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ABSTRACT

Using unlabeled data to regularize the machine learning models has demon-
strated promise for improving safety and reliability in detecting out-of-distribution
(OOD) data. Harnessing the power of unlabeled in-the-wild data is non-trivial
due to the heterogeneity of both in-distribution (ID) and OOD data. This lack of
a clean set of OOD samples poses significant challenges in learning an optimal
OOD classifier. Currently, there is a lack of research on formally understanding
how unlabeled data helps OOD detection. This paper bridges the gap by introduc-
ing a new learning framework SAL (Separate And Learn) that offers both strong
theoretical guarantees and empirical effectiveness. The framework separates can-
didate outliers from the unlabeled data and then trains an OOD classifier using
the candidate outliers and the labeled ID data. Theoretically, we provide rigorous
error bounds from the lens of separability and learnability, formally justifying the
two components in our algorithm. Our theory shows that SAL can separate the
candidate outliers with small error rates, which leads to a generalization guarantee
for the learned OOD classifier. Empirically, SAL achieves state-of-the-art per-
formance on common benchmarks, reinforcing our theoretical insights. Code is
publicly available at https://github.com/deeplearning-wisc/sal.

1 INTRODUCTION

When deploying machine learning models in real-world environments, their safety and reliability are
often challenged by the occurrence of out-of-distribution (OOD) data, which arise from unknown
categories and should not be predicted by the model. Concerningly, neural networks are brittle and
lack the necessary awareness of OOD data in the wild (Nguyen et al., 2015). Identifying OOD
inputs is a vital but fundamentally challenging problem—the models are not explicitly exposed to
the unknown distribution during training, and therefore cannot capture a reliable boundary between
in-distribution (ID) vs. OOD data. To circumvent the challenge, researchers have started to explore
training with additional data, which can facilitate a conservative and safe decision boundary against
OOD data. In particular, a recent work by Katz-Samuels et al. (2022) proposed to leverage unlabeled
data in the wild to regularize model training, while learning to classify labeled ID data. Such unla-
beled wild data offer the benefits of being freely collectible upon deploying any machine learning
model in its operating environment, and allow capturing the true test-time OOD distribution.

Despite the promise, harnessing the power of unlabeled wild data is non-trivial due to the heteroge-
neous mixture of ID and OOD data. This lack of a clean set of OOD training data poses significant
challenges in designing effective OOD learning algorithms. Formally, the unlabeled data can be
characterized by a Huber contamination model Pwild := (1 − π)Pin + πPout, where Pin and Pout
are the marginal distributions of the ID and OOD data. It is important to note that the learner only
observes samples drawn from such mixture distributions, without knowing the clear membership of
whether being ID or OOD. Currently, a formalized understanding of the problem is lacking for the
field. This prompts the question underlying the present work:
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How does unlabeled wild data provably help OOD detection?

Algorithmic contribution. In this paper, we propose a new learning framework SAL (Separate
And Learn), that effectively exploits the unlabeled wild data for OOD detection. At a high level, our
framework SAL builds on two consecutive components: (1) filtering—separate candidate outliers
from the unlabeled data, and (2) classification—learn an OOD classifier with the candidate outliers,
in conjunction with the labeled ID data. To separate the candidate outliers, our key idea is to perform
singular value decomposition on a gradient matrix, defined over all the unlabeled data whose gradi-
ents are computed based on a classification model trained on the clean labeled ID data. In the SAL
framework, unlabeled wild data are considered candidate outliers when their projection onto the top
singular vector exceeds a given threshold. The filtering strategy for identifying candidate outliers
is theoretically supported by Theorem 1. We show in Section 3 (Remark 1) that under proper con-
ditions, with a high probability, there exist some specific directions (e.g., the top singular vector
direction) where the mean magnitude of the gradients for the wild outlier data is larger than that of
ID data. After obtaining the outliers from the wild data, we train an OOD classifier that optimizes
the classification between the ID vs. candidate outlier data for OOD detection.

Theoretical significance. Importantly, we provide new theories from the lens of separability and
learnability, formally justifying the two components in our algorithm. Our main Theorem 1 ana-
lyzes the separability of outliers from unlabeled wild data using our filtering procedure, and gives a
rigorous bound on the error rate. Our theory has practical implications. For example, when the size
of the labeled ID data and unlabeled data is sufficiently large, Theorems 1 and 2 imply that the error
rates of filtering outliers can be bounded by a small bias proportional to the optimal ID risk, which
is a small value close to zero in reality (Frei et al., 2022). Based on the error rate estimation, we
give a generalization error of the OOD classifier in Theorem 3, to quantify its learnability on the ID
data and a noisy set of candidate outliers. Under proper conditions, the generalization error of the
learned OOD classifier is upper bounded by the risk associated with the optimal OOD classifier.

Empirical validation. Empirically, we show that the generalization bound w.r.t. SAL (Theorem 3)
indeed translates into strong empirical performance. SAL can be broadly applicable to non-convex
models such as modern neural networks. We extensively evaluate SAL on common OOD detection
tasks and establish state-of-the-art performance. For completeness, we compare SAL with two fam-
ilies of methods: (1) trained with only Pin, and (2) trained with both Pin and an unlabeled dataset.
On CIFAR-100, compared to a strong baseline KNN+ (Sun et al., 2022) using only Pin, SAL outper-
forms by 44.52% (FPR95) on average. While methods such as Outlier Exposure (Hendrycks et al.,
2019) require a clean set of auxiliary unlabeled data, our results are achieved without imposing any
such assumption on the unlabeled data and hence offer stronger flexibility. Compared to the most
related baseline WOODS (Katz-Samuels et al., 2022), our framework can reduce the FPR95 from
7.80% to 1.88% on CIFAR-100, establishing near-perfect results on this challenging benchmark.

2 PROBLEM SETUP

Formally, we describe the data setup, models and losses and learning goal.

Labeled ID data and ID distribution. Let X be the input space, and Y = {1, ...,K} be the label
space for ID data. Given an unknown ID joint distribution PXY defined over X × Y , the labeled
ID data S in = {(x1, y1), ..., (xn, yn)} are drawn independently and identically from PXY . We also
denote Pin as the marginal distribution of PXY on X , which is referred to as the ID distribution.

Out-of-distribution detection. Our framework concerns a common real-world scenario in which
the algorithm is trained on the labeled ID data, but will then be deployed in environments containing
OOD data from unknown class, i.e., y /∈ Y , and therefore should not be predicted by the model. At
test time, the goal is to decide whether a test-time input is from ID or not (OOD).

Unlabeled wild data. A key challenge in OOD detection is the lack of labeled OOD data. In
particular, the sample space for potential OOD data can be prohibitively large, making it expensive
to collect labeled OOD data. In this paper, to model the realistic environment, we incorporate
unlabeled wild data Swild = {x̃1, ..., x̃m} into our learning framework. Wild data consists of both
ID and OOD data, and can be collected freely upon deploying an existing model trained on S in.
Following Katz-Samuels et al. (2022), we use the Huber contamination model to characterize the
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marginal distribution of the wild data

Pwild := (1− π)Pin + πPout, (1)

where π ∈ (0, 1] and Pout is the OOD distribution defined over X . Note that the case π = 0 is
straightforward since no novelties occur.

Models and losses. We denote by hw : X 7→ RK a predictor for ID classification with parameter
w ∈ W , where W is the parameter space. hw returns the soft classification output. We consider the
loss function ℓ : RK × Y 7→ R on the labeled ID data. In addition, we denote the OOD classifier
gθ : X 7→ R with parameter θ ∈ Θ, where Θ is the parameter space. We use ℓb(gθ(x), yb) to
denote the binary loss function w.r.t. gθ and binary label yb ∈ Yb := {y+, y−}, where y+ ∈ R>0

and y− ∈ R<0 correspond to the ID class and the OOD class, respectively.

Learning goal. Our learning framework aims to build the OOD classifier gθ by leveraging data
from both S in and Swild. In evaluating our model, we are interested in the following measurements:

(1) ↓ FPR(gθ;λ) := Ex∼Pout(1{gθ(x) > λ}),
(2) ↑ TPR(gθ;λ) := Ex∼Pin(1{gθ(x) > λ}), (2)

where λ is a threshold, typically chosen so that a high fraction of ID data is correctly classified.

3 PROPOSED METHODOLOGY

In this section, we introduce a new learning framework SAL that performs OOD detection by lever-
aging the unlabeled wild data. The framework offers substantial advantages over the counterpart ap-
proaches that rely only on the ID data, and naturally suits many applications where machine learning
models are deployed in the open world. SAL has two integral components: (1) filtering—separate
the candidate outlier data from the unlabeled wild data (Section 3.1), and (2) classification—train a
binary OOD classifier with the ID data and candidate outliers (Section 3.2). In Section 4, we provide
theoretical guarantees for SAL, provably justifying the two components in our method.

3.1 SEPARATING CANDIDATE OUTLIERS FROM THE WILD DATA

To separate candidate outliers from the wild mixture Swild, our framework employs a level-set esti-
mation based on the gradient information. The gradients are estimated from a classification predictor
hw trained on the ID data S in. We describe the procedure formally below.

Estimating the reference gradient from ID data. To begin with, SAL estimates the reference
gradients by training a classifier hw on the ID data S in by empirical risk minimization (ERM):

wS in ∈ argmin
w∈W

RS in(hw), where RS in(hw) =
1

n

∑
(xi,yi)∈S in

ℓ(hw(xi), yi), (3)

wS in is the learned parameter and n is the size of ID training set S in. The average gradient ∇̄ is

∇̄ =
1

n

∑
(xi,yi)∈S in

∇ℓ(hwSin (xi), yi), (4)

where ∇̄ acts as a reference gradient that allows measuring the deviation of any other points from it.

Separate candidate outliers from the unlabeled wild data. After training the classification predic-
tor on the labeled ID data, we deploy the trained predictor hwSin in the wild, and naturally receives
data Swild—a mixture of unlabeled ID and OOD data. Key to our framework, we perform a filtering
procedure on the wild data Swild, identifying candidate outliers based on a filtering score. To define
the filtering score, we represent each point in Swild as a gradient vector, relative to the reference
gradient ∇̄. Specifically, we calculate the gradient matrix (after subtracting the reference gradient
∇̄) for the wild data as follows:

G =

 ∇ℓ(hwSin (x̃1), ŷx̃1)− ∇̄
...

∇ℓ(hwSin (x̃m), ŷx̃m)− ∇̄

⊤

, (5)
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Visualization of the projection Angle between the gradient and (b)(a)

Figure 1: (a) Visualization of the gradient vectors, and their projection onto the top singular vector v (in gray
dashed line). The gradients of inliers from S in

wild (colored in orange) are close to the origin (reference gradient
∇̄). In contrast, the gradients of outliers from Sout

wild (colored in purple) are farther away. (b) The angle θ
between the gradient of set Sout

wild and the singular vector v. Since v is searched to maximize the distance from
the projected points (cross marks) to the origin (sum over all the gradients in Swild), v points to the direction of
OOD data in the wild with a small θ. This further translates into a high filtering score τ , which is essentially the
norm after projecting a gradient vector onto v. As a result, filtering outliers by ST = {x̃i ∈ Swild : τi > T}
will approximately return the purple OOD samples in the wild data.

where m denotes the size of the wild data, and ŷx̃ is the predicted label for a wild sample x̃. For
each data point x̃i in Swild, we then define our filtering score as follows:

τi =
〈
∇ℓ(hwSin

(
x̃i), ŷx̃i

)− ∇̄,v
〉2

, (6)

where ⟨·, ·⟩ is the dot product operator and v is the top singular vector of G. The top singular vector
v can be regarded as the principal component of the matrix G in Eq. 5, which maximizes the total
distance from the projected gradients (onto the direction of v) to the origin (sum over all points in
Swild) (Hotelling, 1933). Specifically, v is a unit-norm vector and can be computed as follows:

v ∈ argmax
∥u∥2=1

∑
x̃i∈Swild

〈
u,∇ℓ(hwSin

(
x̃i), ŷx̃i

)− ∇̄
〉2

. (7)

Essentially, the filtering score τi in Eq. 6 measures the ℓ2 norm of the projected vector. To help
readers better understand our design rationale, we provide an illustrative example of the gradient
vectors and their projections in Figure 1 (see caption for details). Theoretically, Remark 1 below
shows that the projection of the OOD gradient vector to the top singular vector of the gradient matrix
G is on average provably larger than that of the ID gradient vector, which rigorously justifies our
idea of using the score τ for separating the ID and OOD data.
Remark 1. Theorem 4 in Appendix D.1 has shown that under proper assumptions, if we have
sufficient data and large-size model, then with the high probability:

• the mean projected magnitude of OOD gradients in the direction of the top singular vector
of G can be lower bounded by a positive constant C/π;

• the mean projected magnitude of ID gradients in the direction of the top singular vector is
upper bounded by a small value close to zero.

Finally, we regard ST = {x̃i ∈ Swild : τi > T} as the (potentially noisy) candidate outlier set, where
T is the filtering threshold. The threshold can be chosen on the ID data S in so that a high fraction
(e.g., 95%) of ID samples is below it. In Section 4, we will provide formal guarantees, rigorously
justifying that the set ST returns outliers with a large probability. We discuss and compare with al-
ternative gradient-based scores (e.g., GradNorm (Huang et al., 2021)) for filtering in Section 5.2. In
Appendix K, we discuss the variants of using multiple singular vectors, which yield similar results.

An illustrative example of algorithm effect. To see the effectiveness of our filtering score, we test
on two simulations in Figure 2 (a). These simulations are constructed with simplicity in mind, to
facilitate understanding. Evaluations on complex high-dimensional data will be provided in Sec-
tion 5. In particular, the wild data is a mixture of ID (multivariate Gaussian with three classes) and
OOD. We consider two scenarios of OOD distribution, with ground truth colored in purple. Figure 2
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Wild data scenario 2

Wild data scenario 1

(a) Data setup (b)    Filtered outliers (in green) (c)    Uncertainty score

Figure 2: Example of SAL on two different scenarios of the unlabeled wild data. (a) Setup of the ID/inlier
S in

wild and OOD/outlier data Sout
wild in the wild. The inliers are sampled from three multivariate Gaussians. We

construct two different distributions of outliers (see details in Appendix Q). (b) The filtered outliers (in green)
by SAL, where the error rate of filtered outliers ST containing inlier data is 8.4% and 6.4%, respectively. (c)
The density distribution of the filtering score τ , which is separable for inlier and outlier data in the wild and
thus benefits the training of the OOD classifier leveraging the filtered outlier data for binary classification.

(b) exemplifies the outliers (in green) identified using our proposed method, which largely aligns
with the ground truth. The error rate of ST containing ID data is only 8.4% and 6.4% for the two
scenarios considered. Moreover, the filtering score distribution displays a clear separation between
the ID vs. OOD parts, as evidenced in Figure 2 (c).

Remark 2. Our filtering process can be easily extended into K-class classification. In this case, one
can maintain a class-conditional reference gradient ∇̄k, one for each class k ∈ [1,K], estimated
on ID data belonging to class k, which captures the characteristics for each ID class. Similarly,
the top singular vector computation can also be performed in a class-conditional manner, where
we replace the gradient matrix with the class-conditional Gk, containing gradient vectors of wild
samples being predicted as class k.

3.2 TRAINING THE OOD CLASSIFIER WITH THE CANDIDATE OUTLIERS

After obtaining the candidate outlier set ST from the wild data, we train an OOD classifier gθ that
optimizes for the separability between the ID vs. candidate outlier data. In particular, our training
objective can be viewed as explicitly optimizing the level-set based on the model output (threshold
at 0), where the labeled ID data x from S in has positive values and vice versa.

RS in,ST
(gθ) = R+

S in(gθ) +R−
ST

(gθ)

= Ex∈S in 1{gθ(x) ≤ 0}+ Ex̃∈ST
1{gθ(x̃) > 0}.

(8)

To make the 0/1 loss tractable, we replace it with the binary sigmoid loss, a smooth approximation
of the 0/1 loss. We train gθ along with the ID risk in Eq. 3 to ensure ID accuracy. Notably, the
training enables strong generalization performance for test OOD samples drawn from Pout. We
provide formal guarantees on the generalization bound in Theorem 3, as well as empirical support
in Section 5. A pseudo algorithm of SAL is in Appendix (see Algorithm 1).

4 THEORETICAL ANALYSIS

We now provide theory to support our proposed algorithm. Our main theorems justify the two com-
ponents in our algorithm. As an overview, Theorem 1 provides a provable bound on the error rates
using our filtering procedure. Based on the estimations on error rates, Theorem 3 gives the gener-
alization bound w.r.t. the empirical OOD classifier gθ, learned on ID data and noisy set of outliers.
We specify several mild assumptions and necessary notations for our theorems in Appendix B. Due
to space limitation, we omit unimportant constants and simplify the statements of our theorems. We
defer the full formal statements in Appendix C. All proofs can be found in Appendices D and E.
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4.1 ANALYSIS ON SEPARABILITY

Our main theorem quantifies the separability of the outliers in the wild by using the filtering proce-
dure (c.f. Section 3.1). Let ERRout and ERRin be the error rate of OOD data being regarded as ID
and the error rate of ID data being regarded as OOD, i.e., ERRout = |{x̃i ∈ Sout

wild : τi ≤ T}|/|Sout
wild|

and ERRin = |{x̃i ∈ S in
wild : τi > T}|/|S in

wild|, where S in
wild and Sout

wild denote the sets of inliers and
outliers from the wild data Swild. Then ERRout and ERRin have the following generalization bounds.

Theorem 1. (Informal). Under mild conditions, if ℓ(hw(x), y) is β1-smooth w.r.t. w, Pwild
has (γ, ζ)-discrepancy w.r.t. PXY (c.f. Appendices B.2, B.3), and there is η ∈ (0, 1) s.t. ∆ =
(1− η)2ζ2 − 8β1R

∗
in > 0, then when n = Ω

(
d/min{η2∆, (γ −R∗

in)
2}
)
,m = Ω

(
d/η2ζ2

)
,

with the probability at least 0.9, for 0 < T < 0.9M ′ (M ′ is the upper bound of score τi),

ERRin ≤ 8β1

T
R∗

in +O
( 1

T

√
d

n

)
+O

( 1

T

√
d

(1− π)m

)
, (9)

ERRout ≤ δ(T ) +O
(√ d

π2n

)
+O

(√max{d,∆η
ζ
2
/π2}

π2(1− π)m

)
, (10)

where R∗
in is the optimal ID risk, i.e., R∗

in = minw∈W E(x,y)∼PXY ℓ(hw(x), y),

δ(T ) = max{0, 1−∆η
ζ/π}/(1− T/M ′), ∆η

ζ = 0.98η2ζ2 − 8β1R
∗
in, (11)

d is the dimension of the space W , and π is the OOD class-prior probability in the wild.

Practical implications of Theorem 1. The above theorem states that under mild assumptions, the
errors ERRout and ERRin are upper bounded. For ERRin, if the following two regulatory conditions
hold: 1) the sizes of the labeled ID n and wild data m are sufficiently large; 2) the optimal ID risk
R∗

in is small, then the upper bound is tight. For ERRout, δ(T ) defined in Eq. 11 becomes the main
error, if we have sufficient data. To further study the main error δ(T ) in Eq. 10, Theorem 2 shows
that the error δ(T ) could be close to zero under practical conditions.

Theorem 2. (Informal). 1) If ∆η
ζ ≥ (1 − ϵ)π for a small error ϵ ≥ 0, then the main error

δ(T ) defined in Eq. 11 satisfies that

δ(T ) ≤ ϵ

1− T/M ′ . (12)

2) If ζ ≥ 2.011
√

8β1R∗
in + 1.011

√
π, then there exists η ∈ (0, 1) ensuring that ∆ > 0 and

∆η
ζ > π hold, which implies that the main error δ(T ) = 0.

Practical implications of Theorem 2. Theorem 2 states that if the discrepancy ζ between two data
distributions Pwild and Pin is larger than some small values, the main error δ(T ) could be close to
zero. Therefore, by combining with the two regulatory conditions mentioned in Theorem 1, the error
ERRout could be close to zero. Empirically, we verify the conditions of Theorem 2 in Appendix F,
which can hold true easily in practice. In addition, given fixed optimal ID risk R∗

in and fixed sizes of
the labeled ID n and wild data m, we observe that the bound of ERRin will increase when π goes
from 0 to 1. In contrast, the bound of ERRout is non-monotonic when π increases, which will firstly
decrease and then increase. The observations align well with empirical results in Appendix F.

Impact of using predicted labels for the wild data. Recall in Section 3.1 that the filtering step uses
the predicted labels to estimate the gradient for wild data, which is unlabeled. To analyze the impact
theoretically, we show in Appendix Assumption 2 that the loss incurred by using the predicted label
is smaller than the loss by using any label in the label space. This property is included in Appendix
Lemmas 5 and 6 to constrain the filtering score in Appendix Theorem 5 and then filtering error in
Theorem 1. In harder classification cases, the predicted label deviates more from the true label for
the wild ID data, which leads to a looser bound for the filtering accuracy in Theorem 1.
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Empirically, we calculate and compare the filtering accuracy and its OOD detection result on CIFAR-
10 and CIFAR-100 ( TEXTURES (Cimpoi et al., 2014) as the wild OOD). SAL achieves a result of
ERRin = 0.018 and ERRout = 0.17 on CIFAR-10 (easier classification case), which outperforms
the result of ERRin = 0.037 and ERRout = 0.30 on CIFAR-100 (harder classification case), align-
ing with our reasoning above. The experimental details are provided in Appendix P. Analysis of
using random labels for the wild data is provided in Appendix O.

4.2 ANALYSIS ON LEARNABILITY

Leveraging the filtered outliers ST , SAL then trains an OOD classifier gθ with the data from in-
distribution S in and data from ST as OOD. In this section, we provide the generalization error
bound for the learned OOD classifier to quantify its learnability. Specifically, we show that a small
error guarantee in Theorem 1 implies that we can get a tight generalization error bound.

Theorem 3. (Informal). Let L be the upper bound of ℓb(gθ(x), yb), i.e., ℓb(gθ(x), yb) ≤
L. Under conditions in Theorem 1, if we further require n = Ω

(
d/min{π,∆η

ζ}2
)
, m =

Ω
(
(d+∆η

ζ )/(π
2(1− π)min{π,∆η

ζ}2)
)
,

then with the probability at least 0.89, for any 0 < T < 0.9M ′ min{1,∆η
ζ/π}, the OOD

classifier gθ̂T
learned by SAL satisfies

RPin,Pout(gθ̂T
) ≤ min

θ∈Θ
RPin,Pout(gθ) +

3.5L

1− δ(T )
δ(T ) +

9(1− π)Lβ1

π(1− δ(T ))T
R∗

in

+O
(max{

√
d,
√
d′}

min{π,∆η
ζ}T ′

√
1

n

)
+O

(max{
√
d,
√
d′,∆η

ζ}
min{π,∆η

ζ}T ′

√
1

π2(1− π)m

)
,

(13)

where ∆η
ζ , d and π are shown in Theorem 1, d′ is the dimension of space Θ, T ′ = T/(1+T ),

and the risk RPin,Pout(gθ) corresponds to the empirical risk in Eq. 8 with loss ℓb, i.e.,

RPin,Pout(gθ̂T
) = Ex∼Pinℓb(gθ(x), y+) + Ex∼Poutℓb(gθ(x), y−). (14)

Insights. The above theorem presents the generalization error bound of the OOD classifier gθ̂T

learned by using the filtered OOD data ST . When we have sufficient labeled ID data and wild data,
then the risk of the OOD classifier gθ̂T

is close to the optimal risk, i.e., minθ∈Θ RPin,Pout(gθ), if the
optimal ID risk R∗

in is small, and either one of the conditions in Theorem 2 is satisfied.

5 EXPERIMENTS

In this section, we verify the effectiveness of our algorithm on modern neural networks. We aim to
show that the generalization bound of the OOD classifier (Theorem 3) indeed translates into strong
empirical performance, establishing state-of-the-art results (Section 5.2).

5.1 EXPERIMENTAL SETUP

Datasets. We follow exactly the same experimental setup as WOODS (Katz-Samuels et al., 2022),
which introduced the problem of learning OOD detectors with wild data. This allows us to draw
fair comparisons. WOODS considered CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) as ID
datasets (Pin). For OOD test datasets (Pout), we use a suite of natural image datasets including
TEXTURES (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), PLACES365 (Zhou et al., 2017),
LSUN-RESIZE & LSUN-C (Yu et al., 2015). To simulate the wild data (Pwild), we mix a subset of ID
data (as Pin) with the outlier dataset (as Pout) under the default π = 0.1, which reflects the practical
scenario that most data would remain ID. Take SVHN as an example, we use CIFAR+SVHN as the
unlabeled wild data and test on SVHN as OOD. We simulate this for all OOD datasets and provide
analysis of differing π ∈ {0.05, 0.1, ..., 1.0} in Appendix F. Note that we split CIFAR datasets into
two halves: 25, 000 images as ID training data, and the remainder 25, 000 for creating the wild
mixture data. We use the weights from the penultimate layer for gradient calculation, which was
shown to be the most informative for OOD detection (Huang et al., 2021). Experimental details are
provided in Appendix G.
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Table 1: OOD detection performance on CIFAR-100 as ID. All methods are trained on Wide ResNet-40-2 for
100 epochs. For each dataset, we create corresponding wild mixture distribution Pwild = (1 − π)Pin + πPout
for training and test on the corresponding OOD dataset. Values are percentages averaged over 10 runs. Bold
numbers highlight the best results. Table format credit to Katz-Samuels et al. (2022).

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
With Pin only

MSP 84.59 71.44 82.84 73.78 66.54 83.79 82.42 75.38 83.29 73.34 79.94 75.55 75.96
ODIN 84.66 67.26 87.88 71.63 55.55 87.73 71.96 81.82 79.27 73.45 75.86 76.38 75.96

Mahalanobis 57.52 86.01 88.83 67.87 91.18 69.69 21.23 96.00 39.39 90.57 59.63 82.03 75.96
Energy 85.82 73.99 80.56 75.44 35.32 93.53 79.47 79.23 79.41 76.28 72.12 79.69 75.96
KNN 66.38 83.76 79.17 71.91 70.96 83.71 77.83 78.85 88.00 67.19 76.47 77.08 75.96
ReAct 74.33 88.04 81.33 74.32 39.30 91.19 79.86 73.69 67.38 82.80 68.44 82.01 75.96
DICE 88.35 72.58 81.61 75.07 26.77 94.74 80.21 78.50 76.29 76.07 70.65 79.39 75.96
ASH 21.36 94.28 68.37 71.22 15.27 95.65 68.18 85.42 40.87 92.29 42.81 87.77 75.96
CSI 64.70 84.97 82.25 73.63 38.10 92.52 91.55 63.42 74.70 92.66 70.26 81.44 69.90

KNN+ 32.21 93.74 68.30 75.31 40.37 86.13 44.86 88.88 46.26 87.40 46.40 86.29 73.78
With Pin and Pwild

OE 1.57 99.63 60.24 83.43 3.83 99.26 0.93 99.79 27.89 93.35 18.89 95.09 71.65
Energy (w/ OE) 1.47 99.68 54.67 86.09 2.52 99.44 2.68 99.50 37.26 91.26 19.72 95.19 73.46

WOODS 0.12 99.96 29.58 90.60 0.11 99.96 0.07 99.96 9.12 96.65 7.80 97.43 75.22
SAL 0.07 99.95 3.53 99.06 0.06 99.94 0.02 99.95 5.73 98.65 1.88 99.51 73.71

(Ours) ±0.02 ±0.00 ±0.17 ±0.06 ±0.01 ±0.21 ±0.00 ±0.03 ±0.34 ±0.02 ±0.11 ±0.02 ±0.78

Evaluation metrics. We report the following metrics: (1) the false positive rate (FPR95↓) of OOD
samples when the true positive rate of ID samples is 95%, (2) the area under the receiver operating
characteristic curve (AUROC↑), and (3) ID classification Accuracy (ID ACC↑).
5.2 EMPIRICAL RESULTS

SAL achieves superior empirical performance. We present results in Table 1 on CIFAR-100,
where SAL outperforms the state-of-the-art method. Our comparison covers an extensive collection
of competitive OOD detection methods, which can be divided into two categories: trained with
and without the wild data. For methods using ID data Pin only, we compare with methods such as
MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), Mahalanobis distance (Lee et al.,
2018b), Energy score (Liu et al., 2020b), ReAct (Sun et al., 2021), DICE (Sun & Li, 2022), KNN
distance (Sun et al., 2022), and ASH (Djurisic et al., 2023)—all of which use a model trained with
cross-entropy loss. We also include the method based on contrastive loss, including CSI (Tack
et al., 2020) and KNN+ (Sun et al., 2022). For methods using both ID and wild data, we compare
with Outlier Exposure (OE) (Hendrycks et al., 2019) and energy-regularization learning (Liu et al.,
2020b), which regularize the model by producing lower confidence or higher energy on the auxiliary
outlier data. Closest to ours is WOODS (Katz-Samuels et al., 2022), which leverages wild data for
OOD learning with a constrained optimization approach. For a fair comparison, all the methods in
this group are trained using the same ID and in-the-wild data, under the same mixture ratio π = 0.1.

The results demonstrate that: (1) Methods trained with both ID and wild data perform much better
than those trained with only ID data. For example, on PLACES365, SAL reduces the FPR95 by
64.77% compared with KNN+, which highlights the advantage of using in-the-wild data for model
regularization. (2) SAL performs even better compared to the competitive methods using Pwild.
On CIFAR-100, SAL achieves an average FPR95 of 1.88%, which is a 5.92% improvement from
WOODS. At the same time, SAL maintains a comparable ID accuracy. The slight discrepancy is
due to that our method only observes 25,000 labeled ID samples, whereas baseline methods (without
using wild data) utilize the entire CIFAR training data with 50,000 samples. (3) The strong empirical
performance achieved by SAL directly justifies and echoes our theoretical result in Section 4, where
we showed the algorithm has a provably small generalization error. Overall, our algorithm enjoys
both theoretical guarantees and empirical effectiveness.

Comparison with GradNorm as filtering score. Huang et al. (2021) proposed directly employing
the vector norm of gradients, backpropagated from the KL divergence between the softmax output
and a uniform probability distribution for OOD detection. Differently, our SAL derives the filtering
score by performing singular value decomposition and using the norm of the projected gradient onto
the top singular vector (c.f. Section 3.1). We compare SAL with a variant in Table 2, where we
replace the filtering score in SAL with the GradNorm score and then train the OOD classifier. The
result underperforms SAL, showcasing the effectiveness of our filtering score.

Additional ablations. Due to space limitations, we defer additional experiments in the Appendix,
including (1) analyzing the effect of ratio π (Appendix F), (2) results on CIFAR-10 (Appendix H),
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Table 2: Comparison with using GradNorm as the filtering score. We use CIFAR-100 as ID. All methods are
trained on Wide ResNet-40-2 for 100 epochs with π = 0.1. Bold numbers are superior results.

Filter score

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

GradNorm 1.08 99.62 62.07 84.08 0.51 99.77 5.16 98.73 50.39 83.39 23.84 93.12 73.89
Ours 0.07 99.95 3.53 99.06 0.06 99.94 0.02 99.95 5.73 98.65 1.88 99.51 73.71

(3) evaluation on unseen OOD datasets (Appendix I), (4) near OOD evaluations (Appendix J), and
(5) the effect of using multiple singular vectors for calculating the filtering score (Appendix K) .

6 RELATED WORK

OOD detection has attracted a surge of interest in recent years (Fort et al., 2021; Yang et al., 2021b;
Fang et al., 2022; Zhu et al., 2022; Ming et al., 2022a;c; Yang et al., 2022; Wang et al., 2022b; Galil
et al., 2023; Djurisic et al., 2023; Tao et al., 2023; Zheng et al., 2023; Wang et al., 2022a; 2023b;
Narasimhan et al., 2023; Yang et al., 2023; Uppaal et al., 2023; Zhu et al., 2023b;a; Bai et al., 2023;
Ming & Li, 2023; Zhang et al., 2023; Gu et al., 2023; Ghosal et al., 2024). One line of work per-
forms OOD detection by devising scoring functions, including confidence-based methods (Bendale
& Boult, 2016; Hendrycks & Gimpel, 2017; Liang et al., 2018), energy-based score (Liu et al.,
2020b; Wang et al., 2021; Wu et al., 2023), distance-based approaches (Lee et al., 2018b; Tack
et al., 2020; Ren et al., 2021; Sehwag et al., 2021; Sun et al., 2022; Du et al., 2022a; Ming et al.,
2023; Ren et al., 2023), gradient-based score (Huang et al., 2021), and Bayesian approaches (Gal
& Ghahramani, 2016; Lakshminarayanan et al., 2017; Maddox et al., 2019; Malinin & Gales, 2019;
Wen et al., 2020; Kristiadi et al., 2020). Another line of work addressed OOD detection by training-
time regularization (Bevandić et al., 2018; Malinin & Gales, 2018; Geifman & El-Yaniv, 2019; Hein
et al., 2019; Meinke & Hein, 2020; Jeong & Kim, 2020; Liu et al., 2020a; van Amersfoort et al.,
2020; Yang et al., 2021a; Wei et al., 2022; Du et al., 2022b; 2023; Wang et al., 2023a). For example,
the model is regularized to produce lower confidence (Lee et al., 2018a; Hendrycks et al., 2019) or
higher energy (Liu et al., 2020b; Du et al., 2022c; Ming et al., 2022b) on the outlier data. Most regu-
larization methods assume the availability of a clean set of auxiliary OOD data. Several works (Zhou
et al., 2021; Katz-Samuels et al., 2022; He et al., 2023) relaxed this assumption by leveraging the
unlabeled wild data, but did not have an explicit mechanism for filtering the outliers. Compared
to positive-unlabeled learning, which learns classifiers from positive and unlabeled data (Letouzey
et al., 2000; Hsieh et al., 2015; Du Plessis et al., 2015; Niu et al., 2016; Gong et al., 2018; Chapel
et al., 2020; Garg et al., 2021; Xu & Denil, 2021; Garg et al., 2022; Zhao et al., 2022; Acharya et al.,
2022), the key difference is that it only considers the task of distinguishing Pout and Pin, not the
task of doing classification simultaneously. Moreover, we propose a new filtering score to separate
outliers from the unlabeled data, which has a bounded error guarantee.

Robust statistics has systematically studied the estimation in the presence of outliers since the pio-
neering work of (Tukey, 1960). Popular methods include RANSAC (Fischler & Bolles, 1981), min-
imum covariance determinant (Rousseeuw & Driessen, 1999), Huberizing the loss (Owen, 2007),
removal based on k-nearest neighbors (Breunig et al., 2000). More recently, there are several works
that scale up the robust estimation into high-dimensions (Awasthi et al., 2014; Kothari & Steurer,
2017; Steinhardt, 2017; Diakonikolas & Kane, 2019; Diakonikolas et al., 2019a; 2022a;b). Di-
akonikolas et al. (2019b) designed a gradient-based score for outlier removal but they focused on
the error bound for the ID classifier. Instead, we provide new theoretical guarantees on outlier
filtering (Theorem 1 and Theorem 2) and the generalization bound of OOD detection (Theorem 3).

7 CONCLUSION

In this paper, we propose a novel learning framework SAL that exploits the unlabeled in-the-wild
data for OOD detection. SAL first explicitly filters the candidate outliers from the wild data using a
new filtering score and then trains a binary OOD classifier leveraging the filtered outliers. Theoreti-
cally, SAL answers the question of how does unlabeled wild data help OOD detection by analyzing
the separability of the outliers in the wild and the learnability of the OOD classifier, which pro-
vide provable error guarantees for the two integral components. Empirically, SAL achieves strong
performance compared to competitive baselines, echoing our theoretical insights. A broad impact
statement is included in Appendix V. We hope our work will inspire future research on OOD detec-
tion with unlabeled wild data.
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How Does Unlabeled Data Provably
Help Out-of-Distribution Detection? (Appendix)

A ALGORITHM OF SAL

We summarize our algorithm in implementation as follows.

Algorithm 1 SAL: Separate And Learn
Input: In-distribution data S in = {(xi, yi)}ni=1. Unlabeled wild data Swild = {x̃i}mi=1. K-way
classification model hw and OOD classifier gθ. Parameter spaces W and Θ. Learning rate lr for gθ.
Output: Learned OOD classifier gθ̂T

.
# Filtering stage
1) Perform ERM: wS in ∈ argminw∈WRS in(hw).
2) Calculate the reference gradient as ∇̄ = 1

n

∑
(xi,yi)∈S in ∇ℓ(hwSin (xi), yi).

3) Calculate gradient on Swild as ∇ℓ(hwSin (x̃i), ŷx̃i
) and calculate the gradient matrix G.

4) Calculate the top singular vector v of G and the score τi =
〈
∇ℓ(hwSin

(
x̃i), ŷx̃i

)− ∇̄,v
〉2

.
5) Get the candidate outliers ST = {x̃i ∈ Swild, τi ≥ T}.
# Training Stage
for epoch in epochs do

6) Sample batches of data Bin,BT from ID and candidate outliers S in,ST .
7) Calculate the binary classification loss RBin,BT

(gθ).
8) Update the parameter by θ̂T = θ − lr · ∇RBin,BT

(gθ).
end

B NOTATIONS, DEFINITIONS, ASSUMPTIONS AND IMPORTANT CONSTANTS

Here we summarize the important notations and constants in Tables 3 and 4, restate necessary defi-
nitions and assumptions in Sections B.2 and B.3.

B.1 NOTATIONS

Please see Table 3 for detailed notations.

B.2 DEFINITIONS

Definition 1 (β-smooth). We say a loss function ℓ(hw(x), y) (defined over X × Y) is β-smooth, if
for any x ∈ X and y ∈ Y ,∥∥∇ℓ(hw(x), y)−∇ℓ(hw′(x), y)

∥∥
2
≤ β∥w −w′∥2

Definition 2 (Gradient-based Distribution Discrepancy). Given distributions P and Q defined over
X , the Gradient-based Distribution Discrepancy w.r.t. predictor hw and loss ℓ is

dℓw(P,Q) =
∥∥∇RP(hw, ĥ)−∇RQ(hw, ĥ)

∥∥
2
, (15)

where ĥ is a classifier which returns the closest one-hot vector of hw, RP(hw, ĥ) = Ex∼Pℓ(hw, ĥ)

and RQ(hw, ĥ) = Ex∼Qℓ(hw, ĥ).
Definition 3 ((γ, ζ)-discrepancy). We say a wild distribution Pwild has (γ, ζ)-discrepancy w.r.t. an
ID joint distribution Pin, if γ > minw∈W RPXY (hw), and for any parameter w ∈ W satisfying that
RPXY (hw) ≤ γ should meet the following condition

dℓw(Pin,Pwild) > ζ,

where RPXY (hw) = E(x,y)∼PXY ℓ(hw(x), y).
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Table 3: Main notations and their descriptions.

Notation Description

Spaces
X , Y the input space and the label space.
W , Θ the hypothesis spaces

Distributions
Pwild, Pin, Pout data distribution for wild data, labeled ID data and OOD data

PXY the joint data distribution for ID data.
Data and Models

w, x, v weight/input/the top-1 right singular vector of G
∇̂, τ the average gradients on labeled ID data, uncertainty score

y and yb label for ID classification and binary label for OOD detection
ŷx Predicted one-hot label for input x

hw and gθ predictor on labeled in-distribution and binary predictor for OOD detection
S in

wild, Sout
wild inliers and outliers in the wild dataset.

S in, Swild labeled ID data and unlabeled wild data
n, m size of S in, size of Swild
T the filtering threshold
ST wild data whose uncertainty score higher than threshold T

Distances
r1 and r2 the radius of the hypothesis spaces W and Θ, respectively
∥ · ∥2 ℓ2 norm

Loss, Risk and Predictor
ℓ(·, ·), ℓb(·, ·) ID loss function, binary loss function
RS(hw) the empirical risk w.r.t. predictor hw over data S

RPXY (hw) the risk w.r.t. predictor hw over joint distribution PXY
RPin,Pout(gθ) the risk defined in Eq. 14

ERRin,ERRout the error rates of regarding ID as OOD and OOD as ID

In Section F, we empirically calculate the values of the distribution discrepancy between the ID
joint distribution PXY and the wild distribution Pwild.

B.3 ASSUMPTIONS

Assumption 1.

• The parameter space W ⊂ B(w0, r1) ⊂ Rd (ℓ2 ball of radius r1 around w0);

• The parameter space Θ ⊂ B(θ0, r2) ⊂ Rd′
(ℓ2 ball of radius r2 around θ0);

• ℓ(hw(x), y) ≥ 0 and ℓ(hw(x), y) is β1-smooth;

• ℓb(gθ(x), yb) ≥ 0 and ℓb(gθ(x), yb) is β2-smooth;

• sup(x,y)∈X×Y ∥∇ℓ(hw0
(x), y)∥2 = b1, sup(x,yb)∈X×Yb

∥∇ℓ(gθ0
(x), yb)∥2 = b2;

• sup(x,y)∈X×Y ℓ(hw0
(x), y) = B1, sup(x,yb)∈X×Yb

ℓ(gθ0
(x), yb) = B2.

Remark 2. For neural networks with smooth activation functions and softmax output function, we
can check that the norm of the second derivative of the loss functions (cross-entropy loss and sigmoid
loss) is bounded given the bounded parameter space, which implies that the β-smoothness of the loss
functions can hold true. Therefore, our assumptions are reasonable in practice.

Assumption 2. ℓ(h(x), ŷx) ≤ miny∈Y ℓ(h(x), y), where ŷx returns the closest one-hot label of the
predictor h’s output on x.
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Remark 3. The assumption means the loss incurred by using the predicted labels given by the
classifier itself is smaller or equal to the loss incurred by using any label in the label space. If
y = ŷx, the assumption is satisfied obviously. If y ̸= ŷx, then we provide two examples to illustrate
the validity of the assumption. For example, (1) if the loss ℓ is the cross entropy loss, let K =
2,h(x) = [h1, h2] (classification output after softmax) and h1 > h2. Therefore, we have ŷx = 0.
Suppose y = 1, we can get ℓ(h(x), ŷx) = − log(h1) < ℓ(h(x), y) = − log(h2). (2) If ℓ is the hinge
loss for binary classification, thus we have K = 1, let h(x) = h1 < 0 and thus ŷx = −1. Suppose
y = 1, we can get ℓ(h(x), ŷx) = max(0, 1 + h1) < max(0, 1− h1) = ℓ(h(x), y).

B.4 CONSTANTS IN THEORY
Table 4: Constants in theory.

Constants Description

M = β1r
2
1 + b1r1 +B1 the upper bound of loss ℓ(hw(x), y), see Proposition 1

M ′ = 2(β1r1 + b1)
2 the upper bound of filtering score τ

M̃ = β1M a constant for simplified representation
L = β2r

2
2 + b2r2 +B2 the upper bound of loss ℓb(gθ(x), yb), see Proposition 1
d, d′ the dimensions of parameter spaces W and Θ, respectively
R∗

in the optimal ID risk, i.e., R∗
in = minw∈W E(x,y)∼PXY ℓ(hw(x), y)

δ(T ) the main error in Eq. 10
ζ the discrepancy between Pin and Pwild
π the ratio of OOD distribution in Pwild

C MAIN THEOREMS

In this section, we provide a detailed and formal version of our main theorems with a complete
description of the constant terms and other additional details that are omitted in the main paper.
Theorem 1. If Assumptions 1 and 2 hold, Pwild has (γ, ζ)-discrepancy w.r.t. PXY , and there exists
η ∈ (0, 1) s.t. ∆ = (1− η)2ζ2 − 8β1R

∗
in > 0, then for

n = Ω
(M̃ +M(r1 + 1)d

η2∆
+

M2d

(γ −R∗
in)

2

)
, m = Ω

(M̃ +M(r1 + 1)d

η2ζ2
)
,

with the probability at least 9/10, for any 0 < T < M ′ (here M ′ = 2(β1r1 + b1)
2 is the upper

bound of filtering score τi, i.e., τi ≤ M ′),

ERRin ≤ 8β1

T
R∗

in +O
(M̃
T

√
d

n

)
+O

(M̃
T

√
d

(1− π)m

)
, (16)

ERRout ≤ δ(T ) +O
( M̃

1− T/M ′

√
d

π2n

)
+O

(max{M̃
√
d,∆η

ζ/π}
1− T/M ′

√
1

π2(1− π)m

)
,

(17)

where R∗
in is the optimal ID risk, i.e., R∗

in = minw∈W E(x,y)∼PXY ℓ(hw(x), y),

δ(T ) =
max{0, 1−∆η

ζ/π}
(1− T/M ′)

, ∆η
ζ = 0.98η2ζ2 − 8β1R

∗
in,

M = β1r
2
1 + b1r1 +B1, M̃ = Mβ1,

(18)

and d is the dimension of the parameter space W , here β1, r1, B1 are given in Assumption 1.
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Theorem 2. 1) If ∆η
ζ ≥ (1 − ϵ)π for a small error ϵ ≥ 0, then the main error δ(T ) defined in Eq.

11 satisfies that
δ(T ) ≤ ϵ

1− T/M ′ .

2) If ζ ≥ 2.011
√

8β1R∗
in + 1.011

√
π, then there exists η ∈ (0, 1) ensuring that ∆ > 0 and ∆η

ζ > π

hold, which implies that the main error δ(T ) = 0.

Theorem 3. Given the same conditions in Theorem 1, if we further require that

n = Ω
( M̃2d

min{π,∆η
ζ}2

)
, m = Ω

( M̃2d+∆η
ζ

π2(1− π)min{π,∆η
ζ}2

)
,

then with the probability at least 89/100, for any 0 < T < 0.9M ′ min{1,∆η
ζ/π}, the OOD classi-

fier gθ̂T
learned by the proposed algorithm satisfies the following risk estimation

RPin,Pout(gθ̂T
) ≤ inf

θ∈Θ
RPin,Pout(gθ) +

3.5L

1− δ(T )
δ(T ) +

9(1− π)Lβ1

π(1− δ(T ))T
R∗

in

+O
(Lmax{M̃

√
d,
√
d′}

min{π,∆η
ζ}T ′

√
1

n

)
+O

(Lmax{M̃
√
d,
√
d′,∆η

ζ}
min{π,∆η

ζ}T ′

√
1

π2(1− π)m

)
,

(19)

where R∗
in, ∆η

ζ , M , M ′, M̃ and d are shown in Theorem 1, d′ is the dimension of space Θ,

L = β2r
2
2 + b2r2 +B2, T ′ = T/(1 + T ),

and the risk RPin,Pout(gθ) is defined as follows:

RPin,Pout(gθ̂T
) = Ex∼Pinℓb(gθ(x), y+) + Ex∼Poutℓb(gθ(x), y−).

Theorem 4. Given the same conditions in Theorem 1, with the probability at least 9/10,

Ex̃i∼S in
wild
τi ≤8β1R

∗
in +O(β1M

√
d

n
) +O(β1M

√
d

(1− π)m
),

Ex̃i∼Sout
wild
τi ≥

0.98η2ζ2

π
− 8β1R

∗
in

π
− ϵ′(n,m),

furthermore, if the realizability assumption for ID distribution holds (Shalev-Shwartz & Ben-David,
2014; Fang et al., 2022), then

Ex̃i∼S in
wild
τi ≤ O(β1M

√
d

n
) +O(β1M

√
d

(1− π)m
)

Ex̃i∼Sout
wild
τi ≥

0.98η2ζ2

π
− ϵ′(n,m),

where

ϵ′(n,m) ≤ O(
β1M

π

√
d

n
) +O

(
(β1M

√
d+

√
1− π∆η

ζ/π)

√
1

π2(1− π)m

)
,

and R∗
in, ∆η

ζ , M and d are shown in Theorem 1.
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D PROOFS OF MAIN THEOREMS

D.1 PROOF OF THEOREM 1

Step 1. With the probability at least 1− 7
3δ > 0,

Ex̃i∼S in
wild
τi ≤8β1R

∗
in

+4β1

[
C

√
Mr1(β1r1 + b1)d

n
+ C

√
Mr1(β1r1 + b1)d

(1− π)m−
√
m log(6/δ)/2

+ 3M

√
2 log(6/δ)

n
+M

√
2 log(6/δ)

(1− π)m−
√
m log(6/δ)/2

]
,

This can be proven by Lemma 7 and following inequality

Ex̃i∼S in
wild
τi ≤ Ex̃i∼S in

wild

∥∥∇ℓ(hwSin (x̃i), ĥwSin (x̃i))− E(xj ,yj)∼Sin∇ℓ(hwSin (xj), yj)
∥∥2
2
,

Step 2. It is easy to check that

Ex̃i∼Swildτi =
|S in

wild|
|Swild|

Ex̃i∼S in
wild
τi +

|Sout
wild|

|Swild|
Ex̃i∼Sout

wild
τi.

Step 3. Let

ϵ(n,m) =4β1[C

√
Mr1(β1r1 + b1)d

n
+ C

√
Mr1(β1r1 + b1)d

(1− π)m−
√
m log(6/δ)/2

+3M

√
2 log(6/δ)

n
+M

√
2 log(6/δ)

(1− π)m−
√
m log(6/δ)/2

].

Under the condition in Theorem 5, with the probability at least 97
100 − 7

3δ > 0,

Ex̃i∼Sout
wild
τi ≥

m

|Sout
wild|

[98η2ζ2
100

− |S in
wild|
m

8β1R
∗
in −

|S in
wild|
m

ϵ(n,m)
]

≥ m

|Sout
wild|

[98η2ζ2
100

− 8β1R
∗
in − ϵ(n,m)

]
≥
[ 1
π
−

√
log 6/δ

π2
√
2m+ π

√
log(6/δ)

][98η2ζ2
100

− 8β1R
∗
in − ϵ(n,m)

]
.

In this proof, we set

∆(n,m) =
[ 1
π
−

√
log 6/δ

π2
√
2m+ π

√
log(6/δ)

][98η2ζ2
100

− 8β1R
∗
in − ϵ(n,m)

]
.

Note that ∆η
ζ = 0.98η2ζ2 − 8β1R

∗
in, then

∆(n,m) =
1

π
∆η

ζ −
1

π
ϵ(n,m)−∆η

ζ ϵ(m) + ϵ(n)ϵ(n,m),

where ϵ(m) =
√
log 6/δ/(π2

√
2m+ π

√
log(6/δ)).

Step 4. Under the condition in Theorem 5, with the probability at least 97
100 − 7

3δ > 0,

|{x̃i ∈ Sout
wild : τi ≤ T}|
|Sout

wild|
≤ 1−min{1,∆(n,m)}

1− T/M ′ , (20)
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and
|{x̃i ∈ S in

wild : τi > T}|
|S in

wild|
≤ 8β1R

∗
in + ϵ(n,m)

T
. (21)

We prove this step: let Z be the uniform random variable with Sout
wild as its support and Z(i) =

τi/(2(β1r1 + b1)
2), then by the Markov inequality, we have

|{x̃i ∈ Sout
wild : τi > T}|
|Sout

wild|
= P (Z(i) > T/(2(β1r1 + b1)

2)) ≥ ∆(n,m)− T/(2(β1r1 + b1)
2)

1− T/(2(β1r1 + b1)2)
.

(22)
Let Z be the uniform random variable with S in

wild as its support and Z(i) = τi, then by the Markov
inequality, we have

|{x̃i ∈ S in
wild : τi > T}|
|S in

wild|
= P (Z(i) > T ) ≤ E[Z]

T
=

8β1R
∗
in + ϵ(n,m)

T
. (23)

Step 5. If π ≤ ∆η
ζ/(1− ϵ/M ′), then with the probability at least 97

100 − 7
3δ > 0,

|{x̃i ∈ Sout
wild : τi ≤ T}|
|Sout

wild|
≤ ϵ+M ′ϵ′(n,m)

M ′ − T
, (24)

and
|{x̃i ∈ S in

wild : τi > T}|
|S in

wild|
≤ 8β1R

∗
in + ϵ(n,m)

T
, (25)

where ϵ′(n,m) = ϵ(n,m)/π +∆η
ζ ϵ(m)− ϵ(n)ϵ(n,m).

Step 6. If we set δ = 3/100, then it is easy to see that

ϵ(m) ≤ O(
1

π2
√
m
),

ϵ(n,m) ≤ O(β1M

√
d

n
) +O(β1M

√
d

(1− π)m
),

ϵ′(n,m) ≤ O(
β1M

π

√
d

n
) +O

(
(β1M

√
d+

√
1− π∆η

ζ/π)

√
1

π2(1− π)m

)
.

Step 7. By results in Steps 4, 5 and 6, We complete this proof.
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D.2 PROOF OF THEOREM 2

The first result is trivial. Hence, we omit it. We mainly focus on the second result in this theorem.
In this proof, then we set

η =
√
8β1R∗

in + 0.99π/(
√
0.98

√
8β1R∗

in +
√
8β1R∗

in + π)

Note that it is easy to check that

ζ ≥ 2.011
√
8β1R∗

in + 1.011
√
π ≥

√
8β1R∗

in + 1.011
√

8β1R∗
in + π.

Therefore,

ηζ ≥ 1√
0.98

√
8β1R∗

in + 0.99π >
√
8β1R∗

in + π,

which implies that ∆η
ζ > π. Note that

(1− η)ζ ≥ 1√
0.98

(√
0.98

√
8β1R∗

in +
√

8β1R∗
in + π −

√
8β1R∗

in + 0.99π
)
>

√
8β1R∗

in,

which implies that ∆ > 0. We have completed this proof.

D.3 PROOF OF THEOREM 3

Let
θ∗ ∈ argmin

θ∈Θ
RPin,Pout(θ).

Then by Lemma 1 and Lemma 14, we obtain that with the high probability

RPin,Pout(gθ̂T
)−RPin,Pout(gθ∗)

=RPin,Pout(gθ̂T
)−RS in,ST

(gθ̂T
) +RS in,ST

(gθ̂T
)−RS in,ST

(gθ∗)

+RS in,ST
(gθ∗)−RPin,Pout(gθ∗)

≤RPin,Pout(gθ̂T
)−RS in,ST

(gθ̂T
)

+RS in,ST
(gθ∗)−RPin,Pout(gθ∗)

≤2 sup
θ∈Θ

∣∣R+
S in(gθ)−R+

Pin
(gθ)

∣∣
+ sup

θ∈Θ

(
R−

Sout(gθ)−R−
Pout

(gθ)
)
+ sup

θ∈Θ

(
R−

Pout
(gθ)−R−

Sout(gθ)
)

≤ 3.5L

1− δ(T )
δ(T ) +

9(1− π)Lβ1

π(1− δ(T ))T
R∗

in

+O
(Lmax{β1M

√
d,
√
d′}(1 + T )

min{π,∆η
ζ}T

√
1

n

)
+O

(Lmax{β1M
√
d,
√
d′,∆η

ζ}(1 + T )

min{π,∆η
ζ}T

√
1

π2(1− π)m

)
,

D.4 PROOF OF THEOREM 4

The result is induced by the Steps 1, 3 and 6 in Proof of Theorem 1 (see section D.1).
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E NECESSARY LEMMAS, PROPOSITIONS AND THEOREMS

E.1 BOUNDEDNESS

Proposition 1. If Assumption 1 holds,

sup
w∈W

sup
(x,y)∈X×Y

∥∇ℓ(hw(x), y)∥2 ≤ β1r1 + b1 =
√

M ′/2,

sup
θ∈Θ

sup
(x,yb)∈X×Yb

∥∇ℓ(gθ(x), yb)∥2 ≤ β2r2 + b2.

sup
w∈W

sup
(x,y)∈X×Y

ℓ(hw(x), y) ≤ β1r
2
1 + b1r1 +B1 = M,

sup
θ∈Θ

sup
(x,yb)∈X×Yb

ℓb(gθ(x), yb) ≤ β2r
2
2 + b2r2 +B2 = L.

Proof. One can prove this by Mean Value Theorem of Integrals easily.

Proposition 2. If Assumption 1 holds, for any w ∈ W ,∥∥∇ℓ(hw(x), y)
∥∥2
2
≤ 2β1ℓ(hw(x), y).

Proof. The details of the self-bounding property can be found in Appendix B of Lei & Ying (2021).

Proposition 3. If Assumption 1 holds, for any labeled data S and distribution P,∥∥∇RS(hw)
∥∥2
2
≤ 2β1RS(hw), ∀w ∈ W,∥∥∇RP(hw)

∥∥2
2
≤ 2β1RP(hw), ∀w ∈ W.

Proof. Jensen’s inequality implies that RS(hw) and RP(hw) are β1-smooth. Then Proposition 2
implies the results.
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E.2 CONVERGENCE

Lemma 1 (Uniform Convergence-I). If Assumption 1 holds, then for any distribution P, with the
probability at least 1− δ > 0, for any w ∈ W ,

|RS(hw)−RP(hw)| ≤ M

√
2 log(2/δ)

n
+ C

√
Mr1(β1r1 + b1)d

n
,

where n = |S|, M = β1r
2
1 + b1r1 +B1, d is the dimension of W , and C is a uniform constant.

Proof of Lemma 1. Let

Xhw = E(x,y)∼Pℓ(hw(x), y)− E(x,y)∼Sℓ(hw(x), y).

Then it is clear that
ES∼PnXhw = 0.

By Proposition 2.6.1 and Lemma 2.6.8 in Vershynin (2018),

∥Xhw −Xhw′∥Φ2
≤ c0√

n
∥ℓ(hw(x), y)− ℓ(hw′(x), y)∥L∞(X×Y),

where ∥ · ∥Φ2
is the sub-gaussian norm and c0 is a uniform constant. Therefore, by Dudley’s entropy

integral (Vershynin, 2018), we have

ES∼Pn sup
w∈W

Xhw ≤ b0√
n

∫ +∞

0

√
logN (F , ϵ, L∞)dϵ,

where b0 is a uniform constant, F = {ℓ(hw;x, y) : w ∈ W}, and N (F , ϵ, L∞) is the covering
number under the L∞ norm. Note that

ES∼Pn sup
w∈W

Xhw ≤ b0√
n

∫ +∞

0

√
logN (F , ϵ, L∞)dϵ

=
b0√
n

∫ M

0

√
logN (F , ϵ, L∞)dϵ

=
b0√
n
M

∫ 1

0

√
logN (F ,Mϵ, L∞)dϵ.

Then, we use the McDiarmid’s Inequality, then with the probability at least 1 − e−t > 0, for any
w ∈ W ,

Xhw ≤ b0√
n
M

∫ 1

0

√
logN (F ,Mϵ, L∞)dϵ+M

√
2t

n
.

Similarly, we can also prove that with the probability at least 1− e−t > 0, for any w ∈ W ,

−Xhw ≤ b0√
n
M

∫ 1

0

√
logN (F ,Mϵ, L∞)dϵ+M

√
2t

n
.

Therefore, with the probability at least 1− 2e−t > 0, for any w ∈ W ,

|Xhw | ≤
b0√
n
M

∫ 1

0

√
logN (F ,Mϵ, L∞)dϵ+M

√
2t

n
.

Note that ℓ(hw(x), y) is (β1r1 + b1)-Lipschitz w.r.t. variables w under the ∥ · ∥2 norm. Then

N (F ,Mϵ, L∞) ≤N (W,Mϵ/(β1r1 + b1), ∥ · ∥2) ≤ (1 +
2r1(β1r1 + b1)

Mϵ
)d,

which implies that∫ 1

0

√
log(N (F ,Mϵ, L∞)dϵ ≤

√
d

∫ 1

0

√
log(1 +

2r1(β1r1 + b1)

Mϵ
)dϵ

≤
√
d

∫ 1

0

√
2r1(β1r1 + b1)

Mϵ
dϵ = 2

√
2r1d(β1r1 + b1)

M
.

We have completed this proof.
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Lemma 2 (Uniform Convergence-II). If Assumption 1 holds, then for any distribution P, with the
probability at least 1− δ > 0,∥∥∇RS(hw)−∇RP(hw)

∥∥
2
≤ B

√
2 log(2/δ)

n
+ C

√
M(r1 + 1)d

n
,

where n = |S|, d is the dimension of W , and C is a uniform constant.

Proof of Lemma 2. Denote ℓ(v,hw(x), y) = ⟨∇ℓ(hw(x), y),v⟩ by the loss function over param-
eter space W × {v = 1 : v ∈ Rd}. Let b is the upper bound of ℓ(v,hw(x), y). Using the same
techniques used in Lemma 1, we can prove that with the probability at least 1 − δ > 0, for any
w ∈ W and any unit vector v ∈ Rd,

⟨∇RS(hw)−∇RP(hw),v⟩ ≤ b

√
2 log(2/δ)

n
+ C

√
b(r1 + 1)β1d

n
,

which implies that

∥∥∇RS(hw)−∇RP(hw)
∥∥
2
≤ b

√
2 log(2/δ)

n
+ C

√
b(r1 + 1)β1d

n
.

Note that Proposition 1 implies that
bβ1 ≤ M.

Proposition 2 implies that
b ≤

√
2β1M.

We have completed this proof.

Lemma 3. Let S in
wild ⊂ Swild be the samples drawn from Pin. With the probability at least 1− δ > 0,

∣∣|S in
wild|/|Swild| − (1− π)

∣∣ ≤ √
log(2/δ)

2|Swild|
,

which implies that ∣∣|S in
wild| − (1− π)|Swild|

∣∣ ≤ √
log(2/δ)|Swild|

2
.

Proof of Lemma 3. Let Xi be the random variable corresponding to the case whether i-th data in
the wild data is drawn from Pin, i.e., Xi = 1, if i-th data is drawn from Pin; otherwise, Xi = 0.
Applying Hoeffding’s inequality, we can get that with the probability at least 1− δ > 0,

∣∣|S in
wild|/|Swild| − (1− π)

∣∣ ≤ √
log(2/δ)

2|Swild|
. (26)
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E.3 NECESSARY LEMMAS AND THEOREMS FOR THEOREM 1

Lemma 4. With the probability at least 1−δ > 0, the ERM optimizer wS is the minw∈W RP(hw)+
O(1/

√
n)-risk point, i.e.,

RS(hwS ) ≤ min
w∈W

RP(hw) +M

√
log(1/δ)

2n
,

where n = |S|.

Proof of Lemma 4. Let w∗ ∈ argminw∈W RP(hw). Applying Hoeffding’s inequality, we obtain
that with the probability at least 1− δ > 0,

RS(hwS )− min
w∈W

RP(hw) ≤ RS(hw∗)−RP(hw∗) ≤ M

√
log(1/δ)

2n
.

Lemma 5. If Assumptions 1 and 2 hold, then for any data S ∼ Pn and S ′ ∼ Pn′
, with the proba-

bility at least 1− δ > 0,

RS′(hwS ) ≤ min
w∈W

RP(hw) + C

√
Mr1(β1r1 + b1)d

n
+ C

√
Mr1(β1r1 + b1)d

n′

+ 2M

√
2 log(6/δ)

n
+M

√
2 log(6/δ)

n′ ,

RP(hwS , ĥ) ≤ RP(hwS ) ≤ min
w∈W

RP(hw) + C

√
Mr1(β1r1 + b1)d

n
+ 2M

√
2 log(6/δ)

n
,

where C is a uniform constant, and

RP(hwS , ĥ) = E(x,y)∼Pℓ(hwS (x), ĥ(x)).

Proof of Lemma 5. Let wS′ ∈ argminw∈W RS′(hw) and w∗ ∈ argminw∈W RP(hw∗). By
Lemma 1 and Hoeffding Inequality, we obtain that with the probability at least 1− δ > 0,

RS′(hwS )−RP(hw∗)

≤RS′(hwS )−RP(hwS ) +RP(hwS )−RS(hwS ) +RS(w
∗)−RP(w

∗)

≤C

√
Mr1(β1r1 + b1)d

n
+ C

√
Mr1(β1r1 + b1)d

n′ + 2M

√
2 log(6/δ)

n
+M

√
2 log(6/δ)

n′ ,

RP(hwS )−RP(hw∗) ≤RP(hwS )−RS(hwS ) +RS(w
∗)−RP(w

∗)

≤C

√
Mr1(β1r1 + b1)d

n
+ 2M

√
2 log(6/δ)

n
.

Lemma 6. If Assumptions 1 and 2 hold, then for any data S ∼ Pn and S ′ ∼ Pn′
, with the proba-

bility at least 1− 2δ > 0,

E(x,y)∼S′
∥∥∇ℓ(hwS (x), ĥ(x))−∇RS(hwS )

∥∥2
2
≤ 8β1 min

w∈W
RP(hw)

+C

√
Mr1(β1r1 + b1)d

n
+ C

√
Mr1(β1r1 + b1)d

n′

+3M

√
2 log(6/δ)

n
+M

√
2 log(6/δ)

n′ .

where C is a uniform constant.
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Proof of Lemma 6. By Propositions 2, 3 and Lemmas 4 and 5, with the probability at least 1−2δ >
0,

E(x,y)∼S′
∥∥∇ℓ(hwS (x), ĥ(x))−∇RS(hwS )

∥∥2
2

≤2E(x,y)∼S′
∥∥∇ℓ(hwS (x), ĥ(x))

∥∥2
2
+ 2

∥∥∇RS(hwS )
∥∥2
2

≤4β1

(
RS′(hwS , ĥ) +RS(hwS )

)
≤ 4β1

(
RS′(hwS ) +RS(hwS )

)
≤4β1

[
2 min
w∈W

RP(hw) + C

√
Mr1(β1r1 + b1)d

n
+ C

√
Mr1(β1r1 + b1)d

n′

+ 3M

√
2 log(6/δ)

n
+M

√
2 log(6/δ)

n′

]
.

Lemma 7. Let S in
wild ⊂ Swild be samples drawn from Pin. If Assumptions 1 and 2 hold, then for any

data Swild ∼ Pm
wild and S ∼ Pn

in, with the probability at least 1− 7
3δ > 0,

Ex∼S in
wild

∥∥∇ℓ(hwS (x), ĥ(x))−∇RS(hwS )
∥∥2
2
≤ 8β1 min

w∈W
RP(hw)

+4β1

[
C

√
Mr1(β1r1 + b1)d

n
+ C

√
Mr1(β1r1 + b1)d

(1− π)m−
√
m log(6/δ)/2

+ 3M

√
2 log(6/δ)

n
+M

√
2 log(6/δ)

(1− π)m−
√
m log(6/δ)/2

]
,

where C is a uniform constant.

Proof of Lemma 7. Lemma 3 and Lemma 6 imply this result.

Lemma 8. If Assumptions 1 and 2 hold, then for any data S ∼ Pn
in, with the probability at least

1− δ > 0,∥∥∇RS(hwS (x), ĥ(x))−∇RS(hwS )
∥∥2
2
≤ 8β1 min

w∈W
RP(hw) + 4M

√
log(1/δ)

2n
.

Proof of Lemma 8. With the probability at least 1− δ > 0,∥∥∇RS(hwS (x), ĥ(x))−∇RS(hwS )
∥∥
2

≤
∥∥∇RS(hwS (x), ĥ(x))

∥∥
2
+
∥∥∇RS(hwS )

∥∥
2

≤
√

2β1RS(hwS (x), ĥ(x)) +
√

2β1RS(hwS )

≤2

√
2β1( min

w∈W
RP(hw) +M

√
log(1/δ)

2n
).
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Theorem 5. If Assumptions 1 and 2 hold and there exists η ∈ (0, 1) such that ∆ = (1 − η)2ζ2 −
8β1 minw∈W RPin(hw) > 0, when

n = Ω
(M̃ +M(r1 + 1)d

∆η2
+

M2d

(γ −R∗
in)

2

)
, m = Ω

(M̃ +M(r1 + 1)d

η2ζ2
)
,

with the probability at least 97/100,

Ex̃i∼Swildτi >
98η2ζ2

100
.

Proof of Theorem 5. Claim 1. With the probability at least 1− 2δ > 0, for any w ∈ W ,

dℓw(Pin,Pwild)− dℓw(S in
X ,Swild) ≤ B

√
2 log(2/δ)

n
+B

√
2 log(2/δ)

m

+ C

√
M(r1 + 1)d

n
+ C

√
M(r1 + 1)d

m
,

where B =
√
2β1M , S in

X is the feature part of S in and C is a uniform constant.

We prove this Claim: by Lemma 2, it is notable that with the probability at least 1− 2δ > 0,

dℓw(Pin,Pwild)− dℓw(S in
X ,Swild)

≤
∥∥∇RPin(hw, ĥ)−∇RPwild(hw, ĥ)

∥∥
2
−

∥∥∇RS in
X
(hw, ĥ)−∇RSwild(hw, ĥ)

∥∥
2

≤
∥∥∇RPin(hw, ĥ)−∇RPwild(hw, ĥ)−∇RS in

X
(hw, ĥ) +∇RSwild(hw, ĥ)

∥∥
2

≤
∥∥∇RPin(hw, ĥ)−∇RS in

X
(hw, ĥ)

∥∥
2
+

∥∥∇RPwild(hw, ĥ)−∇RSwild(hw, ĥ)
∥∥
2

≤B

√
2 log(2/δ)

n
+B

√
2 log(2/δ)

m
+ C

√
B(r1 + 1)β1d

n
+ C

√
B(r1 + 1)β1d

m

≤B

√
2 log(2/δ)

n
+B

√
2 log(2/δ)

m
+ C

√
M(r1 + 1)d

n
+ C

√
M(r1 + 1)d

m
.

Claim 2. When

√
n = Ω

(M√
d+M

√
log(6/δ)

γ −minw∈W RPin(hw)

)
, (27)

with the probability at least 1− 4δ > 0,

Ex̃i∼Swildτi ≥
(
ζ −B

√
2 log(2/δ)

n
−B

√
2 log(2/δ)

m

−C

√
M(r1 + 1)d

n
− C

√
M(r1 + 1)d

m
− 2

√
2β1( min

w∈W
RP(hw) +M

√
log(1/δ)

2n
)
)2

.

We prove this Claim: let v∗ be the top-1 right singular vector computed in our algorithm, and

ṽ ∈ argmax
∥v∥≤1

〈
E(xi,yi)∼S in∇ℓ(hwSin (xi), yi)− Ex̃i∈Swild∇ℓ(hwSin (x̃i), ĥ(x̃i)),v

〉
.
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Then with the probability at least 1− 4δ > 0,

Ex̃i∼Swildτi

= Ex̃i∼Swild

(〈
∇ℓ(hwSin (x̃i), ĥ(x̃i))− E(xj ,yj)∼S in∇ℓ(hwSin (xj), yj),v

∗
〉)2

≥ Ex̃i∼Swild

(〈
∇ℓ(hwSin (x̃i), ĥ(x̃i))− E(xj ,yj)∼S in∇ℓ(hwSin (xj), yj), ṽ

〉)2

≥
(〈

E(xj ,yj)∼S in∇ℓ(hwSin (xj), yj)− Ex̃i∼Swild∇ℓ(hwSin (x̃i), ĥ(x̃i)), ṽ
〉)2

=
∥∥E(xj ,yj)∼S in∇ℓ(hwSin (xj), yj)− Ex̃i∼Swild∇ℓ(hwSin (x̃i), ĥ(x̃i))

∥∥2
2

≥
(
dℓwSin

(S in
X ,Swild)

−
∥∥E(xj ,yj)∼S in∇ℓ(hwSin (xj), yj)− E(xj ,yj)∼S in∇ℓ(hwSin (xj), ĥ(xj))

∥∥
2

)2
≥

(
ζ −B

√
2 log(2/δ)

n
−B

√
2 log(2/δ)

m

−C

√
M(r1 + 1)d

n
− C

√
M(r1 + 1)d

m
− 2

√
2β1( min

w∈W
RP(hw) +M

√
log(1/δ)

2n
)
)2

.

In above inequality, we have used the results in Claim 1, Assumption 2, Lemma 5 and Lemma 8.

Claim 3. Given δ = 1/100, then when

n = Ω
(M̃ +M(r1 + 1)d

∆η2
)
, m = Ω

(M̃ +M(r1 + 1)d

η2ζ2
)
,

the following inequality holds:(
ζ −B

√
2 log(2/δ)

n
−B

√
2 log(2/δ)

m
− C

√
M(r1 + 1)d

n
− C

√
M(r1 + 1)d

m

−2

√
2β1( min

w∈W
RP(hw) +M

√
log(1/δ)

2n
)
)2

>
98η2θ2

100
.

We prove this Claim: when

n ≥
64

√
log(10)β1M

∆
,

it is easy to check that

(1− η)ζ ≥ 2

√
2β1( min

w∈W
RP(hw) +M

√
log(1/δ)

2n
).

Additionally, when

n ≥ 2002 log 200B2

η2ζ2
+

2002C2M(r1 + 1)d

2η2ζ2
,

it is easy to check that
ηζ

100
≥ B

√
2 log(200)

n
+ C

√
M(r1 + 1)d

n
.

Because

max{200
2 log 200B2

η2ζ2
+

2002C2M(r1 + 1)d

2η2ζ2
,
64
√

log(10)β1M

∆
} ≤ O

(M̃ +M(r1 + 1)d

∆η2
)
,

we conclude that when

n = Ω
(M̃ +M(r1 + 1)d

∆η2
)
,
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η−2

√
2β1( min

w∈W
RP(hw) +M

√
log(1/δ)

2n
)−B

√
2 log(200)

n
+C

√
M(r1 + 1)d

n
≥ 99

100
ηζ. (28)

When

m ≥ 2002 log 200B2

η2ζ2
+

2002C2M(r1 + 1)d

2η2ζ2
,

we have
ηζ

100
≥ B

√
2 log(200)

m
+ C

√
M(r1 + 1)d

m
.

Therefore, if

m = Ω
(M̃ +M(r1 + 1)d

η2ζ2
)
,

we have
ηζ

100
≥ B

√
2 log(200)

m
+ C

√
M(r1 + 1)d

m
. (29)

Combining inequalities 27, 28 and 29, we complete this proof.

E.4 NECESSARY LEMMAS FOR THEOREM 3

Let
R−

ST
(gθ) = Ex∼ST

ℓb(gθ(x), y−), R
−
Sout

wild
(gθ) = Ex∼Sout

wild
ℓb(gθ(x), y−),

R+
S in(gθ) = Ex∼S inℓb(gθ(x), y+), R

+
Pin
(gθ) = Ex∼S inℓb(gθ(x), y+),

and
R−

Pout
(gθ) = Ex∼S inℓb(gθ(x), y−).

Let

Sout
+ = {x̃i ∈ Sout

wild : x̃i ≤ T}, S in
− = {x̃i ∈ S in

wild : x̃i > T},
Sout
− = {x̃i ∈ Sout

wild : x̃i > T}, S in
+ = {x̃i ∈ S in

wild : x̃i ≤ T}.
Then

ST = Sout
− ∪ S in

−, Sout
wild = Sout

− ∪ Sout
+ .

Let

∆(n,m) =
1−min{1,∆η

ζ/π}
1− T/M ′ +O

( β1M
√
d

1− T/M ′

√
1

π2n

)
+O

(β1M
√
d+

√
1− π∆η

ζ/π

1− T/M ′

√
1

π2(1− π)m

)
.

δ(n,m) =
8β1R

∗
in

T
+O

(β1M
√
d

T

√
1

n

)
+O

(β1M
√
d

T

√
1

m

)
.

Lemma 9. Under the conditions of Theorem 1, with the probability at least 9/10,

|ST | ≤ |S in
−|+ |Sout

wild| ≤ δ(n,m)|S in
wild|+ |Sout

wild|,

|ST | ≥ |Sout
− | ≥

[
1−∆(n,m)

]
|Sout

wild|.
|Sout

+ | ≤ ∆(n,m)|Sout
wild|.
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Proof of Lemma 9. It is a conclusion of Theorem 1.

Lemma 10. Under the conditions of Theorem 1, with the probability at least 9/10,

−δ(n,m)|S in
wild|

[δ(n,m)|S in
wild|+ |Sout

wild|]|Sout
wild|

≤ 1

|ST |
− 1

|Sout
wild|

≤ ∆(n,m)

[1−∆(n,m)]|Sout
wild|

.

Proof of Lemma 10. This can be conclude by Lemma 9 directly.

Lemma 11. Under the conditions of Theorem 1, with the probability at least 9/10,

R−
ST

(gθ)−R−
Sout

wild
(gθ) ≤

L∆(n,m)

[1−∆(n,m)]
+

Lδ(n,m)

[1−∆(n,m)]
·
(1− π

π
+O

(√ 1

π4m

))
,

R−
Sout

wild
(gθ)−R−

ST
(gθ) ≤

L∆(n,m)

[1−∆(n,m)]
+ L∆(n,m).

Proof of Lemma 11. It is clear that

R−
ST

(gθ)−R−
Sout

wild
(gθ) =

|Sout
− |

|ST |
R−

Sout
−
(gθ) +

|S in
−|

|ST |
R−

S in
−
(gθ)

−
|Sout

− |
|Sout

wild|
R−

Sout
−
(gθ)−

|Sout
+ |

|Sout
wild|

R−
Sout
+
(gθ)

≤ L∆(n,m)

[1−∆(n,m)]
+

Lδ(n,m)|S in
wild|

[1−∆(n,m)]|Sout
wild]

≤ L∆(n,m)

[1−∆(n,m)]
+

Lδ(n,m)

[1−∆(n,m)]
·
(1− π

π
+O

(√ 1

π4m

))
.

R−
Sout

wild
(gθ)−R−

ST
(gθ) =−

|Sout
− |

|ST |
R−

Sout
−
(gθ)−

|S in
−|

|ST |
R−

S in
−
(gθ)

+
|Sout

− |
|Sout

wild|
R−

Sout
−
(gθ) +

|Sout
+ |

|Sout
wild|

R−
Sout
+
(gθ)

≤ L∆(n,m)

[1−∆(n,m)]
+ L∆(n,m).

Lemma 12. Let ∆(T ) = 1− δ(T ). Under the conditions of Theorem 1, for any η′ > 0, when

n = Ω
( M̃2d

η′2π2(1− T/M ′)2∆(T )2

)
, m = Ω

( M̃2dπ2 +∆η
ζ (1− π)

η′2π4(1− π)(1− T/M ′)2∆(T )2

)
,

with the probability at least 9/10,

R−
ST

(gθ)−R−
Sout

wild
(gθ) ≤

L∆(n,m)

(1− η′)∆(T )
+

Lδ(n,m)
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Proof of Lemma 12. This can be concluded by Lemma 11 and by the fact that (1 − η′)∆(T ) ≥
1−∆(n,m) directly.

Lemma 13. Let ∆(T ) = 1− δ(T ). Under the conditions of Theorem 1, when

n = Ω
( M̃2d

min{π,∆η
ζ}2

)
, m = Ω

( M̃2d+∆η
ζ

π2(1− π)min{π,∆η
ζ}2

)
,

with the probability at least 9/10, for any 0 < T < 0.9M ′ min{1,∆η
ζ/π},
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ST
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wild
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Proof of Lemma 13. Using Lemma 13 with η = 8/9, we obtain that

R−
ST

(gθ)−R−
Sout
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Using the condition that 0 < T < 0.9M ′ min{1,∆η
ζ/π}, we have
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Then, we obtain that
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Using the similar strategy, we can obtain that
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Lemma 14. Under the conditions of Theorem 1, when
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)
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Proof. By Lemmas 1 and 3, under the condition of this lemma, we can obtain that with the high
probability, ∣∣R−

Pout
(gθ)−R−

Sout
wild
(gθ)

∣∣ ≤ O
(
L

√
d′

πm

)
.

Then by Lemma 13, we can prove this lemma.

F EMPIRICAL VERIFICATION ON THE MAIN THEOREMS

Verification on the regulatory conditions. In Table 5, we provide empirical verification on whether
the distribution discrepancy ζ satisfies the necessary regulatory condition in Theorem 2, i.e., ζ ≥
2.011

√
8β1R∗

in + 1.011
√
π. We use CIFAR-100 as ID and TEXTURES as the wild OOD data.

Since R∗
in is the optimal ID risk, i.e., R∗

in = minw∈W E(x,y)∼PXY ℓ(hw(x), y), it can be a small
value close to 0 in over-parametrized neural networks (Frei et al., 2022; Bartlett et al., 2020). There-
fore, we can omit the value of 2.011

√
8β1R∗

in. The empirical result shows that ζ can easily satisfy
the regulatory condition in Theorem 2, which means our bound is useful in practice.

Table 5: Discrepancy value ζ with different ratios π.

π 0.05 0.1 0.2 0.5 0.7 0.9 1.0
ζ 0.91 1.09 1.43 2.49 3.16 3.86 4.18

1.011
√
π 0.23 0.32 0.45 0.71 0.84 0.96 1.01

Verification on the filtering errors and OOD detection results with varying π. In Table 6, we
empirically verify the value of ERRout and ERRin in Theorem 1 and the corresponding OOD
detection results with various mixing ratios π. We use CIFAR-100 as ID and TEXTURES as the wild
OOD data. The result aligns well with our observation of the bounds presented in Section 4.1 of the
main paper.

G ADDITIONAL EXPERIMENTAL DETAILS

Dataset details. For Table 1, following WOODS (Katz-Samuels et al., 2022), we split the data
as follows: We use 70% of the OOD datasets (including TEXTURES, PLACES365, LSUN-RESIZE
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Table 6: The values of ERRin, ERRout and the OOD detection results with various mixing ratios π.

π 0.05 0.1 0.2 0.5 0.7 0.9 1.0
ERRout 0.37 0.30 0.22 0.20 0.23 0.26 0.29
ERRin 0.031 0.037 0.045 0.047 0.047 0.048 0.048
FPR95 5.77 5.73 5.71 5.64 5.79 5.88 5.92

and LSUN-C) for the OOD data in the wild. We use the remaining samples for testing-time OOD
detection. For SVHN, we use the training set for the OOD data in the wild and use the test set for
evaluation.

Training details. Following WOODS (Katz-Samuels et al., 2022), we use Wide ResNet (Zagoruyko
& Komodakis, 2016) with 40 layers and widen factor of 2 for the classification model hw. We train
the ID classifier hw using stochastic gradient descent with a momentum of 0.9, weight decay of
0.0005, and an initial learning rate of 0.1. We train for 100 epochs using cosine learning rate decay,
a batch size of 128, and a dropout rate of 0.3. For the OOD classifier gθ, we load the pre-trained ID
classifier of hw and add an additional linear layer which takes in the penultimate-layer features for
binary classification. We set the initial learning rate to 0.001 and fine-tune for 100 epochs by Eq. 8.
We add the binary classification loss to the ID classification loss and set the loss weight for binary
classification to 10. The other details are kept the same as training hw.

H ADDITIONAL RESULTS ON CIFAR-10

In Table 7, we compare our SAL with baselines with the ID data to be CIFAR-10, where the strong
performance of SAL still holds.

Table 7: OOD detection performance on CIFAR-10 as ID. All methods are trained on Wide ResNet-40-2
for 100 epochs with π = 0.1. For each dataset, we create corresponding wild mixture distribution Pwild :=
(1 − π)Pin + πPout for training and test on the corresponding OOD dataset. Values are percentages averaged
over 10 runs. Bold numbers highlight the best results. Table format credit to (Katz-Samuels et al., 2022).

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
With Pin only

MSP 48.49 91.89 59.48 88.20 30.80 95.65 52.15 91.37 59.28 88.50 50.04 91.12 94.84
ODIN 33.35 91.96 57.40 84.49 15.52 97.04 26.62 94.57 49.12 84.97 36.40 90.61 94.84

Mahalanobis 12.89 97.62 68.57 84.61 39.22 94.15 42.62 93.23 15.00 97.33 35.66 93.34 94.84
Energy 35.59 90.96 40.14 89.89 8.26 98.35 27.58 94.24 52.79 85.22 32.87 91.73 94.84
KNN 24.53 95.96 25.29 95.69 25.55 95.26 27.57 94.71 50.90 89.14 30.77 94.15 94.84
ReAct 40.76 89.57 41.44 90.44 14.38 97.21 33.63 93.58 53.63 86.59 36.77 91.48 94.84
DICE 35.44 89.65 46.83 86.69 6.32 98.68 28.93 93.56 53.62 82.20 34.23 90.16 94.84
ASH 6.51 98.65 48.45 88.34 0.90 99.73 4.96 98.92 24.34 95.09 17.03 96.15 94.84
CSI 17.30 97.40 34.95 93.64 1.95 99.55 12.15 98.01 20.45 95.93 17.36 96.91 94.17

KNN+ 2.99 99.41 24.69 94.84 2.95 99.39 11.22 97.98 9.65 98.37 10.30 97.99 93.19
With Pin and Pwild

OE 0.85 99.82 23.47 94.62 1.84 99.65 0.33 99.93 10.42 98.01 7.38 98.41 94.07
Energy (w/ OE) 4.95 98.92 17.26 95.84 1.93 99.49 5.04 98.83 13.43 96.69 8.52 97.95 94.81

WOODS 0.15 99.97 12.49 97.00 0.22 99.94 0.03 99.99 5.95 98.79 3.77 99.14 94.84
SAL 0.02 99.98 2.57 99.24 0.07 99.99 0.01 99.99 0.90 99.74 0.71 99.78 93.65

(Ours) ±0.00 ±0.00 ±0.03 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.02 ±0.01 ±0.01 ±0.00 ±0.57

I ADDITIONAL RESULTS ON UNSEEN OOD DATASETS

In Table 8, we evaluate SAL on unseen OOD datasets, which are different from the OOD data we
use in the wild. Here we consistently use 300K RANDOM IMAGES as the unlabeled wild dataset
and CIFAR-10 as labeled in-distribution data. We use the 5 different OOD datasets (TEXTURES,
PLACES365, LSUN-RESIZE, SVHN and LSUN-C) for evaluation. When evaluating on 300K RAN-
DOM IMAGES, we use 99% of the 300K RANDOM IMAGES dataset (Hendrycks et al., 2019) as the
wild OOD data and the remaining 1% of the dataset for evaluation. π is set to 0.1. We observe that
SAL can perform competitively on unseen datasets as well, compared to the most relevant baseline
WOODS.
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Table 8: Evaluation on unseen OOD datasets. We use CIFAR-10 as ID and 300K RANDOM IMAGES as the
wild data. All methods are trained on Wide ResNet-40-2 for 50 epochs. Bold numbers highlight the best results.

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES 300K RAND. IMG.

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

OE 13.18 97.34 30.54 93.31 5.87 98.86 14.32 97.44 25.69 94.35 30.69 92.80 94.21
Energy (w/ OE) 8.52 98.13 23.74 94.26 2.78 99.38 9.05 98.13 22.32 94.72 24.59 93.99 94.54

WOODS 5.70 98.54 19.14 95.74 1.31 99.66 4.13 99.01 17.92 96.43 19.82 95.52 94.74
SAL 4.94 97.53 14.76 96.25 2.73 98.23 3.46 98.15 11.60 97.21 10.20 97.23 93.48

Following (He et al., 2023), we use the CIFAR-100 as ID, Tiny ImageNet-crop (TINc)/Tiny
ImageNet-resize (TINr) dataset as the OOD in the wild dataset and TINr/TINc as the test OOD.
The comparison with baselines is shown below, where the strong performance of SAL still holds.

Table 9: Additional results on unseen OOD datasets with CIFAR-100 as ID. Bold numbers are superior results.

Methods

OOD Datasets

TINR TINC

FPR95 AUROC FPR95 AUROC

STEP 72.31 74.59 48.68 91.14
TSL 57.52 82.29 29.48 94.62

SAL (Ours) 43.11 89.17 19.30 96.29

J ADDITIONAL RESULTS ON NEAR OOD DETECTION

In this section, we investigate the performance of SAL on near OOD detection, which is a more chal-
lenging OOD detection scenario where the OOD data has a closer distribution to the in-distribution.
Specifically, we use the CIFAR-10 as the in-distribution data and CIFAR-100 training set as the
OOD data in the wild. During test time, we use the test set of CIFAR-100 as the OOD for evalua-
tion. With a mixing ratio π of 0.1, our SAL achieves an FPR95 of 24.51% and AUROC of 95.55%
compared to 38.92% (FPR95) and 93.27% (AUROC) of WOODS.

In addition, we study near OOD detection in a different data setting, i.e., the first 50 classes of
CIFAR-100 as ID and the last 50 classes as OOD. The comparison with the most competitive base-
line WOODS is reported as follows.

Table 10: Near OOD detection with the first 50 classes of CIFAR-100 as ID and the last 50 classes as OOD.
Bold numbers are superior results.

Methods
OOD dataset

CIFAR-50
FPR95 AUROC ID ACC

WOODS 41.28 89.74 74.17
SAL 29.71 93.13 73.86

K ADDITIONAL RESULTS ON USING MULTIPLE SINGULAR VECTORS

In this section, we ablate on the effect of using c singular vectors to calculate the filtering score
(Eq. 6). Specifically, we calculate the scores by projecting the gradient ∇ℓ(hwSin

(
x̃i), ŷx̃i

) − ∇̄
for the wild data x̃i to each of the singular vectors. The final filtering score is the average over the
c scores. The result is summarized in Table 11. We observe that using the top 1 singular vector
for projection achieves the best performance. As revealed in Eq. 7, the top 1 singular vector v
maximizes the total distance from the projected gradients (onto the direction of v) to the origin
(sum over all points in Swild), where outliers lie approximately close to and thus leads to a better
separability between the ID and OOD in the wild.
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Table 11: The effect of the number of singular vectors used for the filtering score. Models are trained on Wide
ResNet-40-2 for 100 epochs with π = 0.1. We use TEXTURES as the wild OOD data and CIFAR-100 as the
ID.

Number of singular vectors c FPR95 AUROC
1 5.73 98.65
2 6.28 98.42
3 6.93 98.43
4 7.07 98.37
5 7.43 98.27
6 7.78 98.22

L ADDITIONAL RESULTS ON CLASS-AGNOSTIC SVD

In this section, we evaluate our SAL by using class-agnostic SVD as opposed to class-conditional
SVD as described in Section 3.1 of the main paper. Specifically, we maintain a class-conditional
reference gradient ∇̄k, one for each class k ∈ [1,K], estimated on ID samples belonging to class
k. Different from calculating the singular vectors based on gradient matrix with Gk (containing
gradient vectors of wild samples being predicted as class k), we formulate a single gradient matrix
G where each row is the vector ∇ℓ(hwSin

(
x̃i), ŷx̃i)− ∇̄ŷx̃i

, for x̃i ∈ Swild. The result is shown in
Table 12, which shows a similar performance compared with using class-conditional SVD.

Table 12: The effect of using class-agnostic SVD. Models are trained on Wide ResNet-40-2 for 100 epochs
with π = 0.1. CIFAR-100 is the in-distribution data. Bold numbers are superior results.

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

SAL (Class-agnostic SVD) 0.12 99.43 3.27 99.21 0.04 99.92 0.03 99.27 5.18 98.77 1.73 99.32 73.31
SAL 0.07 99.95 3.53 99.06 0.06 99.94 0.02 99.95 5.73 98.65 1.88 99.51 73.71

M ADDITIONAL RESULTS ON POST-HOC FILTERING SCORE

We investigate the importance of training the binary classifier with the filtered candidate outliers for
OOD detection in Tables 13 and 14. Specifically, we calculate our filtering score directly for the test
ID and OOD data on the model trained on the labeled ID set S in only. The results are shown in the
row ”SAL (Post-hoc)” in Tables 13 and 14. Without explicit knowledge of the OOD data, the OOD
detection performance degrades significantly compared to training an additional binary classifier (a
15.73% drop on FPR95 for SVHN with CIFAR-10 as ID). However, the post-hoc filtering score can
still outperform most of the baselines that use Pin only (c.f. Table 1), showcasing its effectiveness.

Table 13: OOD detection results of using post-hoc filtering score on CIFAR-10 as ID. SAL is trained on Wide
ResNet-40-2 for 100 epochs with π = 0.1. Bold numbers are superior results.

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

SAL (Post-hoc) 15.75 93.09 23.18 86.35 6.28 96.72 15.59 89.83 23.63 87.72 16.89 90.74 94.84
SAL 0.02 99.98 2.57 99.24 0.07 99.99 0.01 99.99 0.90 99.74 0.71 99.78 93.65

Table 14: OOD detection results of using post-hoc filtering score on CIFAR-100 as ID. SAL is trained on
Wide ResNet-40-2 for 100 epochs with π = 0.1. Bold numbers are superior results.

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

SAL (post-hoc) 39.75 81.47 35.94 84.53 23.22 90.90 32.59 87.12 36.38 83.25 33.58 85.45 75.96
SAL 0.07 99.95 3.53 99.06 0.06 99.94 0.02 99.95 5.73 98.65 1.88 99.51 73.71
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N ADDITIONAL RESULTS ON LEVERAGING THE CANDIDATE ID DATA

In this section, we investigate the effect of incorporating the filtered wild data which has a score
smaller than the threshold T (candidate ID data) for training the binary classifier gθ. Specifically,
the candidate ID data and the labeled ID data are used jointly to train the binary classifier. The
comparison with SAL on CIFAR-100 is shown as follows:
Table 15: OOD detection results of selecting candidate ID data for training on CIFAR-100 as ID. SAL is
trained on Wide ResNet-40-2 for 100 epochs with π = 0.1. Bold numbers are superior results.

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Candidate ID data 1.23 99.87 2.62 99.18 0.04 99.95 0.02 99.91 4.71 98.97 1.72 99.58 73.83
SAL (Ours) 0.07 99.95 3.53 99.06 0.06 99.94 0.02 99.95 5.73 98.65 1.88 99.51 73.71

The result of selecting candidate ID data (and combine with labeled ID data) shows slightly better
performance, which echoes our theory that the generalization bound of the OOD detector will be
better if we have more ID training data (Theorem 3).

O ANALYSIS ON USING RANDOM LABELS

We present the OOD detection result of replacing the predicted labels with the random labels for the
wild data as follows. The other experimental details are kept the same as SAL.

Table 16: OOD detection results of using random labels for the wild data on CIFAR-100 as ID. SAL is trained
on Wide ResNet-40-2 for 100 epochs with π = 0.1. Bold numbers are superior results.

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

w/ Random labels 39.36 89.31 77.98 78.31 47.46 88.90 67.28 80.23 54.86 86.92 57.39 84.73 73.68
SAL (Ours) 0.07 99.95 3.53 99.06 0.06 99.94 0.02 99.95 5.73 98.65 1.88 99.51 73.71

As we can observe, using the random labels leads to worse OOD detection performance because the
gradient of the wild data can be wrong. In our theoretical analysis (Theorem 5), we have proved that
using the predicted label can lead to a good separation of the wild ID and OOD data. However, the
analysis using random labels might hold since it violates the assumption (Definitions 2 and 3) that
the expected gradient of ID data should be different from that of wild data.

P DETAILS OF THE ILLUSTRATIVE EXPERIMENTS ON THE IMPACT OF
PREDICTED LABELS

For calculating the filtering accuracy, SAL is trained on Wide ResNet-40-2 for 100 epochs with
π = 0.1 on two separate ID datasets. The other training details are kept the same as Section 5.1 and
Appendix G.

Q DETAILS OF FIGURE 2

For Figure 2 in the main paper, we generate the in-distribution data from three multivariate Gaus-
sian distributions, forming three classes. The mean vectors are set to [−2, 0], [2, 0] and [0, 2

√
3],

respectively. The covariance matrix for all three classes is set to
[

0.25 0
0 0.25

]
. For each class,

we generate 1, 000 samples.

For wild scenario 1, we generate the outlier data in the wild by sampling 100, 000 data points from
a multivariate Gaussian N ([0, 2√

3
], 7 · I) where I is 2 × 2 identity matrix, and only keep the 1, 000

data points that have the largest distance to the mean vector [0, 2√
3
]. For wild scenario 2, we
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generate the outlier data in the wild by sampling 1, 000 data points from a multivariate Gaussian
N ([10, 2√

3
], 0.25 · I). For the in-distribution data in the wild, we sample 3, 000 data points per class

from the same three multivariate Gaussian distributions as mentioned before.

R SOFTWARE AND HARDWARE

We run all experiments with Python 3.8.5 and PyTorch 1.13.1, using NVIDIA GeForce RTX 2080Ti
GPUs.

S RESULTS WITH VARYING MIXING RATIOS

We provide additional results of SAL with varying π, i.e., 0.05, 0.2, 0.5, 0.9, and contrast with the
baselines, which are shown below (CIFAR-100 as the in-distribution dataset). We found that the
advantage of SAL still holds.

Table 17: OOD detection results with multiple mixing ratios π with CIFAR-100 as ID. SAL is trained on
Wide ResNet-40-2 for 100 epochs. Bold numbers are superior results.

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

π = 0.05
OE 2.78 98.84 63.63 80.22 6.73 98.37 2.06 99.19 32.86 90.88 71.98

Energy w/ OE 2.02 99.17 56.18 83.33 4.32 98.42 3.96 99.29 40.41 89.80 73.45
WOODS 0.26 99.89 32.71 90.01 0.64 99.77 0.79 99.10 12.26 94.48 74.15

SAL (Ours) 0.17 99.90 6.21 96.87 0.94 99.79 0.84 99.37 5.77 97.12 73.99
π = 0.2

OE 2.59 98.90 55.68 84.36 4.91 99.02 1.97 99.37 25.62 93.65 73.72
Energy w/ OE 1.79 99.25 47.28 86.78 4.18 99.00 3.15 99.35 36.80 91.48 73.91

WOODS 0.22 99.82 29.78 91.28 0.52 99.79 0.89 99.56 10.06 95.23 73.49
SAL (Ours) 0.08 99.92 2.80 99.31 0.05 99.94 0.02 99.97 5.71 98.71 73.86

π = 0.5
OE 2.86 99.05 40.21 88.75 4.13 99.05 1.25 99.38 22.86 94.63 73.38

Energy w/ OE 2.71 99.34 34.82 90.05 3.27 99.18 2.54 99.23 30.16 94.76 72.76
WOODS 0.17 99.80 21.87 93.73 0.48 99.61 1.24 99.54 9.95 95.97 73.91

SAL (Ours) 0.02 99.98 1.27 99.62 0.04 99.96 0.01 99.99 5.64 99.16 73.77
π = 0.9

OE 0.84 99.36 19.78 96.29 1.64 99.57 0.51 99.75 12.74 94.95 72.02
Energy w/ OE 0.97 99.64 17.52 96.53 1.36 99.73 0.94 99.59 14.01 95.73 73.62

WOODS 0.05 99.98 11.34 95.83 0.07 99.99 0.03 99.99 6.72 98.73 73.86
SAL (Ours) 0.03 99.99 2.79 99.89 0.05 99.99 0.01 99.99 5.88 99.53 74.01

T COMPARISON WITH WEAKLY SUPERVISED OOD DETECTION BASELINES

We have additionally compared with the two related works (TSL (He et al., 2023) and STEP (Zhou
et al., 2021)). To ensure a fair comparison, we strictly follow the experimental setting in TSL, and
rerun SAL under the identical setup. The comparison on CIFAR-100 is shown as follows.

Table 18: Comparison with relevant baselines on CIFAR-100. Bold numbers are superior results.

Methods

OOD Datasets

LSUN-C LSUN-RESIZE

FPR95 AUROC FPR95 AUROC

STEP 0.00 99.99 9.81 97.87
TSL 0.00 100.00 1.76 99.57

SAL (Ours) 0.00 99.99 0.58 99.95
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U ADDITIONAL RESULTS ON DIFFERENT BACKBONES

We have additionally tried ResNet-18 and ResNet-34 as the network architectures—which are
among the most used in OOD detection literature. The comparison with the baselines on CIFAR-
100 is shown in the following tables, where SAL outperforms all the baselines across different
architectures. These additional results support the effectiveness of our approach.

Table 19: OOD detection performance on CIFAR-100 as ID. All methods are trained on ResNet-18 for 100
epochs. For each dataset, we create corresponding wild mixture distribution Pwild = (1 − π)Pin + πPout for
training and test on the corresponding OOD dataset. Bold numbers highlight the best results.

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
With Pin only

MSP 81.32 77.74 83.06 74.47 70.11 83.51 82.46 75.73 85.11 73.36 80.41 76.96 78.67
ODIN 40.94 93.29 87.71 71.46 28.72 94.51 79.61 82.13 83.63 72.37 64.12 82.75 78.67

Mahalanobis 22.44 95.67 92.66 61.39 68.90 86.30 23.07 94.20 62.39 79.39 53.89 83.39 78.67
Energy 81.74 84.56 82.23 76.68 34.78 93.93 73.57 82.99 85.87 74.94 71.64 82.62 78.67
KNN 83.62 72.76 82.09 80.03 65.96 84.82 71.05 81.24 76.88 77.90 75.92 79.35 78.67
ReAct 70.81 88.24 81.33 76.49 39.99 92.51 54.47 89.56 59.15 87.96 61.15 86.95 78.67
DICE 54.65 88.84 79.58 77.26 0.93 99.74 49.40 91.04 65.04 76.42 49.92 86.66 78.67
CSI 49.98 89.57 82.87 75.64 76.39 80.38 74.21 83.34 58.23 81.04 68.33 81.99 74.23

KNN+ 43.21 90.21 84.62 74.21 50.12 82.48 76.92 80.81 63.21 84.91 63.61 82.52 77.03
With Pin and Pwild

OE 3.29 97.93 62.90 80.23 7.07 95.93 4.06 97.98 33.27 90.03 22.12 92.42 74.89
Energy (w/ OE) 3.12 94.27 59.38 82.19 9.12 91.23 7.28 95.39 43.92 90.11 24.56 90.64 77.92

WOODS 3.92 96.92 33.92 86.29 5.19 94.23 2.95 96.23 11.95 94.65 11.59 93.66 77.54
SAL 2.29 97.96 6.29 96.66 3.92 97.81 4.87 97.10 8.28 95.95 5.13 97.10 77.71

Table 20: OOD detection performance on CIFAR-100 as ID. All methods are trained on ResNet-34 for 100
epochs. For each dataset, we create corresponding wild mixture distribution Pwild = (1 − π)Pin + πPout for
training and test on the corresponding OOD dataset. Bold numbers highlight the best results.

Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN-C LSUN-RESIZE TEXTURES Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
With Pin only

MSP 78.89 79.80 84.38 74.21 83.47 75.28 84.61 74.51 86.51 72.53 83.12 75.27 79.04
ODIN 70.16 84.88 82.16 75.19 76.36 80.10 79.54 79.16 85.28 75.23 78.70 79.11 79.04

Mahalanobis 87.09 80.62 84.63 73.89 84.15 79.43 83.18 78.83 61.72 84.87 80.15 79.53 79.04
Energy 66.91 85.25 81.41 76.37 59.77 86.69 66.52 84.49 79.01 79.96 70.72 82.55 79.04
KNN 81.12 73.65 79.62 78.21 63.29 85.56 73.92 79.77 73.29 80.35 74.25 79.51 79.04
ReAct 82.85 70.12 81.75 76.25 80.70 83.03 67.40 83.28 74.60 81.61 77.46 78.86 79.04
DICE 83.55 72.49 85.05 75.92 94.05 73.59 75.20 80.90 79.80 77.83 83.53 76.15 79.04
CSI 44.53 92.65 79.08 76.27 75.58 83.78 76.62 84.98 61.61 86.47 67.48 84.83 77.89

KNN+ 39.23 92.78 80.74 77.58 48.99 89.30 74.99 82.69 57.15 88.35 60.22 86.14 78.32
With Pin and Pwild

OE 2.11 98.23 60.12 83.22 6.08 96.34 3.94 98.13 30.00 92.27 20.45 93.64 75.72
Energy (w/ OE) 1.94 95.03 68.84 85.94 7.66 92.04 6.86 97.63 40.82 93.07 25.22 92.74 78.75

WOODS 2.08 97.33 25.37 88.93 4.26 97.74 1.05 97.30 8.85 96.86 8.32 95.63 78.97
SAL 0.98 99.94 2.98 99.08 0.07 99.94 0.03 99.96 4.01 98.83 1.61 99.55 78.01

V BROADER IMPACT

Our project aims to improve the reliability and safety of modern machine learning models. From
the theoretical perspective, our analysis can facilitate and deepen the understanding of the effect of
unlabeled wild data for OOD detection. In Appendix F, we properly verify the necessary condi-
tions and the value of our error bound using real-world datasets. Hence, we believe our theoretical
framework has a broad utility and significance.

From the practical side, our study can lead to direct benefits and societal impacts, particularly when
the wild data is abundant in the models’ operating environment, such as in safety-critical applications
i.e., autonomous driving and healthcare data analysis. Our study does not involve any human sub-
jects or violation of legal compliance. We do not anticipate any potentially harmful consequences to
our work. Through our study and releasing our code, we hope to raise stronger research and societal
awareness towards the problem of exploring unlabeled wild data for out-of-distribution detection in
real-world settings.
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