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Abstract

We introduce a new type of causal structure, namely multiscale non-stationary directed
acyclic graph (MN-DAG), that generalizes DAGs to the time-frequency domain. Our con-
tribution is twofold. First, by leveraging results from spectral and causality theories, we
expose a novel probabilistic generative model, which allows to sample an MN-DAG accord-
ing to user-specified priors concerning the time-dependence and multiscale properties of the
causal graph. Second, we devise a Bayesian method for the estimation of MN-DAGs, by
means of stochastic variational inference (SVI), called Multiscale Non-Stationary Causal
Structure Learner (MN-CASTLE). In addition to direct observations, MN-CASTLE ex-
ploits information from the decomposition of the total power spectrum of time series over
different time resolutions. In our experiments, we first use the proposed model to generate
synthetic data according to a latent MN-DAG, showing that the data generated reproduces
well-known features of time series in different domains. Then we compare our learning
method MN-CASTLE against baseline models on synthetic data generated with different
multiscale and non-stationary settings, confirming the good performance of MN-CASTLE.
Finally, we show some insights derived from the application of MN-CASTLE to study the
causal structure of 7 global equity markets during the Covid-19 pandemic.

1 Introduction

A causal graph describes causal relationships among the constituents of a given system, and represents a
powerful tool for analyzing such a system under interventions and distribution changes. In general, causal
graphs are not known. Fortunately, it is possible to leverage causal inference approaches to unveil and
quantify the causal relationships among variables. While randomized experiments are the gold standard
for testing causal hypotheses (especially in medicine and social sciences), in many cases such interventional
approaches are unfeasible or unethical. Therefore, in recent years, great effort has been devoted to the
development of methods able to retrieve causal structures from observational data (Glymour et al., 2019;
Schölkopf et al., 2021).

Regardless of the different causal inference methods, the most informative causal graph is a directed acyclic
graph (DAG), where the nodes in V are the variables of the system, all edges eij ∈ E ⊆ V × V are di-
rected and represent direct causal effects, and feedback loops among nodes are forbidden (acyclicity require-
ment). A DAG can be associated with its functional representation, also known as structural equation model
(SEM, Pearl 2009). Here each node of the causal graph is written as a function of the values of a set of
parents nodes and of an endogenous latent noise (see 3.2). In this work, we focus on the case in which such
functions are linear and the latent noise is additive.

Even though widely studied and applied, a linear SEM is not adequate to cope with causal relations that
evolve over time and occur at different time scales, which are both common when dealing with time series.
Indeed, a SEM assumes that (i) causal edges and their weights are stationary and (ii) there is only one time
scale at which causal relations occur, i.e., the one associated with the frequency of observed data. However,
in practice causal structures might be non-stationary (D’Acunto et al., 2021) and often there is no prior
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knowledge about the temporal resolutions at which causal relations occur (Runge et al., 2019; D’Acunto
et al., 2022).

To overcome these limits, we introduce multiscale non-stationary causal structures, namely MN-DAGs, that
generalize linear DAGs to the time-frequency domain. In our work, the term multiscale means that we
consider multiple time resolutions, i.e., frequency bands. Hence, we look for causal interactions among time
series within each of those distinct frequency bands, and we simultaneously inspect the behaviour of these
causal relationships along time. Throughout the paper, we use 2j to represent a certain temporal resolution,
where j = {1, . . . , J} indicates the associated scale level and J ∈ N is the maximum level considered.

In MN-DAGs each time scale is represented by a different graph page (akin to multi-layer networks). Then,
the vertices within a certain page are associated with the multiscale representation of the N time series at
the frequency corresponding to that page. There exists a unique global causal ordering ‘≺’ shared by all
graph pages, such that the possible parent set Pi,≺ for the i-th node Xi can include only by those nodes Xj

that precede it in the causal ordering (Xj ≺ Xi). Causal relationships among nodes, represented as directed
edges, can vary smoothly over time and constitute acyclic structures within each time scale. So, throughout
the paper the term non-stationarity associated with causal structures refers to a smooth dependence on time,
similarly to how it is defined by Huang et al. (2020).

1.1 Contributions and Roadmap

Probabilistic generative model. As a first contribution, we propose a novel probabilistic generative
model over MN-DAGs, having as latent variables the causal ordering and the causal relationships; while the
observables are N zero-mean time series of length T .

Our generative model combines multivariate locally stationary processes (MLSW, Park et al. 2014), a frame-
work to represent time series as a sum of contributions coming from different temporal resolutions, and
linear SEM. In particular, we establish a relation between the underlying causal structure and the transfer
function matrix, that determines the local variance and cross-covariance between the time series (see 3.2).
To this end, we replace the transfer function matrix with a time-dependent mixing matrix, determined by
the causal structure and the strength of causal relations at each time step and scale level.

The proposed probabilistic model takes as input (i) the number of nodes N ∈ N; (ii) the number of samples
T ∈ N; (iii) a parameter µ ∈ [0, 1] associated with the multiscale feature; (iv) τ ∈ [0, 1] which describes the
time dependence of causal relationships; (v) δ ∈ [0, 1] that manages the density of the MN-DAG.

Figure 1 shows a (τ, µ)-quadrant along with examples of latent causal structures which determine the sampled
data, according to the specified values of µ and τ . When µ = 0, we obtain the single-scale case depicted
in Figure 1(a) and 1(b). Here, the MN-DAG has only one page. We assume that the power spectrum
describing the system is concentrated in the finest scale level j = 1. Moreover, if also τ = 0, the causal
links are stationary (Figure 1(a)). Starting from the origin, as we move to the right (τ → 1) the temporal
dependence of causal connections increases. As we move upwards (µ → 1), the likelihood that the causal
graph contains more pages increases (Figure 1(c) and 1(d)). Then, the overall power spectrum is spread over
more temporal resolutions.

Statistical analysis shows (see Section 4) that data generated by this model reproduces well-known features of
real-world time series, such as serial correlation, weakly stationarity, volatility clustering, and non-normality.
Our generative model can thus be used in practice to develop benchmarks for comparing causal discovery
algorithms, whose performance can be measured as a function of µ and τ .

Our probabilistic generative model is also suitable for practitioners, who need to identify the best performing
models for their specific application domain. In fact, some underlying assumptions of causal inference models,
such as, e.g., stationarity of causal relationships and distributional characteristics of latent factors, might be
violated by real-world data coming from specific application domains. When this happens, it impairs the
ability of existing methods to recover the underlying causal structure.

Bayesian causal inference method. Our second main contribution is a Bayesian method for causal
structure learning, able to cope with multiscale data which features time-dependent variance. Our method,
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Figure 1: Examples of causal structures that can be sampled from the proposed probabilistic model according
to the specified values for non-stationarity and multiscale features. In the depicted quadrant, we have the
non-stationarity feature (associated with the parameter τ ∈ [0, 1]) on the x-axis in red, and the multiscale
feature (associated with the parameter µ ∈ [0, 1]) on the y-axis in yellow, respectively. Colors, edges shape
and number of graph layers highlight differences from the single-scale stationary DAG corresponding to the
origin of the quadrant (a). When we move horizontally, the temporal dependence of the causal coefficients
(edges in the causal graph) changes (b). Similarly, vertical shifts in the quadrant are associated to the change
in the number of time scales (pages of the causal graph) contributing to the sampled data (c). Finally, when
both τ and µ are different from zero, we sample data concerning a system driven by an underlying multiscale
non-stationary causal structure (MN-DAG).

named MN-CASTLE, relies upon observational data and the estimate of the decomposition of the power
spectrum at different temporal resolutions.

The main challenges in developing such a model are to (i) handle the variance of the gradient estimator of
the evidence lower bound objective function with respect to the causal ordering, where the latter is modeled
by a Plackett-Luce distribution; (ii) impose the causal ordering to optimize at each inference step only
the (acyclic) causal relations that conform to it; and (iii) optimize smoothly time-dependent latent causal
relations efficiently, while containing the number of parameters. Regarding the first point, since the causal
ordering is non-reparametrizable (see Appendix A), we use a data-dependent control variate strategy along
with the gradient estimator (see Section 3.3). Furthermore, in order to impose a given causal ordering,
we generate a permutation tensor from the latter, and mask the distributions of the probabilistic model
accordingly. Finally, we model the time-varying causal coefficients as latent batched Gaussian processes, all
having the same kernel. Here, we exploit a variational formulation of the Gaussian processes in order to
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reduce the computational burden of the estimation while avoiding overfitting at the same time. Experimental
results on synthetic datasets, generated by using the proposed probabilistic model, show that MN-CASTLE is
able to retrieve the latent causal structure for different configurations of (τ, µ) values, and that it outperforms
baseline models.

We then apply MN-CASTLE to study the causal structure of 7 global equity markets during the Covid-19
pandemic. Our findings indicate that the most relevant time scale is the finest one, which corresponds to a
resolution of 2-4 days. This is in agreement with the presence of financial turbulence during the analyzed
period, which led investors to react quickly to the shocks that followed, thus generating sudden swings in
stock prices. In addition, our results on the causal ordering show that Asian markets are the main drivers
of returns within the considered network. Then we find the European equity markets, and finally the U.S.
stock market. So, the causal relationships tend to reflect the spread of the epidemic, with reference to the
number of confirmed cases in different countries. In conclusion, we observe that the causal relationships
tend to be positive and increase in intensity during the early months of 2020. Therefore, changes in value
in Asian stock markets cause changes in value in European and U.S. stock markets, consistently with the
presence of the pandemic and the subsequent fears of investors worldwide.

Summarizing, the technical contributions of this paper are as follows:

• We define a new type of causal structure for time series data (MN-DAG).
• We devise a probabilistic generative model, which allows to sample an MN-DAG according to user-

specified priors concerning the time-dependence and multiscale properties of the domain. Our model
can be used to generate synthetic time series with real-world characteristics.
• We devise a Bayesian inference method for the estimation of MN-DAG from real-world data (MN-

CASTLE).

At a high level, this paper bridges the gap between multiscale modeling and machine learning-based causal
inference methods.

This article is organized as follows. Section 2 relates our method to existing ones, highlighting differences
and similarities. Then, Section 3 contains the novel methodological content of the paper. It is further split
into three subsections, that show how to sample MN-DAG (Section 3.1); how to generate data from MN-
DAG (Section 3.2); how to infer MN-DAGs from data (Section 3.3). Next, Section 4 provides the obtained
results. In detail, Section 4.1 statistically describes data generated by the probabilistic generative model.
Section 4.2 regards tests on synthetic datasets, by providing details concerning the experimental settings
and introducing the considered baseline models. Section 4.3 analyses a real world use case on global equity
markets. Finally, Section 5 concludes by giving additional discussion concerning our findings, outlines open
questions and future research directions.

2 Related Work

Causal inference methods can be mainly classified into three categories, according to the approach used to
infer the causal graph: (i) constraint-based approaches, which make use of conditional independence tests to
establish the presence of a link between two variables (Spirtes et al., 2000; Huang et al., 2020); (ii) score-based
methods, which use search procedures in order to optimize a certain score function (Heckerman et al., 1995;
Chickering, 2002; Huang et al., 2018); (iii) structural equation models, which express a variable at a certain
node as a function of its parents (Shimizu et al., 2006a; Hoyer et al., 2008; Shimizu et al., 2011; Peters et al.,
2014; Bühlmann et al., 2014). Our approach fits into the latter category and aims to handle the presence of
non-stationarity and different temporal resolutions in the underlying causal structure.

Unlike the multiscale causal structure learning model proposed by D’Acunto et al. (2022), which estimates
multiscale stationary causal relationships hinging on stationary wavelet transform (Nason & Silverman,
1995) and non-convex optimization, our model applies a different learning scheme and is able to handle
non-stationary relationships as well. Furthermore, the method we propose exploits the estimate of the
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decomposition of the power spectrum at different time scales, whereas the model proposed in the previous
paper operates on the estimated wavelet detail vectors.

In the past, several approaches have been developed that can infer causal structures in the presence of non-
stationarity under certain assumptions (Song et al., 2009; Ghassami et al., 2018; Strobl, 2019; Perry et al.,
2022). The main (implicit) assumption common to these approaches, concerns the time scale at which causal
interactions occur, that is, it is assumed that this scale coincides with the frequency of observation of the
data. The model we propose, relaxes this assumption, and allows time-dependent causal relationships to
be investigated at different temporal resolutions. Another difference concerns the assumption regarding the
existence of multiple domains, where causal dependencies between variables may vary but are assumed to be
stationary within each domain, to exploit non-stationarity and distributional shifts to recover the underlying
causal structure. Although in the context of time series, the dataset can be segmented into different domains
through a sliding window approach, this procedure introduces discretionary choices such as (i) the choice of
the splitting points and (ii) the size of the time window in which causal relationships should be stationary.
However, in general, for real data there is no prior knowledge regarding the above issues: the causal structure
might vary a lot even when windows are overlapping (D’Acunto et al., 2021). In contrast, our method aims
to learn the causal structure and describe its temporal evolution, assuming that it is linear in the frequency
domain and that the causal ordering is shared between the temporal resolutions considered.

Our probabilistic generative model extends the works of Cundy et al. (2021); Charpentier et al. (2022), since
it is suitable for time-series data and provides a causal structure that lives in the time-frequency domain.
Even though our approach leverage Gumbel distributed variables for sampling the causal ordering as in the
previous two works, the procedure we apply is different and requires a lower computational cost (Gadetsky
et al., 2020). Moreover, our inference model uses a gradient estimator with a data-dependent control variate
strategy for learning the parameters of the causal ordering distribution, whereas existing models exploit
differentiable relaxations of such a distribution. Our procedure uses the masking of distributions as well to
optimize at each step only the causal relations compliant to a certain causal ordering. A similar approach
is also employed in Ke et al. (2019); Ng et al. (2022). however the masking used in those works aims at
excluding all non-causal relations, not just those that do not conform to the causal ordering.

Finally, we exploit recent developments in variational inference in order to approximate the posterior dis-
tribution over MN-DAG parameters given data, in accordance with the MN-CASTLE probabilistic model.
This general learning scheme is also exploited in other recent works (Cundy et al., 2021; Charpentier et al.,
2022; Annadani et al., 2021; Lorch et al., 2022) to model the posterior distribution over the parameters of a
DAG, as defined in the corresponding proposed probabilistic models.

3 Methods

This section discusses the proposed generative model and inference method in detail. Specifically, Section 3.1
details the construction of the probabilistic model useful for sampling MN-DAG. Then, Section 3.2 defines the
data generation process from an MN-DAG, which combines MLSW and SEM. Finally, Section 3.3 analyses
MN-CASTLE and the inference procedure used.

3.1 Sampling a MN-DAG

We propose a probabilistic model over MN-DAGs that takes as input (i) the number of nodes N ∈ N; (ii)
the number of samples T ∈ N; (iii) a variable µ ∈ [0, 1] associated with the multiscale nature of the DAG;
(iv) τ ∈ [0, 1] which describes the time dependence of causal relationships; (v) δ ∈ [0, 1] that describes the
density of the causal network. Figure 2 shows the steps needed to sample an MN-DAG.

Sample the time scales. Given µ, the number of pages (time scales) of the MN-DAG is J = 1 + J ′,
where J ′ is sampled from a binomial distribution J ′ ∼ B(log2(T ) − 1, µ). Here, the first parameter of the
binomial distribution is the number of trials and the µ represent the probability of success. Without loss of
generality, we assume that temporal resolutions are consecutive, i.e., given the value of J , all the time scales
2j , j = {1, . . . , J}, are associated with a page in the causal graph. This assumption does not imply that
causal relations occur within all the considered pages. Since the model is probabilistic and the user specifies
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Figure 2: The figure shows the steps necessary to sample a MN-DAG. For the sake of readability, let us
consider the case where N=3 and T=4. Here the yellow color refers to time scales; red for non-stationarity;
(a) First, we sample the number of pages (time scales) of the MN-DAG. Given µ, the latter is given by
J = 1 + J ′, where J ′ ∼ B(log2(T )− 1, µ). In the example, we instantiate three pages (J = 3). (b) Second,
we sample the causal ordering ≺∼ PL(θ) that is shared by all time scales and entails the permutation
tensor P ∈ {0, 1}J×T ×N×N . Here, PL(θ) indicates the Plackett-Luce distribution, defined by a score vector
θ ∈ RN , where θi ∼ U(0, N). The indexes are j for time scales, t for time steps, n for the considered nodes
and n′ for the positions within ≺. In the considered example, we have ≺= [3, 2, 1]′. Therefore, for each 3× 3
slice of the tensor corresponding to a certain time scale j and time t, we have pnn′ = 1 (blue square) if the
node n appears at index n′ within ≺. (c) Third, we build the tensor of causal coefficients as follows. With
regards indexes, j, t and n are the same as above, whereas m indicates the parents dimension. Here, we
first sample a full tensor of weights W ∈ RJ×T ×N×N made by three components: (i) a constant term W0;
(ii) Wµ that makes the magnitude of causal relationships different across time scales; (iii) Wτ that allows
causal coefficients to vary over time according to batched GP (0,K). Therefore, within each scale j, Wnm

are smooth functions varying over index t. To manage the density of the entailed MN-DAG, we multiply
element-wise W by a logical mask Π ∈ {0, 1}J×T ×N×N . The entries of the Π are distributed according to
a Bernoulli distribution, πnm ∼ B(δ). Finally, we obtain the causal tensor C that entails the MN-DAG on
the right by imposing the causal ordering sampled at step (b).

a value for δ, we also might end up with a causal graph without edges. In case µ = 0, the causal graph
consists of one page, that corresponds to the time resolution 21, i.e., single time steps.

Sample the causal ordering. Within our probabilistic model, we assume that the causal ordering ≺ is
shared by all time scales. This property implies that, given ≺, the possible parent sets at each temporal
resolutions Pi,≺ for the i-th variable Xi are {Pi | Pi ≺ Xi}. The causal ordering ≺ can be thought
as a permutation of a vector of integers ≺′= [1, . . . , N ], thus we exploit the Plackett-Luce distribution
(PL, Plackett 1975; Luce 2012) to sample it. PL represents a distribution over permutations, defined by a
vector of scores θ ∈ RN , which allows sampling permutations b ∈ SN in O(N logN), where b is a vector
of N integers and SN is the support of permutations of N elements. Thus, given θ, the probability of a
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permutation b is

p(b | θ) =
k∏

i=1

eθbi∑k
u=i e

θbu

.

A sample b from PL distribution can be thought as a sequence of samples from categorical distributions:
first b1 comes from the categorical distribution with logits θ; b2 from the categorical with logits θ − {θb1};
and so on. The mode of the PL is the descending order permutation of scores b0 = θb0

1
≥ θb0

2
≥ . . . ≥ θb0

N
.

The sampling procedure from a PL relies upon the fact that an order of a vector z ∈ RN ∼ Gum(θ, 1) is
distributed as PL(θ), where Gum(θ, 1) is a Gumbel distribution with location parameter θ and scale equal
to one (Gadetsky et al., 2020). Therefore, we can sample b as follows:

zi = θi − log(− log(vi)), vi ∼ U(0, 1)
H(z) = argsort(z) .

We sample the causal ordering ≺∼ PL(θ) by using the procedure above, where we choose a uniform prior
for PL scores vector, i.e., θi ∼ U(0, N). The causal ordering ≺ entails a permutation matrix P̂ ∈ {0, 1}N×N

such that pnn′ = 1 iff the variable Xn occurs at position n′ within ≺; 0 otherwise. Finally, we derive a
permutation tensor P ∈ RJ×T ×N×N by simply tiling P̂ along both multiscale and time dimension.

Sample the causal tensor. Given J and τ , we build a tensor of weights W ∈ RJ×T ×N×N made by three
building blocks. First, we sample Ŵ0 ∈ RN×N , whose entries are normally distributed, w0

nm ∼ N(0, 1).
Starting from Ŵ0, we derive the first component W0 ∈ RJ×T ×N×N by simply expanding Ŵ0 along both
multiscale and time dimension. Then, this component can be thought as a constant term shared by all
temporal resolutions and time steps.

Second, we sample Ŵµ ∈ RJ×1×N×N , whose entries are distributed according a Gaussian N(0, µ). By
expanding Ŵµ along time dimension, we obtain the second component Wµ ∈ RJ×T ×N×N , that makes the
magnitude of causal relationships different across scales and is stationary along t.

Third, we sample Wτ ∈ RJ×T ×N×N where each tube along the time dimension follows a multivariate
Gaussian distribution MN(0,K). Here, the covariance matrix K = K(t, t′) represents a (combination of)
valid kernel(s) for Gaussian processes (GP, Bishop & Nasrabadi 2006), where the lengthscale is λ = 1/τ .
This component imposes the causal coefficient to evolve smoothly over time, according to τ . Indeed, as
τ → 0, the lengthscale of the kernel increases and consequently Wτ varies less along the time dimension.
Finally, the tensor of weights is

W = W0 + Wµ + τ ·Wτ . (1)

Now, to manage the sparsity and ensure the acyclicity of causal connections, we generate a suitable logical
mask Π̂ ∈ {0, 1}J×1×N×N . Within the latter, the slices Π̂nm are strictly lower triangular and the entries are
distributed according to a Bernoulli distribution, πnm ∼ B(δ). Then, we obtain the tensor of causal relations
as Ĉ = Π ◦W, whose slices Ĉnm are nilpotent.1 Here Π ∈ {0, 1}J×T ×N×N is obtained by expanding Π̂
over time and ◦ represents the Hadamard product.

At this point, given P and Ĉ, we compute the causal tensor that entails the latent MN-DAG by means of
the product C = P′ĈP, where P′ is obtained by transposing the two rightmost dimensions of P.

3.2 Generate Data from the MN-DAG

In order to generate N zero-mean processes of length T , whose behaviour is determined by the evolution
over time of a latent MN-DAG, we build upon SEM and MLSW theoretical frameworks.

Linear structural equation models and DAGs. Mathematically, a DAG is formulated as a SEM. Given
a dataset X := (x1, . . . , xN ) of N random variables, a SEM is a collection of N structural assignments

xi := fi(Pi, zi), i = 1, . . . , N ,

1A matrix A is said nilpotent if it is square and An̄ = 0 for all integers n̄ ≥ N̄ , where N̄ is known as the index of A.
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where Pi represents the set of direct causes (parents) of node xi, zi is a noise variable satisfying zi ⊥ zj if
j ̸= i, and fi(·) is a generic functional form. In this paper, we focus on linear functional forms, therefore, by
exploiting matrix form, the equation above becomes:

X = CX + Z ,

where C ∈ RN×N is the matrix of causal coefficients satisfying (i) cii = 0 ∀i ∈ {1, . . . , N}; (ii) cij ̸= 0 ⇐⇒
xj ∈ Pi; (iii) diag(Cn) = 0, ∀n ∈ N (acyclicity property). Since I−C is an invertible matrix (see Appendix
B), we can rewrite the latter equation as

X = MZ , (2)

with M = (I − C)−1 being a mixing matrix. According to Equation (2), observed data is a mixing of
independent latent noises. Here, causal relations are stationary, instantaneous and are supposed to occur at
the frequency of observed data.

Modeling multiscale data. In order to deal with multiscale data featured by time-dependent variance, it
is necessary to leverage a mathematical modeling able to localize the evolution of the considered processes
in time and frequency. Without loss of generality, let us consider zero mean processes (any non-zero mean
can be estimated and removed).

The MLSW framework generalizes locally stationary wavelet process (LSW, Nason et al. 2000; see Appendix
D) to model N zero-mean processes XT [t] = [X1[t], . . . , XN [t]]′, each of length T , as follows:

XT [t] =
J∑

j=1

+∞∑
k=−∞

Vj [k/T ]zj,kψj [t− k] . (3)

In Equation (3), (i) {ψj [t−k]} is a set of non-decimated wavelets; (ii) {zj,k} is a set of random vectors zj,k ∼
N(0, IN×N ); (iii) Vj [k/T ] ∈ RN×N is the transfer function matrix, assumed to be lower triangular and with
entries being Lipschitz continuous functions associated with Lipschitz constants L(n,m)

j , n ∈ {1, . . . , N}, m ∈
{1, . . . , N}, such that

∑
j L

(n,m)
j <∞. Local stationarity means that the statistical properties of the process

vary slowly over time. This feature is essential in order to make learning possible (Nason et al., 2000),
and within MLSW coincides with the Lipschitzianity assumption above. Here, the transfer function matrix
Vj [ν], with ν = k/T being the rescaled time (Dahlhaus, 1997), provides a measure of the local variance and
cross-covariance between the processes at a certain time ν and scale j, i.e., the local wavelet spectral matrix
(LWSM) Sj [ν] = Vj [ν]V′

j [ν].

By construction, LWSM is symmetric and positive at each time ν and scale j. Within LWSM, diagonal
elements Sj

nn[ν] represents the spectra of of the processes, whereas Sj
nm[ν] provides the cross-spectra between

them. In addition, the local auto and cross-covariance functions, namely cnn(ν, l) and cnm(ν, l) (with l being
a certain lag), admit a formulation in terms of the LWSM (see Park et al. 2014 for further details).

The proposed data generation process. In order to develop our generative model, we leverage Equa-
tions (2) and (3). In particular, we establish a relationship between the causal tensor entailing the latent
MN-DAG and the transfer function matrix. To this end, we replace the lower triangular Vj [ν] in Equa-
tion (3) with a time-dependent mixing matrix Mj [ν] = (I − Cj [ν])−1, which is a permutation of a lower
triangular matrix (see Appendix C), where Cj [ν] ∈ RN×N is the matrix of causal coefficients at time ν and
scale j described in Section 3.1. Since for every real-valued invertible matrix A, the Gramian AA′ is positive
definite, we can use the previous mixing matrix to define Sj [ν]. Therefore, the aforementioned processes are
given by

XT [t] =
J∑

j=1

+∞∑
k=−∞

Mj [k/T ]zj,kψj [t− k] . (4)

In case (i) τ = 0 (stationary Cj [ν] = Cj) and (ii) either µ = 0 (J = 1) or Cj = C (i.e., causal coefficients
do not vary over index j), Equation (4) simplifies as follows:
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XT [t] = M
J∑

j=1

+∞∑
k=−∞

zj,kψj [t− k] = MZ̃[t] .

Although this representation looks similar to Equation (2), here we have that Z̃[t] admits a representation of
the form in Equation (3), with transfer matrix equal to the identity. Therefore, Z̃[t] displays autocorrelation
determined by the discrete autocorrelation wavelet Ψj [l] =

∑
k ψj,kψj,k−l, where l ∈ Z represents the

lag (Park et al., 2014).

3.3 Alternating 2-Steps Inference

We expose a Bayesian method for the estimation of MN-DAGs, termed MN-CASTLE. The latter has been
implemented by using Pyro (Bingham et al., 2019) a probabilistic programming language built on Python
and PyTorch (Paszke et al., 2019). A probabilistic model is a stochastic function that generates data x
according to latent random variables z and parameters β∗, having as joint density function

pβ∗(x, z) = pβ∗(x | z)pβ∗(z) ,

where pβ∗(z) and pβ∗(x | z) are the prior and the likelihood, respectively. The goal is to learn the parameters
of the model β∗ from data. As detailed is Appendix A, SVI offers a scheme to learn β∗ by approximating the
usually intractable posterior distribution pβ∗(z | x) by means of a tractable family of variational distributions
qϕ(z), here called guides, parameterized by the variational parameters ϕ.

Our task is as follows. We are given a dataset X = {XT [t]}T
t=1, XT [t] = [X1

T [t], . . . , XN
T [t]]′ and an estimate

of the LWSM at different time scales j, Ŝj . As an example, the smoothed bias-corrected raw wavelet
periodogram is a suitable non-parametric estimator (Park et al., 2014). Then, according to the probabilistic
generative model in Section 3.2, we want to learn the following parameters given previous inputs by means of
SVI: (i) the vector of scores θ of the Plackett-Luce distribution used to model the latent global causal ordering
≺; (ii) the mean and kernel parameters of the latent batched GPs used to model the entries of the hidden
causal coefficients tensor C, i.e., C(n,m)

j ∼ GP (C̄(n,m)
j ,K(t, t′)). Here, we assume that the kernel K(t, t′) is

shared by all causal coefficients. Moreover, by learning the kernel parameters, we obtain an estimate τ̂ of τ
since we assume τ = 1/λ as in Section 3.1.

Algorithm 1 Training function

1: procedure train(X, Ŝ, timesteps, K)
2: model1, guide1← probabilistic model and guide for the first step
3: model2, guide2← probabilistic model and guide for the second step
4: Initialize niterations, optimizer
5: SV I1← instantiate SVI object with model1, guide1, optimizer
6: SV I2← instantiate SVI object with model2, guide2, optimizer

7: while i< niterations do
8: θ̂i ← Run i-th SV I1 step
9: ≺̂0

i ← sort θi in descending order and retain the indexes
10: ̂̄Ci, τ̂i ← Run i-th SV I2 step using the mode of PL(θ̂i), ≺̂

0
i

11: return θ̂i,
̂̄Ci, τ̂i

In order to improve the learning of the causal coefficients tensor, we split the inference of the causal ordering
and the rest of the parameters into two alternating steps. Algorithm 1 shows the overall training function.

Model and guide for causal ordering inference. Figures 3a and 3b provide a pictorial representation of
the probabilistic model and the guide initialized at line 2 of Algorithm 1. In particular, we resort to graphical
models to illustrate the corresponding joint distributions. Here, random variables are given as circular nodes,

9



Under review as submission to TMLR

≺

C0

X

≺∼ Plackett-Luce
C0 ∼ Normal
X ∼ Multivariate normal

index n

index m

index t

(a) Probababilistic model

≺

θ

C0

µC0

σC0

≺∼ Plackett-Luce
C0 ∼ Normal
θ ∈ RN

µC0 ∈ R
σC0 ∈ R+

index n

index m

(b) Guide

Figure 3: a Graphical models associated with the probabilistic model and b the parameterized variational
distribution for learning the causal ordering, along with variational parameters and their constraints.

where a blank node represents a latent variable while a grey one is associated with an observed variable.
Deterministic variables are given as rhomboid nodes, while variational parameters are printed outside of the
nodes. Edges indicate dependence among variables and rectangles (plates) indicate conditionally indepen-
dent dimensions, i.e., independent copies. In addition, Figure 3 provides the distributions (along with the
constraints of parameters) of random variables and variational parameters.

Figure 3 shows that model and guide share the same latent variables. Indeed, since the guide is used to
approximate the true posterior, it needs to provide a valid probability density over all hidden variables. More
in detail, we have two latent variables: (i) the causal ordering, which is global since it does not depend on
any other variable and is modeled within the guide as a PL(θ); (ii) a stationary single-scale causal structure
C0 ∈ RN×N , where each entry C0

nm is independent of the others and is modeled in the guide with a Gaussian.
Since we assume the causal ordering (i) shared by all time scales and (ii) stationary; we infer it from observed
data X, without any additional information concerning the variance decomposition and its evolution over
different temporal resolutions (provided by Ŝj). For this reason, to learn θ, we resort to the SEM formulation
given in Equation (2), where we set C0 = P′Ĉ0P (see Section 3.1). As a consequence, the causal tensor C0

in Figure 3 depends on ≺. According to the probabilistic model in Figure 3a, at each time-step we observe
the vector XT [t] by using a multivariate normal likelihood, precisely MN(0,MM′). Indeed, with constant
causal coefficients and normally distributed noises, we have: (i) E[XT [t]] = M · E[Z[t]] = M · 0 = 0; (ii)
Var[XT [t]] = Var[MZ] = MIM′ = MM′.

fu Ŝ

u ∼ Multivariate normal
f ∼ Normal
Ŝ ∼ Normal

index t

index n

index m

index j

(a) Probababilistic model

fu

ζ

µq(u)

Σq(u)

C̄0

σK

λK
≺0

u ∼ Multivariate normal
f ∼ Normal
ζ ∈ RT̃

µq(u) ∈ RT̃

Σq(u) ∈ RT̃ ×T̃

C̄0 ∈ R
σK ∈ R
λK ∈ R

index n

index m

index t

index j

(b) Guide

Figure 4: a Graphical models associated with the probabilistic model and b the parameterized variational
distribution for learning batched GPs, along with variational parameters and their constraints.
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Model and guide for batched GPs inference. Figures 4a and 4b depict the probabilistic model and
the guide initialized at line 3 of Algorithm 1. Here we assume a known causal ordering, then we represent
it with a rhomboid node. To impose such an ordering, we generate again a permutation tensor P. To
model each latent causal coefficient at a certain temporal resolution level j as a smoothly varying function
f ∼ GP (C̄(n,m)

j ,K(t, t′)), we exploit a variational formulation of Gaussian processes (Hensman et al., 2015).
Accordingly, we consider a set of inducing points ζ = {ζt̃}T̃

t̃=1, optimised over the training set and where
T̃ ≤ T and latent inducing function variables u (a subset of f) over these inducing points. Thus, the
method relies upon the introduction of a joint variational distribution q(f ,u), such that it factorises as p(f |
u)q(u) (Titsias, 2009). This allows to avoid the computation of K−1

ff within the inference procedure. Here,
to approximate the true GP prior p(u) over the inducing points, we choose q(u) to be a Cholesky variational
distribution, i.e., a multivariate normal with positive definite covariance matrix MN(µq(u),Σq(u)). This
variational approach allows to reduce the computational burden of GP estimation while avoiding overfitting
at the same time (Bauer et al., 2016). In detail, in our work the usage of T̄ inducing points lowers the
computational cost of each GP from O(T 3) to O(T̄ 3) (Hensman et al., 2015). As a consequence, in both
Figures 4a and 4b we have two latent variables: u associated with inducing functions and f associated with
GP prior values. Here, we use batched GP to model causal coefficients, consequently they are independent
both within and among time scales (rectangles in Figure 4). Since the joint distributions within the model
and the guide q(f ,u) factorise as;

p(f ,u) = p(f | u)p(u); q(f ,u) = p(f | u)q(u) ,

we also draw edges from u to f . The variational parameters, along with their constraints, are shown in
Figure 4b. In order to take into account and update only the causal relations that conform to the known
ordering, we mask the distribution of the hidden functions above by using P. Now, given these masked
latent functions, we compute the mixing matrix Mj . At this point, we observe the estimated Ŝj by using
a Gaussian likelihood N(MjM′

j , σ), where the scale σ ∈ R+ is fixed (here we use .05). In particular, the
mean value of the latter Gaussian is set in accordance with Section 3.2. To implement these probabilistic
model and guide, we combine Pyro and GPyTorch (Gardner et al., 2018), an efficient Python library for GP
inference built on PyTorch.

SVI and stochastic optimizer. Next, in line 4 we set the number of inference steps and choose the
stochastic optimizer to be used within SVI. In our experiments, we use Adam (Kingma & Ba, 2014) along
with learning rate decay and gradient clipping (Goodfellow et al., 2016). These tricks are useful to avoid
bouncing around the optimal point when you are close to it and to prevent the gradient from becoming too
large. Then, in line 5 and 6 we instantiate the SVI object for the inference of the causal ordering and for that
of the batched GPs parameters, respectively. In order to initialize this objects, we specify the corresponding
probabilistic model, guide, stochastic optimizer and the ELBO loss.

Inference steps. Subsequently, from line 7 to 10, we optimize the variational parameters in an alternating
fashion. First, we optimize w.r.t. θ to approximate the likelihood of ≺ given XT [t]. Unfortunately, the
latent variable ≺ is non-reparameterizable. Then, in line 8 of Algorithm 1 we use the REINFORCE estima-
tor (Williams, 1992), which is suitable for getting Monte-Carlo estimates of a certain cost function fϕ(z).
According to REINFORCE, we have

∇ϕEqϕ(z)[fϕ(z)] = Eqϕ(z)[(∇ϕ logϕ(z))fϕ(z) +∇ϕfϕ(z)] . (5)

Although unbiased, this estimator is known to have high variance. A way for reducing this variance is by
means of control variate strategies, i.e., by adding a function within the expectation operator in Equation (5)
that depends on the chosen values for z but is constant w.r.t. ϕ. So, the additional term does not affect the
mean of the gradient estimator. Here, we resort to a data dependent baseline (Mnih & Gregor, 2014). The
rationale behind the usage of baselines, is to reduce the variance by tracking the mean value of fϕ(z). Thus,
we add a running average of fϕ(z), namely fϕ(z), for predicting the value of fϕ(z) at each step. In our
experiments, the usage of neural networks instead of running average did not lead to better results. After
this inference step, we compute the mode of the PL(θ̂), ≺̂0, in line 9 of Algorithm 1. Next, we optimize
w.r.t. the rest of the variational parameters, by setting the causal ordering equal to ≺̂0. Since we isolate
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the non-reparameterizable latent in the first step, in line 10 we exploit the reparameterization trick, to the
benefit of learning. Finally, we return the learned variational parameters once the maximum number of
iterations is reached.

4 Results

In this section we present the empirical assessment of our proposal. We first dive in the statistical analysis
of the time series generated by the proposed model in Section 4.1. Then, Sections 4.2 and 4.3 present results
regarding the inference of MN-DAGs from synthetic and real-world data, respectively.

4.1 Probabilistic Model over MN-DAGs

We start by illustrating the output of the proposed probabilistic generative model by means of an example.
We consider N = 3 nodes (time series), T = 512 time steps, multiscale level µ = 0.5, non-stationarity level
τ = 0.5, and density of causal interactions δ = 0.5.
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Figure 5: The figure depicts the latent MN-DAG sampled by using the proposed probabilistic generative
model, where we set the number of nodes N = 3, number of time steps T = 512, multiscale level µ = 0.5,
non-stationarity level τ = 0.5, and density parameter δ = 0.5. The resulting MN-DAG has (i) 3 nodes; (ii)
J = 3 pages (yellow rectangles), (iii) non-stationary causal interactions (red directed arrows, values shown
as time series in the insets) that follow a Gaussian process with kernel K = KPeriodic +KLinear×KMatern3/2 ;
(iv) global causal ordering ≺= [1, 3, 2]. Within each scale, we also plot the evolution of causal relations over
time. Kernel variances are σLinear = σPeriodic = σMatern3/2 = 1; the lengthscales λPeriodic = λMatern3/2 = 1/τ ,
and the period ρPeriodic = 1/τ . Given the kernel shape, the causal coefficients are locally periodic functions
with increasing variation.

First, Figure 5 displays the underlying MN-DAG, sampled as detailed in Section 3.1, along with the evolution
over time of causal relationships. We obtain an MN-DAG composed of three pages, corresponding to temporal
resolutions 2j , j = {1, 2, 3}. The sampled causal ordering is ≺= [1, 3, 2], and all causal relations, here locally
periodic functions with increasing variations, are compliant with ≺. Indeed, we can only observe directed
edges from time series n to m, where n ≺ m.

Now, given the sampled MN-DAG, we generate data according to Equation (4), where we use non-decimated
Haar wavelet (Nason et al., 2000) as oscillatory function ψj [t−k]. Figure 6 depicts the generated time series
along with descriptive statistics.

On the first row, we have the behaviour over time of synthetic data. Here, we resort to the augmented Dickey-
Fuller test (ADF, Dickey & Fuller 1979) to assess stationarity. According to the test, the null hypothesis
H0 indicates that the process has a unit root (i.e., is non-stationary). The resulting p-values prove that
the generated processes are (weakly) stationary (we reject H0). Indeed, they have zero mean, while their
dispersion looks different. On the one hand, the variance of X1 (which occur at first position in ≺) is
stationary, on the other hand those of X2 and X3 vary over time. Moreover, X2, that has incoming causal
edges at all temporal resolutions, displays the largest swings.
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Figure 6: The figure shows the generated time series, along with descriptive statistics, where each process
is associated with a different column. (i) Starting from the top, we have the synthetic data obeying to the
underlying MN-DAG, where we provide the p-values of an ADF test. (ii) On the second row, we have the
histograms of observed values, along with the p-values of a JB test, skewness, and kurtosis. (iii) The third
row shows time series autocorrelations (with lag l = {1, . . . , 40}). The light blue bands show 95% CIs. (iv)
The last row shows the autocorrelations of absolute values of the processes.
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On the second row we provide the histograms of the data, where we employ a Jarque-Bera test (JB, Jarque
& Bera 1987) to assess normality. In particular, the null hypothesis H0 is that the process is normally
distributed. The resulting p-values suggest that X1 is normally distributed, while we reject H0 for both X2
and X3. Indeed, the associated distributions are leptokurtic, with X3 having a more pronounced negative
fat tail.

Looking at the autocorrelation (with lag l ∈ [1, 40]) plotted on the third row, we see that all the generated
time series show serial correlation, statistically significant at 95% level (light blue bands). This result is in
accordance with the multiscale nature of the time series. Moreover, the autocorrelation is driven by the local
wavelet spectral matrix Sj (see Section 3.2), that in our model is determined by the causal structure.

Finally, the autocorrelation of absolute values of the processes prove that large swings in X2 and X3, either
negative or positive, tend to be followed by other large swings. This effect is also known as volatility
clustering, a key-feature of financial time series (Mandelbrot, 1967; Ding & Granger, 1996). Here, large
movements in the series are driven by the increase of causal coefficients modulus, shown in Figure 5.

4.2 Causal Inference from Multiscale Data with Time-dependent Variance

We next report a comparison between our method, MN-CASTLE, the algorithm for multiscale causal struc-
ture learning introduced by D’Acunto et al. (2022), MSCASTLE, and state-of-the-art algorithms for learning
Equation (2). For this comparison we use baselines belonging to different families, and synthetic data gener-
ated by the proposed probabilistic generative model. The goal is to assess the gain, in terms of performance,
as we deviate from the single-scale stationary case, i.e., τ = µ = 0, which is the closest to Equation (2).
Additionally, we report results concerning the inferred causal ordering and non-stationarity parameter τ̂ .

Settings. We run our experiments according to three main different configurations. First, to evaluate the
methods as we move within the (τ, µ)-quadrant, we generate the data by setting N = 5 and T = 100, while
the entries of the PL score vector are drawn from a uniform distribution θi ∼ U(0, N). We test three values
each for the multiscale and non-stationarity parameters, thus giving raise to configurations of none, medium,
and high values for each parameter. For each possible combination (τ, µ) ∈ {0.0, 0.5, 0.9}×{0.0, 0.5, 0.9}, we
generate 20 datasets that contain N time series each of length T . With regards the causal structure density,
we use δ = 0.5.

Second, to measure the sensitivity of the performances w.r.t. network density, we set (N,T, τ, µ) equal to
(5, 100, 0.5, 0.5) and let δ varies in {0.25, 0.5, 0.75}. For each possible combination, we generate 20 datasets.

Third, to measure the sensitivity of the performances w.r.t. network size, we set (T, τ, µ, δ) equal to
(100, 0.5, 0.5, 0.25) and let N varies in {5, 10, 15, 20}. Thus, in this experimental context we go from a
configuration in which the number of observations T is greater than the number of relationships possible
in a complete single-scale DAG, i.e., N · (N − 1)/2, to one in which it is much less. Also in this case, we
generate 20 datasets for each combination.

Finally, in case τ ̸= 0, for the GP we use the radial basis function kernel KRBF with variance σRBF = 0.1
and lengthscale λRBF = 1/τ .

Baselines. We test MN-CASTLE against the following four baseline models. First we consider MSCAS-
TLE, a multiscale causal structure learning model which exploits multiresolution analysis and non-convex
continuous optimization to retrieve stationary causal relationships. Next, we have DirectLiNGAM (Shimizu
et al., 2011), a method belonging to the family of non-Gaussian models. Algorithms within this class assume
that the noise Z is non-normally distributed. Indeed, in this case the causal structure has shown to be fully
identifiable (Shimizu et al., 2006a). Then, DirectLiNGAM returns an estimation of both causal ordering
and causal coefficients. Second, we have CD-NOD (Huang et al., 2020), which belongs to the family of
constraint-based methods. In particular, it has been developed to deal with heterogeneous (no assumptions
on data distributions and causal relations) and non-stationary data as well. GOLEM (Ng et al., 2020) lives
at the intersection of score-based and gradient-based methods. It solves an unconstrained optimization prob-
lem where the objective function is given by a likelihood function (as in score-based methods), penalized by
regularization terms for sparsity and acyclicity.
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As already mentioned, the concept of multiscale, non-stationary causal graphs is an understudied topic.
Since none of the previous baseline models have been developed to infer causal graphs from data obeying to
an underlying MN-DAG, our results provide information regarding the robustness of the previous algorithms
with respect to the presence of multiple time scales and non-stationarity. In the following experiments,
we use the code of MSCASTLE developed by D’Acunto et al. (2022); we exploit the implementations of
DirectLiNGAM and GOLEM provided by gCastle2 (Zhang et al., 2021), whereas we resort to causallearn3

for the implementation of CD-NOD. The configuration for each baseline is provided in Appendix G.

Differently from MN-CASTLE, baseline models are non-probabilistic. While our model provides an ap-
proximate predictive posterior distribution over MN-DAGs, baseline models return a point estimate of an
acyclic causal structure. In order to compare the algorithms, we retain all causal coefficients identified by
MN-CASTLE that are in modulus significantly greater than 0.1 at 99% level. This post-processing implies
that we can also obtain undirected edges for MN-CASTLE, since we do not impose any causal ordering.
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Figure 7: The figure depicts the performances of the considered methods in the retrieval of the adjacency
tensor, according to (a) F1 score and (b) structural Hamming distance (SHD). Higher F1 and lower SHD
indicate better performance. Each model is associated to a different color. For every (τ, µ) setting and every
model, we represent the values attained over the 20 synthetic datasets through a violin plot. Within the
latter, we provide a box-plot as well and we overlay the performances obtained for each dataset (points).

Performance in the estimation of the adjacency tensor. Retrieving the adjacency tensor means
identifying the presence of causal relations disregarding their intensity. Appendix H provides an example
of the evolving causal relations inferred by MN-CASTLE. Figures 7a and 7b refer to the first configuration
described above, and show the F1 score (the higher the better) and structural Hamming distance (SHD, the
lower the better) for the considered models, where SHD has been normalized by the number of edges present
in the ground truth. The definition of the considered metrics are given in Appendix E. Appendix F also
reports the values for additional evaluation scores and the fraction of undirected edges for MN-CASTLE.

Given a (τ, µ) setting of the first configuration, for each model we have 20 values for every metric. The
violin plot represents a kernel density estimation of the distribution of these 20 values, associated with a
certain metric. Within each violin plot, we also report a box-plot in order to visualize the inter-quartile
range (IQR). In addition, since the density is estimated by using only 20 points, we overlay the values of

2https://github.com/huawei-noah/trustworthyAI
3https://github.com/cmu-phil/causal-learn
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the metrics attained for each of the 20 datasets, plotted as points. For each value of τ , we provide the
performances of each algorithm as µ varies. In case µ ̸= 0, we return the performance of GOLEM as well. In
particular, because ≺ is global, we replicate the causal structure retrieved by the latter for each time scale.
This way we obtain an additional baseline method also for multiscale datasets.

Overall, MN-CASTLE outperforms the baseline models in each case. When µ = 0, the performances of
MSCASTLE and GOLEM is very similar to that of our method. In contrast, as µ increases, we observe
that the gap between MN-CASTLE and the other models widens and that, in general, the two multiscale
models outperform GOLEM. Both F1 and SHD show that MN-CASTLE performance does not get lower as
τ increases. In addition, when µ increases, the IQR tightens.
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Figure 8: The figure depicts the performances of the considered methods in the retrieval of the adjacency
tensor, according to (a) F1 score and (b) structural Hamming distance (SHD). Higher F1 and lower SHD
indicate better performance. Each model is associated to a different color. For every value of δ and every
model, we represent the values attained over the 20 synthetic datasets through a violin plot. Within the
latter, we provide a box-plot as well and we overlay the performances obtained for each dataset (points).

Figures 8a and 8b depict the performances of the models as we vary the density of the underlying MN-DAG.
Since in this configuration, we use µ = 0.5, we only retain MN-CASTLE, MSCASTLE and GOLEM. MN-
CASTLE outperforms the baseline models in all settings, especially in terms of SHD. Moreover, the larger
δ, the better the performances of our model.

Figures 9a and 9b provide the performances of the methods as we vary the size of the underlying MN-DAG.
Also in this setting, since we use µ = 0.5, we only compare MN-CASTLE, MSCASTLE and GOLEM. In this
case, the performances of the considered methods decrease as N grows. Specifically, despite showing better
metrics than baselines when N equals 5 and 10, MN-CASTLE underperforms MSCASTLE for N equals 15
and 20.

Performance in the estimation of θ and τ . Figures 10a to 10c provide results concerning the goodness
of the inferred vector of scores θ̂ of PL distribution for the first experimental configuration, as measured by
Spearman’s rank correlation, normalized discounted cumulative gain (nDCG) at 3 and 5, w.r.t. the ground
truth causal ordering ≺. Appendix E provides insights concerning the computation of these metrics, whereas
Appendix F shows the results for Kendall-τ statistics. To represent the results, we use violin plots along
with quartiles reference lines (dashed lines). For each of the 20 synthetic datasets, generated according to
specific a pair (τ, µ), we obtain an estimated θ̂. Then, we sample 103 causal orderings ≺̂ from PL(θ̂). Now,
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Figure 9: The figure depicts the performances of the considered methods in the retrieval of the adjacency
tensor, according to (a) F1 score and (b) structural Hamming distance (SHD). Higher F1 and lower SHD
indicate better performance. Each model is associated to a different color. For every value of N and every
model, we represent the values attained over the 20 synthetic datasets through a violin plot. Within the
latter, we provide a box-plot as well and we overlay the performances obtained for each dataset (points).

for each drawn causal ordering, we evaluate the three metrics w.r.t. ≺. As vector of scores for a baseline
model, we use θ̄, where θ̄i ∼ U(0, N), i = 1, . . . , N . Afterwards, we obtain 103 random causal orderings ≺̄
by sampling from the PL distribution parameterized by θ̄. As for MN-CASTLE, we evaluate the metrics
w.r.t. ≺. Therefore, for each model, every violin plot is built by using 2× 104 points. Overall, according to
the monitored metrics, MN-CASTLE outperforms the baseline model. Moreover, the performances do not
deteriorate as τ grows and improve as µ increases.

In addition, Figure 11 depicts the inferred values τ̂ for the non-stationarity parameter, obtained by means
of the estimated GP kernel lengthscale, i.e., τ̂ = 1/λ̂RBF. Here red dashed lines refer to the ground truth
value of τ . In the stationary case, MN-CASTLE slightly overestimates the non-stationarity parameter for
all values of µ. When τ ̸= 0, on average our model correctly retrieve the ground truth for µ = .5, whereas it
slightly over/underestimates on average τ when µ is equal to .0 and .9, respectively.

We applied the same approach to evaluate the sensitivity of the estimation accuracy of θ and τ with respect
to the density and number of nodes of the underlying MN-DAG. Figure 12 shows the results obtained on the
synthetic data generated according to the second and third experimental settings, described above. Overall,
the accuracy of MN-CASTLE in retrieving θ grows along with δ: the IQR of the monitored metrics reach
higher values and the spread of the estimated kernel densities reduces. Furthermore, unlike what we observe
in metrics related to causal adjacency matrix estimation, the performance of MN-CASTLE in recovering
causal ordering shows no dependence on N . Notice that here nDCG score depends on the value of N . In this
way, we make the comparison meaningful by considering for each combination the same fraction of nodes.

Figure 13 provides the results related to estimation of τ . Overal, MN-CASTLE tends to slightly overestimate
τ . However, no dependence of the model capability on δ and N is observed.

4.3 Case Study on Global Equity Markets during the Covid-19 Pandemic

In this section, we apply MN-CASTLE to study the causal structure of 7 global stock markets: Hong Kong
(HSI), Shanghai (SHC), Japan (NKX), United Kingdom (UKX), Germany (DAX), Italy (FMIB), US (SPX).
Daily closing prices were collected from Stooq4 and cover the period from January 2020 the 7th to December

4https://stooq.pl/
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Figure 10: The figure depicts violin plots along with quartiles reference lines (dashed lines) for (a) Spearman’s
rank correlation ρS , (b) normalized discounted cumulative gain (nDCG) at 3 and (c) 5. MN-CASTLE is
given in blue while a random baseline model in orange. For every dataset generated according to a given
(τ, µ) setting (i) we sample 1× 103 causal orderings ≺̂ ∼ PL(θ̂), where θ̂ is the estimated vector of scores;
(ii) we draw 1× 103 random causal orderings ≺̄ ∼ PL(θ̄), where θ̄i ∼ U(0, N), i = 1, . . . , N . Afterwards, we
evaluate the three metrics by using the sampled causal orderings and ≺ for both models. Thus, each violin
plot is made by 2× 104 points.
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Figure 11: The figure illustrates the violin plots concerning the estimated values τ̂ for the non-stationarity
parameter. Red dashed lines refer to the ground truth value of τ .

18



Under review as submission to TMLR

0.25 0.5 0.75
δ

−1.0

−0.5

0.0

0.5

1.0

S
p

ea
rm

an
ρ
S

5 10 15 20
N

(a) Spearman’s rank correlation ρS

0.25 0.5 0.75
δ

0.0

0.2

0.4

0.6

0.8

1.0

nD
C

G
@

3

5 10 15 20
N

0.0

0.2

0.4

0.6

0.8

1.0

nD
C

G
@

(0
.6

N
)

(b) nDCG@(0.6N)

0.25 0.5 0.75
δ

0.0

0.2

0.4

0.6

0.8

1.0

nD
C

G
@

5

MN-CASTLE

Random

5 10 15 20
N

0.0

0.2

0.4

0.6

0.8

1.0

nD
C

G
@

N

(c) nDCG@N

Figure 12: The figure depicts violin plots along with quartiles reference lines (dashed lines) for (a) Spearman’s
rank correlation ρS , (b) normalized discounted cumulative gain (nDCG) at 0.6 ·N and (c) N . MN-CASTLE
is given in blue while a random baseline model in orange. Violin plots on the left refers to the second
experimental configuration, i.e., when we vary δ while keeping fixed the values of the others parameters,
as described above. Violin plots on the right concerns the third experimental setting, where we study the
sensitivity of the estimation accuracy w.r.t. the network size N .
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Figure 13: The figure illustrates the violin plots concerning the estimated values τ̂ for the non-stationarity
parameter. Red dashed lines refer to the ground truth value of τ . On the left, we have the results for the
second experimental setting, and on the right are those for the third.

2021 the 31st. From the values of the above indices, we calculate logarithmic returns5, which are used to
infer the causal ordering and estimate the power spectrum.

In order to obtain an estimate of the latter at 95% confidence level, we used the R package mvLSW (Taylor
et al., 2019). The wavelet transform is performed using Daubechies wavelet with filter length equal to 8.
Moreover, the smoothing of the periodogram is performed using the rectangular kernel, also known Daniell
window, of width 22. Finally the smoothed periodogram is corrected for the bias by using the inverted
autocorrelation wavelet (Eckley & Nason, 2005) and regularized to ensure positive definiteness (Schnabel &
Eskow, 1999).

We obtain cross-spectra significantly different from zero only for the scale level j = 1 and over the first
semester of 2020. Accordingly, we restrict our analysis to the period from January 2020 the 7th to June 2020
the 30th and feed MN-CASTLE with the power spectrum values for the finest scale level. To infer the causal
coefficients we use the radial basis function kernel.

Figure 14a shows the estimated causal graph for j = 1, where node are coloured according to the geographical
area. In addition, we report the retrieved causal ordering ≺̂0 and the vector θ containing the score associated
to each stock market, as well. We obtain that, over the first semester of 2020, returns of Asian equity markets
causally impact those of both European and American ones. In particular, Hong Kong and Shanghai occupy
the first and second positions in the causal ordering, respectively. Next we find the European stock markets,
which in turn causally influence the US stock market. From the value θ, we see that MN-CASTLE assigns
almost the same score to UKX and NKX.

Looking at the behaviour of causal coefficients along time given in Figure 14b, we see that causal relations
among markets are (i) time-dependent, where the estimated non-stationarity parameter is τ̂ = 0.80; (ii)
mainly positive; (iii) tend to grow in the first half of the semester, after which they decrease. In addition,
the sign of the causal coefficient changes for several relationships and some (e.g., HSI→SHC, SHC→UKX)
become statistically nondifferent from zero in the second half of the analyzed period. We also notice a
statistically significant connection from NKX→UKX, that is not shown in Figure 14a since not compliant
to the estimated mean causal ordering ≺0. The presence of such a connection underscores the uncertainty
of MN-CASTLE regarding the positioning of UKX and NKX within the causal order.

Finally, we compare MN-CASTLE estimated network with those retrieved by MSCASTLE and GOLEM
over the same time period, given in Figures 15a and 15b. In case of MSCASTLE, we use the same wavelet
transform as above, i.e., Daubechies wavelet with filter length equal to 8, and we consider only the statistically
significant scale level j = 1.

5Given the prices of the i-th stock market index at the time t and t − 1, namely Pt and Pt−1, the logarithmic return at time
t is given by ri,t = ln (Pt/Pt−1).
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Figure 14: The figure depicts a the inferred causal structure and b estimated causal coefficients along with
95% CI (shaded bands) over the first semester of 2020, for the finest scale level j = 1.
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Figure 15: The figure depicts the causal structures inferred by a MSCASTLE and b GOLEM, over the first
semester of 2020. To easy the comparison, we position the nodes according to the causal ordering estimated
by MN-CASTLE.

Overall, multiscale models estimate denser networks than that inferred by GOLEM. To quantify the similarity
between the causal adjacency matrices estimated by the models, regardless of the causal relation sign, we
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Table 1: Jaccard score between estimated causal adjacency matrices.

MSCASTLE GOLEM
MN-CASTLE 0.64 0.36
MSCASTLE 0.53

estimate the Jaccard score6, reported in Table 1. The greatest agreement occurs between the networks
returned by MN-CASTLE and MSCASTLE.

5 Conclusions and Future Research Directions

This paper deals with multiscale non-stationary causal analysis, filling a gap in the literature. Indeed, the
bulk of previous work assume that the only relevant temporal resolution for causal relations is the frequency
of observed data. We drop such assumption. Moreover, we also allow the causal relations to vary over time.
Since in general there is no prior knowledge about the relevant time scales of causal interactions nor about
their temporal dependencies, the proposed framework of MN-DAGs represents an important step in such
direction.

Generative model. We propose a novel probabilistic model to generate time series data obeying to an
underlying MN-DAG, in accordance with the specified values for multiscale and non-stationary features, µ
and τ , respectively. Our model leverages the well established mathematical theory of multivariate locally
stationary wavelet processes and linear structural equation model. The causal ordering is modeled by means
of Plackett-Luce distribution while the causal interactions evolve over time according to the specified kernel
of a Gaussian process. Statistical analysis of generated data proves the exposed model to be able to reproduce
well-known features of time series. Therefore, it represents a suitable framework for testing the robustness
of causal inference methodologies on datasets generated from different points of the (τ, µ)-quadrant shown
in Figure 1.

We stress the importance of providing both researchers and practitioners with synthetic data generators
capable of replicating phenomena characterizing data from different application domains.

Future work should aim to overcome some limitations related to the framework adopted to manage different
time-resolutions and the modeling of the causal tensor. In particular, multivariate locally stationary wavelet
processes formulation relies upon wavelets, that are known to suffer from limited joint time-frequency reso-
lution (Heisenberg uncertainty principle). Indeed, wavelets divide the frequency space into non-overlapping
bands, i.e., octave bands. Furthermore, since the auto/cross-correlation structure of generated data depends
of both the power spectrum decomposition across temporal scales and the auto-correlation wavelet, the usage
of diverse wavelet families might lead to different results. Then, the usage of alternative methods to wavelet
transform might improve the proposed generative model. With regards the causal tensor, structural breaks
such as sudden deletion/addition of causal edges might be added within Equation (1).

From a theoretical point of view, an interesting research direction is to study the assumptions that make the
model described in Eq. (4) identifiable. Even though some class of linear structural equation models have
been proved identifiable under different types of restrictions (Shimizu et al., 2006b; Peters & Bühlmann,
2014; Loh & Bühlmann, 2014; Park & Kim, 2020), the case of MN-DAG needs to be carefully investigated.
Indeed, the presence of the non-decimated wavelet transform; the unobservability of the contributions to the
process coming from each time resolution; the linearity of the model in the frequency domain are some of
the points that distinguish the MN-DAG case from those currently studied.

Bayesian causal inference method. In addition, we expose a Bayesian method for learning MN-DAGs
from time series data, termed MN-CASTLE. The latter relies upon observed time series data and an estimate
for the power spectrum at each scale level. We implement the latter by using an alternating two-steps
approach. In the first step we optimize w.r.t. the Plackett-Luce vector of scores θ, by using the values of

6Given two edge sets E1 and E2, this score is defined as Jacc(E1, E2) = |E1 ∩ E2|/|E1 ∪ E2|. Moreover, Jacc(E1, E2) ∈ [0, 1].
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time series at time t. Then, we keep the causal ordering fixed to the mode of the Plackett-Luce distribution,
i.e., ≺̂0, and we make a stochastic variational inference step on the rest of variational parameters related
to the causal coefficient tensor by exploiting the provided estimation for the power spectrum. Even though
this procedure has no theoretical guarantee to converge towards the global optimum, we observe a smoother
learning process for the weights of causal edges.

Our findings show that MN-CASTLE compares favorably to baseline models in the retrieval of the adjacency
tensor of the causal graph. We test the models on synthetic datasets generated according to different (τ, µ)
configurations, from the single-scale stationary to highly multiscale non-stationary case. We observe that
the performance of MN-CASTLE, depicted in Figure 7, is not sensitive to the value of non-stationarity
parameter. On the contrary, the growth of the multiscale parameter is associated with an improvement in
the quality of the results returned by our method. This trend is also shown in Figure 10, that concerns
the goodness of the estimated vector of scores for Plackett-Luce distribution. On one hand, we think that
when non-stationarity and multiscale parameters are different from zero, MN-CASTLE might benefits of
greater differences among time series distributions. On the other hand, we believe that the large variance
shown (especially in the single scale case) is an effect due to the low cardinality of the edge set. In fact, even
though the monitored metrics are normalized, on average in the single scale case we only have five causal
links. So, a single error weighs more. In addition, MN-CASTLE correctly tracks the underlying value of the
non-stationarity parameter, which means that is able to provide accurate information related to the evolution
of causal relations (see Appendix H). We emphasize that MN-CASTLE, being a fully Bayesian approach,
by definition takes into account uncertainty. Consequently, we sample MN-DAGs from the approximate
posterior distribution in accordance with the confidence of the model.

Furthermore, we also study the behaviour of our model w.r.t. the density δ of the underlying MN-DAG. We
observe that the performance of MN-CASTLE improves as δ increases and that our method outperforms the
other models in all cases. This improvement is also manifest in the value of the metrics used to evaluate the
estimated causal ordering. We also provide supplementary results on additional synthetic data to test the
capabilities of the monitored methods when the MN-DAG size N increases, keeping the other parameters
fixed. We note that the performance of the models in retrieving the causal adjacency matrix worsens as N
increases. This is somewhat expected, as we move from a configuration in which the number of observations
T is greater than the number of possible causal connections to be estimated, to one in which it is much
less. Although MN-CASTLE continues to outperform the baseline models in the case where N is 5 or 10,
we observe that its performance deteriorates more rapidly than that returned by the baselines. In contrast
to what we observe about the causal adjacency matrix, the ability of MN-CASTLE in estimating causal
ordering does not deteriorate as N increases. Hence, we think that the impairment of our model shown in
Figure 9 arises from the estimation of the batched GPs.

As a case study, we apply MN-CASTLE to retrieve the causal structure underlying the returns of 7 global
equity markets, during Covid-19 pandemic. Since our method relies upon multi-resolution analysis, it looks
for causal links only at relevant temporal resolutions. From the analysis of the power spectrum, we obtain that
important causal relationships occur at the finest scale level, which corresponds to 2-4 days time resolution.
We believe this is justified by the fact that the period analyzed is characterized by financial turbulence,
due to the outbreak of the pandemic. During this crisis, investors had to react quickly to the shocks that
followed, generating sudden swings in stock prices.

Our findings show that Asian markets are the main drivers of returns within the considered network. Next, we
find European stock markets, that influence the US one. Therefore, our results show that causal relationships
tend to reflect the spread of the epidemic. Indeed, according to the World Health Organization (WHO)
situation reports, in the early stage of the pandemic, we observe a higher number of confirmed cases in
Europe than in United States (WHO, 2020-03-15). Although this may not reflect the actual spread of the
virus, it does indicate that a more effective level of surveillance was implemented in European countries early
on. Moreover, the positivity of the causal relationships and the fact that they grow in magnitude during
the first months of 2020 are consistent with the outbreak of the epidemic. This, together with the statistical
significance of the cross-spectrum over the first half of 2020, confirms that the estimated causal interactions
are not the result of time lag in stock market closures.
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The network inferred by our method is more similar to that of MSCASTLE than that estimated by GOLEM,
as indicated by the Jaccard score values in Table 1. Due to their multiscale analysis, MN-CASTLE and
MSCASTLE are able to identify more connections between the stock markets considered. In addition, MN-
CASTLE also provides information on the evolution of these connections, highlighting crucial aspects such as
statistical significance, weakening/strengthening and any sign changes over the time period analysed. These
issues, may impair baseline methods, which assume causal relationships to be stationary, in recovering some
connections. Finally, Figures 15a and 15b also demonstrate that the mean causal ordering estimated by our
method is respected by the baselines, in most cases.

Future research directions to improve MN-CASTLE concern (i) the definition of a single-step inference pro-
cedure able to limit the variance of the gradient estimator due to the presence of Plackett-Luce distribution;
(ii) overcoming the limitations highlighted by Figure 9; (iii) the inference of nonlinear causal relations; (iv)
modeling of causal ordering that may vary on different time scales; (v) relaxation of the assumption con-
cerning the presence of a single kernel shared by all causal relationships. The latter point is important from
an application point of view, since the order of magnitude of power spectrum values can vary greatly, espe-
cially between different time resolutions. However, since this would mean increasing the number of model
parameters considerably, performance could be negatively affected.
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Appendix A Overview of SVI

Stochastic variational inference (Hoffman et al., 2013; Kingma & Welling, 2013) is an algorithm that combines
variational inference (VI, Blei et al. 2017) and stochastic optimization (Spall, 2005). SVI approximates the
posterior distribution of complex probabilistic models that involves hidden variables, and can handle large
datasets. Consider a dataset X = {x(i)}T

i=1 of T i.i.d. samples of either a continuous or discrete variable x.
Suppose that X is generated according to a latent continuous random variable z, The latter is governed by
a vector of parameters β∗ endowed with a prior distribution p(β∗) , i.e., z(i) ∼ pβ∗(z). Thus, we have data
are generated according to a conditional distribution, i.e., x(i) ∼ pβ∗(x | z). Both the prior pβ∗(z) and the
conditional distribution pβ∗(x | z) belong to parametric families of distributions pβ(z) and pβ(x | z) whose
PDFs are differentiable w.r.t. β and z. Our goal is to compute the likelihood of the hidden variable given
the observations, i.e., the posterior

pβ(z | x) = pβ(x, z)∫
pβ(x, z) dz

. (6)

Since the denominator of Equation (6), also known as evidence, is usually intractable to compute, a well-
known solution is to approximate the target posterior. Within approximate posterior inference methodolo-
gies, VI casts learning as an optimization problem. More in details, VI involves the introduction of a family
of variational distributions qϕ(z | x), parameterized by a variational parameters ϕ. Then, VI optimzes those
parameters to find qϕ∗(z | x), i.e., the member of the variational distributions family that is closest to the
posterior distribution. Here closeness is measured according to Kullback-Leibler divergence (KL).

The objective of SVI is the evidence lower bound (ELBO), that is equal to the negative KL divergence up
to a term that does not depend on q

ELBO = Eqϕ(z|x)[log pβ(x, z)− log qϕ(z | x)]
= −DKL(qϕ(z | x(i))∥pβ(z | x(i))) + log pβ(x(i))
= −DKL(qϕ(z | x(i))∥pβ(z)) + Eqϕ(z|x(i))[log pβ(x(i) | z)] .

(7)

Since KL is a non-negative measure of closeness between distributions, then log pβ(x) ≥ ELBO for all β
and ϕ. Therefore, the maximization of the ELBO is equivalent to the minimization of the distance between
qϕ(z) and pβ(x | z). Observations x(i) are conditionally independent given the latent, thus the log likelihood
term in Equation (7) can be written as

T∑
i=1

log p(x(i) | z) ≈ T

T ′

∑
i∈IT ′

log p(x(i) | z) ,

where IT ′ is a set of indexes of size T ′ ≤ T . One way to subsample indexes is, for example, to randomly
select T ′ data points among the observations Thus, in case of large datasets, we can run SVI while exploiting
mini-batch optimization.

In order to compute the gradient of the ELBO w.r.t. ϕ, SVI relies upon the reparameterization trick.
The continuous random variable z can be expressed in terms of a deterministic function z = gϕ(ϵ,x), where
ϵ ∼ q(ϵ) is independent of z. This procedure is useful to move all the dependence on ϕ inside the expectation
operator

Eqϕ(z|x(i))[fϕ(z)] = Eq(ϵ)[fϕ(gϕ(ϵ,x(i)))] ,

where fϕ(z) represents a general cost function. Now, the gradient can be computed as

∇ϕEq(ϵ)[fϕ(gϕ(ϵ,x(i)))] = Eq(ϵ)[∇ϕfϕ(gϕ(ϵ,x(i)))]

≈ 1
L

L∑
l=1

f(gϕ(ϵ(i,l),x(i))) ,

where L is the number of samples per data point. Then, we obtain an unbiased estimate of the gradient by
means of Monte-Carlo estimates of this expectation.

29



Under review as submission to TMLR

Appendix B Existence of the Inverse

To prove invertibility of I −C, C ∈ RN×N , let us rewrite C = P′C̃P. Here, P ∈ RN×N is a permutation
matrix entailed by the causal ordering ≺, such that pnn′ = 1 iff the node Xn occurs at position n′ within ≺,
and C̃ is a strictly lower triangular matrix, computed by ordering the rows of C according to ≺. Now, for
permutation matrices it holds P−1 = P′. In addition, since strictly lower triangular matrices are nilpotent,
there exists an integer N̄ such that C̃n̄ = 0, ∀n̄ ≥ N̄ . Then it follows that C is similar to C̃ and, consequently,
nilpotent too:

CN̄ = (P′C̃P)N̄

= (P−1C̃P)N̄

= (P−1C̃P)(P−1C̃P) . . . (P−1C̃P)

= P−1C̃(PP−1)C̃(PP−1) . . . (PP−1)C̃P

= P−1C̃N̄ P
= 0 .

At this point, exploiting the geometric series representation (nilpotent matrices have eigenvalues equal to
zero and then are convergent), we have that

(I−C)−1 =
∞∑

n̄=0
Cn̄

=
N̄−1∑
n̄=0

Cn̄ .

Therefore, the inverse exists and is given by a finite sum of powers of C.

Appendix C M is a Permuted Lower Triangular Matrix

Starting from the representation of C = P′C̃P as in Appendix B, we have:

M = (I−P′C̃P)−1

= (P−1P−P′C̃P)−1

= (P′P−P′C̃P)−1

= (P′(I− C̃)P)−1

= P−1(I− C̃)−1P−′

= P′(I− C̃)−1P;

where (I − C̃)−1 admits a representation in terms of the geometric series (see Appendix B), which in this
case consists in a sum of lower triangular matrices.

Appendix D Locally Stationary Wavelet Process

In the univariate case, locally stationary wavelet process (LSW, Nason et al. 2000) is a suitable modeling
framework to represent a non-stationary process xT of length T = 2J , J ∈ N, by means of a triangular
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multiscale representation

xT [t] =
J∑

j=1

+∞∑
k=−∞

vj [k/T ]zj,kψj [t− k] . (8)

The building blocks of Equation (8) are: (i) the random amplitude vj [k/T ]zj,k composed by a time-varying
amplitude vj [k/T ] and a normal noise variable zj,k such that cov(zj,k, zj′,k′) = δ̃j,j′ δ̃k,k′ , where δ̃j,j′ represents
the Kronecker delta; (ii) discrete, real valued and compactly-supported oscillatory functions ψj [t−k], namely
non-decimated wavelets. At each time only some values contribute to xT [t], and the time-dependence is
managed by the index k. Local stationarity means that the statistical properties of the process vary slowly
over time. This feature is essential in order to make learning possible (Nason et al., 2000). Within the LSW
framework, local stationarity is formalized by means of a smoothness assumption concerning the time-varying
amplitudes vj [k/T ] (Fryzlewicz et al., 2003). Indeed, the latter quantity provides a measure of the time-
dependent contribution to the variance at a certain time scale level j ≤ J , namely the evolutionary wavelet
spectrum (EWS), defined as Sj [ν] = |vj [ν]|2, with ν = k/T being the rescaled time (Dahlhaus, 1997). For
a stationary process, EWS is constant ∀j ≤ J . As an example, consider the MA(1) = 1/

√
2(ϵ[t]− ϵ[t− 1]).

We obtain it by setting in Equation (8) the following values for the previous components: (i) zj,k = ϵ[t]; (ii)
Sj = 1 if j = 1 and zero otherwise; ψ1 = [1/

√
2,−1/

√
2] as the Haar wavelet. Because S1 is constant and

different from zero only for j = 1, we obtain a stationary amplitude w1[ν] = 1 only for the first scale level.
Then, it follows that

xT [t] =
J∑

j=1

+∞∑
k=−∞

vj [k/T ]zj,kψj [t− k]

=
+∞∑

k=−∞

1 · ϵ1,kψ1[t− k]

= 1√
2

(ϵ[t]− ϵ[t− 1]) .

Appendix E Definitions of the Performance Metrics

In this section we describe the metrics used to evaluate the goodness of the estimated adjacency tensor of
the causal graph and the retrieved causal ordering.

Adjacency. For the predicted adjacency tensor, we monitor both accuracy and structural scores.

With regards to accuracy measures, we look at the true positive rate (TPR, recall), the false discovery rate
(FDR, 1-precision) and the F1-score. The first is defined as TP/P , where TP is the number of predicted
edges that exist in the ground truth with the same direction and P (condition positive) is the number of
links in the ground truth. The second given by FP/(FP + TP ). Here, FP is the number of edges that
do not exist in the skeleton of the ground truth, i.e., in the undirected adjacency. Finally, the F1-score is
computed as the harmonic mean between TPR and 1− FDR (precision).

Concerning structural metrics, first we consider the structural Hamming distance (SHD), that represents
the number of modifications (added, removed, reversed edges) needed to retrieve the ground truth starting
from the estimated network. Then, we also monitor the ratio between the number of predicted edges and the
condition positive, given by NNZ/P , where NNZ represents the sum of directed (D) and undirected (U)
estimated edges. Finally, we have the fraction of predicted undirected edges, computed as FU = U/NNZ.

Causal Ordering. To compare the estimated causal ordering with the ground truth, we consider three
metrics able to provide a measure of the association strength between two rankings.

First, we look at Kendall-τ , which is a measure of ordinal correspondence between two rankings, bounded
between −1 (low correspondence) and 1 (strong correspondence). Given two orderings ≺̂ and ≺, the statistics
is defined as:

Kendall-τ = (P −Q)/
√

((P +Q+ T ) · (P +Q+ U)) ,
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where here P is the number of concordant pairs, Q the number of discordant pairs, T the number of ties
only in ≺̂, and U the number of ties only in ≺;

Second, we employ a measure of ranking quality widely applied in information retrieval, the normalized
discounted cumulative gain (nDCG). Consider a ground truth ordering≺ of lengthN and suppose to associate
items with descending scores s, from N to 1. Then, consider an other ordering ≺̂ over the same set of elements
in ≺. Now, define the discounted cumulative gain (DCG) as:

DCG =
N∑

i=1

si

log2(i+ 1) ,

and let the ideal discounted cumulative gain (IDCG) to be the DCG of ≺. Therefore, the nDCG is defined
as the ratio by the DCG and the IDCG. This score is bounded between the nDCG of the worst ordering of
scores s̄, i.e., s sorted in ascending order, and 1. In our analysis we use a min-max scaling to map nDCG to
the unit interval. To evaluate the capability of a method in providing high-score items at first positions k,
we compute the nDCG@k by considering only the first k elements of ≺̂.

Finally, we consider Spearman’s rank correlation ρS , that provides a non-parametric correlation coefficient
between two series. Here, differently from Pearson correlation, data is not assumed to be normally dis-
tributed. Thus, as Kendall-τ , this statistics is bounded between −1 and 1. Since in our case we have two
score vectors, namely ≺̂ and ≺, made by distinct values, this metrics can be computed as:

ρS = 1−
6

∑
i(≺̂i− ≺i)

N(N2 − 1) .

Appendix F Additional Monitored Metrics

In this section we provide additional analysis to better understand the behaviour of the considered methods
when (i) we navigate the (τ, µ)-quadrant keeping the other parameters fixed, (ii) we vary the density of the
MN-DAG at a point in the quadrant, and (iii) we change the size of the MN-DAG at a point in the quadrant.
Figure 16a refers to the first experimental setting and shows that MN-CASTLE reduces the number of false
discoveries returned by baseline models, especially when µ ̸= 0. On the contrary, in the single-scale stationary
case, best FDR values are provided by GOLEM. Figure 16b tells us that MN-CASTLE is the best in the
retrieval of true positives in all cases. Moreover, the estimated to true edge set ratio given in Figure 16c
shows that our model tends to slightly overestimate the number of causal connections, while baseline models
tend to return sparser causal structures. Finally, we plot the fractions of undirected connections given by
our model. Even though we do not impose any causal ordering during the evaluation phase, we see that our
model rarely returns undirected edges.

With regards to causal ordering estimation, Figure 17 provides results also for Kendall-τ statistics. Here,
the methodology used is the same as in Section 4.2. According to this metric, MN-CASTLE outperforms
the baseline model in all cases. In addition, Kendall-τ values do not lower as τ grows and improve as µ
increases.

Hence, Figures 18 and 19 depict the resulting values for the same metrics above, obtained in the second
and third experimental settings, respectively. Overall, when the density of the network grows, the metrics
improve for all methods. Moreover, MN-CASTLE provides the best performance for all values of δ. When
we vary the network size, our method still outperforms the baselines for N = 5 and N = 10. However, for
the remaining two values of N , we observe a worsening of the performances. Notably, Figure 19b shows that
the TPR is greatly reduced compared with that of MSCASTLE, which shows no dependence on network
size. Furthermore, looking at Figure 19c, we see that as N increases the network estimated by MN-CASTLE
becomes much sparser.

Finally, Figure 20 depicts the results for Kendall-τ statistics related to causal ordering estimation. Here, we
see that MN-CASTLE performance grows along with δ and does not show dependence (in mean terms) on
the size of the underlying MN-DAG.
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Figure 16: The figure depicts results returned by additional monitored metrics for the considered (τ, µ)
settings. Here we use violin plots, where we overlay a box-plot to visualize also IQR. In addition, we report
the values of the metric, plotted as points.
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Figure 17: The figure depicts violin plots along with quartiles reference lines (dashed lines) for Kendall-τ
metric. MN-CASTLE is given in blue while a random baseline model in orange. For every dataset generated
according to a given (τ, µ) setting (i) we sample 1×103 causal orderings ≺̂ ∼ PL(θ̂), where θ̂ is the estimated
vector of scores; (ii) we draw 1×103 random causal orderings ≺̄ ∼ PL(θ̄), where θ̄i ∼ U(0, N), i = 1, . . . , N .
Afterwards, we evaluate the Kendall-τ by using the sampled causal orderings and ≺ for both models. Thus,
each violin plot is made by 2× 104 points.
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Figure 18: The figure depicts results returned by additional monitored metrics for different MN-DAG den-
sities δ. Here we use violin plots, where we overlay a box-plot to visualize also IQR. In addition, we report
the values of the metric, plotted as points.
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Figure 19: The figure depicts results returned by additional monitored metrics for different MN-DAG number
of nodes N . Here we use violin plots, where we overlay a box-plot to visualize also IQR. In addition, we
report the values of the metric, plotted as points.
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Figure 20: The figure depicts violin plots along with quartiles reference lines (dashed lines) for Kendall-τ
metric. MN-CASTLE is given in blue while a random baseline model in orange. On the left, we vary the
MN-DAG density δ, whereas on the right we vary the number of nodes N , as described in Section 4.2. For
every dataset generated according to a given setting (i) we sample 1 × 103 causal orderings ≺̂ ∼ PL(θ̂),
where θ̂ is the estimated vector of scores; (ii) we draw 1× 103 random causal orderings ≺̄ ∼ PL(θ̄), where
θ̄i ∼ U(0, N), i = 1, . . . , N . Afterwards, we evaluate the Kendall-τ by using the sampled causal orderings
and ≺ for both models. Thus, each violin plot is made by 2× 104 points.
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Appendix G Models Configuration

Below we report the models hyper-parameters used during the test phase:

• MN-CASTLE: fraction of inducing points equal to 64%; K = KRBF; in case τ = 0 (the estimated Ŝj is
constant) we use as prior for λK a normal N(1. × 103, 1. × 10−3); number of iterations iter= 6. × 102

with 10 particles;
• MSCASTLE: ℓ1− penalty parameter λ = 1.×10−1; pruning threshold γ = 5.×10−2; Daubechies wavelet

with filter length equal to 2; maximum value for dagness function htol = 1.× 10−8;
• GOLEM: pruning threshold γ = 5.× 10−2; number of iterations iter= 1.× 104;
• DirectLiNGAM: pruning threshold γ = 5.× 10−2;
• CDNOD: independence test = Fisher’s Z; significance level α = 95%.

Appendix H Evolution over Time of Estimated Causal Relations

We apply MN-CASTLE over a synthetic dataset constituted by N = 5 time series of length T = 100 each.
To generate the data, we use the exposed probabilistic model over MN-DAGs, where we set τ = µ = δ = 0.5
and we use as K = KRBF. In this case, we obtain J = 3 scale levels. The configuration of MN-CASTLE is
the same as Appendix G.
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Figure 21: The figure depicts the evolution over time (ν = t/T ) of estimated causal coefficients (blue) vs the
ground truth latent coefficients (orange), for the three temporal resolutions. Light blue bands refer to 99%
confidence level while the red dashed line indicate the zero.

Figure 21 depicts the estimated causal relations and their evolution over time. MN-CASTLE correctly tracks
the behaviour of latent causal coefficients in most cases. As given in Section 3.3, in the second inference step
we use the mode of PL distribution ≺̂0 to mask the distribution of hidden functions f . Consequently, only
those relations that conform to the experienced causal orderings show tight 99% CIs.
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