required to confirm whether or not the conclusions that we
have drawn extend to a broader class of models such as resistive networks [Kendall et al., 2020] and
elastic networks [Stern et al., 2021]. Second, in our simulations of DCHNs, the performance of the
different EBL methods depends on various hyperparameters such as the perturbation strength (β),
the number of iterations performed to converge to steady state, the weight initialization scheme, the
learning rates, the weight decay, etc. Since a different choice of these hyperparameters can lead to
different performance, it is not excluded that a deeper empirical study could lead to slightly different
conclusions.

Ultimately, while our work is concerned with simulations, EBL algorithms are most promising for
training actual analog machines ; we believe that our findings can inform the design of such hardware
as well [Dillavou et al., 2022, 2023, Yi et al., 2023, Altman et al., 2023]. Finally, we contend that
our theoretical insights and experimental findings may also help better understand or improve novel
EBL algorithms [Anisetti et al., 2022, Laborieux and Zenke, 2022, Hexner, 2023, Anisetti et al.,
2023], and more generally guide the design of better learning algorithms for bi-level optimization
problems [Zucchet and Sacramento, 2022], including the training of Lagrangian systems [Kendall,
2021, Scellier, 2021], meta-learning [Zucchet et al., 2022, Park and Simeone, 2022], direct loss
minimization [Song et al., 2016] and predictive coding [Whittington and Bogacz, 2019, Millidge
et al., 2022].
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A Loss functions of the equilibrium propagation learning rules

In this appendix, we prove Theorems 2 and 3. To do so, we state and prove Theorems 4 and 5 below,
of which Theorems 2 and 3 are direct consequences.

In this appendix, the input x and label y are fixed, so we omit them in the notation for simplicity. For
fixed θ, we define for any value of β the minimum of the augmented energy when h and o are free:

F (β, θ) := inf
h,o

{E(θ, h, o) + βC(o)} . (20)

We further define the contrastive functions (or ‘surrogate functions’)

LEP
β (θ) :=

F (β, θ)− F (0, θ)

β
, β ∈ R \ {0}, (21)

and

LEP
−β;+β (θ) :=

F (β, θ)− F (−β, θ)

2β
, β > 0. (22)

We also recall the definition of the steady state values of output variables:

o(θ) := argmin
o

min
h

E(θ, h, o). (23)

Finally, we recall that the equilibrium propagation (EP) perturbed state (4) is defined as

(hEP
β , oEP

β ) := arg min
(h,o)

{E(θ, h, o) + βC(o)} (24)

and that the EP learning rules (5) and (6) read

∆EPθ :=
η

β

(
∂E

∂θ

(
θ, hEP

0 , oEP
0

)
− ∂E

∂θ

(
θ, hEP

β , oEP
β

))
(25)

and

∆C−EPθ :=
η

2β

(
∂E

∂θ

(
θ, hEP

−β , o
EP
−β

)
− ∂E

∂θ

(
θ, hEP

β , oEP
β

))
. (26)

In particular, oEP
0 = o(θ) by definition.

Theorem 4. The derivative of the function β → F (β, θ) at β = 0 is equal to C(o(θ)). In particular,
as β → 0, we have

LEP
β (θ) = C(o(θ)) +O(β) and LEP

−β;+β(θ) = C(o(θ)) +O(β2). (27)

Furthermore, we have for any β > 0

LEP
β (θ) ≤ C(o(θ)) ≤ LEP

−β(θ). (28)

Theorem 5. The equilibrium propagation learning rules satisfy

∆EPθ = −η
∂LEP

β

∂θ
(θ) , ∆C−EPθ = −η

∂LEP
−β;+β

∂θ
(θ) . (29)

Theorem 4 is borrowed from Scellier et al. [2022], where these statements are proved in the context
of ‘agnostic equilibrium propagation’. Theorem 5 is a new contribution. For clarity to ensure the
manuscript is self-contained, we provide here proofs for both Theorem 4 and Theorem 5.

First, we introduce a new notation: we introduce the function

F (β, θ, h, o) := E (θ, h, o) + βC(o). (30)

Using this notation, for every β ∈ R, the first order conditions for the steady state (hEP
β , oEP

β ) read:

∂F

∂h

(
β, θ, hEP

β , oEP
β

)
= 0,

∂F

∂o

(
β, θ, hEP

β , oEP
β

)
= 0, (31)

and the function F (20) rewrites

F (β, θ) = F
(
β, θ, hEP

β , oEP
β

)
. (32)
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Proof of Theorem 4. Using the chain rule of differentiation, we have

∂F

∂β
(β, θ) =

∂F

∂β

(
β, θ, hEP

β , oEP
β

)
+

∂F

∂h

(
β, θ, hEP

β , oEP
β

)
︸ ︷︷ ︸

=0

·
∂hEP

β

∂β
+

∂F

∂o

(
β, θ, hEP

β , oEP
β

)
︸ ︷︷ ︸

=0

·
∂oEP

β

∂β
.

(33)
Therefore

∂F

∂β
(β, θ) =

∂F

∂β

(
β, θ, hEP

β , oEP
β

)
= C

(
oEP
β

)
. (34)

Evaluating this expression at β = 0, and using oEP
0 = o(θ) by definition, we get

∂F

∂β
(0, θ) = C (o(θ)) , (35)

which is the first statement of Theorem 4. Using a Taylor expansion of F (β, θ) around β = 0, we
have

F (β, θ) = F (0, θ) + βC (o(θ)) +O(β2). (36)

Subtracting F (θ, 0) on both sides and dividing by β, we get

LEP
β (θ) =

F (β, θ)− F (0, θ)

β
= C (o(θ)) +O(β), (37)

which is the first part of equation (27). Similarly, we write Taylor expansions for F (β, θ) and
F (−β, θ),

F (β, θ) = F (0, θ) + βC (o(θ)) +
1

2
β2 ∂

2F

∂β2
(0, θ) +O(β3), (38)

F (−β, θ) = F (0, θ)− βC (o(θ)) +
1

2
β2 ∂

2F

∂β2
(0, θ) +O(β3). (39)

Subtracting the second equation from the first one, and dividing by 2β, we get

LEP
−β;+β(θ) =

F (β, θ)− F (−β, θ)

2β
= C (o(θ)) +O(β2), (40)

which is the second part of equation (27).

Next, we prove the upper bound and lower bound properties. To this end, we write for any β ∈ R,

F (β, θ) = inf
h,o

{E(θ, h, o) + βC(o)} (41)

≤ inf
h

{E (θ, h, o(θ)) + βC (o(θ))} = F (0, θ) + βC (o(θ)) , (42)

where o(θ) is the free state value of output variables. Subtracting F (θ, 0) on both sides we get

F (β, θ)− F (θ, 0) ≤ βC(o(θ)). (43)

Next we divide by β. For β > 0, we get

LEP
β (θ) =

F (β, θ)− F (θ, 0)

β
≤ C(o(θ)) (44)

and for β < 0 we get

LEP
β (θ) =

F (β, θ)− F (θ, 0)

β
≥ C(o(θ)). (45)

Hence the result:
LEP
β (θ) ≤ C(o(θ)) ≤ LEP

−β(θ), ∀β > 0. (46)

Similarly, it can be shown more generally that the function β → LEP
β (θ) is non-increasing, or

equivalently that the function β 7→ F (β, θ) is concave.
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Proof of Theorem 5. First, using (21), we have

∂LEP
β

∂θ
=

1

β

(
∂F

∂θ
(β, θ)− ∂F

∂θ
(0, θ)

)
. (47)

Similar to the proof of Theorem 4, using the chain rule of differentiation, we have for every β ∈ R

∂F

∂θ
(β, θ) =

∂F

∂θ

(
β, θ, hEP

β , oEP
β

)
+

∂F

∂h

(
β, θ, hEP

β , oEP
β

)
︸ ︷︷ ︸

=0

·
∂hEP

β

∂θ
+

∂F

∂o

(
β, θ, hEP

β , oEP
β

)
︸ ︷︷ ︸

=0

·
∂oEP

β

∂θ
.

(48)
Here again, we have used the first-order steady state conditions for hEP

β and oEP
β . Therefore

∂F

∂θ
(β, θ) =

∂F

∂θ

(
β, θ, hEP

β , oEP
β

)
=

∂E

∂θ

(
θ, hEP

β , oEP
β

)
. (49)

Injecting (49) in (47), we get

∂LEP
β

∂θ
(θ) =

1

β

(
∂E

∂θ

(
θ, hEP

β , oEP
β

)
− ∂E

∂θ

(
θ, hEP

0 , oEP
0

))
. (50)

We conclude using the definitions of the equilibrium propagation learning rule (5). We prove similarly

the case of centered EP with
∂LEP

−β;+β

∂θ (θ).

16



B On the coupled learning rules

In this appendix, we prove some theoretical results related to the coupled learning rules.

Recall the definition of the free state
(h⋆, o⋆) := argmin

(h,o)

E(θ, x, h, o), (51)

the definition of the perturbed state of coupled learning (CpL)

hCpL
β := argmin

h
E(θ, x, h, oCpL

β ), oCpL
β := (1− β)o⋆ + βy, (52)

and the definition of the (positively-perturbed) CpL rule

∆CpLθ :=
η

β

(
∂E

∂θ
(θ, x, h⋆, o⋆)−

∂E

∂θ

(
θ, x, hCpL

β , oCpL
β

))
. (53)

Similar to the contrastive function LCL of contrastive learning (10) and the surrogate loss LEP
β of

equilibrium propagation (21), Stern et al. [2022] define the contrast

L(2)
CpL :=

1

β

(
E(θ, x, hCpL

β , oCpL
β )− E(θ, x, h⋆, o⋆)

)
(54)

and argue that the CpL rule performs gradient descent on L(2)
CpL. Besides, Stern et al. [2021] argue

that the CpL rule optimizes both the function

L(1)
CpL(θ, x, y) := (y−o(θ, x))⊤·∂

2G

∂o2
(θ, x, o(θ, x))·(y−o(θ, x)), G(θ, x, o) := min

h
E(θ, x, h, o)

(55)
and the squared error loss

LMSE(θ, x, y) := (o(θ, x)− y)2, (56)
where o(θ, x) = o⋆ is the free output value.

In this appendix, we show that the CpL algorithm does not perform gradient descent on L(2)
CpL

(Appendix B.1). We also show that, in general, the CpL rule optimizes neither the squared error
LMSE, nor the function L(1)

CpL. To this end, we present two examples: in the first one, the function
LMSE increases after a single step of the coupled learning rule (Appendix B.2) ; in the second one,
the function L(1)

CpL increases (Appendix B.3).

B.1 Coupled learning does not perform gradient descent on the contrast L(2)
CpL

Stern et al. [2022] note that L(2)
CpL is non-negative and achieves its minimum possible value (L(2)

CpL =

0) when o⋆ = y, which motivates them to minimize L(2)
CpL by gradient descent. However, as we show

here, the coupled learning rule does not perform gradient descent on L(2)
CpL. Indeed, while the free

state is characterized by
∂E

∂h
(θ, x, h⋆, o⋆) = 0,

∂E

∂o
(θ, x, h⋆, o⋆) = 0, (57)

the perturbed state of CpL only satisfies
∂E

∂h

(
θ, x, hCpL

β , oCpL
β

)
= 0. (58)

The partial derivative ∂E
∂o

(
θ, x, hCpL

β , oCpL
β

)
does not vanish in general, in contrast with the perturbed

state of equilibrium propagation (EP), which satisfies (31). Thus, we have
d

dθ
E (θ, x, h⋆, o⋆) =

∂E

∂θ
(θ, x, h⋆, o⋆) (59)

+
∂E

∂h
(θ, x, h⋆, o⋆)︸ ︷︷ ︸

=0

·∂h⋆

∂θ
+

∂E

∂o
(θ, x, h⋆, o⋆)︸ ︷︷ ︸

=0

·∂o⋆
∂θ

(60)

=
∂E

∂θ
(θ, x, h⋆, o⋆) , (61)
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and
d

dθ
E
(
θ, x, hCpL

β , oCpL
β

)
=

∂E

∂θ

(
θ, x, hCpL

β , oCpL
β

)
(62)

+
∂E

∂h

(
θ, x, hCpL

β , oCpL
β

)
︸ ︷︷ ︸

=0

·
∂hCpL

β

∂θ
+

∂E

∂o

(
θ, x, hCpL

β , oCpL
β

)
︸ ︷︷ ︸

̸=0 in general

·
∂oCpL

β

∂θ

(63)

=
∂E

∂θ

(
θ, x, hCpL

β , oCpL
β

)
+ (1− β)

∂E

∂o

(
θ, x, hCpL

β , oCpL
β

)
︸ ︷︷ ︸

̸=0 in general

·∂o⋆
∂θ

.

(64)

As a result, the gradient of L(2)
CpL is

∂L(2)
CpL

∂θ
=

1

β

(
∂E

∂θ
(θ, x, hCpL

β , oCpL
β )− ∂E

∂θ
(θ, x, h⋆, o⋆)

)
(65)

+
1− β

β

∂E

∂o

(
θ, x, hCpL

β , oCpL
β

)
· ∂o⋆
∂θ︸ ︷︷ ︸

̸=0 in general

. (66)

The last term does not vanish in general, unless β = 1. We note that the case β = 1 corresponds to
contrastive learning (CL, section 2.1) ; hence we have recovered Theorem 1, known since Movellan
[1991].

Therefore, contrary to CL that performs gradient descent on LCL and EP that performs gradient
descent on LEP

β for any value of β, the CpL rule does not perform gradient descent on L(2)
CpL for

β ̸= 1.

B.2 One step of coupled learning may increase the squared error LMSE

Next, we show in an example that CpL does not optimize LMSE. Let A be the 2× 2 square matrix

A :=

(
1 −1
−1 2

)
(67)

and b : R2 → R2 the function defined by

b(θ1, θ2) :=

(
1 + θ2
θ1 + 2θ2

)
, θ1, θ2 ∈ R. (68)

We define the energy function E : R2 × R2 → R by

∀θ ∈ R2,∀o ∈ R2, E(θ, o) :=
1

2
(o− b(θ))⊤A(o− b(θ)). (69)

For simplicity, there is no input (x) and no hidden variable (h) in our example. Since the matrix A is
symmetric positive definite, the minimum of o 7→ E(θ, o) is achieved at the point o⋆ = b(θ), where
E(θ, o⋆) = 0. Next, let’s assume that the ‘desired output’ is y := (0, 0) ∈ R2. The perturbed state of
the CpL algorithm is

oCpL
β := (1− β)o⋆ + βy = (1− β)b(θ), (70)

where β ∈ R is the nudging parameter, and the P-CpL rule is

∆CpLθ :=
η

β

(
∂E

∂θ
(θ, o⋆)−

∂E

∂θ
(θ, oCpL

β )

)
, (71)

where η is the learning rate. Using (69) we calculate

∂E

∂θ
(θ, o) = b′(θ)⊤A (o− b(θ)) . (72)
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In particular,
∂E

∂θ
(θ, o⋆) = 0 (73)

and
∂E

∂θ
(θ, oCpL

β ) = b′(θ)⊤A
(
oCpL
β − b(θ)

)
= −βb′(θ)⊤Ab(θ), (74)

where we have used (70). So the P-CpL rule (71) rewrites8

∆CpLθ = −ηb′(θ)⊤Ab(θ). (75)

Next, we define the squared error between the prediction o⋆ and the ‘desired output’ y = (0, 0),

LMSE(θ) := ∥o⋆ − y∥2 = ∥b(θ)∥2. (76)

To conclude, we show that for η small enough, LMSE(θ0 + ∆CpLθ) > LMSE(θ0) at the point
θ0 = (0, 0) independently of the value of the nudging parameter β ∈ R. To show this, first we
calculate ∂LMSE

∂θ ·∆CpLθ. We have

∂LMSE

∂θ
= b(θ)⊤b′(θ), (77)

so that
∂LMSE

∂θ
·∆CpLθ = −ηb(θ)⊤b′(θ)b′(θ)⊤Ab(θ). (78)

Let us calculate:

b′(θ) =

(
0 1
1 2

)
, (79)

and

b′(θ)b′(θ)⊤A =

(
0 1
1 2

)(
0 1
1 2

)(
1 −1
−1 2

)
(80)

=

(
1 2
2 5

)
·
(

1 −1
−1 2

)
(81)

=

(
−1 3
−3 8

)
. (82)

Since at the point θ0 = (0, 0) we have

b(θ0) =

(
1
0

)
, (83)

it follows that
b(θ0)

⊤b′(θ0)b
′(θ0)

⊤Ab(θ0) = −1. (84)

Therefore, at the point θ0 = (0, 0),

∂LMSE

∂θ
·∆CpLθ = η. (85)

Finally,

LMSE(θ0 +∆CpLθ)− LMSE(θ0) =
∂LMSE

∂θ
·∆CpLθ +O(∥∆CpLθ∥2) = η +O(η2). (86)

Thus, provided that the learning rate η > 0 is small enough, the loss value LMSE(θ0 +∆θ) after one
step of coupled learning is larger than LMSE(θ0). This holds for any nudging value β ∈ R.

8We note that the learning rules of N-CpL and C-CpL are identical in this example.
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B.3 One step of coupled learning may increase L(1)
CpL

Finally, we show that CpL does not optimize L(1)
CpL. To this end, we consider a second example,

where we define the energy function E : (0, 5/4)× R → R by

∀θ ∈ (0, 5/4), ∀o ∈ R, E(θ, o) :=
1

2
(5− 4θ)(o− θ)2. (87)

The minimum of o 7→ E(θ, o) is obtained at the point o⋆ = θ, where E(θ, o⋆) = 0. As in the
previous example, we assume that the ‘desired output’ is y := 0, so the perturbed state of CpL is

oCpL
β = (1− β)o⋆ + βy = (1− β)θ (88)

and the CpL rule is

∆CpLθ =
η

β

(
∂E

∂θ
(θ, o⋆)−

∂E

∂θ
(θ, oβCL)

)
. (89)

We calculate
∂E

∂θ
(θ, o) = (5− 2θ − 2o)(o− θ). (90)

In particular,
∂E

∂θ
(θ, o⋆) = 0 (91)

and
∂E

∂θ
(θ, oCpL

β ) = (5− 2θ − 2oCpL
β )(oCpL

β − θ) = (5− 4θ + 2βθ)βθ, (92)

so the CpL rule reads
∆CpLθ = −η(5− 4θ + 2βθ)θ. (93)

Now, recall the definition of the function L(1)
CpL of (16). In this example, it is equal to

L(1)
CpL(θ) := o⋆ ·

∂2E

∂o2
(θ, o⋆) · o⋆ = (5− 4θ)θ2, (94)

and its derivative (or ‘gradient’) is

(L(1)
CpL)

′(θ) = 10θ − 12θ2. (95)

At the point θ0 = 1 we have (L(1)
CpL)

′(θ0) = −2, and ∆CpLθ = −η(1 + 2β). This means that

(L(1)
CpL)

′(θ0) < 0, and ∆CpLθ < 0 for any nudging value β > −1/2. Thus, for a small η and any

β > −1/2, the function L(1)
CpL increases after a single step of the CpL rule.
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C Energy minimization procedure for deep convolutional Hopfield networks
via asynchronous updates

Prior works on deep convolutional Hopfield networks [Ernoult et al., 2019, Laborieux et al., 2021,
Laydevant et al., 2021, Laborieux and Zenke, 2022] minimized the energy function (18) using a
‘synchronous update’ scheme, where at every iteration, all the layers are updated synchronously. In
this work, we use an ‘asynchronous update’ scheme.

Recall the form of the energy function of a deep convolutional Hopfield network (DCHN), given by
(18). Ernoult et al. [2019] write the energy function in the form

E(θ, s) =
1

2
∥s∥2 − Φ(θ, s), (96)

where ∥s∥2 :=
∑5

k=1 ∥sk∥2 and Φ is the so-called ‘primitive function’, defined as

Φ(θ, s) :=

4∑
k=1

sk • P (wk ⋆ sk−1) + s⊤5 w5s4 +

5∑
k=1

b⊤k sk. (97)

In this expression, s = (s0, s1, s2, s3, s4, s5) is the state of the network, x = s0 is the input layer,
h = (s1, s2, s3, s4) is the hidden variable, o = s5 is the output variable, wk and bk are the kernel
(the weights) and bias of layer k, ⋆ is the convolution operation, P is the max pooling operation, • is
the scalar product for pairs of tensors, and θ = {wk, bk | 1 ≤ k ≤ 5} is the set of model parameters.
Ernoult et al. [2019] define the dynamics

s(t+1) = σ

(
∂Φ

∂s
(θ, s(t))

)
, (98)

where σ(·) = max(0,min(·, 1)) is the ‘hard sigmoid function’, which they assume to converge to a
fixed point s⋆ characterized by

s⋆ = σ

(
∂Φ

∂s
(θ, s⋆)

)
. (99)

Importantly, the fixed point s⋆ is also a critical point of the energy function, s 7→ E(θ, s), since
∂E
∂s (θ, s⋆) = s⋆ − ∂Φ

∂s (θ, s⋆) = 0. This dynamics is what we call here ‘synchronous update’ scheme,
because at every iteration (or ‘time step’) t, all the layers sk (1 ≤ k ≤ 5) are updated synchronously.

In this work, we use an ‘asynchronous update scheme’, where at each iteration, we first update the
layers of even indices, and then we update the layers of odd indices. Denoting so = (s1, s3, s5) the
configuration of odd layers, and se = (s2, s4) the configuration of even layers, the asynchronous
update scheme reads

s(t+1)
o = σo

(
∂Φ

∂so

(
θ, s(t)o , s(t)e

))
, (100)

where σo is the activation function of odd layers, and

s(t+1)
e = σe

(
∂Φ

∂se

(
θ, s(t+1)

o , s(t)e

))
, (101)

where σe is the activation function of even layers. For the layers of index k such that 1 ≤ k ≤ 4,
the activation function is σk(·) = max(0,min(·, 1)), i.e. the ‘hard sigmoid function’, and σ5 is the
identity (the ‘linear activation function’).

In this work, we use the max pooling operation Pmax. Although for this choice of pooling operation
we do not have a proof of convergence of either of the two schemes (‘synchronous’ and ‘asyn-
chronous’), we find experimentally that the asynchronous scheme converges faster. This allows us to
reduce the number of iterations in the free and perturbed phases and thus get a significant speedup, as
explained in the next subsection.

In the case where P is the average (mean) pooling operation, however, we can prove that the energy
decreases at each step of the asynchronous update scheme. Indeed, for the average pooling operation
Pavg, the primitive Φ is a linear function of se, i.e. the energy E is of the form

E(se) =
1

2
∥se∥2 −Be · se + Ce (102)
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for some constants Be and Ce that do not depend on se. Specifically

Bk := P
(
wk ⋆ s

(t+1)
k−1

)
+ w⊤

k+1 ⋆ P−1
(
s
(t+1)
k+1

)
+ bk (103)

for every layer k. It is easily seen that the minimum of such a function E(se) in Rdim(s2) × Rdim(s4)

is obtained at the point se = Be. It is also easily seen that the minimum of E(se) in [0, 1]dim(s2) ×
[0, 1]dim(s4) is obtained at the point se = max(0,min(Be, 1)). Similar expressions hold for the
configuration of odd layers so that minimizes the energy function given the state of even layers fixed.
Given that Φ is a linear function of so, we have that Bo = ∂Φ

∂so
(θ, s), and similarly Be =

∂Φ
∂se

(θ, s).
Thus, we conclude that the energy function decreases at each step of the asynchronous update scheme
(100)-(101).

For the max pooling operation used in this work, the primitive function Φ is not a linear function of
se or so, and the above argument no longer holds.

C.1 13.5x simulation speedup compared to Laborieux et al. [2021]

We compare in simulations two settings:

1. In the first setting, we use the asynchronous update scheme with 60 iterations at inference, 20
iterations in the perturbed phases, and 16 bit precision. This is the setting of the simulations
performed for the comparative study in the present work.

2. In the second setting, we use the synchronous update scheme with 250 iterations at inference,
30 iterations in the perturbed phase, and 32 bits precision. This is (up to minor differences)
the setting of the simulations of Laborieux et al. [2021].

We perform the simulations using the C-EP algorithm on CIFAR-10, and we use the hyperparameters
reported as ‘SOTA results on CIFAR10’ in Table 5. We perform three runs in the first setting, and
one run in the second setting, and we report the results in Table 3. We see that the first setting is 13.5
times faster than the second setting, requiring only 3 hours and 18 minutes to complete on a single
A-100 GPU (compared to the 44 hours 29 minutes required in the second setting). Furthermore, the
first setting also performs marginally better in terms of training and test error rates than the second
one.

Table 3: Comparison of the performance and the wall-clock-time between the simulation setting of
Laborieux et al. [2021] and ours. The simulations of Laborieux et al. [2021] use the synchronous
update scheme, in conjunction with 32 bits precision, 250 iterations at inference (free phase), and
30 iterations in the perturbed phase. Our asynchronous update scheme is used in conjunction with
16 bits precision, 60 iterations at inference and 15 iterations in the perturbed phase. Simulations are
performed on CIFAR-10 using the C-EP algorithm for training. We perform 100 epochs and use
the hyperparameters of the ‘SOTA CIFAR-10 simulations’ provided in Table 5. We report the test
error rate (Test Error), the training error rate (Train Error) and the wall-clock time (WCT). WCT is
reported as HH:MM.

Test Error Train Error WCT

Synchronous - 32 bits - 250 iterations (1 run) 10.85% 3.58% 44:29
Asynchronous - 16 bits - 60 iterations (3 runs) 10.40± 0.10% 3.48± 0.14% 03:18
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D Simulation details

Datasets. We perform simulations on the MNIST, Fashion-MNIST, SVHN, CIFAR-10 and CIFAR-
100 datasets.

The MNIST dataset is composed of images of handwritten digits [LeCun et al., 1998]. Each image x
in the dataset is a 28× 28 gray-scaled image and comes with a label y ∈ {0, 1, . . . , 9} indicating the
digit that the image represents. The dataset contains 60,000 training images and 10,000 test images.

The Fashion-MNIST dataset [Xiao et al., 2017] shares the same image size, data format and the same
structure of training and testing splits as MNIST. It comprises a training set of 60,000 images and a
test set of 10,000 images. Each example is a 28× 28 grayscale image from ten categories of fashion
products.

The SVHN dataset [Netzer et al., 2011] contains color images of 32× 32 pixels, derived from house
numbers in Google Street View images. Like in MNIST, each image comes with a label corresponding
to a digit from 0 to 9. The number of images per class varies due to the natural distribution of digits
in the real world. The dataset contains a training set with 73, 257 images, and a test set containing
26, 032 images. The dataset also contains an additional set of 531, 131 other (somewhat less difficult)
images, which we do not use in our simulations.

The CIFAR-10 dataset [Krizhevsky et al., 2009] consists of 60, 000 colour images of 32× 32 pixels.
These images are split in 10 classes (each corresponding to an object or animal), with 6, 000 images
per class. The training set consists of 50, 000 images and the test set of 10, 000 images.

Similarly, the CIFAR-100 dataset [Krizhevsky et al., 2009] also comprises 60, 000 color images with
a resolution of 32 × 32 pixels, featuring a diverse set of objects and animals. These images are
categorized into 100 distinct classes, each containing 600 images. Like CIFAR-10, the dataset is
divided into a training set with 50, 000 images and a test set containing the remaining 10, 000 images.

Data pre-processing and data augmentation. The data is normalized as in Table 4.

Since the deep convolutional Hopfield network used in our simulations takes as input a 32x32-pixel
image, we augment each image of MNIST and Fashion-MNIST to a 32x32-pixel image by adding
two pixels at the top, two pixels at the bottom, two pixels to the left and two pixels to the right.

On the training sets of Fashion-MNIST, CIFAR-10 and CIFAR-100, we also use random horizontal
flipping. (Random flipping is not used on the training sets of MNIST and SVHN, and it is never used
at test time either.)

Table 4: Data normalization. We normalize the input images using the recommended mean (µ) and
std (σ) values for each dataset. The MNIST and Fashion-MNIST images are gray-scale, i.e. they
have a unique channel. The SVHN, CIFAR-10 and CIFAR-100 images are color images, i.e. they
have three channels.

mean (µ) std (σ)

MNIST 0.1307 0.3081
Fashion-MNIST 0.2860 0.3530

SVHN (0.4377, 0.4438, 0.4728) (0.1980, 0.2010, 0.1970)
CIFAR-10 (0.4914, 0.4822, 0.4465) (3*0.2023, 3*0.1994, 3*0.2010)

CIFAR-100 (0.5071, 0.4867, 0.4408) (0.2675, 0.2565, 0.2761)

Network architecture and hyperparameters. Table 5 contains the architectural details of the
network, as well as the hyperparameters used to obtain the results presented in Table 1, Table 2 and
Table 6. The hard-sigmoid activation function is defined as σ(h) := max(0,min(h, 1)).

Weight initialization. We initialize the weights of dense interactions and convolutional interactions
according to

wij ∼ U(−c,+c), c = α

√
1

fanin
, (104)
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Table 5: The top table indicates the architecture of the deep convolutional Hopfield network (DCHN).
We denote nin the number of input filters (either 1 or 3 depending on the dataset) and nout the
number of output units (either 10 or 100 depending on the dataset). The bottom table indicates the
hyper-parameters used for initializing and training the network. lr means learning rate. The first
two columns (Comparative study) provide the values used for the extensive comparison of learning
algorithms (Table 1 and Table 6). The other columns (SOTA results) provide the values used to obtain
the best performances on MNIST, CIFAR-10 and CIFAR-100, after 100 epochs and 300 epochs
(Table 2)

Layer shapes Weight shapes Bias shapes Activation functions

Layer 0 (inputs) nin×32×32
Layer 1 128×16×16 128×nin×3×3 128 Hard-sigmoid
Layer 2 256×8×8 256×128×3×3 256 Hard-sigmoid
Layer 3 512×4×4 512×256×3×3 512 Hard-sigmoid
Layer 4 512×2×2 512×512×3×3 512 Hard-sigmoid

Layer 5 (outputs) nout 512×2×2×nout 10 Identity
Comparative study SOTA results (Table 2)

Table 1 Table 6 MNIST CIFAR-10 CIFAR-100
nudging (β) 0.25 0.25 0.1 0.25

num. iterations at inference (T ) 60 60 60 60
num. iterations at training (K) 15 15 20 15

gain conv-weight 1 (α1) 0.5 0.7 0.5 0.4 0.5
gain conv-weight 2 (α2) 0.5 0.7 0.5 0.7 0.4
gain conv-weight 3 (α3) 0.5 0.7 0.5 0.6 0.5
gain conv-weight 4 (α4) 0.5 0.7 0.5 0.3 0.8
gain dense-weight 5 (α5) 0.5 0.7 0.5 0.4 0.5

lr conv-weight 1 & bias 1 (η1) 0.0625 0.0625 0.03 0.03
lr conv-weight 2 & bias 2 (η2) 0.0375 0.0375 0.03 0.04
lr conv-weight 3 & bias 3 (η3) 0.025 0.025 0.03 0.04
lr conv-weight 4 & bias 4 (η4) 0.02 0.02 0.03 0.04
lr dense-weight 5 & bias 5 (η5) 0.0125 0.0125 0.03 0.025

momentum 0.9 0.9 0.9 0.9
weight decay (1e-4) 3.0 3.0 2.5 3.5

mini-batch size 128 128 128 128
number of epochs 100 100 300 100 300 100

Tmax 100 100 300 100 300 100
ηmin (1e-6) 2.0 2.0 2.0 2.0

which is the ‘Kaiming uniform’ scheme rescaled by a factor α, that we call the ‘gain’ here (i.e.
a scaling number). For dense weights of shape (sizepre, sizepost), we have fanin = sizepre
; for convolutional weights of shape (channelin, channelout, height, width), we have fanin =
channelin × height× width. See Table 5 for the choice of the gains.

Energy minimization via asynchronous updates. To compute the steady state of the network, we
use the ‘asynchronous update’ scheme described in appendix C: at every iteration, we first update
the layers of even indices (the first half of the layers) and then we update the layers of odd indices
(the other half of the layers). Relaxing all the layers once (first the even layers, then the odd layers)
constitutes one ‘iteration’. We repeat as many iterations as is necessary until convergence to the
steady state. In Table 5, we denote T the number of iterations performed at inference (free phase),
and we denote K the number of iterations performed in the perturbed phase.

Training procedure. We train our networks with seven energy-based learning (EBL) algorithms,
namely: contrastive learning (CL), positively-perturbed equilibrium propagation (P-EP), negatively-
perturbed EP (N-EP), centered EP (C-EP), positively-perturbed coupled learning (P-CpL), negatively-
perturbed CpL (N-CpL) and centered CpL (C-CpL). Given an EBL algorithm, at each training
step of SGD, we proceed as follows. First we pick a mini-batch of samples in the training set, x,
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and their corresponding labels, y. Then we set the nudging parameter to 0 and we perform a free
phase of T asynchronous iterations. This phase allows us in particular to measure the training loss
and training error rate for the current mini-batch, to monitor training. We also store the free state
(h⋆, o⋆). Next, let’s call β1 and β2 the two nudging values used for training (which depend on the
EBL algorithm). First, we set the nudging parameter to β1 and we perform a new relaxation phase
of K asynchronous iterations. Next, we reset the state of the network to the free state (h⋆, o⋆), then
we set the nudging parameter to the second nudging value β2, and we perform the last relaxation
phase for K asynchronous iterations. Finally, we update all the parameters simultaneously in a single
‘parameter update’ phase.

Optimizer and scheduler. We use mini-batch gradient descent (SGD) with momentum and weight
decay. We also use a cosine-annealing scheduler for the learning rates with hyperparameters Tmax

and ηmin.

Computational resources. The code for the simulations uses PyTorch 1.13.1 and TorchVision
0.14.1. Paszke et al. [2017]. The simulations were carried on Nvidia A100 GPUs. For the comparative
study, we used five GPUs (one GPU per dataset) and let them run for six days to complete all the
simulations.
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E Additional simulations on SVHN for the comparative study

The results of Table 1 show that most algorithms (P-EP, N-EP, P-CpL and N-CpL) perform very
poorly on SVHN: the training process often gets stuck at 81.08% training error and 80.41% test
error rate. These results seem to go against our conclusion that N-EP and N-CpL generally perform
(much) better than C-EP and C-CpL and CL. We hypothesize that this poor performance on SVHN
is due to the network being poorly initialized for this classification task, and we perform additional
simulations on SVHN where we change the initialisation scheme of the weights of the network – see
Table 5 for the new hyperparameters used for these additional experiments. As for the comparative
study of Section 4.1, with this new set of hyperparameters, we compare the seven EBL algorithms of
section 2 by training the DCHN of section 3 on SVHN. We also compare the performance of these
algorithms to recurrent backpropagation (RBP) and truncated backpropagation (TBP). The results of
these additional simulations are reported in Table 6.

Table 6 shows that the N-EP and P-CpL simulations have large variance, so we also report the results
for each run. The three runs of N-EP gave the following results: 1) 3.73% test error, 2) 3.87% test
error, and 3) 80.41% test error. The third N-EP run was indeed also blocked at 81.08% training error
and 80.41% test error (like many other runs). The three runs of P-CpL gave the following results: 1)
71.05% test error, 2) 15.35% test error, and 3) 15.57% test error.

The results of Table 6 are consistent with our conclusions of Section 4.1: 1) strong positive pertur-
bations (CL) yield better results than weak positive perturbations (P-CpL and P-EP), 2) negative
perturbations (N-EP, N-CpL) yield better results than positive perturbations (CL, C-CpL, C-EP), 3)
two-sided perturbations (C-EP, C-CpL) perform better than one-sided perturbations (N-EP, N-CpL,
CL, P-CpL, P-EP), and 4) the EP perturbation technique yields better results than the CpL perturbation
technique.

Table 6: Additional experiments on SVHN using a different set of hyperparameters. We compare the
seven EBL algorithms and benchmark them against truncated backpropagation (TBP) and recurrent
backpropagation (RBP). We report the training and test error rates, averaged over three runs. The
hyperparameters used for this study are detailed in Table 5.

SVHN

Test Error (%) Train Error (%)

TBP 3.66± 0.05 2.36± 0.04
RBP 3.91± 0.05 3.29± 0.04

CL 9.64± 1.59 27.08± 5.68
P-EP 74.88± 10.60 77.32± 5.84
N-EP 29.34± 36.12 29.01± 36.82
C-EP 3.58± 0.07 3.00± 0.05
P-CpL 33.99± 26.21 47.28± 26.52
N-CpL 4.53± 0.05 5.27± 0.05
C-CpL 4.10± 0.04 4.68± 0.10

In Table 7, we report the results of Table 1 together with the test std values.
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Table 7: Results of Table 1 reported with the test std values.

MNIST FashionMNIST SVHN CIFAR-10 CIFAR-100

Test Train Test Train Test Train Test Train Test Train

TBP 0.42±0.02 0.23 6.12±0.10 3.09 3.76±0.06 2.37 10.1±0.2 3.1 33.4±0.5 17.2
RBP 0.44±0.04 0.33 6.28±0.12 3.70 3.87±0.09 3.43 10.7±0.1 5.2 34.4±0.2 18.2

CL 0.61±0.02 2.39 10.10±0.17 15.49 6.10±0.13 15.8 31.4±2.2 45.2 71.4±3.6 88.6
P-EP 1.66±0.80 2.29 90.00±0.00 89.98 83.9±4.9 81.9 72.6±0.7 79.5 89.4±9.5 95.5
N-EP 0.42±0.01 0.19 6.22±0.10 3.87 80.4±0.0 81.1 11.9±0.3 6.2 44.7±0.3 40.1
C-EP 0.44±0.03 0.20 6.47±0.13 4.01 3.51±0.07 3.01 11.1±0.1 5.6 37.0±0.1 26.0
P-CpL 0.66±0.13 0.59 64.70±35.77 65.31 40.1±28.6 50.8 46.9±3.8 57.7 77.9±0.5 91.0
N-CpL 0.50±0.04 0.88 6.86±0.05 6.27 80.4±0.0 81.1 13.5±0.3 10.2 51.9±1.3 50.6
C-CpL 0.44±0.01 0.38 6.91±0.11 5.29 4.23±0.09 5.05 14.9±0.1 14.6 46.5±0.1 37.9
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