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Abstract

Most frame-based learned video codecs can be interpreted
as recurrent neural networks (RNNs) propagating reference
information along the temporal dimension. This work revis-
its the limitations of the current approaches from an RNN
perspective. The output-recurrence methods, which prop-
agate decoded frames, are intuitive but impose dual con-
straints on the output decoded frames, leading to subopti-
mal rate-distortion performance. In contrast, the hidden-
to-hidden connection approaches, which propagate latent
features within the RNN, offer greater flexibility but re-
quire large buffer sizes. To address these issues, we pro-
pose HyTIP, a learned video coding framework that com-
bines both mechanisms. Our hybrid buffering strategy
uses explicit decoded frames and a small number of im-
plicit latent features to achieve competitive coding perfor-
mance. Experimental results show that our HyTIP outper-
forms the sole use of either output-recurrence or hidden-
to-hidden approaches. Furthermore, it achieves compara-
ble performance to state-of-the-art methods but with a much
smaller buffer size, and outperforms VTM 17.0 (Low-delay
B) in terms of PSNR-RGB and MS-SSIM-RGB. The source
code of HyTIP is available at https://github.com/NYCU-
MAPL/HyTIP.

1. Introduction

Most modern learned video coding schemes bear an in-
terpretation of implementing a recurrent neural network
(RNN) along the temporal dimension. The encoding of an
input video is usually performed frame-by-frame, with a
shared model, composed of an encoder and a decoder, em-
ployed at each time step to convert an input video frame into
its frame latents as the encoder output and to reconstruct the
input frame approximately as the decoder output. The pro-
cess involves leveraging the past information in the form of
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Figure 1. Comparison of different temporal information propaga-
tion mechanisms in learned video compression.

decoded frames and/or their latent features to encode the re-
sulting frame latents in a rate-distortion-optimized manner.
As with an RNN, the frame-by-frame coding and model
weight sharing across time steps are essential for coding
variable-length video sequences.

Based on how temporal information is propagated
through the RNN, these learned video codecs can be
broadly categorized into two major approaches that fea-
ture either the output-recurrence [3, 5, 6, 8, 9, 13–19, 24,
25, 27, 28] or the hidden-to-hidden connection [21, 22, 35–
37]. As depicted in Fig. 1 (a), the former approach, which
adopts the output-recurrence connection, follows the same
coding architecture as traditional video codecs [7, 41, 46],
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where the previously decoded frame is explicitly buffered
as a reference frame to encode the next frame. However,
RNNs with only the output-recurrence connection face the
challenge that the model output must closely resemble the
ground truth, i.e. the input frame in the present context,
while being a sufficient summary of the useful informa-
tion from the past. This dual requirement leads to a com-
promise between preserving the past temporal information
sufficiently and approximating the input frame accurately,
thereby suboptimal rate-distortion performance.

To address the limitations of the output-recurrence de-
sign, the second approach aggregates temporal information
by a hidden-to-hidden connection [21, 22, 31, 35–37, 47].
Instead of storing the previously decoded frame, it propa-
gates the latent features in the RNN across time steps (see
Fig. 1 (b)). In particular, the extraction and propagation of
latent features are completely learned. As a result, there is
little control over what information is stored, rendering the
buffer’s content non-explainable. To distinguish between
these two buffering strategies, we refer to the buffer that
stores latent features as the implicit buffer, in contrast to
the explicit buffer that stores the previously decoded frame
for the output-recurrence connection. Note that these tem-
porally propagated features are not specifically constrained
to approximate any input frame, although the output frame
decoded from these features must closely resemble the in-
put frame. In other words, these latent features may buffer
more information from the past than is needed to reconstruct
the current input frame. This design allows for more flexi-
ble temporal modeling, potentially leading to better coding
efficiency. Many state-of-the-art neural video codecs be-
long to this category. Although some of them additionally
buffer the previously decoded frame for motion estimation,
the buffered frame is not directly involved as contextual in-
formation for inter-frame coding.

Methods adopting an implicit buffering strategy usually
come at the cost of substantial memory requirements. For
example, some [21, 22, 35–37] require the storage of at least
48 high-resolution feature maps that are of the same spatial
resolution as the input frame. Generally, storing more con-
textual information from the past helps to improve coding
efficiency. But, the data-driven nature often results in non-
compact features being stored.

Recognizing the issues inherent in solely using either
the output-recurrence or hidden-to-hidden connection, we
propose a learned video compression framework termed
HyTIP. It combines both the output-recurrence and hidden-
to-hidden connections to harness the advantages of both
approaches. Theoretically, RNNs that integrate both con-
nection types are the most powerful in terms of expressiv-
ity [12]. As depicted in Fig. 1 (c), we propagate the pre-
viously decoded frame as explicit information along with
only a small number of implicit latent features. Our hy-

Table 1. Taxonomy of learned video compression works based on
RNN type and the nature of buffered temporal information.

RNN Type Buffer for
Inter-frame Coding Publications

Output-recurrence Explicit
[3, 5, 6, 8, 9, 13–19]

[24, 25, 27, 28]
[34, 40, 43, 45]

Hidden-to-hidden Implicit [21, 22, 31, 35–37, 47]

Output-recurrence
+ Hidden-to-hidden Hybrid [11, 49]

brid buffering strategy leverages the prior knowledge that
the previously decoded frame typically has the highest cor-
relation with the current input frame to reduce the reliance
on implicit features. By doing so, we store only a few la-
tent features to complement the previously decoded frame.
Compared to the purely implicit buffering scheme, our hy-
brid approach significantly reduces the buffer size while
achieving similar coding performance. Moreover, com-
pared to the explicit buffering scheme, it is able to propagate
the past information that is complementary to the previously
decoded frame. Our hybrid buffering strategy is validated in
a masked conditional residual coding framework [9].

In summary, our main contributions are as follows:
• To the best of our knowledge, this work is an early attempt

to revisit the temporal information propagation mech-
anisms in learned video compression through an RNN
perspective, analyzing their performance and buffer size
trade-offs under a unified base codec.

• This work presents the first masked conditional residual
coding framework that adopts a hybrid buffering strategy.
This strategy propagates both implicit and explicit tem-
poral information for motion and inter-frame coding.

• Experimental results demonstrate that our HyTIP
achieves comparable coding performance to the state-of-
the-art methods, but requires only 14% of their buffer
size. Additionally, it outperforms VTM (Low-delay B)
in terms of PSNR-RGB and MS-SSIM-RGB.

• Our simple yet efficient hybrid buffering scheme is easily
extendable to other learned video codecs.

2. Related Work

2.1. Frame-based Learned Video Coding as RNN
Most learned video codecs that encode an input video
frame-by-frame with an IPPP prediction structure can be
thought of as a form of RNN. In RNN terminology, they
propagate temporal information through either the output-
recurrence or hidden-to-hidden connection. The former uti-
lizes an explicit buffer to store and propagate the decoded
signals from the past, such as decoded frames and/or flow
maps, while the latter employs an implicit buffer for main-
taining learned latent features. Table 1 presents a taxonomy



of the modern learned video codecs according to how they
buffer and propagate temporal information.
Explicit Buffering Strategies: Under the IPPP prediction
structure, many learned video codecs [3, 5, 6, 8, 9, 13–
19, 24, 25, 27, 28, 34, 40, 43, 45] explicitly buffer the pre-
viously decoded frame(s) for inter-frame coding. Most ap-
proaches [3, 5, 6, 8, 9, 14, 15, 18, 19, 25, 27, 28, 34, 40, 43,
45] keeps only one previously decoded frame for motion es-
timation and inter-frame prediction because it usually corre-
lates most strongly with the current input frame. However,
some methods [24] buffer multiple decoded frames and flow
maps to construct a better temporal predictor. Similar pre-
dictive coding is also found in motion coding. For example,
[13, 17, 24] implement predictive motion coding based on
decoded frames or flow maps. While [25, 26, 34, 40, 43, 45]
propagate implicit features as a temporal prior for probabil-
ity distribution modeling in entropy coding, these features
are not directly used to generate the decoded frame. There-
fore, we consider these approaches to primarily propagate
contextual information in a output-recurrence manner. As
discussed previously and from the perspective of the RNN
structure, the dual role required of the decoded frame (or
flow map) in the output-recurrence paradigm leads to sub-
optimal rate-distortion performance.
Implicit Buffering Strategies: In contrast to buffering de-
coded frames for inter-frame coding, [35] buffers high-
resolution, 64-channel latent features extracted from the
inter-frame codec as contextual information for coding the
next frame. In their work, when the number of feature maps
stored is reduced from 64 to 9, a 2.5% BD-rate drop is ob-
served [35]. Most follow-up works thus maintained large
buffer sizes. For example, [21, 22] use 48+ channels. Along
this line of research, some recent studies [36, 37] further in-
crease the buffer size by introducing additional ConvLSTM
layers [39] to propagate long-term, high-resolution tempo-
ral information, in addition to the existing 64-channel la-
tent features. In [21, 22], the implicit buffering strategy
is applied to both inter-frame and motion coding. While
these methods achieve state-of-the-art coding results, their
reliance on implicitly learned temporal information leads to
the storage of non-compact latent features.
Hybrid Buffering Strategies: There have also been at-
tempts [11, 49] to combine the output-recurrence and
hidden-to-hidden connections with a hybrid buffering strat-
egy. All these works explicitly buffer the previously de-
coded frame to construct a temporal predictor for inter-
frame coding. Additionally, [11] introduces a Conv-
GRU [38] in the decoder to learn and propagate latent fea-
tures for motion and inter-frame coding, while [49] use
ConvLSTM layers [39] in both the encoder and the de-
coder by the same token. In comparison to these works,
our HyTIP adopts a hybrid buffering strategy for both mo-
tion and inter-frame coding in a conditional residual coding

framework. Notably, this work presents an in-depth study to
shed light on the interactions between implicit and explicit
buffers and their rate-distortion-complexity trade-offs.

2.2. Learned Video Coding Frameworks
There are three mainstream approaches to incorporating
temporal information for inter-frame coding: (1) residual
coding, (2) conditional coding, and (3) conditional resid-
ual coding. Early learned video codecs [3, 11, 15, 16, 24–
28, 34, 49] predominantly follow the notion of residual cod-
ing. Similar to traditional codecs, it encodes the frame dif-
ference xt−xc between the input frame xt and its temporal
predictor xc generated from the propagated temporal infor-
mation. Rather than employing xc linearly, conditional cod-
ing [13, 14, 17–22, 31, 33, 35–37, 40, 42, 45, 47] encodes
xt by using xc as a condition signal for both the encoder
and decoder, allowing xc to be utilized in a non-linear fash-
ion for temporal prediction. This approach has been widely
adopted by state-of-the-art learned video codecs. How-
ever, conditional coding could potentially suffer from the
bottleneck issue [5, 6], resulting in worse coding perfor-
mance than residual coding. This is most obvious when the
prediction path that traverses from xc to the decoder out-
put is lossy and the temporal prediction is nearly perfect,
i.e. xc ≈ xt. To alleviate the bottleneck issue, Brand et
al. [6] propose conditional residual coding, which encodes
the prediction residue xt−xc with a conditional inter-frame
codec. In both lossless and lossy coding scenarios, condi-
tional residual coding is shown to be at least as effective as
conditional coding. However, this conclusion is valid under
the assumption that the temporal predictor has good quality
and the entropy of the residue xt − xc is lower than that of
the input frame xt. Recognizing that these assumptions can
be violated in regions with unreliable motion estimates or
dis-occlusion, Chen et al. [9] propose masked conditional
residual coding, where a soft mask is used to switch be-
tween conditional coding and conditional residual coding at
pixel level. This work validates the hybrid buffering strat-
egy in a masked conditional residual coding framework for
its better coding efficiency. However, we stress that it is
equally applicable to the other coding frameworks.

3. Hybrid Temporal Information Propagation

3.1. System Overview
Fig. 2 illustrates our HyTIP framework. It is a frame-based
temporal predictive coding framework. (1) First, the motion
estimation module (in green) performs motion estimation
between an input frame xt and its reference frame x̂t−1 to
obtain an optical flow map ft. (2) Second, the motion cod-
ing modules (in purple) encode ft as f̂t. (3) Third, the de-
coded optical flow map f̂t and the propagated temporal in-
formation in the buffer are used to generate temporal predic-
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Figure 2. System overview of our proposed HyTIP. The architectures of the temporal context mining module in the inter-frame coding,
the inter-frame codec {Genc, Gdec}, and the motion codec {F enc, F dec} are adapted from [22], while the mask generator follows the
architecture of [9]. Further architectural details are provided in the supplementary material.

tors for xt to assist in inter-frame coding (the blue modules).
The process involves the pixel-domain predictor xc and the
multi-scale feature-domain predictors {C1, C2, C3}. (4) Fi-
nally, the temporal information is buffered and propagated
for coding the next input frame.

This frame-by-frame processing, along with the prop-
agation of useful information to the next frame, can be
viewed as an RNN operating along the temporal dimen-
sion. Based on how the buffered temporal information
is used to generate temporal predictors, the mainstream
inter-frame coding can be broadly classified into two ma-
jor approaches, which implement the output-recurrence and
hidden-to-hidden connections, respectively. The output-
recurrence methods typically store the previous decoded
frame x̂t−1 in an explicit buffer as the reference tempo-
ral information. On the other hand, the hidden-to-hidden
methods buffer the latent features (i.e. Ft−1) from the cod-
ing process for the previous frame xt−1 in an implicit
buffer. In this work, we integrate both the output-recurrence
and hidden-to-hidden mechanisms within a unified coding
framework and study the trade-offs between the coding per-
formance and buffer size. In Fig. 2, we use a 3×3 convolu-
tional layer to adjust the channel size of the latent features
stored in the implicit buffer. Additionally we explore how
various buffering strategies for motion coding impact the
rate-distortion-complexity trade-offs.

Our inter-frame codec adheres to the masked condi-
tional residual coding framework [9]. The input signal
to the conditional inter-frame codec is xt − m ⊙ xc,
where the multi-scale feature-domain temporal predictors
{C1, C2, C3} serves as condition signals. Here, ⊙ denotes

element-wise multiplication, and m is a pixel-wise soft
mask generated using the decoded flow map f̂t−1 and the
pixel-domain temporal predictor xc. The values of m range
from 0 to 1, with all three channels of m sharing the same
mask value. Since the input signal xt − m ⊙ xc is equiv-
alent to (1 − m) ⊙ xt + m ⊙ (xt − xc), our inter-frame
codec forms a hybrid of conditional coding and conditional
residual coding. Notably, we adapt the CNN-based network
structure from [22], instead of using the Transformer-based
coding backbone from [9]. More details are provided in the
supplementary document.

3.2. Inter-frame Coding with Hybrid Buffering
Our HyTIP employs a hybrid buffering strategy that dedi-
cates a hybrid buffer to storing both the previously decoded
frame x̂t−1 and the latent features Ft−1 for temporal pre-
diction. As depicted in Fig. 2, these references are motion
compensated with the decoded flow map f̂t, generating the
pixel-domain temporal predictor xc and the multi-scale fea-
tures {C1, C2, C3}. The predictor xc forms a masked tem-
poral prediction of the input frame xt, with the prediction
residues passed through the contextual encoder Genc and
decoder Gdec. Both Genc and Gdec are conditioned on the
same signals {C1, C2, C3}.

In our scheme, the previously decoded frame x̂t−1 serves
as the primary, but not the sole, source of temporal informa-
tion for generating the temporal predictor and condition sig-
nals. The additional latent features Ft−1 provide comple-
mentary information to enhance coding efficiency. When
viewed as a form of RNN, our inter-frame codec features
both the output-recurrence and hidden-to-hidden connec-



tions. It avoids the dual constraint issue, which requires
x̂t−1 to be a good approximation of xt−1 while carrying
sufficient information from the past to encode xt. Com-
pared to the schemes that rely solely on the hidden-to-
hidden connection, where Ft−1 is the sole source of tempo-
ral information and is learned completely from data, our hy-
brid buffer leverages the prior knowledge that the previously
decoded frame x̂t−1 correlates highly with the current input
frame xt to reduce the reliance on the latent features Ft−1,
thereby reducing the size of the implicit buffer. The net ef-
fect is a significant reduction in buffer size while maintain-
ing comparable or even better coding efficiency. It is worth
noting that most hidden-to-hidden-only methods inevitably
buffer x̂t−1 for motion estimation, in order to propagate the
latent features along the temporal dimension. However, the
generation of their coded latents for xt does not direct use
x̂t−1. This design feature is in direct contrast to our scheme.

3.3. Motion Coding with Hybrid Buffering
Following the same hybrid buffering strategy as our inter-
frame coding, we extend this idea to motion coding, the
task of which is to encode optical flow maps. Unlike video
frames, which typically contain many high-frequency de-
tails, optical flow maps are generally smoother signals along
the spatial dimension, with mostly low-frequency compo-
nents. Oftentimes, the optical flow evolves slowly over time
in typical video sequences. Therefore, we buffer and prop-
agate the decoded flow map f̂t−1 as an explicit temporal
reference, and also the latent features F f

t−1 of the motion
coding process for ft−1 as an implicit temporal reference.
It is worth noting that these temporal references are used
for coding ft without motion compensation. In a manner
similar to [21, 22], the latent features F f

t−1 are stored at
one-fourth of the input resolution in both width and height.
However, unlike [21, 22], which adopts a hidden-to-hidden
connection approach by buffering only F f

t−1, our method
adopts a hybrid buffering strategy that stores both f̂t−1 and
F f
t−1 as temporal references.

4. Experiments
4.1. Experimental Setup
Training details: We train our models with 5-frame train-
ing first on the Vimeo-90K dataset [48], consisting of
91,701 7-frame sequences, and fine-tune our models with
10-frame training on BVI-DVC [29], consisting of 800 64-
frame sequences. To optimize our variable-rate model for
PSNR-RGB, the hyperparameter λ, which balances rate and
distortion in the objective function, is randomly sampled
from [227, 2032]. Similarly, for the model optimized for
MS-SSIM, λ is sampled from [7, 46]. Additional training
details are provided in the supplementary material.
Evaluation Methodologies: We evaluate our method on

the UVG [32], MCL-JCV [44], and HEVC Class B-E [4],
and HEVC-RGB [10] datasets. Following the common
test protocol for learned video coding, we convert the test
sequences from YUV420 to RGB444 using BT.601. For
BT.709, which is only used by DCVC-DC and DCVC-FM,
we report the results in the supplementary materials. For
each test sequence, the first 96 frames are encoded, and
the intra period is set to 32. To ensure a fair comparison
and avoid padding, the width and height of all video frames
are cropped to multiples of 64. Intra coding is applied at
scene cuts for all the competing methods. We report PSNR
and MS-SSIM in the RGB domain and birate in bit-per-
pixel (bpp). Following the common test protocol for learned
video codecs, the dataset BD-rate is reported; in comput-
ing the BD-rate, a dataset-specific rate-distortion point is
computed by averaging the per-frame PSNR-RGB (or MS-
SSIM-RGB) and bits-per-pixel across all coded frames in
the dataset. Positive and negative BD-rate numbers indicate
rate inflation and reduction, respectively.

4.2. Experimental Results

This section compares our hybrid buffering strategy with
the single use of the explicit or implicit strategy. For a fair
assessment, we implement these buffering strategies with
the same coding framework (Fig. 2). Moreover, we align
the buffer size for the hybrid and implicit strategies. As an
example, if the hybrid variant keeps one previously decoded
frame (3 channels) and two latent feature maps, then the im-
plicit variant maintains five latent feature maps. To reduce
the training time required for extensive experiments, we
disable the hierarchical quality structure [22], the channel
transform module [9], the checkerboard context model [23]
in the inter-frame codec, and the variable-rate modules, as
opposed to the full model used in Section 4.3. More archi-
tectural details are provided in the supplementary material.

Explicit, Implicit, and Hybrid Buffering: Table 2 com-
pares the coding performance of adopting various buffering
strategies for motion and inter-frame coding. For this exper-
iment, we train the competing methods on 5-frame training
sequences in Vimeo-90K only. From Table 2, we make the
following observations:

(1) Robustness of propagating latent features with a
large buffer: As expected, both the hybrid and implicit vari-
ants with a large buffer size outperform the explicit one in
both motion and inter-frame coding, as they can propagate a
larger number of latent feature maps, using more effectively
temporal information.

(2) Sensitivity of implicit buffering to buffer size reduc-
tion: The coding performance of the implicit buffering
strategy, when applied to motion or inter-frame coding, de-
creases significantly with reduced buffer size. With the im-
plicit strategy, the model solely relies on learning, in order



Table 2. BD-rate (%) comparison of different buffering strategies with different buffer sizes. The anchor employs explicit buffering in both
motion and inter-frame coding. The values in parentheses indicate the number of full-resolution feature maps buffered for coding one input
flow map or frame (explicit + implicit). One flow map and one RGB frame are equivalent to two and three full-resolution feature maps,
respectively. For clarity, buffer sizes for entropy coding are excluded here, in contrast to Section 4.3.

Motion Inter UVG MCL-JCV HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB Average

Explicit (2+0) Explicit (3+0) 0 0 0 0 0 0 0 0

Implicit (0+4) Explicit (3+0) -11.5 -9.5 -12.6 -18.6 -12.6 -11.9 -8.8 -12.2
Implicit (0+2.125) Explicit (3+0) -6.5 -3.8 -6.2 -10.4 -6.7 -8.6 -3.0 -6.5

Hybrid (2+4) Explicit (3+0) -15.1 -13.2 -15.4 -23.8 -19.9 -15.8 -9.1 -16.0
Hybrid (2+0.125) Explicit (3+0) -13.0 -11.2 -14.1 -19.1 -16.3 -18.1 -11.0 -14.7

Hybrid (2+0.125) Implicit (0+51) -12.6 -15.5 -20.1 -30.2 -27.8 -20.6 -10.5 -19.6
Hybrid (2+0.125) Implicit (0+5) -9.2 -13.0 -14.9 -24.6 -21.4 -14.6 -7.4 -15.0

Hybrid (2+0.125) Hybrid (3+48) -17.3 -16.3 -21.0 -30.3 -27.3 -25.7 -15.1 -21.9
Hybrid (2+0.125) Hybrid (3+2) -17.6 -15.9 -20.3 -29.1 -25.9 -26.6 -14.8 -21.5

Table 3. BD-rate (%) comparison of longer sequence training impact on three buffering strategies for inter-frame coding. The anchor is the
variant employing explicit buffering in both motion and inter-frame coding. The values in parentheses, as in Table 2, indicate the number
of full-resolution feature maps buffered for coding one input flow map or frame (explicit + implicit).

Motion Inter # Frame UVG MCL-JCV HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB Average

Hybrid (2+0.125) Explicit (3+0) 5 -13.0 -11.2 -14.1 -19.1 -16.3 -18.1 -11.0 -14.7
10 -19.9 -16.3 -16.1 -20.9 -18.4 -20.2 -13.2 -17.9

Hybrid (2+0.125) Implicit (0+5) 5 -9.2 -13.0 -14.9 -24.6 -21.4 -14.6 -7.4 -15.0
10 -21.4 -22.0 -21.0 -30.2 -25.2 -13.2 -12.6 -20.8

Hybrid (2+0.125) Hybrid (2+3) 5 -17.6 -15.9 -20.3 -29.1 -25.9 -26.7 -14.8 -21.5
10 -25.4 -21.7 -25.1 -34.5 -30.6 -29.1 -20.3 -26.7
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Figure 3. Per-sequence BD-rate results of the inter-frame codec
using hybrid versus implicit buffering (anchor) on the HEVC Class
B-E datasets, both under the small buffer setting in Table 2. Re-
sults are ordered by sequence temporal complexity [30].

to extract useful temporal information. It is challenging to
train a model that is capable of extracting both useful and
compact temporal features.

(3) Resilience of hybrid buffering to buffer size reduc-
tion: In contrast, our hybrid buffering strategy with small
buffer size performs comparable to the large buffer size
variant, with a reduced buffer size for latent features in ei-
ther motion or inter-frame codec. Unlike the implicit strat-
egy, our hybrid strategy relies heavily on the previously de-
coded frame as the primary source for temporal prediction.
The latent features play a secondary role in complement-
ing the previously decoded frame, which generally has the
highest correlation with the current input frame.

(4) Superiority of hybrid buffering with a small buffer:
Compared to the explicit strategy, our hybrid strategy with
a small buffer size achieves notable gains in both motion

Table 4. Complexity comparison of encoding/decoding MACs and
model size across buffering strategies. The values in parentheses,
as in Table 2, indicate the number of full-resolution feature maps
buffered for coding one input flow map or frame (explicit + im-
plicit).

Motion Inter Model
Size (M)

Enc. / Dec.
kMACs/pixel

Explicit (2+0) Explicit (3+0) 13.712 1277 / 858

Implicit (0+4) Explicit (3+0) 13.358 1268 / 849
Implicit (2+0.125) Explicit (3+0) 13.323 1266 / 847

Hybrid (2+4) Explicit (3+0) 13.877 1284 / 865
Hybrid (2+0.125) Explicit (3+0) 13.805 1280 / 861

Hybrid (2+0.125) Implicit (0+51) 14.918 1303 / 884
Hybrid (2+0.125) Implicit (0+5) 14.891 1281 / 862

Hybrid (2+0.125) Hybrid (3+48) 14.917 1302 / 883
Hybrid (2+0.125) Hybrid (2+3) 14.890 1280 / 861

and inter-frame coding (14.7% and additional 6.8% BD-
rate savings, respectively). It is to be noted that the hybrid
buffering uses a slightly larger buffer size for motion and
inter-frame coding (2 additional feature maps of one-fourth
the input spatial resolution, which is equivalent to 0.125
channel of the input resolution feature, for motion coding,
and likewise, 2 additional feature maps of the input resolu-
tion for inter-frame coding). The explicit strategy underper-
forms due mainly to the dual constraint issue (see Fig. 1),
where the decoded frame must meet two requirements: (1)
closely approximating the input frame and (2) serving as a



Table 5. BD-rate (%) comparison between HyTIP and the state-of-the-art methods in terms of PSNR-RGB. The anchor is VTM 17.0.

UVG MCL-JCV HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB Average

VTM 17.0 [2] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM 16.25 [1] 26.3 36.8 31.8 29.8 29.6 32.5 34.0 31.5
MaskCRT [9] -10.1 7.4 2.7 21.6 -6.4 17.1 -3.4 4.1
DCVC-TCM [35] 16.1 27.4 29.3 59.8 18.8 61.3 24.3 33.9
DCVC-HEM [20] -19.2 -8.5 -4.4 14.9 -15.0 2.5 -11.0 -5.8
DCVC-DC [21] -29.9 -21.4 -16.5 -9.4 -30.3 -28.1 -29.7 -23.6
DCVC-FM [22] -23.9 -13.4 -10.9 -5.4 -26.9 -29.2 -19.7 -18.5
HyTIP (Ours) -32.2 -15.7 -19.6 -12.0 -32.4 -18.6 -24.5 -22.1

Table 6. BD-rate (%) comparison between HyTIP and the state-of-the-art methods in terms of MS-SSIM-RGB. The anchor is VTM 17.0.

UVG MCL-JCV HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB Average

VTM [2] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM [1] 20.2 30.2 27.4 27.8 29.0 28.8 27.2 27.2
MaskCRT [9] -27.0 -36.5 -44.9 -34.1 -48.5 -39.3 -42.9 -39.0
DCVC-TCM [35] -12.1 -25.3 -31.3 -21.6 -38.8 -29.9 -25.9 -26.4
DCVC-HEM [20] -31.5 -45.0 -50.6 -43.3 -57.5 -55.7 -45.6 -47.0
DCVC-DC [21] -37.3 -50.9 -56.8 -54.4 -64.9 -66.0 -55.8 -55.2
HyTIP (Ours) -42.8 -53.4 -59.7 -54.8 -64.4 -64.0 -57.8 -56.7

sufficient summary of past information for propagation. In
comparison, the implicit strategy with a small buffer size
shows some improvement over the explicit one (6.5% and
additional 0.3% BD-rate savings, respectively). However,
its gain is not as significant as that of our hybrid approach
due to its purely learning-based nature, which fails to take
advantage of the prior knowledge that the previously de-
coded frame correlates highly with the current input frame.

Fig. 3 further presents the per-sequence BD-rate savings
of hybrid buffering strategy to the implicit buffering strat-
egy. As shown, the hybrid strategy has greater gains than
the implicit strategy in sequences with lower temporal com-
plexity. This is likely because the hybrid strategy allows the
model to directly use the previous decoded frame, which
typically has the highest correlation with the current frame.

Training with longer sequences: Generally, training with
longer sequences can enhance the learning of RNNs by
allowing them to capture long-term dependencies. Ta-
ble 3 analyzes the impact of long-sequence training on the
three buffering strategies in the context of inter-frame cod-
ing. Specifically, we fine-tune each initial codec, originally
trained on Vimeo-90K [48] with 5-frame sequences, using
BVI-DVC [29] with 10-frame sequences. From Table 3,
all three approaches benefit from long-sequence training.
However, the explicit buffering strategy achieves a perfor-
mance gain of only 3.2%, which is lower than the 5.8%
and 5.2% gains observed in the implicit and hybrid buffer-
ing strategies, respectively. This discrepancy arises from
the dual constraint on the output frame in explicit buffer-
ing. In contrast, the implicit and hybrid buffering strategies,
which propagate implicit features without such constraints,
are better able to leverage long-sequence training.

Complexity comparison: Table 4 presents the complexity
comparison of various buffering strategies in terms of the

model size, kilo-multiply-accumulate operations per pixel
(kMACs/pixel), and buffer size. As reported in Table 2,
our hybrid scheme has the best coding performance un-
der a similar buffer size, while Table 4 further confirms
that its model size and MAC are comparable to the other
schemes. The implicit and hybrid buffering strategies intro-
duce only two minor structural modifications compared to
the explicit buffering strategy: (1) an additional CNN to ad-
just the channel size of the buffered implicit features in the
motion and inter-frame codecs and (2) a slight change to the
first-layer convolution in temporal context mining (or tem-
poral motion mining) for generating inter-frame (or motion)
temporal predictors (see Fig. 2). As a result, the increase
in the model size and encoding/decoding kMAC/pixel is
negligible. Although our hybrid buffering strategy with a
small buffer size requires storing additionally 0.125 and 2
channels of full-resolution implicit features for motion and
inter-frame coding, respectively, compared to the explicit
buffering strategy, it still requires significantly fewer chan-
nels than the 48+ implicit features used in state-of-the-art
methods [20–22, 35]. To put things into context, traditional
codecs typically buffer four reference frames.

4.3. Comparison with the State-of-the-Arts

This section compares our method with state-of-the-art tra-
ditional codecs and learned P-frame codecs, in terms of
rate-distortion performance. The traditional codecs include
HM 16.25 [1] and VTM 17.0 [2] under the low-delay-B
configuration. Following [21], both HM and VTM are con-
figured to encode the input video in YUV444 as the in-
ternal color space. This setting is shown to achieve bet-
ter coding results than using YUV420 when the final dis-
tortion is measured in the RGB domain. The learned P-
frame codecs include DCVC-TCM [35], DCVC-HEM [20],
DCVC-DC [21], and DCVC-FM [22], which adopt the im-



Table 7. Complexity comparison between HyTIP and the state-of-
the-art learned P-frame codecs. Buffer size represents the number
of full-resolution feature maps that need to be buffered for coding
one input frame.

Methods Model
Size (M)

Enc. / Dec.
kMACs/pixel

Buffer
Size

DCVC-TCM [35] 10.709 1406 / 917 67
DCVC-HEM [20] 17.523 1662 / 1243 67.625
DCVC-DC [21] 19.779 1343 / 918 55.75
DCVC-FM [22] 18.336 1137 / 871 55.75
MaskCRT [9] 31.152 1401 / 763 13
HyTIP (Ours) 16.593 1293 / 873 7.875

plicit buffering strategy, as well as MaskCRT [9], which em-
ploys the explicit buffering strategy.

Tables 5 and 6 present the coding performance of the
competing methods in terms of PSNR and MS-SSIM, re-
spectively. As shown, our HyTIP achieves comparable
coding performance to the state-of-the-art method DCVC-
DC [21], except on HEVC-E, which is a special dataset
that consists of video conferencing-type sequences with
static backgrounds. Aside from DCVC-DC, HyTIP outper-
forms the other methods, including traditional codecs HM
16.25 [1] and VTM 17.0 [2].

It is important to note that the training procedure signif-
icantly impacts the coding performance of a neural video
codec. Since the state-of-the-art DCVC-DC [21] and
DCVC-FM [22] have not released their training details, we
are unable to reproduce their results for a fair compari-
son. The results shown here are obtained with their publicly
available test models. However, this work adopts the train-
ing procedure from [9], which is different from those for
DCVC-DC [21] and DCVC-FM [22]. Consequently, even
though our HyTIP achieves performance similar to DCVC-
DC [21] or slightly worse on HEVC-E, this does not imply
that our hybrid buffering strategy is ineffective. According
to the experiments in Section 4.2, there is still potential to
combine their approaches with ours to achieve further gains.

Table 7 compares the complexity of the competing meth-
ods in terms of the model size, kMACs/pixel, and buffer
size. Fig. 4 reports how these methods trade off between
complexity and BD-rate. As shown, HyTIP requires the
smallest buffer size among all the competing methods, uti-
lizing only 14% of the buffer size required by works using
the implicit buffering strategy, such as DCVC-TCM [35],
DCVC-HEM [20], DCVC-DC [21], and DCVC-FM [22].
Additionally, the decoding kMAC/pixel of HyTIP is com-
parable to DCVC-FM [22] and slightly lower than DCVC-
DC [21]. Note that buffer size reflects the amount of
data that must be fetched at each time step for encod-
ing/decoding a video frame. Typically, the buffer stores pre-
viously decoded frames and/or features for temporal predic-
tion resides in off-chip memory. A larger buffer size in this
context requires fetching more data from off-chip memory,

Figure 4. Comparison of complexity-performance trade-offs be-
tween HyTIP and the state-of-the art methods. The vertical axis
is the BD-rate savings in terms of PSNR-RGB evaluated with
VTM-17.0 (low delay B) serving as the anchor. Positive and nega-
tive BD-rate numbers indicate rate inflation and reduction, respec-
tively. The horizontal axis is the complexity metrics.

leading to higher memory bandwidth demands and reduced
practicality. A similar design constraint was adopted in tra-
ditional video codecs, where block prediction typically re-
lies on only two reference blocks, motivates our focus on
reducing buffer size. While large buffer size is intrinsic to
the algorithm design, both the model size and kMAC can be
further reduced through network optimization.

5. Conclusion
In this work, we revisit how typical learned video compres-
sion frameworks propagate temporal information to assist
coding from an RNN perspective, and propose HyTIP, com-
bining output-recurrence and hidden-to-hidden connections
to leverage the advantages of both approaches. By propa-
gating the previously decoded frame as explicit information
to primarily serve as temporal data, we only require a small
number of implicit latent features to carry complementary
temporal information, achieving competitive performance.
Our experimental results confirm the superiority of the com-
bined use of implicit and explicit buffering strategies over
the use of either alone. This hybrid approach is less sensi-
tive to buffer size than purely implicit buffering strategies.
Compared to state-of-the-art methods that adopt solely im-
plicit buffering strategy, our HyTIP requires only 14% of
the buffer size while achieving comparable performance on
most testsets. In this work, we aim to investigate the design
of temporal propagation mechanisms within learned video
codecs, rather than their functionality. Extending our codec
to enhance its functionality, such as YUV coding, is among
our future directions.
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This supplementary document provides the following
additional materials and results to assist with the under-
standing of our HyTIP.
• Additional results on buffer size in Section A1;
• Results on long-sequence training under BT.709 color

space conversion in Section A2;
• Rate-distortion comparisons to state-of-the-arts in Sec-

tion A3;
• Network architecture details in Section A4;
• Training details in Section A5;
• Configurations of HM 16.25 and VTM 17.0 in Sec-

tion A6;

A1. Additional Results on Buffer Size
Table A1 and Table A2 provide additional results on the
buffer size configurations reported in Table 2 of the main
paper, using BT.601 and BT.709 color space conversions,
respectively. As shown, the conclusions are consistent
with those in the main paper, where the hybrid buffering
strategy demonstrates strong robustness and efficiency. It
achieves better performance than both the explicit and im-
plicit buffering strategies and exhibits greater resilience to
buffer size reduction compared to the implicit buffering
strategy. According to the results in Table A1 and Ta-
ble A2, our final design buffers 1 explicit decoded flow map
and 0.125 full-resolution feature map (i.e., 2+0.125 full-
resolution feature maps) for motion coding, and 1 explicit
decoded frame and 2 full-resolution feature maps (i.e., 3+2
full-resolution feature maps) for inter-frame coding to bal-
ance coding performance and complexity.

A2. Results on Long-sequence Training under
BT.709 Color Space Conversion

Table A3 presents the results of the same study as Table 3
in the main paper, but employs BT.709 color space conver-

sion, following [21, 22], instead of BT.601 for the YUV420
to RGB444 conversion. As shown, the conclusions remain
consistent with those in the main paper, where training with
longer sequences generally improves all buffering strate-
gies. The explicit buffering strategy shows a smaller perfor-
mance gain due to its dual constraint on the output frame,
while the implicit and hybrid strategies, which propagate
implicit features without such constraints, are better able to
leverage long-sequence training.

A3. Rate-distortion Comparisons to State-of-
the-arts

Fig. A1 and Fig. A2 present the rate-distortion compar-
isons between our method and state-of-the-art approaches
in terms of PSNR-RGB, using BT.601 and BT.709 for
color space conversion, respectively. Similarly, Fig. A3 and
Fig. A4 show the comparisons in terms of MS-SSIM-RGB
under BT.601 and BT.709 color space conversion, respec-
tively. The corresponding BD-rates using BT.709 as the
color space conversion are summarized in Table A4 and Ta-
ble A5.

A4. Network Architecture Details

Fig. A5, Fig. A6, and Fig. A7 provide the network architec-
ture details in Fig. 2 of the main paper. The base motion and
inter-frame codec are adapted from [22] while the channel
transform module in the inter-frame codec is from [9] and
the checkerboard context model in the inter-frame codec is
from [23].

A5. Training Details

Table A6 summarizes our HyTIP training procedure,
adapted from [9]. The first six phases follow [9], using ex-
plicit temporal reference x̂t−1 as the temporal reference in-



formation only in the inter-frame codec. Subsequently, the
implicit related module is incorporated for further training.

A6. Configurations of HM 16.25 and VTM 17.0
Following the recommendation from [21], we en-
code videos in YUV444 format. We use the en-
coder lowdelay vtm.cfg of VTM [2] with the following pa-
rameters:

–c {config file name}
–InputFile={input file name}
–InputBitDepth=8
–InputChromaFormat=444
–ChromaFormatIDC=444
–InternalBitDepth=10
–OutputBitDepth=8
–DecodingRefreshType=2
–FrameRate={frame rate}
–FrameSkip=0
–SourceWidth={width}
–SourceHeight={height}
–FramesToBeEncoded=96
–Level=4.1
–IntraPeriod=32
–QP={qp}
–BitstreamFile={bitstream file name}
–ReconFile={reconstruction file name}

Similarly, We use the encoder lowdelay main rext.cfg of
HM [2] with the following parameters:

–c {config file name}
–InputFile={input file name}
–InputBitDepth=8
–InputChromaFormat=444
–ChromaFormatIDC=444
–InternalBitDepth=10
–InternalBitDepthC=10
–OutputBitDepth=8
–OutputBitDepthC=8
–FrameRate={frame rate}
–FrameSkip=0
–SourceWidth={width}
–SourceHeight={height}
–FramesToBeEncoded=96
–Level=4.1
–IntraPeriod=32
–QP={qp}
–BitstreamFile={bitstream file name}
–ReconFile={reconstruction file name}



Table A1. BD-rate (%) comparison of different buffering strategies with different buffer sizes, using BT.601 for color space conversion.
The anchor employs explicit buffering in both motion and inter-frame coding. The values in parentheses, as in Table 2, indicate the number
of full-resolution feature maps buffered for coding one input flow map or frame (explicit + implicit).

Motion Inter UVG MCL-JCV HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB Average

Explicit (2+0) Explicit (3+0) 0 0 0 0 0 0 0 0

Implicit (0+4) Explicit (3+0) -11.5 -9.5 -12.6 -18.6 -12.6 -11.9 -8.8 -12.2
Implicit (0+2.1875) Explicit (3+0) -7.0 -3.6 -8.7 -12.0 -8.4 -9.8 -7.2 -8.1
Implicit (0+2.125) Explicit (3+0) -6.5 -3.8 -6.2 -10.4 -6.7 -8.6 -3.0 -6.5
Implicit (0+2.0625) Explicit (3+0) -4.0 2.8 -1.9 -2.2 0.8 -2.3 -2.3 -1.3

Hybrid (2+4) Explicit (3+0) -15.1 -13.2 -15.4 -23.8 -19.9 -15.8 -9.1 -16.0
Hybrid (2+0.1875) Explicit (3+0) -13.6 -9.6 -14.8 -21.4 -18.0 -18.4 -13.1 -15.6
Hybrid (2+0.125) Explicit (3+0) -13.0 -11.2 -14.1 -19.1 -16.3 -18.1 -11.0 -14.7
Hybrid (2+0.0625) Explicit (3+0) -9.1 -5.4 -9.3 -13.9 -11.7 -13.4 -6.7 -9.9

Hybrid (2+0.125) Implicit (0+51) -12.6 -15.5 -20.1 -30.2 -27.8 -20.6 -10.5 -19.6
Hybrid (2+0.125) Implicit (0+6) -10.0 -12.6 -15.8 -24.5 -21.9 -13.0 -8.6 -15.2
Hybrid (2+0.125) Implicit (0+5) -9.2 -13.0 -14.9 -24.6 -21.4 -14.6 -7.4 -15.0
Hybrid (2+0.125) Implicit (0+4) -5.9 -9.0 -13.5 -19.5 -17.6 -1.9 -4.3 -10.2

Hybrid (2+0.125) Hybrid (3+48) -17.3 -16.3 -21.0 -30.3 -27.3 -25.7 -15.1 -21.9
Hybrid (2+0.125) Hybrid (3+3) -16.5 -15.7 -20.8 -29.1 -26.8 -23.3 -14.7 -21.0
Hybrid (2+0.125) Hybrid (3+2) -17.6 -15.9 -20.3 -29.1 -25.9 -26.6 -14.8 -21.5
Hybrid (2+0.125) Hybrid (3+1) -12.7 -10.4 -14.8 -23.6 -19.3 -18.9 -9.1 -15.5

Table A2. BD-rate (%) comparison of different buffering strategies with different buffer sizes, using BT.709 for color space conversion.
The anchor employs explicit buffering in both motion and inter-frame coding. The values in parentheses, as in Table 2, indicate the number
of full-resolution feature maps buffered for coding one input flow map or frame (explicit + implicit).

Motion Inter UVG MCL-JCV HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB Average

Explicit (2+0) Explicit (3+0) 0 0 0 0 0 0 0 0

Implicit (0+4) Explicit (3+0) -10.0 -8.1 -10.5 -14.5 -9.0 -10.8 -8.8 -10.2
Implicit (0+2.1875) Explicit (3+0) -6.5 -5.9 -8.0 -10.6 -6.0 -9.4 -7.2 -7.7
Implicit (0+2.125) Explicit (3+0) -5.5 -3.6 -5.8 -9.3 -5.1 -7.2 -3.0 -5.6
Implicit (0+2.0625) Explicit (3+0) -3.7 -0.1 -1.6 -2.2 1.1 -1.5 -2.3 -1.5

Hybrid (2+4) Explicit (3+0) -13.3 -11.5 -12.8 -19.1 -15.0 -14.4 -9.1 -13.6
Hybrid (2+0.1875) Explicit (3+0) -12.9 -11.4 -13.6 -18.3 -14.6 -17.0 -13.1 -14.4
Hybrid (2+0.125) Explicit (3+0) -12.2 -10.3 -12.4 -15.5 -12.2 -18.7 -11.0 -13.2
Hybrid (2+0.0625) Explicit (3+0) -8.7 -6.7 -8.3 -10.7 -7.8 -13.6 -6.7 -8.9

Hybrid (2+0.125) Implicit (0+51) -12.7 -14.0 -17.1 -26.2 -23.4 -18.9 -10.5 -17.5
Hybrid (2+0.125) Implicit (0+6) -9.4 -10.7 -13.0 -20.3 -17.6 -12.3 -8.6 -13.1
Hybrid (2+0.125) Implicit (0+5) -9.9 -12.0 -12.9 -21.2 -17.7 -14.1 -7.4 -13.6
Hybrid (2+0.125) Implicit (0+4) -6.9 -7.7 -11.3 -16.5 -14.8 -2.6 -4.3 -9.2

Hybrid (2+0.125) Hybrid (3+48) -17.7 -15.6 -18.8 -26.6 -24.0 -25.4 -15.1 -20.5
Hybrid (2+0.125) Hybrid (3+3) -16.6 -14.3 -18.6 -25.4 -23.3 -23.5 -14.7 -19.5
Hybrid (2+0.125) Hybrid (3+2) -17.5 -14.6 -18.3 -25.3 -22.8 -26.8 -14.8 -20.0
Hybrid (2+0.125) Hybrid (3+1) -13.0 -9.2 -13.2 -19.8 -16.2 -19.2 -9.1 -14.2

Table A3. BD-rate (%) comparison of longer sequence training impact on three buffering strategies for inter-frame coding, using BT.709
for color space conversion. The anchor is the variant employing explicit buffering in both motion and inter-frame coding. The values in
parentheses, as in Table 2, indicate the number of full-resolution feature maps buffered for coding one input flow map or frame (explicit +
implicit).

Motion Inter # Frame UVG MCL-JCV HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB Average

Hybrid (2.125) Explicit (3) 5 -12.2 -10.3 -12.4 -15.5 -12.2 -18.7 -11.0 -13.2
10 -18.5 -15.2 -14.5 -17.6 -14.0 -19.9 -13.2 -16.1

Hybrid (2.125) Implicit (5) 5 -9.9 -12.0 -12.9 -21.2 -17.7 -14.1 -7.4 -13.6
10 -20.6 -20.4 -18.3 -25.3 -19.3 -12.8 -12.6 -18.5

Hybrid (2.125) Hybrid (2) 5 -17.5 -14.6 -18.3 -25.3 -22.8 -26.8 -14.8 -20.0
10 -24.5 -21.7 -22.5 -29.5 -25.8 -28.8 -20.3 -24.7



Table A4. BD-rate (%) comparison between our HyTIP and the state-of-the-art methods in terms of PSNR-RGB, using BT.709 for color
space conversion. The anchor is VTM 17.0. Negative BD-rates suggest bitrate savings.

UVG MCL-JCV HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB Average

VTM [2] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM [1] 26.0 35.7 31.9 29.9 29.8 31.9 29.6 30.7
MaskCRT [9] 6.4 19.1 9.2 29.0 4.7 26.1 -7.2 12.5
DCVC-TCM [35] 35.0 39.3 34.1 62.5 25.5 70.4 19.2 40.9
DCVC-HEM [20] -6.2 -0.7 -0.4 19.4 -5.3 9.3 -14.2 0.3
DCVC-DC [21] -24.0 -18.4 -16.4 -11.6 -29.0 -25.4 -32.1 -22.4
DCVC-FM [22] -24.0 -15.0 -16.5 -14.9 -31.1 -32.0 -23.1 -22.4
HyTIP (Ours) -22.3 -9.7 -16.3 -6.8 -25.6 -13.9 -27.5 -17.4

Table A5. BD-rate (%) comparison between our HyTIP and the state-of-the-art methods in terms of MS-SSIM-RGB, using BT.709 for
color space conversion. The anchor is VTM 17.0. Negative BD-rates suggest bitrate savings.

UVG MCL-JCV HEVC-B HEVC-C HEVC-D HEVC-E HEVC-RGB Average

VTM [2] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM [1] 21.4 31.5 28.9 29.0 29.7 29.6 26.1 28.0
MaskCRT [9] -23.0 -30.8 -38.6 -29.0 -43.4 -31.9 -43.8 -34.4
DCVC-TCM [35] -9.5 -22.5 -26.5 -17.4 -33.8 -18.7 -27.7 -22.3
DCVC-HEM [20] -28.8 -43.3 -47.7 -40.4 -52.8 -53.1 -46.3 -44.6
DCVC-DC [21] -36.4 -50.4 -55.7 -51.4 -61.2 -66.0 -56.4 -53.9
HyTIP (Ours) -38.9 -50.5 -56.4 -50.2 -59.5 -62.6 -58.5 -53.8



Figure A1. Rate-distortion comparison with state-of-the-art methods in terms of PSNR-RGB, using BT.601 for color space conversion.
The values in parentheses represent BD-rates, with VTM 17.0 serving as the anchor.



Figure A2. Rate-distortion comparison with state-of-the-art methods in terms of PSNR-RGB, using BT.709 for color space conversion.
The values in parentheses represent BD-rates, with VTM 17.0 serving as the anchor.



Figure A3. Rate-distortion comparison with state-of-the-art methods in terms of MS-SSIM-RGB, using BT.601 for color space conversion.
The values in parentheses represent BD-rates, with VTM 17.0 serving as the anchor.



Figure A4. Rate-distortion comparison with state-of-the-art methods in terms of MS-SSIM-RGB, using BT.709 for color space conversion.
The values in parentheses represent BD-rates, with VTM 17.0 serving as the anchor.



Table A6. Training procedure. MENet, TCM, FA (frame type adaptation), CTM, and gain units (senc
t , sdect , srecont , stcmt in Fig. A5,

Fig. A7, and Fig. A6) represent the motion estimation network, the temporal context mining module in the inter-frame codec, the hierar-
chical quality structure [22], the channel transform module [9], and the variable-rate modules, respectively. EPA is the error propagation
aware training in [28]. Ref represents the characteristic of reference temporal information in the inter-frame codec.

Phase # Frames Training Modules Loss lr Epoch

Motion Coding
(Ref: Explicit) 3 Motion codec Rmotion

t +

λ×D(xt, warp(xt−1, f̂t))
1e-4 8

Motion Compensation
(Ref: Explicit) 3 TCM λ×D(xt, xc) 1e-4 10

Inter-frame Coding
(Ref: Explicit) 2 Inter-frame codec and Mask Generator Rt + λ×D(xt, x̂t) 1e-4 2

Motion Compensation
(Ref: Explicit) 3 TCM Rt + λ× D(xt,xc)+D(xt,x̂t)

2
1e-4 3

Inter-frame Coding
(Ref: Explicit)

3 All modules except MENet, motion codec,
and 3x3 Conv in Fig. 2

Rt + λ×D(xt, x̂t) 1e-4 8
5 Rt + λ×D(xt, x̂t) 1e-4 5

Fine-tuning
(Ref: Explicit)

3 All modules except MENet and 3x3 Conv
in Fig. 2

Rt + λ×D(xt, x̂t) 1e-4 6
5 Rt + λ×D(xt, x̂t) 1e-4 5

Feature Generation
(Ref: Hybrid) 3 3x3 Conv in Fig. 2 Rt + λ×D(xt, x̂t) 1e-4 3

Motion Compensation
(Ref: Hybrid) 3 TCM Rt + λ× D(xt,xc)+D(xt,x̂t)

2
1e-4 4

Inter-frame Coding
(Ref: Hybrid)

3 All modules except MENet and motion codec Rt + λ×D(xt, x̂t) 1e-4 8
5 Rt + λ×D(xt, x̂t) 1e-4 4

Fine-tuning
(Ref: Hybrid)

3 All modules except MENet Rt + λ×D(xt, x̂t) 1e-4 3
5 Rt + λ×D(xt, x̂t) 1e-4 4

Fine-tuning with EPA
(Ref: Hybrid)

5 All modules except MENet Rt + λ×D(xt, x̂t) 1e-5 4
5 All modules Rt + λ×D(xt, x̂t) 1e-5 4

FA (Ref: Hybrid)
FA with EPA (Ref: Hybrid)

5 Frame Type Conv layers in Fig. A7 Rt + λ×D(xt, x̂t) 1e-4 1
5 Rt + λ×D(xt, x̂t) 1e-5 1

Fine-tuning with EPA
(Ref: Hybrid)

5 All modules except MENet Rt + λ×D(xt, x̂t) 1e-5 1
5 All modules Rt + λ×D(xt, x̂t) 1e-5 5

CTM
(Ref: Hybrid) 5 CTM in Fig. A6 Rt + λ×D(xt, x̂t) 1e-4 1

Fine-tuning with EPA
(Ref: Hybrid)

5 All modules except MENet Rt + λ×D(xt, x̂t) 1e-5 2
5 All modules Rt + λ×D(xt, x̂t) 1e-5 7

Context Model Training
with EPA (Ref: Hybrid)

5 Context Model in Fig. A6
Context Model, hyperprior, and decoder in Fig. A6

Rt + λ×D(xt, x̂t) 1e-4 1
5 Rt + λ×D(xt, x̂t) 1e-4 2

Inter-frame Coding
with EPA (Ref: Hybrid)

5 Inter-frame codec and Mask Generator Rt + λ×D(xt, x̂t) 1e-4 3
5 All modules except MENet and motion codec Rt + λ×D(xt, x̂t) 1e-4 2

Fine-tuning with EPA
(Ref: Hybrid)

5 All modules except MENet Rt + λ×D(xt, x̂t) 1e-5 3
5 All modules Rt + λ×D(xt, x̂t) 1e-5 6

Variable-rate Training
with EPA (Ref: Hybrid)

5 Gain units in Fig. A5, Fig. A7, and Fig. A6 Rt + λ×D(xt, x̂t) 1e-5 8
5 All modules Rt + λ×D(xt, x̂t) 1e-5 20

Long-sequence Training
with EPA (Ref: Hybrid)

7 All modules Rt + λ×D(xt, x̂t) 1e-5 1
10 All modules Rt + λ×D(xt, x̂t) 1e-6 50
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Figure A5. Network architecture detail of our motion codec.
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Figure A6. Network architecture detail of our inter-frame codec.
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