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Abstract

The rise of deepfake technology has made everyone vulnerable to false claims based on
manipulated media. While many existing deepfake detection methods aim to identify fake
media, they often struggle with deepfakes created by new generative models not seen during
training. In this paper, we propose FACTOR, a method that enables users to prove that
the media claiming to show them are false. FACTOR is based on two key assumptions: (i)
generative models struggle to exactly depict a specific identity, and (ii) they often fail to
perfectly synchronize generated lip movements with speech. By combining these assumptions
with powerful modern representation encoders, FACTOR achieves highly effective results,
even against previously unseen deepfakes. Through extensive experiments, we demonstrate
that FACTOR significantly outperforms state-of-the-art deepfake detection techniques despite
being simple to implement and not relying on any fake data for pretraining. Our code is
available at https://github.com/talreiss/FACTOR.

1 Introduction

Deepfakes, or maliciously manipulated media, have become a major threat to social stability. They are often
used by bad actors to spread false information, increase social division, cause embarrassment, and violate
privacy. As deep generative models improve, creating convincing deepfakes has become easier and faster,
making it urgent to develop automatic detection methods. Despite significant progress in the machine learning
community, current detection methods struggle, especially in identifying new types of deepfake attacks that
exploit unknown vulnerabilities.

The main limitation of existing approaches is their reliance on supervised classifiers trained to detect deepfakes
similar to those previously seen. This makes them less effective against new, previously unseen types of
deepfake attacks. With the rapid advancements in generative models, which constantly introduce novel forms
of media manipulation, this issue will become more severe. There is a pressing need for new methods that
can bridge this generalization gap and enable the targeted user to falsify deepfakes.

Empirical studies show that celebrities and politicians are often the main targets of deepfake attacks. A recent
study (Marchal et al.l 2024) analyzing AT misuse incidents between January 2023 and March 2024 revealed
that impersonating public figures accounts for 27% of malicious AI use. Another worrying trend is the
creation of non-consensual deepfake pornography, as seen in the January 2024 incident involving Al-generated
explicit images of Taylor Swift that quickly spread on social media. In the business world, deepfake scams
targeting companies have become a significant threat, with attackers impersonating executives or employees
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Figure 1: Deepfake verification scenarios, enabling users to falsify targeted attacks. (a) Face forgery: the
targeted user’s identity is seamlessly blended into an image. The observed image depicts the targeted user,
and we are provided with reference images of the targeted user’s identity. (b) Audio-Visual (AV) manipulation:
either fake audio is generated to match a video, or fake video is created to align with an audio track. The
result is a manipulated video that appears to show the targeted user saying something they did not actually
say.

to manipulate company operations. A recent report (ISMS.online, 2024) ranked deepfake impersonations as
the second most frequent cybersecurity incident experienced by businesses in the last 12 months, with 30% of
U.S. businesses reporting deepfake-related incidents during this period.

In this paper, we propose an alternative solution to tackle deepfake detection by enabling the targeted user
to prove that the media claiming to show them are false. Our method is based on two assumptions about
current generative models: (i) they cannot exactly depict the impersonated identity; and (ii) they fail to
perfectly sync generated lip movements with speech (Haliassos et al.| 2021). We show how coupling these two
assumptions with powerful, modern representation encoders is highly effective, even against previously unseen
deepfake attacks. We focus on two important scenarios, illustrated in Fig. [1} (i) face manipulation attacks,
where the identity in a video is changed to that of the impersonated person, and we are given guidance about
the attacked identity; and (ii) audio-visual attacks, where a video is manipulated to make it appear as if a
person is saying something they did not, or the audio is altered to match some video.

We present FACTOR, a deepfake verification method, illustrated in Fig. FACTOR dismantles face
manipulation attacks by verifying whether the media truly depict the targeted user. FACTOR requires the
user to provide a few images of their face (even a single photo works well) and then verifies if the observed
media match the targeted user’s face. It calculates a “truth score” (similarity function) between the media
and the targeted user’s provided images, using off-the-shelf features pretrained on real data. A low truth
score suggests the media are fake. For example, given real images of Obama, we can detect deepfake images
of him by verifying his facial identity. For multi-modal video data, we further extend FACTOR to address
audio-visual synthesis attacks by looking for minor flaws in speech synchronization in manipulated videos of
speaking persons.

Despite being simple to implement, and not using any fake data for pretraining, we demonstrate the superiority
of our approach across many competitive benchmarks. Our main contributions are:

1. Introducing FACTOR, a practical method for deepfake verification, and demonstrating its effectiveness
in critical face swapping attack scenarios.

2. Extending FACTOR to address audio-visual synthesis attacks.

3. Analyzing overfitting in deepfake verification and presenting a strategy to benefit from it.

2 Related work

Image synthesis. Fake images are created either by manipulating parts of existing images or by generating
them from scratch. Examples of the former include techniques that modify attributes in a source image or
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Figure 2: Illustration of FACTOR, our proposed deepfake verification method. (a) FACTOR verifies if the
observed media match the targeted user’s face. (b) FACTOR looks for minor flaws in speech synchronization
in manipulated videos of speaking persons. By quantifying the similarity using the truth score, computed via
cosine similarity, FACTOR effectively distinguishes between real and fake media, enabling robust detection of
previously unseen deepfake attacks.

those that replace the original face in an image or video with a target face (Korshunova et al., 2017} Bao|
let al.l 2018; [Perov et al.l |2020; Nirkin et al., 2019). The other class of methods, however, involves generating
all pixels from scratch, whether from random noise (Karras et al., 2019) or text prompts (Rombach et al.
[2022} [Ramesh et al.l [2022} [Saharia et al., [2022)).

General deepfake detection. As deepfake technology advances, significant efforts have been devoted to
identifying manipulated media. Traditional approaches focus on examining image statistics changes, detecting
cues such as compression artifacts (Agarwal & Farid|2017). Learning-based methods have also been employed,
with an initial emphasis on whether classifiers could effectively distinguish images from the same generative
model (Wang et all |2019} [Frank et al., 2020; Rossler et al., 2019). Recent studies (Wang et al., |2020} |Chail
shift towards classifiers capable of generalizing to different generative models, demonstrating
the efficacy of neural networks trained on real and fake images from one GAN model for detecting images
from other GAN models. However, (Ojha et al.,|2023) emphasizes the non-generalizability of neural networks
to unknown families of generative models when trained for fake image detection. UFD (Ojha et al.| [2023)
leverages CLIP’s pretrained feature space by performing linear probing on CLIP’s image representations.
While UFD also uses pre-trained representations, our approach has significant differences in that UFD relies
on fake data to differentiate between real and fake media. In contrast, our method does not use fake data
during training, yet achieves better performance as demonstrated in Tab. [[]and Tab. 2}

Face forgery detection. Early approaches relied on supervised learning to transform cropped face images
into feature vectors for binary classification (Dang et al., [2020; Nguyen et al., [2019; [Rossler et al. 2019).
However, it became evident that relying solely on classification methods had limitations, often leading
to overfitting of training data and potentially missing subtle distinctions between real and fake images.
Incorporating frequency information proved invaluable for face forgery detection, enabling the identification of
specific artifacts associated with manipulation (Frank et al., [2020; Li et al., [2021; Qian et al., 2020; |Luo et al.),
[2021} [Liu et al.| 2021a). However, it is noteworthy that these cues can sometimes be overcome by techniques
such as artifact removal or slight alterations to model architectures. Recent research efforts have increasingly
prioritized the improvement of generalization in forgery detection models, recognizing the significance of
detecting previously unseen forgeries (Cao et al., 2022; |Sun et al., 2022; |Zhuang et al [2022). [Huang et al.|
uses face identity and face recognition features for supervised training of deepfake detectors. In
contrast, our approach does not need training and therefore enjoys better generalization.
(2024)) proposes a forensic scoring method based on DCNN-based face similarity, trained to distinguish real
from fake images. In contrast, FACTOR reframes the task as a per-user verification problem, uses no fake
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Table 1: Performance comparison (mean ROC-AUC %) of baseline methods on DFDC (Dolhansky et al.,[2019),
evaluating their ability to detect unseen attacks. FACTOR outperforms supervised baselines, demonstrating
its robustness to previously unseen manipulations. A and B are distinct deepfake generation methods.

Scenario  Train/Test Xception FFD F3NET SPSL RECCE UCF UFD Ours

Seen A/A 95.7 96.0 97.4 96.4 95.0 97.0 958 99.9
B/B 93.2 85.7 89.4 81.7 88.6 949 914 100.
Unseen A/B 74.0 7.9 79.8 84.4 74.2 81.3 722 100.
B/A 65.9 56.6 87.9 48.7 62.0 67.1 51.3 99.9

data, and generalizes beyond face verification to additional modalities, including audio-visual and text-image
verification.

Audio-visual (AV) deepfake detection. In the domain of identifying manipulated speech videos, prior
research focused on exploiting audio-visual inconsistencies as a crucial cue. Many approaches, rooted in
supervised learning, have been devised to directly train audio-visual networks, enabling them to discern video
authenticity (Chugh et al., |2020; Mittal et al., [2020)). Recently, attention has shifted towards audio-visual
self-supervision as a pretraining strategy. This entails self-supervised training, followed by fine-tuning with
real/fake labels (Grill et all |2020; [Haliassos et al., 2022). Some methods incorporate lip-reading data for this
purpose (Haliassos et al.l 2021)), while others implicitly integrate it into audio-visual synchronization signals
(Zhou & Lim, [2021)). Feng et al.| (2023) proposed AVAD, probably the most related method, which adapts
ideas from anomaly detection for AV deepfakes and does not use fake data for training. The method requires
training a multimodal transformer using multi-objective terms. Our method achieves higher accuracy while
being far simpler, using only off-the-shelf feature extractors and not requiring training.

3 Face swapping attacks

Face forgery detection involves identifying instances of manipulated facial features. This task has significant
real-world implications, as many deepfakes involve human faces (Marchal et al.l 2024; [ISMS.online, 2024)).
Face swapping replaces the original face in an image or video with the targeted identity, aiming to generate a
fake face indistinguishable from a real one to the human eye.

3.1 FACTOR: a practical method for deepfake verification

We propose FACTOR, a practical method for deepfake verification in face swapping attacks. FACTOR
detects these attacks by verifying whether the observed media truly depict the user. The method requires
the user to provide a few images (as few as one) of their face. FACTOR then quantifies the correspondence
between the user’s facial identity and the identity observed in the image using an off-the-shelf face recognition
model. Our base assumption is that current generative methods fail to perfectly transfer the user’s identity to
the fake image. We thus distinguish between real and fake images by verifying that the user’s facial identity
matches that of the observed image.

FACTOR takes as input a test face image = and the user’s provided reference set of their facial identity R.
We use a face recognition model, denoted by ¢;4(.), to compute facial features (we use Wang et al.| (2021))).
We then measure the similarity between the test image x and each image within our reference set using cosine
similarity over ¢;4(.) features. The truth score s(x) of the image x is the similarity to the nearest face in the
reference set. Low truth scores indicate that the image is fake. Formally, the truth score is given by:

bia(x) - Pia(y) }

lia(x)2 - [|Pia(y)]|2 (1)

=g

We illustrate FACTOR in Fig.
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Table 2: Performance comparison of baseline methods and our verification method, FACTOR. The supervised
models were trained on FF-++(C23) and evaluated on Celeb-DF, DFD, and DFDC datasets.

Cross-Dataset Verification
Dataset  x option EffiNetB4 FFD F3NET SPSL RECCE UCF UFD Ours
Celeb-DF  73.7 739 744 735 765 732 753 614 97.0
DFD 81.6 81.5 802 798 812 812  80.7 64.0 96.3
DFDC 73.7 728 743 735 741 742 759 670 99.7

3.2 Experiments

Datasets. We conducted experiments on three face swapping datasets that provide identity-related informa-
tion: Celeb-DF (Li et al., [2020)), DFD (Research et al.) (which is part of FF++ (Rossler et al., 2019)), and
DFDC (Dolhansky et al.l |2019). Other standard face swapping datasets do not include identity information.
The Celeb-DF dataset was generated through face swapping involving 59 pairs of distinct identities, comprising
590 real videos and 5,639 fake videos. DFD, is a deepfake dataset characterized by 363 real videos and
3,068 fake videos. The DFDC dataset stands out as the largest publicly available collection of face-swapped
videos, featuring 1,133 real videos and 4,080 manipulated videos for testing. This dataset poses a substantial
challenge for existing forgery detection methods, due to the diverse and previously unseen manipulation
techniques it contains. Full implementation details are in App.

Results. In order to assess the robustness of our proposed method against unseen deepfake attacks, we
conducted experiments on DFDC (Dolhansky et al., |2019), which contains real and fake images. The fakes
were created by two distinct deepfake generation methods. Method A and method B denote the deepfake
generation methods within DFDC. Note that the dataset does not provide specific information about the
technical details of these deepfake generation techniques; they are simply identifiers within the DFDC dataset
metadata. To establish a comparative baseline, we selected a range of classic and contemporary state-of-the-art
face swapping deepfake detection methods, including Xception (Rossler et al., [2019)), EfficientNetB4 (Tan &
Le, 2019), FFD (Dang et al., |2020), F3Net (Qian et al. 2020), SPSL (Liu et al. 2021a)), RECCE (Cao et al.|
2022), UCF (Yan et al., [2023)) and UFD (Ojha et al.,|2023). Each baseline was trained to classify real vs.
deepfakes generated by method A and subsequently evaluated on real images vs. method B or vice versa. This
ensured that no baseline model had prior exposure to the test-time deepfake generation method. In contrast,
our encoders were exclusively pretrained on real data and not on fake data from methods A or B. The results,
presented in Tab. [I] show that while the supervised baselines performed poorly on previously unseen attack
scenarios, our method achieved near-perfect accuracy. Additionally, to showcase the generalization challenges
of supervised methods, we also tested them on real vs. fake data from the same method as for training (e.g.
A). In this case, the baselines perform much better. Note that our method outperforms even in this case, as
DFDC does not suffer from artifacts making it challenging for methods that use visual artifacts rather than
identity.

To simulate common unseen deepfake attack scenarios, we compared our method against state-of-the-art
approaches that are trained on a large external dataset (here, FF++(C23) (Rossler et al. [2019))), and
evaluated on the previously unseen attack data in another dataset (here, Celeb-DF, DFD, and DFDC). As
our method does not require training, we only used a reference set of real images of the user’s identity. We
did not need to train on FF++. The results can be seen in Tab. 2} our method is far more effective on such
previously unseen deepfake attacks. It is clear that supervised methods struggle to generalize well across both
datasets and attack types. FACTOR removes this strong requirement for in-dataset training data, resulting
in improved performance.

3.3 Analysis and discussion

Feature extractor ablation study. In Tab. 3| we present an ablation study on the effect of ¢;4. Specifically,
we compared our chosen Attention-92(MX) (Wang et al.l |2017;2021)) with CLIP (Radford et al.| [2021) and
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Figure 3: (a) Ablation on our reference set size (ROC-AUC %). Even a single image reference set is close to
full performance. (b) Percentile A study for truth score selection. Performance is robust across a wide range
of values. (¢) Comparison of truth scores for different text-image encoders. The percentage of image captions
whose fake images had a higher truth score than the original image.

Table 3: Feature extractor comparison (average Table 4: Distribution shifts comparison (average
ROC-AUC %). Best in bold. ROC-AUC %).
Dataset CLIP Swin-S MX Dataset Noise Blur Comp JPEG
Celeb-DF  89.3 94.5 97.0 Celeb-DF  96.7 96.2 97.0 96.9
DFD 95.7 96.1 96.3 DFD 96.1 96.0 96.2 96.3
DFDC 98.8 99.3 99.9 DFDC 99.8 993 999 99.9

Swin-S (Wang et all 2021} Liu et al. [2021b). The results demonstrate that our method is not overfitted to a
single feature extractor. Specifically, we found that CLIP, which has been trained on quite irrelevant data, is
already effective.

Reference set size ablation study. We investigated performance sensitivity to the reference set size.
The results in Fig. [3a] demonstrate the method’s robustness to reference set variations. A minimal reference
set containing only a single image results in only a slight decrease in accuracy. Note that videos were
uniformly subsampled to 32 frames in our experiments (see App. [A.1)). To further evaluate the influence
of the reference set, we conducted an experiment in which each frame of a reference video was treated as a
separate single-image reference set. Specifically, each test input was evaluated 32 times, once per frame in
the reference video. We then measured the standard deviation in performance across these evaluations. The
results show very low variability, with standard deviations of 0.2 on Celeb-DF, 0.1 on DFD, and 0.4 on DFDC
(in terms of ROC-AUC), reinforcing that FACTOR is robust to reasonable variations in reference selection.

Distribution shifts in the reference set. The reference set in the empirical evaluation uses other videos
of the same person. These videos differ in background, camera, face rotation, etc. In addition, following
[Haliassos et al.| (2021]), we investigated the effects of video blurs, JPEG compression, Gaussian noises, and
video compression at severity level 3 on the reference set. As shown in Tab. ] FACTOR is robust to changes
in reference set distributions. Moreover, our facial features are invariant to variations in attributes like facial
hair, glasses, hair color, etc. Celeb-DF results demonstrate this robustness, as each celebrity identity exhibits
a high variance in facial appearance and attribute values.

Limitations. i) If an attacker simply copies the user’s face onto the observed image, it will correspond
to the user’s face identity, although this would result in an unrealistic appearance. To mitigate this, we
recommend ensembling our method with a simple image realism-based approach, which will easily catch
such crude attacks. ii) Our method is not designed to detect physical impersonation attacks, such as those
using hyper-realistic 3D masks or printed photos. These attacks fall outside the scope of digitally generated
deepfakes, which are the primary focus of this work. Addressing such cases would require entirely different
detection strategies (e.g., liveness detection or depth sensing), which we consider complementary to FACTOR.
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iii) Our method does not deal with cases where the user’s and observed identities are identical, but other
attributes are manipulated, e.g., changes in facial expressions, age, or other non-identity features. These
tasks are left for future work. However, in Sec. [l we extend FACTOR to deal with audio-visual video data,
where the attacker is manipulating the user’s speech.

4 Audio-visual deepfake verification

4.1 Extending FACTOR

Audio-visual (AV) deepfakes manipulate either video to match a given audio track, audio to match a video,
or both simultaneously. While many of these AV deepfakes can be addressed using FACTOR with identity
information (as discussed in Sec. [3), this section focuses on AV scenarios where such information is unavailable
or irrelevant: (i) the media show the user’s identity, but the speech content and lip movements are manipulated
(the identity is not changed); (ii) the user cannot provide reference images of their face; and (iii) the true
identity is unknown, and the deepfake involves AV manipulation. In all these cases, the verification task relies
on determining whether the audio and video correspond to the same event, independent of the identity. Our
method is based on the assumption that current generative models struggle to achieve perfect AV synthesis,
often resulting in subtle inconsistencies. To leverage this, we extend FACTOR to AV data by using powerful
off-the-shelf audio-visual encoders to extract features from each modality (we use AV-Hubert (Shi et al.,
2022))). The audio and video encoders are denoted by ¢4 and ¢y, respectively, and we calculate the cosine
similarity between them as the truth score. There is an added complication in this case, as AV deepfakes are
evaluated at a video level, while the truth score is calculated for every temporal frame. We opt for a simple
but effective solution, using the truth score with the A% lowest value in the video (we choose A = 3%, but a
wide range of values is successful, see Fig. . Formally, for a clip of length T', we denote the visual frame at
time ¢ by v, and the audio frame by a;. The truth score for frame ¢ (denoted s;) is given by:

_ ¢V(Ut) : ¢A(at)
v (ve)ll2 - lpalar)ll2

(2)

St

We choose the frame value with the A% percentile as the overall clip truth score s. This is given by
s = perc({s1,s2..s7},A) , where perc(-, \) calculates the \% percentile of the set. AV data with some
misaligned frames will obtain a low truth score, indicating a high likelihood of being fake. Real data will
not have mismatches and will achieve high truth scores. Note that misalignment between AV data has
been detected by several previous deepfake detection methods (Feng et all |2023). The novelty here lies
in demonstrating that our deepfake verification method outperforms previous methods, using a simpler,
streamlined method.

While Eq. and Eq. (2) apply to different modalities: (i) identity verification via facial features and
(ii) synchronization verification via audio-visual features, they are conceptually unified under a common
framework. Both rely on pretrained encoders and cosine similarity to assess alignment between observed
media and a trusted reference (an image reference set or synchronized audio). By exploiting the typical
misalignments introduced by generative models, this unified verification paradigm enables FACTOR to
generalize effectively across modalities without requiring training on fake data.

4.2 Experiments

Datasets. We evaluated our method on the FakeAVCeleb video forensics dataset (Khalid et al., 2021)). This
dataset contains a diverse range of manipulations that alter both human speakers’ speech and facial features,
reflecting real-world deepfake scenarios. FakeAVCeleb is derived from the VoxCeleb2 dataset and consists of
500 authentic videos, and 19, 500 manipulated videos. These manipulations are generated through various
techniques, including Faceswap (FaceSwap.), FSGAN (Nirkin et al., |2019)), Wav2Lip (Prajwal et al., 2020)),
and the incorporation of synthetic sounds generated by SV2TTS (Jia et all 2018)). The dataset features
examples that exhibit different combinations of these manipulations, capturing the diverse nature of deepfake
content.
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Table 5: AP and AUC (%) FakeAVCeleb results, following the AVAD (Feng et al. [2023) evaluation protocol.
Supervised methods are evaluated on unseen fake types. Best in bold.

Category
Pretrained r
Method Mode Dataset RVFA FVRA-WL FVFA-WL FVFA-FS FVFA-GAN AVG-FV

AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC
—  Xception % ImageNet - - 882 88.3 923 935 676 685 91.0 91.0 84.8 853
% LipForensics % LRW 97.8 97.7 999 999 61.5 68.1 986 987 894 91.1
g AD DFD AV Kinetics 749 73.3 970 974 996 99.7 584 554 100. 100. 88.8 88.1
5 FTCN % - - - 96.2 974 100. 100. 774 783 956 965 923 93.1
P RealForensics % LRW - - 88.8 93.0 993 991 99.8 99.8 934 96.7 953 97.1
~ AVBYOL AV LRW 50.0 50.0 734 613 887 8.8 60.2 338 732 61.0 739 592
%  VQ-GAN vV LRS2 - - 50.3 493 575 53.0 496 480 624 569 55.0 51.8
% AVAD AV LRS2 624 716 936 937 953 958 941 943 938 941 942 945
2 AVAD AV LRS3 70.7 8.5 91.1 930 91.0 923 916 927 914 931 913 928
Z  Fusion AV LRS3 - 86.2 - 95.4 - 97.2 - 97.9 - 97.4 - 97.0
P Ours AV LRS3 98.6 98.7 944 957 974 97.7 97.8 98.1 97.6 979 96.8 97.4

Implementation details. In our implementation, we use the AV-HuBERT Large model as our feature
encoder. This model was pretrained on real, unlabeled speech videos from the LRS3 dataset. No fake videos at
all or any real videos from the evaluation dataset were used in pretraining. We follow the official AV-HuBERT
implementatiorﬂ for video preprocessing. Specifically, we use an off-the-shelf landmark detector to identify
Regions of Interest (ROIs) within each video clip. Both video and audio components are transformed into
feature matrices represented in R7*?, where T represents the number of frames, and d is the AV-HuBERT
feature space dimension (d = 1024). Accordingly, we choose A = 3% for our choice of \. However, an
ablation study is presented in Fig. which indicates that performance is not sensitive to the choice of .
In accordance with standard practice, we used two evaluation metrics: (i) average precision (AP) and (ii)
receiver operating characteristic area under the curve (ROC-AUC).

Settings and baselines. We conducted experiments on FakeAVCeleb (Khalid et al., |2021) following the
protocol established by AVAD (Feng et all2023). We report numbers by SOTA supervised methods: Xception
(Rossler et al., |2019), LipForensics (Haliassos et all 2021), AD DFD (Zhou & Lim, [2021)), FTCN (Zheng
et al., 2021), and RealForensics (Haliassos et al., 2022). We also compared to other self-supervised methods:
AVBYOL (Grill et al., 2020; Haliassos et al., 2022), VQGAN (Esser et al., [2021), AVAD (Feng et al., 2023)),
and Fusion (Li et al., 2024). We use the same categorization as in (Feng et al.,|2023): (i) RVFA: real video
with fake audio by SV2TTS; (ii) FVRA-WL: fake video by Wav2Lip with real audio; (iii) FVFA-WL: fake
video by Wav2Lip, and fake audio by SV2TTS; (iv) FVFA-FS: fake video by Faceswap and Wav2Lip, and
fake audio by SV2TTS; (v) FVFA-GAN: fake video by FSGAN and Wav2Lip, and fake audio by SV2TTS.
For supervised methods, we omitted the evaluated category during training and used the remaining ones.

Results. The results presented in Tab. [5| underscore the superior performance of our method across all
categories, surpassing self-supervised approaches (AVBYOL, VQGAN, and AVAD) by a significant margin.
Our method consistently demonstrates comparable or superior performance to supervised methods in all
categories, despite not relying on labeled supervision or fake data. Notably, our method outperforms all
supervised baselines in terms of average AP and ROC-AUC. Although supervised baselines excel in certain
categories, their performance deteriorates in others demonstrating poor generalization skills. This highlights
the robustness and effectiveness of our method for identifying fake videos manipulated by diverse and
previously unseen deepfake attacks. A further evaluation of FACTOR on the KoDF (Kwon et al., |2021))
dataset is provided in App. [A22]

Ablation. We ablate the effect of the percentile A in Fig. The results are robust to this hyperparameter,
with a mere 2% decrease in fake video average performance when comparing A = 0 — 90%.

Thttps://github.com/facebookresearch/av_hubert
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AP =38.2, AUC = 29.67 AP = 57.39, AUC = 59.57 AP =80.09, AUC = 79.2
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Figure 4: Truth scores histograms of real and fake images for the claimed caption. (a) Fake images have
higher CLIP scores. (b) BLIP2 scores achieve weak separation between real and fake data. (¢) BLIP2—CLIP
scores achieve a stronger separation between real and fake.

5 Analysis: overfitting effects

Here we analyze the effect of overfitting on FACTOR by studying a simplified setting, where the attacker first
synthesizes a fake image using a text prompt and a text-to-image (TTI) model. The attacker then presents
the fake image with the input prompt as its caption. In this case, the verification task is that the text prompt
and the image describe the same content. As TTI models are known not to be perfectly aligned with the
input prompt (Xu et al., |2023; |Chefer et al.| |2023]), FACTOR can be used to detect fake images generated
by them. We note that this setting is simplified, as the attacker would not disclose the text prompt that
generated the image, and also can either choose to use another caption to describe the fake image which
differs from the input prompt. This caption can be generated post-hoc (after the fake image was synthesized),
making it potentially very accurate. Therefore, the user would not have access to the text prompt that
generated the image. However, we focus on analyzing the case where the caption matches the initial prompt,
as this scenario provides insight into the overfitting effects of deepfake verification.

Dataset. Our evaluation is performed on a random sample of 1000 images from COCO (Lin et al., 2014])).
Each image has 5 corresponding captions written by different people. We use Stable Diffusion (SD), to
generate an image for each caption. This yields 5000 synthetic images and 1000 real images.

Truth score paradox. We begin by using the CLIP (Radford et al., [2021]) encoders to encode the caption
and image respectively; the truth score is the cosine similarity between them. We compute truth scores for
all real and fake images in COCO. We begin with a simple analysis - we compare the CLIP truth scores for
each real image with its fake counterparts (fake images with the same caption). We denote classification
accuracy, as the number of fake images whose truth score was lower than that of their real counterparts. The
results are shown in Fig. Surprisingly, we see that this method’s deepfake verification accuracy is lower
than chance! Furthermore, we perform the same experiment, but now using BLIP2 (Li et al.l 2023) as the
text and image encoder. This experiment’s results are as expected; real images have higher truth scores than
their fake counterparts. Full implementation details are in App. [A23]

Resolution of the paradox. Why do BLIP2 truth scores behave as expected, but CLIP scores do exactly
the opposite? We recall that SD was trained with CLIP text features, but not with BLIP2 features. We
therefore hypothesize that SD overfits to CLIP scores, making the fake images better aligned with their input
caption than real images. On the other hand, the generated image does not fully correspond to the input
prompt, due to imperfections in the TTI model. Therefore, an objective multi-modal encoder, i.e. one not
used for training the TTI, is able to perform verification and identify that fake images do not fit with the
text prompts. This explains why CLIP truth scores support the text prompt, but BLIP2 rejects it.

Truth score. We compute the CLIP and BLIP2 truth score for each image and prompt pair (x,y). The
final score is the BLIP2 minus the CLIP scores:
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Results. We present the truth score histograms for CLIP, BLIP2, and BLIP2-CLIP in Fig. [d We find
that the CLIP truth score is inversely correlated with deepfakes, and BLIP2 is positively correlated. Using
BLIP2-CLIP achieves the best of both worlds. Numerically, CLIP truth score achieves around 30% ROC-AUC,
while BLIP2 obtains around 60%. Using the difference between the truth scores yields a much better result
of 79.2%. While we do not claim that this setting is realistic (as attackers may not disclose the exact input
prompt) or that these results are better than the state-of-the-art on COCO, this scenario demonstrates how
overfitting may play an important part in deepfake verification.

6 Discussion and limitations

FACTOR as one-class classification (OCC). Let D be the distribution of all data, partitioned into two
sub-distributions Dp for real data and D for fake data. The objective is to provide a classifier C' which
takes as input = € D and classifies as real if x € Dy and fake if x € Dr. While the task may appear a natural
fit for supervised learning, there is a critical issue; at evaluation time, new attack types will be developed
(denoted zero-shot) that are very different from those existing at the time of training. Formally, we divide the
set of fake data into two non-overlapping sets: those observed at training time D,;s and previously unseen
attacks Dynseen such that Dp = Dops | Dunseen- Supervised approaches can train a classifier C' to separate
between Dgi and D,,s but cannot guarantee that the classifier will be effective at separating between real
images © € Dy and previously unseen attack images & € Dynseen- In practice the success of such supervised
methods will be highly dependent on the domain gap between D,ps and Dypseen- Previous papers observed
such generalization failures.

This paper proposed to overcome this challenge by using an alternative learning rule, OCC (Reiss et al., 2021}
Reiss & Hoshen, |2023} [2022; Reiss et al., [2024]). A naive application of OCC trains a classifier using only
real media x € Dg to learn to differentiate between real media and all other media (which are fake, © € Dp).
OCC by itself does not yield competitive deepfake detection results. Instead, FACTOR leverages additional
information beyond raw data, such as the user’s identity or the correspondence between multi-modal data.
We denote the pair of raw data and this additional information as (x,y) € D, where x represents the raw data
and y represents either the user’s identity or the multi-modal correspondence. FACTOR trains a one-class
classifier C'(z,y) using only real data pairs (x,y) € Dr. C is then able to differentiate between real Dp and
fake Dr = Dobs | Dunseen- Note that as FACTOR uses OCC, it does not differentiate between observed
and previously unseen deepfake attacks. Thus, it is natural to expect that the performance of observed and
unseen attacks verification will be similar.

Obtaining a reference set without user input. When no user is actively seeking to falsify targeted
deepfake attacks, but the targeted identity is known (either through captions or because the target is
well-known), a reference set can be constructed from public sources. Images and videos can be retrieved
from platforms like Google Image Search, which indexes content from Facebook, LinkedIn, Instagram, and
YouTube. This approach is particularly effective for detecting face-swapping deepfakes of public figures
who have numerous photos available online. Our method has shown significant results even with a single
reference photo. Given that over 2 billion people have Facebook profiles and around 1 billion use LinkedIn,
this provides a practical solution in many cases.

Unconditional deepfakes. Our method is not designed for unconditional deepfakes, e.g. a generated image
without added information such as a user’s identity or a caption. We stress that face swapping and AV
deepfakes are of sufficient practical and important to make our method valuable.

Supervised approaches work well on previously seen attacks. The primary benefit of our method
is generalizing to previously unseen attacks. Existing general-purpose supervised methods are effective on
attacks similar to those seen before, for which sufficient training data can be obtained. We note that in most
cases, our method outperforms supervised techniques even for previously seen attacks.

Beyond identity edits. While FACTOR focuses on identity-based verification, it does not aim to detect
manipulations that preserve identity but alter other attributes, such as facial expression, emotion, age, or
accessories. These types of edits are becoming increasingly common in generative models and represent a
class of deepfake attacks. Detecting such manipulations would require complementary methods that model
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fine-grained semantic or behavioral consistency, which we consider as future work. Nonetheless, our results
show that identity-level verification alone is a powerful and generalizable tool for detecting a wide range of
high-impact deepfakes.

Hazards of future progress. To overcome FACTOR, generative models must become significantly better
than is currently possible. Specifically, they would have to replicate not only the visual appearance but also
the finer details, nuances, and contextual cues of the user’s identity or speech. When generative methods
indeed progress to this level, our method would need to be re-evaluated.

Broader impacts. Defending against deepfakes is crucial for maintaining trust in digital media and
preventing misinformation spread. Our proposed method offers a promising solution that can detect novel,
unseen deepfake attacks. This capability to detect previously unseen deepfake threats can help mitigate the
harmful societal impacts of disinformation campaigns and privacy violations.

7 Ethical Considerations

The potential to misuse deepfake verification systems raises significant privacy and consent concerns. Such
technologies could be employed for unauthorized identity verification, potentially infringing on personal
privacy rights or enabling new forms of surveillance. Moreover, the method’s ability to analyze and compare
personal images could be misused to track or profile individuals without explicit consent, raising important
questions about data protection and individual autonomy.

To mitigate these ethical risks, we propose several key safeguards for the responsible development and
deployment of FACTOR. First, strict data protection protocols must be implemented, ensuring that user-
provided reference images and verification data are securely stored, immediately anonymized, and permanently
deleted after use. Second, transparent consent mechanisms should be mandatory, with clear, explicit user
agreement that details how their images will be processed and the specific purpose of the verification.

8 Conclusion

In this paper, we introduced the concept of deepfake verification to address the challenge of detecting
previously unseen deepfake attacks. Our proposed method, FACTOR, enables users to falsify manipulated
media claiming to show them by leveraging two key insights about current generative models: (i) their inability
to perfectly replicate specific identities and (ii) their difficulty in achieving precise audio-visual synchronization.
Through extensive experiments across multiple datasets and attack scenarios, we demonstrated that FACTOR
significantly outperforms existing state-of-the-art methods in both face swapping and audio-visual deepfake
detection, despite its simple implementation and without seeing any fake data. Our results demonstrate that
focusing on the current limitations of generative models, rather than learning from known attack patterns,
provides a more generalizable solution to deepfake detection.
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Table 6: AP and AUC (%) KoDF results, following the AVAD (Feng et al., 2023) evaluation protocol. The
best results are in bold.

Method Modality KoDF
AP AUC
Xception 1% 76.9 T7.7
Supervised LipForensics % 89.5  86.6
(transfer) AD DFD AV 79.6 82.1
FTCN 1% 66.8 68.1
RealForensics 1% 95.7 93.6
AVBYOL AV 749 78.9
Unsupervised VQ-GAN 1% 46.8 45.5
AVAD AV 87.6  86.9
Ours AV 92.0 93.1

A Experimental details & analysis

A.1 Face swapping verification

Implementation details. To ensure uniformity in our experiments, we uniformly subsampled each video
(train or test and for all datasets) into 32 frames. Furthermore, we split each identity’s authentic videos into a
50/50 train-test split. FACTOR uses the 50% subset of training videos as its reference set (it does not require
training), denoted by R. In contrast, the supervised baselines use this subset exclusively for training their
models. The test set for the user’s identity consisted of 50% of the real videos of this identity and fake video
clips of with the user’s being the attacked identity. We followed the literature by using frame-level evaluation,
computing ROC-AUC scores across all frames. Our reported results are an average of performance computed
for all identities within the dataset.

Moreover, our implementation relies on a pretrained Attention-92(MX) model from Face-X-Zoo (Wang et al.|
2021)), denoted by ¢;4(.), originally trained on the MS-Celeb dataset (Guo et al.; 2016)). To ensure uniformity
and consistency in our data, we incorporated robust data processing techniques. These encompassed critical
steps such as face detection, precise cropping, and alignment, all facilitated by the DLIB library (Sagonas
et al., 2013). The preprocessing ensured that all face images were uniformly cropped and normalized to
compact dimensions of 112 x 112. We computed the features of all images (observed and referenced) using
the above feature encoder and calculated their similarity using cosine similarity.

A.2 Audio-visual deepfake verification

KoDF evaluation. To further assess the cross-domain applicability of our deepfake verification method, we
conducted an evaluation on the Korean Deepfake Detection (KoDF) dataset (Kwon et all, [2021)), following the
established protocol outlined by AVAD (Feng et al., |2023)). For comparative analysis, we benchmarked our
method against several state-of-the-art supervised and self-supervised baselines, including Xception (Rossler
et al.l [2019)), LipForensics (Haliassos et al.| [2021), AD DFD (Zhou & Liml| 2021)), FTCN (Zheng et al. |2021),
VBYOL (Grill et al., [2020; [Haliassos et al.l [2022)), VQGAN (Esser et al., [2021)), and AVAD (Feng et al.,
2023). The supervised baselines were trained on the FakeAVCeleb dataset (Khalid et al., |2021)), which uses
similar synthesis techniques to KoDF, such as FaceSwap (FaceSwap.), FS-GAN (Nirkin et al} 2019), and
Wav2Lip (Prajwal et al., [2020).

The results, summarized in Tab.[6] provide evidence for our method’s cross-generalization capability. FACTOR
achieves performance levels comparable to many state-of-the-art supervised baselines and surpasses all
unsupervised methods by a large margin. This highlights the adaptability and effectiveness of our method to
scenarios with distinct linguistic and cultural attributes.
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Min vs Max Length Captions: Truth Scores Comparison
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Figure 5: Impact of prompt complexity on truth score. We paired real images with both their minimum and
maximum length captions, generating fake versions of those captions. Truth scores were calculated for these
pairs. They revealed that as prompt complexity increased, measured through maximum length captions,
more prompts achieved higher truth scores with real images, enhancing deepfake verification accuracy. We
report the percentage of image captions whose real images had a higher truth score than the fake image for
CLIP, BLIP2, and BLIP2-CLIP.

A.3 Text-to-lmage deepfake verification

Implementation details. In our implementation, we employed two multi-modal feature encoders, CLIP
(Radford et al 2021]) and BLIP2 2023)), to encode textual prompts and images. Specifically, for
CLIP’s architecture, we leveraged the ViT-B/16 pretrained on the LAION-2B dataset, following OPENCLIP
specifications (Ilharco et al.| 2021)). Furthermore, the checkpoint version of Stable Diffusion we used was v1-5
(StableDiffusion.). In order to evaluate the performance of our approach, we used two evaluation metrics: (i)
average precision (AP) and (ii) Receiver Operating Characteristic Area Under the Curve (ROC-AUC).

A.4 Caption complexity and truth scores

We hypothesize that more complex text prompts are more falsifiable and therefore improve deepfake verification
accuracy. To test this hypothesis, we tested the correlation between textual prompt complexity and their
truth scores for real and fake images. We hypothesized that as the complexity of the prompt increased, it
would exhibit greater similarity to the real image compared to the fake image. Caption complexity, in this
context, refers to the level of detail in describing the image content. To systematically explore this hypothesis,
we evaluated a dataset consisting of 1000 randomly selected images from the COCO dataset.
For each of these real images, we selected two captions: one with the minimum length and another with the
maximum length. The minimum length caption represented a simple textual prompt, while the maximum
length caption was considered more complex due to its larger word count.

We paired each real image with its corresponding minimum and maximum length captions. For each caption,
we generated corresponding fake images, using Stable Diffusion. For each pairing, we calculated truth scores,
between the real image and its respective caption, as well as between the fake image and the same caption.
This analysis was conducted within the feature spaces of both CLIP (Radford et al., 2021)) and BLIP2
2023), which notably, exhibited disagreements in their prompt similarity trends. Our findings, presented
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in Fig. [l underscore a consistent pattern. With the increasing complexity of the prompts, as measured
through the maximum length captions, more prompts achieved a higher truth score on the real images than
on the fakes. This aligns with our hypothesis, demonstrating that more complex prompts contribute to a
shift in similarity to the real image, thereby enhancing deepfake verification accuracy. Additionally, we can
observe the same phenomenon we witnessed in Sec. [5} wherein CLIP truth scores support the caption, while
BLIP2 rejects it. So the effectiveness of BLIP2 truth scores increases with prompt complexity, while using
minus CLIP truth scores becomes less effective as prompts become more complex, as the overfitting contrasts
with the generative model’s failure to synthesize the image corresponding to the complex caption.

A.5 Training Resources & Runtime Analysis

We benchmarked the runtime performance of FACTOR to assess its suitability for practical deployment. For
the face verification component, inference takes approximately 40 milliseconds per image, including feature
extraction and similarity computation. For the audio-visual verification component, processing a whole
video clip takes approximately 3 seconds on a single NVIDIA RTX 2080 GPU. These results highlight the
computational efficiency of FACTOR, especially when compared to supervised baselines that require model
training, fine-tuning, or heavy pre-processing.

A.6 Licences

Code & models. AV-HUBERT (Shi et al., 2022) is licensed under a special Meta license as described hereﬂ
Face-X (Wang et al., [2021]) open-source library is a toolbox for face recognition. We used the off-the-shelf
Face-X Attention-92(MX) (Wang et all 2017) and Swin-S (Liu et al.| [2021b)) feature encoders. Face-X is

licensed under the Apache License as described hereﬂ PyTorch uses a BSD-style license, as detailed in the
license fild]

Datasets. The FakeAVCeleb dataset (Khalid et al., 2021) is licensed under the FakeAVCelev Request Forms
as described hereﬂ The DFDC dataset (Dolhansky et al., [2019)) license is described hereﬁ The Celeb-DF
dataset (Li et al., 2020 is released under the Terms to Use Celeb-DF, which is described hereﬂ The DFD
dataset (Research et al.) license is described here ﬂ

%https://github.com/facebookresearch/av_hubert?tab=License-1-ov-file
Shttps://github.com/JDAI-CV/FaceX-Zoo?tab=License-1-ov-file
4https://github.com/pytorch/pytorch/blob/master/LICENSE
Shttps://docs.google.com/forms/u/1/d/e/1FAIpQLSfPDd30V0auqmmWEgCSaTEQ6CGpFeB-0zQJ35x-B_0Xjd93bw/viewform
Shttps://ai.meta.com/datasets/dfdc/

"https://forms.gle/2jYBby6y1FBU3u6q9

8https://github.com/ondyari/FaceForensics/blob/master/LICENSE
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