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ABSTRACT

With the emergence of agentic workflow development using Large Language
Models (LLMs) for industrial applications, there is a growing need for small
language models to possess domain-specific knowledge. In many existing ap-
proaches, reference materials such as books are used as a source of knowledge.
This paper presents a novel approach to finetune a base LLM model in a continued
pre-training fashion for the industrial asset domain, leveraging knowledge docu-
mented in a tabular structure to generate synthetic knowledge documents and a
vast amount of question-answer pairs using an entity and relationship-driven ap-
proach. Ultimately, this approach enables the fine-tuning of a small LLM (such
as LLAMA 3.1-8B) for evaluating the performance enhancement it brings. We
tested the base model and enhanced model on Industry4-FMSR MCQA datasets
with 2600+ samples and obtained around 4% improvement overall. Our experi-
mental results confirm the validity of our approach to generate the more synthetic
data for a knowledge infusion task.

1 INTRODUCTION

The emergence of agentic workflows using Large Language Models (LLMs) for industrial applica-
tions has created a pressing need for smaller language models to possess domain-specific knowledge
Chen et al. (2023), Liévin et al. (2023), Wu et al. (2023). While recent advancements in language
models have demonstrated impressive fluency, they are not without flaws; these models can gener-
ate false statements, leading to errors in task execution Lin et al. (2022), Zhang et al. (2024b), Nori
et al. (2023). In our recent benchmark study evaluating the truthfulness of LLMs in the context of
industrial assets, we found that frontier model such as ChatGPT 4o was truthful approximately 65%
of the time, on the other hand the performance of smaller models was a significant concern (around
40%). This discrepancy can adversely affect an agent’s decision-making process, prompting us to
address the challenge of improving their reliability. Many use cases, such as work order classifica-
tion Stewart et al. (2023), require a solid understanding of the domain to function effectively.

Building an agentic workflow represents an important area of research that will enhance the adoption
of LLMs Yao et al. (2022), Aksitov et al. (2023), Wang et al. (2024). In such frameworks, agents
interact with their environments using natural language and express their reasoning similarly Yan
et al. (2023). This underscores the necessity for agents to think like experts rather than merely
functioning as token generators. Achieving this domain-specific reasoning involves a knowledge
distillation process. For instance, an agent might internally contemplate, “I need to retrieve the
failure mode”, or “Can I detect a failure using sensor data?”

The majority of knowledge distillation processes begin with documents or existing knowledge and
utilize a teacher model to synthetically generate numerous question-answer pairs, transferring this
knowledge to smaller models Wang et al. (2022), Sudalairaj et al. (2024). Knowledge is often deeply
encoded in various formats, including documents, tables, images, and time series data. However,
extracting knowledge from structured forms to initiate synthetic data generation can be challenging.

This paper focuses on harnessing structured information available in a specific domain to systemat-
ically navigate the knowledge infusion process. In our exploration, we observed that many of our
ISO documents contained critical knowledge encoded as tables. For example, we found valuable
insights linking failure modes to sensor analytics and component mappings.
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Applications such as failure prediction, anomaly detection, and work order classification rely heavily
on extensive knowledge about assets and their processes. Building a specialized LLM for industrial
applications is therefore desirable, but harvesting knowledge from trustworthy sources remains a
challenge. ISO documents and established standards serve as reliable resources in this context. Our
approach involves ”crawling” the internal knowledge base of a language model with this limited
knowledge. We developed an Industrial-FMSR-MCQA system and tested it on the Llama model
Touvron et al. (2023) with varying parameters. Benchmark results demonstrated significant perfor-
mance improvements using a model fine-tuned with synthetic data. This raises the question: can we
leverage a larger model to extract information and import it into a smaller model’s knowledge base?
By devising a scheme to extract useful knowledge from a limited yet factual structured dataset, we
aim to enhance smaller LLMs for specialized industrial tasks. Our key contributions are:

• We propose leveraging fine-grained information from structured tables in ISO standards
to enhance model training. By extracting specific attributes related to equipment failure
modes, we create enriched feature representations that improve the model’s ability to gen-
eralize and accurately reason about new, unseen data during evaluation.

• We introduce a novel two-step iterative approach that integrates a Knowledge Graph (KG)
with a Large Language Model (LLM) for generating extensive qualitative knowledge doc-
uments about industrial assets. This approach employs an “entity expansion” technique
that systematically discovers and links relevant sensors, assets, and failure modes, thereby
enhancing the KG’s precision and depth. We provided a mechanism that enables gener-
ation of various types of knowledge documents such as KDBase, KDRephrase, KDQA and
KDExtend.

• Our experiments demonstrate that the synthetic dataset KDBase significantly improved
model accuracy from 44.7% to 47.4%, highlighting the effectiveness of diverse data gener-
ation. Additionally, the analysis reveals that increasing the number of training tokens yields
diminishing returns on performance, emphasizing the need for careful dataset selection and
hyperparameter optimization in fine-tuning strategies.

2 DOMAIN SPECIFIC DATASET

In this paper, we utilized two separate documents, ISO 14224:2016 ISO (2016) and ISO 17359:2018
CBM (2018), as data source to demonstrate the efficacy of our proposed approach for Industry 4.0
domain. Specifically, we leveraged the former document to generate knowledge for training our
model, while the latter document is used to create a benchmark dataset for evaluating the model’s
performance. ISO is a trustworthy verified piece of information prepared by field experts.

SOURCE DATASET (DSOURCE)

The ISO 14224:2016 standard provides a comprehensive framework for collecting and exchanging
reliability and maintenance data for equipment in the petroleum and gas industries. The standard
outlines equipment taxonomy, failure causes, and maintenance actions to enhance reliability, avail-
ability, and safety. The knowledge is captured in the form of multiple tabular representations, one
for each equipment category, where each row represents an example of a failure mode, and each
column corresponds to a piece of equipment that belongs to a particular category.

Table 1: Equipment Failure Data: Structured Knowledge Table

Equipment Name Equipment Type Failure Mode Failure Examples
Switch-gear Electrical External Leakage Corrosion
Pump Mechanical Seal Failure Wear and Tear
Valve Mechanical Sticking Contaminants
Compressor Mechanical Overheating Insufficient Lubrication
Transformer Electrical Insulation Breakdown Aging

Table 1 is an example of knowledge captured in ISO 14224:2016. Each piece of equipment is
assigned a name and type, such as “Switch-gear” being an electrical type of equipment. Furthermore,
each piece of equipment can encounter multiple failure modes, with “external leakage” being one
example. In total, the dataset comprises 44 assets, and 1795 total failure modes.
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Figure 1: t-SNE Visualization of Word Embeddings from Two Documents

EVALUATION DATASET (DEVAL)

The ISO 17359:2018 standard outlines the principles of condition-based maintenance for indus-
trial assets. Specifically, this document highlights the use of sensors and parameters to evaluate
the condition of an asset across various failure modes. The document is structured in the form of
knowledge tables, one for each equipment type, where each row represents a failure mode and each
column corresponds to a parameter or sensor that can be used to monitor the asset’s condition. The
table 2 presents various fault examples related to turbine equipment, indicating how specific sensor
readings or parameter changes may occur in the event of a failure. A tick mark (✓) denotes which
parameters — Power, Speed, Pressure, Vibration, and Temperature — are affected by each type of
fault, providing a clear overview of potential sensor changes associated with these faults.

Table 2: Equipment: Turbine - ✓ indicates that parameter or sensor change if failure occurs

Failure Mode Sensor/Parameter Reading
Power Speed Pressure Vibration Temperature

Bearing wear ✓ ✓ ✓

Gear Defect ✓ ✓

Unbalance ✓ ✓

We utilize 11 knowledge tables from this document to prepare a multi-choice question-and-answer
Industry4-FMSR MCQA dataset. This dataset is used to evaluate the capability of the LLM to
answer questions using only its internal knowledge learned during pre-training or supervised fine-
tuning. This evaluation dataset allows us to assess the LLM’s ability to reason and generate accurate
responses based on its acquired knowledge.

Note that, Dsource ̸= DEval. Figure 1 shows the t-SNE visualization into the semantic relationships
between words in the two documents. Any evaluation improvement of a model on DEval, where
there is no overlap of asset equipments between the Dsource (used for pre-training and finetuning) and
DEval, strongly suggests that the knowledge gained from the Dsource is transferable to new, unseen
data (or “new assets”), and the improvement isn’t relying on simple memorization.

3 PROBLEM SETTING

Aligning Large Language Models (LLMs) with domain-specific information is a crucial task. Re-
cently, various attempts have been made to generate domain-specific aligned models, such as
MediTron-70B for medical domain by Chen et al. (2023), EntiGraph CPT for long passage QA
on articles Yang et al. (2024), etc. These approaches typically utilize large-scale corpora with bil-
lions of tokens or start with few millions of tokens for generating more synthetic information using
teacher model. However, how to accommodate a tiny factual information available in a structured
form has not been paid much attention. Our goal is to utilize a limited amount of factual information
in a structured format for the Industry 4.0 domain, aiming to uncover the knowledge base of a given
LLM surrounding industrial assets for generating more synthetic data.
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Figure 2: An example of knowledge graph generated around seed entiry using Dsource and our pro-
cess

We represent structured tabular information, such as Table 1, of Dsource via a knowledge graph (KG),
which is a collection of triplets. Formally, a KG is a graph G = (N,R,E), where:

• N is a set of entities such as equipments, failuremodes, sensors, parameters, ...

• R is a set of relations such as monitor, experience, etc, ...

• E is a set of subject-relation-object triplets (s, r, o) where:

– s ∈ N (subject entity)
– o ∈ N (object entity)
– r ∈ R (relation between entities)

The triplets (s, r, o) clearly illustrate how each piece of equipment is linked to its category and fail-
ure modes. We begin by assuming that we have extracted a “seed entity” from the source dataset
Dsource, which will serve as the foundation for generating knowledge documents. While it is con-
ceptually possible to allow the language model (LM) to generate additional seed entities, we argue
that expansion based on knowledge knowledge is a more realistic scenario. In this scenario, we are
interested in constructing a synthetic knowledge centered around a specific entity.

In addition to equipment, failure modes, and sensors, which are represented as entities in our system,
a knowledge document is also an entity that is generated by some procedure and stored within the
knowledge graph (KG) as an entity. The creation of knowledge documents involves a multi-step
iterative process as outlined in next section. We define the following relations to connect these
entities:

• BelongsTo: This relation connects equipment to its category

• Experience: This relation connects equipment to the failure modes it can encounter

• Monitor: This relation connects equipment to the sensor tag for monitoring purpose

Our primary objective is to teach a pretrained language model the knowledge derived from a small
set of factual information. However, since the knowledge base is small, the information is highly
condensed and lacks diversity in how the underlying knowledge is represented.

4 SYNTHETIC DATA GENERATOR: KG + LLM PROMPTING

We employed a two-step iterative approach to generate a large amount of qualitative knowledge doc-
uments for industrial assets using a Knowledge Graph (KG) and a Large Language Model (LLM).
The approach consists of two phases: knowledge document generation and KG extension.
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Figure 3: An illustration of full method for generating knowledge document an entity of type equip-
ment

4.1 PHASE-I: KNOWLEDGE DOCUMENT GENERATION AND INITIAL KG EXPANSION

The core component of our approach is a focused expansion procedure that takes an entity e of a spe-
cific type and extracts all other entities of different types associated with it using the LLM, followed
by a relevancy check. This process expands the KG around the entity, enabling us to recursively
apply the procedure to further expand the KG. We refer to this process as “entity expansion” and
briefly outline in Figure 3.

The entity expansion process consists of three key steps:

• Sensor Discovery: Given an entity e of type equipment, we aim to discover all related
sensors that can be installed on an asset for its performance monitoring. Specifically, for
each e ∈ N , we seek to find a list of entities O that satisfy the relation (e, ‘Monitor’,
?). We consider lists since multiple sensors can potentially be used to monitor the asset’s
performance from different viewpoints. This task will add numerous new nodes to the KG
with type sensor.

• Relevance Generation: Once sensors are discovered, our next step is to connect sensors
and assets to failure modes. Note that not all sensors are useful for detecting all failures,
and vice versa. Therefore, we conduct a relevancy check for each pair of sensor and failure
mode for a given entity. The list of failure modes are obtained from KG using (e, ‘experi-
ence’, ?). This relevancy check is crucial for maintaining a high-precision KG. We connect
sensors to failure modes using relevancy relations, ensuring that only relevant relationships
are established. This task will add numerous links with Yes/No label in KG.

• Knowledge Generation: The fine-tuning process of the Large Language Model (LLM)
requires passages that capture the relationships between assets, sensors, and failure modes.
To address this, this module generates knowledge documents that describe the following
three types of relationships:

– Asset-sensor relationships
– Asset-failure mode relationships
– Asset-sensor-failure mode interaction relationships

LLMs are well-suited for generating summaries or background documents and we can feed
single triplet or multiple triplets to generate diverse set of documents. By leveraging this
capability, we created a comprehensive set of knowledge documents that provide a detailed
understanding of the complex relationships between assets, sensors, and failure modes. The
generated documents are also added as entity in KG.

5
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Each steps are achieved via direct prompting the LLM using well-crafted prompt. Table 3 shows
detail of each of these step along with the prompt used for LLM query. In summary, we expanded the
original KG via various entities of types sensors, and the connection between sensor-failure mode-
asset. Each entity of type sensor unroll a chain of actions in the context of a sub-task.

Table 3: The partial list of sub-tasks in our approach, where for each sub-task we provide its name,
a query, a corresponding prompt, and the expected output.

Sub-task Query Prompt

Sensor
Discovery

Power
Transformer

What are the sensors that can be installed in the asset
asset name for monitoring the performance?
Your response should be a numbered list with each sensor name
on a new line. For example:
1. foo
2. bar
3. baz

Relevance
Discovery

Asset, Failure
Mode

For the asset asset name, if the failure failure mode oc-
curs, for example, failure examples, can sensor sensor
help monitor or detect the failure for asset name?
Provide the answer in the first line and reason in the second line.

Knowledge
Generation

Asset, Sensor You are an expert in industrial asset management, who special-
izes in failure mode and effects analysis. Given the following
input, generate a paragraph of knowledge. Input: sensor can
be installed in asset asset name for monitoring asset. Knowl-
edge:

4.2 PHASE-II: KNOWLEDGE GRAPH EXTENSION WITH INSTRUCTIONS

The knowledge documents generated so far for the given seed entity in the KG can be utilized
to create more documents and/or set of question-answer pairs for instruction tuning. Our unit of
operation are triplets that connect the asset with the sensor and failure mode as follows:

KD1 = (e1,Monitor, s1), (e1, experience, fm1), (s1, relevant, fm1)

These triplets represent the relationships between the asset (e1), sensor (s1), and failure mode (fm1).
Here, KD1 denotes the knowledge document generated for each of the triplet. Let KDBase represents
all the documents generated so far by following the format as mentioned in KD1. We now explain
three approaches we adopted to expand the KG.

4.2.1 REPHRASE APPROACH : KDREPHRASE

We apply a simple data augmentation method to reprhase each KD1 ∈ KDBase. In particular, we
adopted a four variation as outlined in to generate 4 times more documents. These four variation
includes such that the generated document look like a toddler will understand (toddler style),
scholar will understand (hard style), Wikipedia style article (medium style), and question
followed by answer style (qa style). All generated documents are stored inside KDRephrase.
Here is an example prompt used for generating question-answer style of information from a given
knowledge document KD1.

QA Style Prompt

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the questions. Convert the following paragraph into a conversational
format with multiple tags of Question: followed by Answer:

6
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4.2.2 INSTRUCTION APPROACH : KDQA

In the second approach, we developed a specialized prompt that outlines a task for a knowledge ana-
lyzer to dissect an article concerning an industrial asset. The prompt serves two primary objectives:
first, to summarize content as summary related to three specified entities: asset name, sensor, and
failure mode, ensuring clarity and understanding of their relations. Second, it emphasizes generating
thought-provoking questions and corresponding answers that consistently revolve around these three
entities, fostering deep analysis and critical thinking. By structuring the response in this format, the
prompt encourages exploration of how the sensor data can indicate the potential failure mode of
the asset, thereby enhancing comprehension of the asset’s operational dynamics and maintenance
needs. We plan to generate at least 3 question-answer pairs for each document KD1 ∈ KDBase. Let
KDQA be a set of 18711 question-answer pairs generated by following this approach. It is important
to note that the prompts of KDQA has no context information. Therefore, to study whether adding
context is helpful to bring more knowledge, we extend KDQA with additional context in the prompt
which are derived from the generated summary in a RAFT manner (Zhang et al. (2024a)). We call
it KDQA-RAFT.

4.2.3 KG EXTENSION : KDEXTEND

In this approach, Knowledge documents are further post processed as a traditional knowledge doc-
ument to extract the important entity and the relationship between them. The extracted entities are
further used to extend the KG by adding more nodes and edge in the graph. In particular, for each
knowledge document KD1, the process is consists of three key steps:

• Entity Extraction - A set of key entities are extracted and are added into KG

• Entity Centric Question - Explain the role of each entity with respect to the KDx

• Interaction Centric Question Explore the interaction between pair of extracted entity
using KDx

We again followed an entity discovery and relationship explanation procedure.

Prompt 1. Key Entity Extraction Prompt

As a knowledge analyzer focused on asset management, your task is to dissect and understand an
article provided by the user. You are required to perform the following steps:

1. Summarize the Article: Provide a concise summary of the entire article, capturing the main
points and themes related to asset management.

2. Extract Entities: Identify and list all significant ”nouns” or entities mentioned within the
article. These entities should include but are not limited to:

• Assets: Any equipment or resources referenced in the article.
• Failure Modes: Specific types of failures or issues that may affect the assets.
• Sensors: Any monitoring or measurement devices mentioned in relation to asset man-

agement.
• Concepts: Significant abstract ideas or themes central to the discussion of asset man-

agement, such as maintenance strategies, risk assessment, or optimization practices.

Try to generate only three to ten key entities. Your response should be structured in a JSON format to
organize the information effectively. Ensure that the summary is brief yet comprehensive, and the list
of entities is detailed and accurate.
Here is the format you should use for your response:
{ ”summary”: ””, ”entities”: [”entity1”, ”entity2”, ...] }

5 EXPERIMENT

We trained using Llama 3.1-8B as the student and Mistral Large 2 as the teacher model. We used
2 NVIDIA A100 80GB GPUs with batch size of 2 per device and gradient accumulation of 1. We
used Brain Floating Point to reduce the size of the model parameters and LoRA Hu et al. (2021) to
reduce the trainable parameters with rank=8, alpha=32 and dropout=0.1. We used Adam optimizer

7
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Kingma (2014) with Decoupled Weight Decay Regularization Loshchilov (2017) and Cosine Decay
Learning Rate scheduler with warmup ratio of 0.05, peak learning rate of 5∗10−6 and weight decay
factor of 0.01. We used a replay rate of 0.1 of the RedPajama dataset Computer (2023) to minimize
the effect of catastrophic forgetting. During training the model processed 3.993 samples/second on
average. We also used instruction versions for QA dataset. Due to the highly unstructured format of
the generated text, we provide five question-and-answer examples as in context learning for a fine
tune model which are non-instruction based. The in-context example is not needed for instruction
tuned base model.

5.1 DATASETS ANALYSIS

In this study, we present a comprehensive analysis of the synthetically generated datasets: KDBase,
KDRephrase, KDQA, and KDExtend. As mentioned above, we used Mistral Large as the teacher model
to generate these datasets. Each dataset comprises of a varying number of passages and question-
answer pairs, with totals of 7,307 passages for KDBase, 23,042 for KDRephrase, 17,230 for KDQA,
and an impressive 348,223 for KDExtend. Utilizing the Llama 3.1 tokenizer, we quantified the total
number of tokens for each dataset, resulting in 2.32 million tokens for KDBase, 7.37 million for
KDRephrase, 5.4 million for KDQA, and 334.19 million for KDExtend. The substantial increase in
token count within KDExtend signifies its potential utility for fine-tuning large language models,
thereby enhancing their performance and adaptability in diverse applications. The accompanying
bar plots (Figure 6) visually represent the distribution of passages and tokens across the datasets,
highlighting the extensive growth achieved in the later phases of data generation. However, having
more data does not necessarily lead to better performance.

Figure 4: Mistral-Large-2: Number of Pas-
sages/Questions

Figure 5: Llama-3.1-8B: Total Number of
Tokens

Figure 6: Comparison of Passage Counts and Token Counts Across Datasets

5.2 SUMMARY OF FINE TUNING RESULT ON SMALL DATASET

In our experiments, we evaluated the fine-tuning performance of two small datasets, KDBase and
KDRephrase, over three different epochs using the Llama-3.1 Base model, which has a context window
of 2048 and an effective batch size of 4. The performance of the base model (without any fine-
tuning) is 44.8%, serving as a benchmark for comparison. The results revealed that the accuracy
for KDBase started at 44.7% but gradually increased to 47.4% by the third epoch, indicating the
usefulness of the generated dataset KDBase. In contrast, KDRephrase exhibited a decrease in accuracy
from 46.5% to 45.0% over the same configuration. These findings underscore the observation that
simply artificially rephrasing the information is not sufficient to improve model performance. In
summary, the synthetic generation of data in KDBase achieved better performance, improving by a
margin of 3% over 2600+ QA pairs in the test dataset.

5.3 SUMMARY OF FINE TUNING RESULT ON LARGE DATASET

Using the results reported in the previous section, we established the performance metrics for the
baseline model and the two fine-tuning models, utilizing KDBase and KDRephrase at 44.8, 46.2, and
45.4, respectively. We will now explain how we utilized the KDExtend dataset.
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Figure 7: Fine-tuning accuracy for KDBase and KDRephrase over three epochs, along with the fixed
performance of the base model, demonstrating a decrease in performance as epochs increase.

First, we fixed the epoch at 1 and increased the token size (see Figure 8a) to understand the impact
on accuracy. Our analysis demonstrates that increasing the token count did not lead to significant
improvements in performance. The plotted line shows fluctuating performance across token sizes,
with a peak accuracy of approximately 46.8%. This method exhibits considerable variability but
achieves the highest accuracy compared to the other methods. The peaks and troughs suggest that,
while there are benefits to increasing the token count, diminishing returns are observed at higher
levels. The chart emphasizes the superiority of KDExtend in extracting useful representations from
the dataset as the token count increases, indicating that this method is particularly effective at lever-
aging more data. The ability of KDExtend to reach higher accuracy levels highlights its potential for
applications requiring high performance in fine-tuning tasks.

Next, we used 1000 documents to test the impact of varying epochs. In this case, we fixed the
documents and increased the epoch, which also did not show any visible improvement (see Figure
8b). As a result we set the epoch=1 for majority of the experiments.

(a) Varying token size. (b) Varying Epochs (token from 1000 docs).

Figure 8: Comparison of fine-tuning accuracies across different models.

Figure 9 shows the experimental results demonstrate that the choice of epoch significantly influences
the model’s accuracy with respect to the number of documents used in training. Epoch 1 provides a
more robust performance across a wider range of document counts, indicating a better capacity for
learning and generalization. In contrast, Epoch 2 experiences a decline in accuracy with increased
training data, highlighting the importance of model training strategies and their implications for
performance.

5.4 SUPERVISED FINE TUNING ON INSTRUCT MODEL USING QA DATASET

Following the experiments above, we also conducted fine-tuning on the Instruct model (Meta-Llama-
3.1-8B-instruct) to exam whether our approach with KDQA and its variation KDQA-RAFT could make
a difference to the accuracy on Deval. Notice that since the Instruct model has been specifically

9
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Figure 9: Accuracy vs. Number of Documents: KDBase score is for epoch 1.

trained to follow instructions, the accuracy on a multi-choice question answering task generally
outperforms its base non-instruct model. Table 4 has listed the the results of metrics on Deval.

Table 4: Comparisons of the evaluation metrics on Deval: Base Instruct vs. Finetuned Instruct model
fine-tuned on KDQA and KDQA-RAFT

Accuracy
(Exact Match)

Accuracy (excl.
Undecided
Answers)

Number of
Undecided
Answers

Llama-3.1-8B-instruct 50.1% 50.7% 22
Llama-3.1-8B-instruct ft. KDQA 51.3% 53.0% 91

Llama-3.1-8B-instruct ft. KDQA-RAFT 45.0% 48.8% 242

From Table 4, we can see the instruct model fine-tuned on KDQA has 1% improvement of exact-
match accuracy, and 3% improvement of accuracy if the undecided answers are not counted. The
undecided answers are the generations that indicate none of the answers are correct, or hallucinates
a non-existing choice. The number of undecided answers is higher after finetuning, mainly because
it introduces more noise and bias. This is reflected by the performance result of the RAFT style
of supervised fine-tuning deteriorating to 45%. On the other hand, fine-tuning on KDQA achieves
better balance that avoids too much overfitting but still gains knowledge transfer across domains.

In summary, our idea of generating synthetic data from structured knowledge is validated. Especially
KDBase/KDQA being 2.3/5.4 millions synthetic tokens bring close to 4%/3% improvement on the
task it has not been trained. Note that, the teacher model has an overall accuracy of 60.5% on our
MCQA benchmark which also sets an upper bound on the performance of the student model.

6 RELATED WORK

Recent advancements in supervised fine-tuning (SFT) methodologies, such as RAFT Zhang et al.
(2024a), emphasize enhancing domain-specific knowledge in models. RAFT systematically trains
models using a dataset of question-answer pairs, integrating reasoning chains to generate coher-
ent answers and fostering a more effective retrieval-augmented generation (RAG) framework. Ad-
ditionally, the synthetic fine-tuning approach advocates for generating more synthetic data Yang
et al. (2024). In contrast, TORA Gou et al. (2023) employs a tool-assisted reasoning paradigm
where a teacher model guides problem-solving through a systematic method of thinking, acting,
and observing. This iterative feedback process refines smaller models and explores various paths to
problem resolution, enhancing overall performance. Complementing these, InstructLab Sudalairaj
et al. (2024) introduces strategies for improving language model capabilities by eliciting reasoning
through brainstorming techniques and generating asset-centric Q&A content. The DDGS framework
further integrates diverse textual sources to enhance instruction generation, reflecting the evolving
methodologies that emphasize internal reasoning and external information sources in advancing lan-
guage model performance.
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