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Abstract

Continual adaptation to evolving domains with minimal supervision is essential for real-
world deployment of machine learning systems. We formalize this objective as Few-Shot
Domain-Incremental Learning (FSDIL), where a model must adapt to each new domain
using only a few labeled samples while retaining prior knowledge without access to previous
data. This setting mirrors practical constraints in domains such as autonomous driving
and medical imaging, where annotations are expensive and data retention is restricted by
privacy regulations. Pre-trained vision–language models such as CLIP provide a strong
initialization for FSDIL due to their transferable multi-modal representations. However,
adapting CLIP incrementally under domain shifts remains challenging: few-shot updates
often trigger catastrophic forgetting and insufficient plasticity across evolving distributions.
To address these challenges, we introduce PGO-BEn (Proxy-Guided Orthogonalization and
Beta Ensembling)—a rehearsal-free framework that leverages CLIP’s semantic priors via
prompt learning while preserving prior domain knowledge through two key mechanisms. (1)
Proxy-Guided Orthogonalization(PGO): identifies conflicts between current gradients
and proxy representations of past knowledge, inferred from current samples, and projects
conflicting updates into an orthogonal subspace to prevent knowledge degradation. (2)
Beta Ensembling (BEn): introduces a Beta-function-based temporal ensembling strategy
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that adaptively balances stability and plasticity, outperforming conventional exponential
moving average (EMA) approaches in retaining early-domain knowledge. We extensively
evaluate PGO-BEn on three diverse benchmarks—DomainNet, CoRE50, and CDDB-
Hard—and demonstrate consistent improvements over state-of-the-art domain-incremental
and few-shot learning methods across all supervision levels in this challenging setting. Code:
https://github.com/tarmas99/PGO-BEn

1 Introduction

Large-scale annotated datasets have catalyzed major advances in machine learning. However, collecting such
datasets remains expensive, privacy-sensitive, and logistically challenging across many domains, especially
those involving dynamic environments or regulated data (e.g., autonomous driving or clinical imaging). These
limitations have spurred growing interest in data-efficient learning paradigms such as semi-supervised learning
(SSL) van Engelen & Hoos (2019); Yang et al. (2022) and few-shot learning (FSL) Ravi & Larochelle (2017);
Song et al. (2023), which reduce reliance on exhaustive manual annotation. Yet, these paradigms are typically
designed for static data distributions and struggle in scenarios where models must continuously adapt to
evolving environments, necessitating the study of continual learning (CL) Castro et al. (2018); Rebuffi et al.
(2017); Riemer et al. (2019); Wang et al. (2022a).

Within CL, three principal paradigms have emerged: class-incremental learning (CIL), where new classes
are introduced over time; task-incremental learning (TIL), where tasks differ and are explicitly identified;
and domain-incremental learning (DIL), where input distributions shift across episodes while the label space
remains constant. In this paper, we focus on DIL but challenge a common assumption in the literature—that
each incoming domain offers abundant labeled data—overlooking the realistic scenario where new domains
often provide only limited supervision due to data collection cost or privacy restrictions. In practical
settings such as autonomous driving, robotic vision, and clinical imaging, models encounter sequential
domain shifts (e.g., changes in lighting, device, or geography) but only limited labeled data per domain
due to high annotation costs. In healthcare, for example, shifts across hospitals or scanners necessitate
continual adaptation, yet privacy constraints prevent storing past data, while annotation costs restrict label
availability Zhou et al. (2021). Likewise, deepfake detection requires identifying continually evolving fake
content, and anomaly detection demands recognizing rare events while preserving knowledge of previously
encountered anomalies. These scenarios motivate studying DIL under minimal supervision—learning from
continually evolving domains with a fixed label space—yet this problem has been largely overlooked in existing
literature.

Table 1: Comparison of continual learning settings. Our proposed setting (FSDIL) is highlighted.

Setting Label Space Domain Shift Label Budget in Incremental Session Task/Domain ID Available

Class-Incremental Learning (CIL) Expanding No Full supervision No
Few-Shot Class-Incremental Learning (FSCIL) Expanding No Few-shot No
Domain-Incremental Learning (DIL) Fixed Yes Full supervision No
Few-Shot Domain-Incremental Learning (FSDIL) Fixed Yes Few-shot No

To bridge the gap between current benchmarks and real-world applications, we introduce Few-Shot Domain-
Incremental Learning (FSDIL) (Fig. 2a). In FSDIL, a model is first trained on a well-annotated base
domain and must continually adapt to a stream of novel domains, each offering only a few labeled examples
per class. FSDIL fundamentally differs from related paradigms (Table 1): unlike FSCIL Dong et al. (2021);
Tao et al. (2020); Sur et al. (2025), it assumes a fixed label space with shifting domains; unlike Few-Shot
Domain Adaptation (FSDA) Zhao et al. (2021), it requires continual rather than one-time adaptation;
and unlike unsupervised DIL variants Mukherjee et al. (2025); Rakshit et al. (2022), it leverages limited
supervision in each new domain, better reflecting real-world constraints. The base session involves training
with abundant data, mirroring the common industrial practice of pre-training on large datasets. To respect
privacy constraints in applications such as clinical imaging, our proposed FSDIL setting prohibits storing
exemplars from past sessions.
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Figure 1: Comparison of Zero-shot CLIP-ViT-B/16 with PGO-BEn model (1-shot) across all domains in the
DomainNet dataset. Numbers in brackets indicate the performance gain of our method.

Although large-scale models like CLIP exhibit strong generalization, they are insufficient for all domains.
We evaluate the frozen CLIP-ViT/B-16 model Radford et al. (2021) using the prompt “a photo of a –-”
on the DomainNet dataset Peng et al. (2019), and compare it with our model (Fig. 1). The consistent
performance gap across domains highlights that large-scale pretrained models fail to adapt effectively to
domain shifts, necessitating specialized strategies for continual adaptation.

FSDIL is particularly challenging for three reasons. First, supervision is extremely limited: each new domain
provides only a few labeled samples, making standard optimization prone to overfitting and variance collapse.
Existing DIL methods like S-Prompt Wang et al. (2022a) and CP-Prompt Feng et al. (2024) fail under
this regime, as their KNN-based domain prompt selection becomes biased with scarce data, leading to
poor generalization. Second, sequential domain shifts occur without task boundary annotations, rendering
exemplar-based or task-specific projection methods infeasible due to privacy, memory, or latency constraints.
Third, large stylistic shifts across domains (e.g., photo → sketch) demand representations that remain
label-consistent yet robust to visual variations.

(a) Few-shot Domain-Incremental Learning task. (b) Proposed β-function-based temporal ensembling for
CL to improve knowledge retention.

Figure 2: (a) FSDIL task. A well-labeled base domain is followed by sparsely labeled incremental domains.
Combined domain shift and label sparsity risk overfitting and forgetting. (b) Beta Moving Average. BMA
uses a Beta distribution to adaptively weight model states, retaining prior domain knowledge, whereas EMA
overly discounts earlier states and risks forgetting prior knowledge.
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Given this setting, our work investigates three key questions: (Q1) How to design a data-efficient adaptation
strategy that generalizes well to new domains despite extreme supervision sparsity? (Q2) How can we mitigate
catastrophic forgetting in a streaming setup without relying on task-specific gradient estimation or data replay?
(Q3) Can we build a unified, robust representation that generalizes across diverse domains continually?

Our solution. We propose PGO-BEn, a unified framework for FSDIL grounded in the semantic strength
of the pre-trained vision–language model CLIP Radford et al. (2021), motivated by its recent success in
DIL Feng et al. (2024); Wang et al. (2022a). The framework introduces three key innovations.

(1) Efficient adaptation from few samples: leveraging CLIP’s few-shot capacity, we design a multi-modal
prompting strategy that departs from prior prompt-tuning methods Zhou et al. (2022b;a); Wang et al.
(2022a); Feng et al. (2024). Learnable prompts are injected across layers in both CLIP encoders, with text
prompts conditioned on visual prompts to effectively capture domain shifts from minimal supervision while
exploiting CLIP’s prior knowledge. (2) Mitigating catastrophic forgetting: we introduce proxy-guided
orthogonalization, aligning update directions with prior knowledge via cosine-based filtering. Unlike subspace
projection methods Farajtabar et al. (2020); Liang & Li (2024); Lin et al. (2022); Saha et al. (2021), it requires
no storage or approximation of past gradients—crucial when only few labeled samples are available—thus
improving scalability as domains evolve. To further stabilize learning, a Beta-function-based Moving Average
(BMA) replaces the standard EMA Caron et al. (2021); Carta et al. (2023), adaptively weighting model states
through a symmetric Beta distribution to preserve early domain knowledge often lost with EMA (Fig. 2b).
(3) Learning domain-generalized representations: moving beyond prompt-pool methods Feng et al.
(2024); Wang et al. (2022a;c) that rely on domain-specific selection at inference, we condition text prompts
on vision prompt tokens across layers. This enables dynamic adaptation to evolving visual styles, yielding
domain-agnostic prompting and improved generalization without inference-time selection. Collectively, these
designs make PGO-BEn an inference-efficient and scalable FSDIL framework—free from prompt memory,
task identifiers, or exemplar buffers. In summary, this paper:

• Formalizes FSDIL as a realistic continual learning problem involving sequential domain shifts with
few-shot supervision, while enforcing privacy-aware constraints by avoiding storage of past data.

• Proposes PGO-BEn, integrating multi-modal prompting, gradient-aligned distillation, and Beta-
based ensembling to improve the stability–plasticity trade-off where domains evolve but the label
space remains fixed.

• Demonstrates state-of-the-art performance on three benchmarks—DomainNet Peng et al. (2019),
CoRE50 Lomonaco & Maltoni (2017), and CDDB-Hard Li et al. (2023)—with supporting ablations.

2 Related Works

Prompt Learning in CLIP. Prompt learning has emerged as a lightweight alternative to full fine-tuning,
originally developed for NLP Lester et al. (2021); Li & Liang (2021); Mishra et al. (2023) and later extended
to vision-language models like CLIP Radford et al. (2021). In this context, CoOp Zhou et al. (2022b)
introduces learnable prompts, while CoCoOp Zhou et al. (2022a) makes them input-conditioned to improve
generalization. MaPLe Khattak et al. (2022) enriches CLIP’s features by injecting hierarchical modality-aware
prompts, and StyLIP Bose et al. (2024) further integrates domain-specific cues. We introduce learnable
prompts across encoders, conditioning text prompts on vision prompts to more effectively capture and adapt
to visual domain shifts.

Data-Efficient Continual Learning. CL aims to balance stability-plasticity tradeoff Wang et al. (2024);
Zhou et al. (2024). Regularization-based methods like EWC Kirkpatrick et al. (2017), replay-based strategies
like iCaRL Rebuffi et al. (2017) and ER Riemer et al. (2019), and parameter-isolation techniques Wang et al.
(2023) address this trade-off with varying overhead. In domain-incremental learning, where task IDs are
absent, GEM Lopez-Paz & Ranzato (2017) and latent-replay Pellegrini et al. (2020) help adapt to distribution
shifts but rely on exemplar memory. Prompt-based continual learning methods such as S-Prompt Wang
et al. (2022a), CP-Prompt Feng et al. (2024) learn per-domain prompts and rely on domain-aware retrieval
during inference, requiring abundant labels and prompt selection mechanisms that increase latency—making
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inference slower, quality that hinders application of FSDIL in real-world use cases. In contrast, FSDIL
demands a unified, domain-agnostic prompting strategy that adapts continuously without task-specific routing
or per-domain memory. Its more restrictive setting—lacking domain labels and extensive supervision—calls
for lightweight, generalizable prompting across evolving domains.

Gradient Projection in Continual Learning. To mitigate forgetting, methods such as OGD Farajtabar
et al. (2020), TRGP Lin et al. (2022), GPM Saha et al. (2021), and DualGPM Liang & Li (2023) constrain
updates by projecting gradients onto orthogonal subspaces of prior tasks. While these leverage low-rank
structures in gradient space, they require storing or estimating task-specific subspaces—an increasingly
impractical demand as task count grows and data becomes scarce, as in FSDIL. In contrast, FSDIL
necessitates scalable, memory-efficient approaches that preserve knowledge without explicit gradient storage
or subspace tracking.

3 Proposed Methodology

Problem Definition. Consider a sequence of N distinct domains, {D1,D2, · · · ,DN }, where each domain
Dt during the training session t consists of tuples {xt

i, y
t
i}

|Dt|
i=1 . Here, xt

i represents an image, and yt
i denotes

the corresponding label, with yt
i ∈ C = {c1, c2, · · · , c|C|}. In particular, the set of classes C are identified from

the beginning and will not change along the incremental learning stream Feng et al. (2024); Wang et al.
(2022a), with |C| denoting number of distinct classes, and |Dt| denoting number of samples in domain Dt.

In the FSDIL setting, the initial domain D1 is characterized by a large number of training samples per class
within the label space C. However, for each subsequent session t > 1, the number of training samples is
significantly less, following the inequality |D1| ≫ |Dt| for all t > 1. Specifically, we have ∀t > 1, |Dt| = |C|×n,
where n is the number of samples per class in C.

During each incremental session, training is restricted only to samples from the current domain Dt, with data
from previous domains unavailable for reuse, adhering to an exemplar-free setup Wang et al. (2022a). We
evaluate the model after every session, where in any given session t, the model’s performance is tested across
all domains encountered up to that point. The main objective is to train a model that adapts to each new
domain with few labeled examples while retaining knowledge from previously seen domains.

3.1 PGO-BEN for Few-Shot Domain-Incremental Learning
To address the constraints of FSDIL— generalizing with minimal supervision, adapting to distributional shifts
across domains, and absence of task boundaries—we build on the generalization capabilities of large-scale
vision-language models. PGO-BEn is designed to exploit vision-language priors of CLIP-like models for
FSDIL. Specifically, we leverage CLIP as the backbone for our proposed model M, formally defined as
M = {FT ,FV ,P, P r,TOKT ,TOKV }, where FT and FV are the frozen text and vision encoders of CLIP,
respectively. P = {P1, · · · ,PJ} denotes the Encoder-Synergy module, a set of lightweight projector networks
that modulate learnable tokens TOKT and TOKV at J intermediate layers in Text and Vision encoder
respectively. To ensure semantic alignment of the text encoder representations under changing visual domains,
we condition TOKT on corresponding TOKV via Encoder-Synergy module, enabling the text encoder to
adapt to evolving visual domains and support domain-invariant representation learning. The unified learnable
prompt representation Pr = [v1][v2] · · · [vm][CLS], where [vi]’s are learnable tokens and [CLS] denotes the
classification token, serves as input to FT , avoiding manual domain-specific prompt tuning.

At each incremental session t, the model adapts to domain Dt with updated parameters θt =
{Pt, P rt,TOKTt ,TOKVt}. To effectively address FSDIL challenges, PGO-BEn comprises three syner-
gistic components: (i) a multi-modal prompting strategy that enables unified adaptation across visual and
textual branches (Sec. 3.1.1); (ii) A proxy-guided orthogonal gradient update strategy, where the model
trained till session t− 1, Mt−1 serves as a proxy for prior domains, ensuring that gradient updates for the
current domain remain aligned to previously learned knowledge and do not cause forgetting. (Sec. 3.1.2);
and (iii) a Beta function-based temporal ensembling strategy that adaptively ensembles model states over
time to enhance knowledge retention under domain shift without hampering the plasticity of the model
(Sec. 3.1.3). Together, these components allow PGO-BEn to retain prior knowledge while flexibly adapting
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Figure 3: Overview: PGO-BEn uses a multi-modal prompt learning strategy to learn a generalizable
representation from few-shot examples observed in domain Dt. To adapt to the current incremental domain
Dt,∀t > 1, PGO-BEn uses the labeled examples of current domain data guided by cross-entropy loss Lce.
PGO-BEn compares the prediction of current model Mt and previous model Mt−1 on the current data Dt

using Lkl. PGO-BEn introduces an adaptive gradient direction selection strategy to mitigate forgetting of
knowledge of past domains guided by the proxy-knowledge of the past domains from Lkl. Since Mt−1 has
never seen Dt, Beta-Moving Average ensembling technique is used to further enhance the stability-plasticity
trade-off, while mitigating the risk of unreliable updates. Here P(y|·) denotes posterior prediction probability.

to new domains from limited samples. All learnable parameters are trained to obtain a domain-agnostic
representation applicable for all seen domains, avoiding any domain-specific parameter selection steps prevalent
in DIL literature Wang et al. (2022a); Feng et al. (2024) Fig. 3 illustrates the process.

3.1.1 Multi-Modal Prompting for Domain-Invariant Representation Learning

Conventional prompt tuning for CLIP, such as CoOp and CoCoOp Zhou et al. (2022b;a), adapts only the
text encoder, offering limited robustness to visual domain shifts. MaPLe Khattak et al. (2022) enriches vision
features with text representations, failing to capture evolving visual distributions—an essential requirement
in FSDIL, where supervision is sparse and domain relations across incremental sessions are undefined.

We propose a simple multi-modal prompting strategy, specifically for FSDIL, that conditions text tokens on
visual cues across layers. Specifically, each transformer block j in CLIP’s encoders includes learnable tokens
TOKj

V and TOKj
T , linked via a layer-specific lightweight projector Pj such that:

TOKj
T = Pj(TOKj

V )

Since the feature representations evolve across transformer layers, we introduce layer-specific projectors rather
than a single shared projector, allowing flexible cross-modal alignment at different semantic depths. We
conducted an ablation study on the number of layers the projector is needed to be introduced in Sup.Mat..
By propagating visual-domain cues into the text encoder, the model dynamically aligns its textual embedding
space with evolving visual distributions, thereby enhancing domain invariance without explicit supervision (see
Fig. 4a). We initialize this unified prompt space by training on the labeled base domain D1 using cross-entropy
loss, enabling the model to encode domain-agnostic semantics into the prompt tokens, supporting stable
adaptation across subsequent domains with minimal supervision. Table 8 & Fig. 4a highlight the superiority
of conditioning text prompts on visual tokens which enables better adaptation to changing visual domains
compared to other conditioning techniques Khattak et al. (2022) and baseline methods.

3.1.2 Retain While You Learn: Proxy-Guided Orthogonalization for Stability under Shift

Prior works Kirkpatrick et al. (2017); Saha et al. (2021); Lin et al. (2022) attribute catastrophic forgetting in
CL to gradient updates of the current task which overrides the knowledge of the past tasks in order to learn
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the current task . Prior methods Liang & Li (2024); Saha et al. (2021); Lin et al. (2022); Liang & Li (2023)
address forgetting by projecting current task gradient updates orthogonally to a pre-computed approximation
of the gradient subspaces of the previous tasks. Such orthogonalization mitigates the risk of interference of
knowledge of the past domains with gradient update of the current domain. However, approximating past
gradient spaces scales poorly with an increasing number of tasks and require memory overhead Liang &
Li (2024); Lin et al. (2022). Under limited supervision constraint of FSDIL, such approximations become
unreliable, leading to degraded performance. Motivated by Yu et al. (2020), we propose a memory-free
strategy that mitigates catastrophic-forgetting by deriving a proxy representation of prior domain knowledge
from the few-shot samples of the current domain. This proxy knowledge is used to regularize the learning
dynamics of the current domain, to preserve knowledge of previously seen domains without the need for
explicitly storing pre-computed gradient spaces or approximating gradients of past domains from limited
data, unlike prior methods Liang & Li (2023); Saha et al. (2021); Liang & Li (2024).

At session t > 1, we initialize the current model Mt and prompt Prt from the previous model Mt−1,
which has learned from {D1, . . . ,Dt−1}. This provides an enriched initialization as compared to random
initialization for every domain as in Wang et al. (2022a); Feng et al. (2024). While adapting Mt to domain
Dt = {(xt

i, y
t
i)}

|D|t

i=1 , we use the frozen Mt−1 model as a functional proxy of knowledge of previously seen
domains to regulate the direction of parameter updates. For each input xt

i, we compute:

• Cross-Entropy Loss for adaptation: Lce(ŷt
i , y

t
i), where ŷt

i =Mt(xt
i, P rt)

• KL Divergence to preserve past knowledge:

Lkl = −
∑

i

Mt−1(xt
i, P rt−1) log Mt(xt

i, P rt)
Mt−1(xt

i, P rt−1) (1)

We compute gradients Gcurr = ∇θt
Lce and Gprev = ∇θt−1Lkl, and calculate the angle between them:

ψ = cos−1
(

Gprev ·Gcurr

∥Gprev∥∥Gcurr∥

)
(2)

The angle ψ indicates whether the gradient update for adapting to the current domain is consistent with, or
conflicting against, the model’s existing knowledge of previously seen domains. If the existing knowledge of
the model align with the update direction (ψ ∈ [−π

2 ,
π
2 ]), we hypothesize that updating the model following

the update gradient Gcurr will not cause any forgetting (as, G||
curr is along the direction of Gprev, see Fig. 3).

In case of conflicting alignments(i.e. ψ /∈ [−π
2 ,

π
2 ]), updating the model parameters with Gcurr will adapt the

model on current domain Dt at the cost of forgetting the knowledge of the previously seen domains. In such
scenario, we project Gcurr onto the orthogonal space of Gprev to obtain G⊥

curr, and update the model using,

Gupdate =
{
Gcurr, ψ ∈ [−π

2 ,
π
2 ]

G⊥
curr, otherwise

, θt ← θt − η ·Gupdate (3)

Benefits of our alignment strategy: Our adaptive-alignment strategy avoids storing the gradient-space
information which has increasing memory overhead as we see more domains, we only maintain the prior
model state Mt−1, a very standard practice in knowledge-distillation literature. Unlike prior methods that
constrain updates to fixed subspaces Liang & Li (2024); Lin et al. (2022), we retain past knowledge by
dynamically adjusting update directions using Gprev as a proxy knowledge of prior domains. Updating the
parameters in the orthogonal space of the previous gradient directions in conflicting scenarios, reduces the
risk of forgetting prior domain knowledge. This implicit and scalable alignment maintains plasticity without
relying on unreliable gradient subspace approximations in low-data regimes.

3.1.3 From EMA to BMA: Temporal Ensembling that Remembers

Since the model Mt−1 has never been trained on domain Dt, relying solely on the gradient information
maybe unreliable and could give sub-optimal performance in knowledge retention and may also hurt the

7



Published in Transactions on Machine Learning Research (01/2026)

plasticity. To avoid the ill-effects of unreliable gradient updates, we use temporal ensembling of model states.
In CL literature, EMA smoothing Carta et al. (2023); Caron et al. (2021) which is commonly used to stabilize
updates, as we observe in Table 3, underperforms under large, unconstrained domain shifts typical in FSDIL,
due to the fixed decay nature (Fig. 2b) .

We propose a more flexible Beta Moving Average (BMA) strategy that adaptively ensembles intermediate
model states during training, based on the Beta distribution. Unlike EMA, which monotonically discounts
early checkpoints, BMA assigns higher weight to both early and late training phases. Early model states retain
knowledge about the previously seen domains, where as later model states have adapted to current domain,
but have a risk of forgetting the prior knowledge. BMA improves stability and mitigating task-recency bias
when under sparse labels and large domain shifts, better than EMA, thus being more suitable for FSDIL
task, strengthening stability-plasticity dilemma (see Fig. 2b and Table. 3).

Beta-function based Ensembling. During T ′ update steps on domain Dt, the model Mt, which is
initialized with Mt−1, has knowledge about {D1, . . . ,Dt−1} yet underfits Dt. In later iterations, the model
adapts to Dt, risking forgetting of prior knowledge. For better stability-plasticity trade-off, we treat the final
model Mt as a weighted ensemble of intermediate models {Mt′}T ′

t′=0, using β-function based ensembling as:

Mt =
T ′∑

t′=0

αt′∑T ′

k=0 αk

Mt′ , where αt′ = Beta(β, β)
(
t′ + 0.5
T ′ + 1

)
. (4)

With β < 1, BMA highlights both early and late model states, enhancing memory of past domains while
incorporating the current one (see Fig. 2b).

Efficient Online Implementation. In order to minimize memory overhead, rather than storing every
intermediate state, we implement BMA as a running average:

MBMA
t′ =

∑t′−1
k=0 αk∑t′

k=0 αk

MBMA
t′−1 + αt′∑t′

k=0 αk

Mt′ . (5)

This low-memory update requires only a single auxiliary model state, offering temporal smoothing that
complements gradient-based updates Shu et al. (2023). Each iteration of training applies proxy-guided
orthogonal update followed by BMA integration to ensure stable adaptation across sessions.

During inference, we deploy the final BMA model MBMA
T ′ for evaluations on all test samples across the

domains {D1, . . . ,Dt} and initialize Mt+1 for adaptation to domain Dt+1 with MBMA
T ′ , and doesn’t require

any prompt-selection phase, resulting in efficient inference. Pseudocode are provided in Sup. Mat.

3.2 On the Utility of PGO-BEN for FSDIL

To theoretically justify PGO-BEn in the FSDIL setting, we employ PAC-Bayesian theory McAllester (1999).
For a model Mt ∼ ρ (posterior over parameters θt) adapted to domain Dt with n examples, and a prior π
(e.g., CLIP-initialized θ0), the expected true risk LDt(Mt) is bounded with probability ≥ 1− δ by:

EMt∼ρ[LDt
(Mt)] ≤ EMt∼ρ[L̂t(Mt)] +

√
KL(ρ||π) + log 2

√
n

δ

2n (6)

This bound links true risk to empirical risk L̂t(Mt), the complexity term KL(ρ||π), and sample size n.
Contrastingly, the bound discussed in Shi & Wang (2023) relies on storing examples from previous domains
in a memory buffer, contrasting our exemplar-free motivation. PGO-BEn’s components aim to tighten this
bound, achieving better adaptation to target domains:

CLIP Initialization as an Informative Prior π: CLIP initialization ensures π is centered in a robust,
generalizable region. For few-shot domains, the learned posterior ρ needs minimal deviation from π to
minimize empirical risk, directly reducing the KL(ρ||π) term and tightening the bound.
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Gradient-Aligned Distillation for Posterior Stability: The gradient alignment mechanism (Sec 3.2.2)
stabilizes ρ by constraining updates based on prior knowledge (Mt−1). This prevents drastic parameter
shifts, keeping ρ closer to π and thus helping maintain a small KL(ρ||π). This stability also limits sensitivity
to few samples, reducing the empirical-to-expected risk gap and yielding a more reliable L̂t(Mt).

Beta Ensembling for Posterior Regularization: BMA (Sec 3.2.3) defines ρ as an implicit Beta-weighted
mixture of intermediate model states. This averaging reduces estimator variance, leading to a more stable
and potentially lower empirical risk EMt∼ρ[L̂t(Mt)]. Such ensembling also regularizes ρ, potentially finding
flatter minima associated with better generalization and favorably impacting the complexity term.

Further formal and empirical discussions in this regard are provided in Sup. Mat.

4 Experimental Evaluations

Datasets. Following DIL literature Wang et al. (2022a); Feng et al. (2024), we evaluate our method on three
DIL benchmarks: DomainNet Peng et al. (2019), CORe50 Lomonaco & Maltoni (2017), and CDDB-Hard Li
et al. (2023). These datasets vary in both the number of classes and the domains the model must adapt to.
We follow the domain adaptation order of Rakshit et al. (2022) for DomainNet and we follow the domain
order for CDDB-Hard and CoRE50 detailed in Wang et al. (2022a); Feng et al. (2024). A detailed description
of each dataset and the implementation details are provided in Sup. Mat.

Evaluation Metrics. Following recent work Zhu et al. (2023); Bendou et al. (2025), we conduct few-shot
experiments with 1, 2, 4, and 8 shots to assess the effectiveness of our approach. We measure performance
using two standard metrics: (i) Average Accuracy (AA) Rakshit et al. (2022): The mean classification
accuracy across all domains seen so far, and (ii) Forgetting Alleviation (FA) Liu et al. (2023): The mean
accuracy on a domain after the model adapts to subsequent domains in the continual stream. We report the
overall AA* and overall FA*—averaged across all sessions like Mukherjee et al. (2025). Detailed definitions of
these metrics, per-domain results, are provided in Sup. Mat. Results are reported with average of three
random seeds. Further results with five random seeds are present in Sup. Mat.

Baselines. We compare our method to multiple baselines adapted to the FSDIL setting. For regularization-
based approaches, we incorporate EWC Kirkpatrick et al. (2017) and LwF Li & Hoiem (2017) into our
backbone, updating only the learnable prompt. We also consider prompt-based DIL methods such as
L2P Wang et al. (2022c), S-Prompt Wang et al. (2022a), CP-Prompt Feng et al. (2024), and a LoRA-based
prior gradient approximation technique, InfLORA Liang & Li (2024). We re-run all baselines under the
same experimental setup on every dataset to ensure fair comparisons and report the average over three runs
with three random seed values. In contrast to the baselines which require a prompt pool(separate set of
prompts for each individual domains), our method learns and continually updates a fixed set of parameters,
to avoid domain-prompt selection during inference prevalent in recently proposed parameter isolation based
DIL strategies Wang et al. (2022a); Feng et al. (2024). Considering the closed-set nature of the FSDIL
task, we choose not to compare our method against any FSCIL baselines. We used the following prompts
for the Zero-shot CLIP experiments a photo of a _, a photo of a _ image and there is a _ in this
image., for DomainNet, CDDB-Hard and CoRE50 respectively, comparison with other prompts in Sup.Mat..

4.1 Experimental Results

We use CLIP-ViTB/16 as the backbone and re-run all baselines accordingly for fair comparison under DIL
benchmarks. Wang et al. (2022a); Feng et al. (2024). Table 2 presents the average performance of PGO-BEn
across 1-, 2-, 4-, and 8-shot settings on DomainNet, CDDB-Hard, and CoRE50 datasets (per-shot results in
Sup. Mat.). PGO-BEn consistently outperforms all baselines, including those that maintain domain-specific
prompt pools for reducing forgetting and improving recognition. On DomainNet, PGO-BEn achieves a
gain of +1.31% in AA* and +1.27% in FA* over the strongest baseline. For CDDB-Hard and CoRE50, it
surpasses prompt-pool-based methods by +6.66% and +2.53% in FA*, and by +6.56% and +4.86% in AA*,
respectively—demonstrating substantial improvements in balancing stability and plasticity. Importantly,
PGO-BEn attains these results without relying on prompt pools or domain-specific routing at inference,
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Table 2: Comparison across DomainNet, CDDB-Hard, and CoRE50 averaged over 1, 2, 4, and
8-shot settings. Bold and underlined denote the best and second-best scores. PGO-BEn outperforms all
baselines without using prompt pools, demonstrating its generalization strength. * indicates CLIP-ViTB/16-
based reimplementation. Results are mean ± std over 3 seeds. Red font denotes least std method.

DomainNet CDDB-Hard CoRE50

Method Average Average Average

Prompt Pool Backbone AA*(↑) FA*(↑) AA*(↑) FA*(↑) AA*(↑) FA*(↑)

DyTox Douillard et al. (2021) × ViT 30.11±0.90 19.02±0.64 57.17±0.60 53.17±0.82 46.57±0.83 28.72±0.95

Zero-shot CLIP Radford et al. (2021) × CLIP 69.05 − 56.32 − 12.67 −

LwF* Li & Hoiem (2017) × CLIP 72.06±0.82 60.70±0.93 68.25±0.74 58.99±0.75 64.41±0.78 57.75±0.60
EwC* Kirkpatrick et al. (2017) × " 70.92±0.90 58.85±0.89 71.30±0.81 62.21±0.77 63.41±0.68 55.60±0.44
L2P* Wang et al. (2022c) ✓ " 67.08±0.64 54.61±0.48 73.53±0.94 65.81±0.83 79.88±0.76 78.36±0.92
DualPrompt* Wang et al. (2022b) ✓ " 73.45±0.66 63.50±0.76 73.08±0.66 66.51±0.80 55.61±0.50 50.54±0.71
S-Prompt Wang et al. (2022a) ✓ " 67.64±0.37 56.13±0.32 65.31±0.56 60.22±0.52 79.23±0.77 76.31±0.53
CODA-Prompt Smith et al. (2023) ✓ " 73.50±0.80 63.85±0.62 70.53±0.50 60.45±0.47 56.81±0.71 53.73±0.72
InfLORA* Liang & Li (2024) × " 71.93±0.59 60.41±0.76 66.65±0.48 56.65±0.77 65.30±0.90 58.10±0.72
CP-Prompt Feng et al. (2024) ✓ " 71.89±0.82 60.87±0.70 66.95±0.36 62.10±0.22 81.57±0.64 79.99±0.54

PGO-BEn (Ours) × CLIP 74.76±0.17 64.77±0.26 80.09±0.29 73.17±0.16 86.43±0.35 82.52±0.53

∆ +1.31 +1.27 +6.56 +6.66 +4.86 +2.53
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Figure 4: (a) Encoder Representation Alignment. We compare the representation similarity of the
two encoder representations. Encoder representation of PGO-BEn have consistent higher cosine-similarity
for all domains, indicating that Text-encoder is more aligned to the changing visual distribution in the
Vision encoder as compared to other baselines. MaPLE* also fails to effectively capture the evolving visual
distribution owing to a unsuitable encoder alignment direction. (b) Sample Efficiency. On DomainNet
dataset, PGO-BEn consistently outperforms top-2 baselines across varying level of supervision.

offering a memory- and computation-efficient solution compared to methods that rely on prompt-pools
(like Feng et al. (2024); Wang et al. (2022a), having a KNN based selection steps). Given that AA* and
FA* aggregate performance over all sessions (see Sup. Mat.), even moderate gains reflect meaningful
improvements in continual learning dynamics. Our method achieves the lowest standard deviation across
runs, indicating more consistent performance compared to all baseline methods.

These results highlight the effectiveness of our design: CLIP-based multi-modal prompting, with text-encoder
prompt tokens (TOKT ) conditioned on image-encoder prompts (TOKV ) improves cross-domain adaptability
with few labeled samples, while proxy-guided orthogonalization and Beta-function-based temporal ensembling
enhance long-term retention across evolving domains, without continually increasing memory overhead.

Representational alignment: We compare the representation similarity of the two CLIP encoder represen-
tations by computing the average cosine similarity of the image embedding and text embedding of various
baselines on the test dataset of the “Real” domain of the DomainNet dataset, as the models sequentially
adapt to the new domains. As observed in Fig. 4a, PGO-BEn maintains consistently higher image–text
embedding similarity than all baselines, indicating stronger representational alignment of and better retention
under domain shift. In contrast, MaPLE*, which conditions vision prompts on text prompts, shows weaker
alignment. These results highlight the effectiveness of our conditioning strategy in both aligning the text
encoder to the evolving visual distribution and preserving stability across domains.
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Table 3: Efficacy of proposed BMA compared to EMA on DomainNet dataset. BMA shows superiority
in retaining prior knowledge. Results are mean over 3 seeds.

1-shot 2-shots 4-shots 8-shots
Technique AA*↑ FA*↑ AA*↑ FA*↑ AA*↑ FA*↑ AA*↑ FA*↑

EMA (λ = 0.98) 64.93 49.53 72.77 61.28 73.99 62.81 74.18 63.30
EMA (λ = 0.99) 58.22 45.77 66.10 53.99 71.58 59.73 73.34 61.90

BMA (β = (0.5, 0.5)) 74.27 63.76 74.36 63.92 74.53 64.17 74.61 64.28

Table 4: Robustness analysis of BMA (β = (0.5, 0.5)) over EMA (λ = 0.98). We compare the
cosine-similarity of the encoder representation on the test data of “Real” domain after adapting to “Clipart”
domain (left) and “Sketch” domain (right), for PGO-BEn with EMA and PGO-BEn with BMA. BMA
variant is observed to be superior, thus highlighting that it is stable even when domain gaps are large. Results
are mean±std over 3 seeds.

Real → Clipart Real → Sketch
PGO-BEn with EMA (λ = 0.98) 32.50±0.23 31.95±0.25

PGO-BEn with BMA (β = (0.5, 0.5)) 33.03±0.21 32.06±0.27

∆ +0.53 +0.11

4.2 Ablation Analysis

(a) Sensitivity to Training Sample Availability. We analyze the effect of supervision sparsity by varying
labeled samples per class in DomainNet (Fig. 4b). PGO-BEn consistently outperforms the top baselines
across all supervision levels, achieving superior generalization and retention in low-shot regimes (e.g., +1.77%
AA* and +1.38% FA* in 1-shot). This advantage further increases with more labels (e.g., +2.35% FA*
over DualPrompt in 8-shot), confirming that PGO-BEn scales effectively with available supervision while
maintaining cross-domain consistency.

(b) Comparison of EMA and BMA. We compare BMA with EMA across varying shots on DomainNet
(Table 3). BMA consistently yields superior performance by more effectively balancing the stability–plasticity
trade-off. While EMA applies exponentially decaying weights that rapidly diminish the influence of early
training states, it often leads to aggressive forgetting of knowledge from prior domains. In contrast, BMA
assigns symmetric Beta-function based weights (see Fig. 2b), preserving early domain knowledge while still
adapting to the current task—resulting in improved retention. Moreover, EMA is highly sensitive to the
decay hyperparameter, requiring careful tuning across domains. BMA exhibits greater robustness under
hyperparameter variation (Table 6), further supporting its suitability for dynamic FSDIL settings.

To assess the retention benefits of BMA over EMA, we compute the cosine similarity between the final CLIP
embeddings and those obtained after learning the “Real” domain, evaluated on “Real” test samples after
adaptation to Clipart and Sketch. Higher similarity indicates better knowledge preservation. As shown in
Tab. 4, under the 4-shot setting, the BMA variant of PGO-BEn consistently maintains higher similarity
across both adaptation scenarios (Real → Clipart and Real → Sketch), demonstrating stronger stability
against forgetting.

To further investigate the reasoning of such behavior in a continual adaptation scenario, in Tab. 5 , we
compare the variance of the prediction vector of PGO-BEn with EMA and PGO-BEn with BMA on the
test dataset of the “Real” domain of the DomainNet dataset, with respect to the prediction vector initially
obtained after just training on the “Real” domain, as both the models sequentially adapt to the new domains.
In the 4−shot scenario, we observe that EMA variant of the model has relatively higher variance compared
to the BMA variant. This highlights why the performance of BMA remains more stable compared to EMA
variant, highlighting the better stability thus achieved.

Clearly, these findings validate BMA as a more principled and stable ensembling strategy than EMA,
enhancing long-term knowledge preservation in continual few-shot learning.

(c) Sensitivity to β in Beta Ensembling. We evaluate the effect of different β values in the Beta
distribution used to weigh intermediate model states {Mt′}T ′

t′=0 during adaptation to domain Dt (Table 6).
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Table 5: Comparison of prediction variance between EMA (λ = 0.98) and BMA(β = (0.5, 0.5))
ensembling on “Real” domain test set during continual domain adaptation. We compute the
variance of the prediction logit vector of PGO-BEn with EMA and PGO-BEn with BMA, on all models
which has adapted to the subsequent domains, on the test dataset of“Real” domain. PGO-BEn with BMA
is observed to have less variance as compared to PGO-BEn with EMA. Results are mean±std over 3 seeds.

Painting Clipart Sketch Quickdraw Infograph
PGO-BEn with EMA (λ = 0.98) 4.71±0.29 4.40±0.34 4.05±0.25 2.30±0.64 2.69±0.23

PGO-BEn with BMA (β = (0.5, 0.5)) 4.32±0.13 4.31±0.29 3.95±0.28 2.24±0.51 2.80±0.44

∆ -0.39 -0.09 -0.20 -0.06 +0.11

Table 6: Comparison of value of β. Superior stability-plasticity trade-off observed when β = (0.5, 0.5).
Results are mean of 3 seeds.

Shots β = (0.3, 0.3) β = (0.5, 0.5) β = (0.7, 0.7) β = (1, 1)
AA*(↑) FA*(↑) AA*(↑) FA*(↑) AA*(↑) FA*(↑) AA*(↑) FA*(↑)

1-shot 73.96 63.40 74.27 63.76 73.97 63.38 74.17 63.74
2-shot 74.32 63.79 74.36 63.92 74.29 63.74 74.32 63.86
4-shot 74.46 63.89 74.53 64.17 74.42 63.84 74.47 64.09
8-shot 74.70 64.18 74.61 64.28 74.64 64.05 74.49 64.00
Average 74.36 63.81 74.44 64.03 74.33 63.75 74.36 63.92

The choice of β controls the temporal emphasis in the ensembling process: lower values emphasize early
and late stages, while higher values favor mid-training checkpoints. Weighting curves are visualized in Sup.
Mat. Empirically, β = (0.5, 0.5) yields the best average FA across all supervision levels, highlighting that
moderately bi-modal weighting (β < 1) offers better stability in BMA, validating its design choice as a robust
temporal smoothing mechanism in PGO-BEn.

Table 7: Analyzing the impact of the stability components. We experiment on the DomainNet dataset
across 1, 2, 4, and 8 -shots training examples. Neglecting the BMA component results in significant forgetting
of the knowledge of the previous domains. Results are mean of 3 seeds.

Stability components 1-shot 2-shot 4-shot 8-shot
Gradient Distill BMA AA*(↑) FA*(↑) AA*(↑) FA*(↑) AA*(↑) FA*(↑) AA*(↑) FA*(↑)

✓ × 73.75 62.89 74.07 63.11 74.05 62.96 73.97 62.38
× ✓ 72.83 61.87 73.74 63.05 76.44 63.52 74.42 63.83
✓ ✓ 74.27 63.76 74.36 63.92 74.53 64.17 74.61 64.28

Table 8: Prompting Configurations. We compare unimodal and multimodal setups, finding that condi-
tioning text prompts on vision tokens improves generalization under domain shift. Results are mean of 3
seeds

Prompting 1-shot 2-shots 4-shots 8-shots
Technique Encoder AA*↑ FA*↑ AA*↑ FA*↑ AA*↑ FA*↑ AA*↑ FA*↑

Unimodal Ft 70.34 59.33 71.11 59.68 72.41 61.92 72.96 62.21
Fv 72.02 62.35 71.85 62.15 71.98 62.26 72.27 62.21

Multi-modal
{Ft, Fv} 72.52 62.13 72.98 62.51 73.33 62.62 73.43 62.23
Ft → Fv 71.50 61.67 70.99 61.28 71.60 61.85 72.50 62.79

Fv → Ft (Ours) 74.27 63.76 74.36 63.92 74.53 64.17 74.61 64.28

(d) Impact of Stability Components. We ablate the two stability components of PGO-BEn: Proxy
Guided Orthogonalization and BMA. As shown in Table 7, using Proxy Guided Orthogonalization alone
may be suboptimal when Dt differs significantly from previous domains, leading to unreliable Gprev. BMA,
based solely on Gcurr, adapts better to new data and reduces overfitting through temporal smoothing. Their
combination consistently yields the best performance across all supervision settings, achieving a stronger
balance between adaptation and retention, especially under label scarcity.

(e) Effectiveness of Multi-Modal Prompting. Table 8 compares PGO-BEn’s vision-conditioned
prompting with uni-modal and other multi-modal baselines: Independent Prompting and Text-conditioned
Vision Prompting-MaPLE*. Multimodal prompting learns better representation as compared to Unimodal
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representation. MaPLE* conditions FV ’s prompts on FT , thus performing sub-optimal in capturing visual
domain-shift. PGO-BEn outperforms all variants across shots, with Fig. 4a showing higher similarity between
learnt embeddings and better retention of knowledge, supporting our choice of conditioning for better domain
invariance and generalization.

Extended ablations, including prompt lengths, depth of encoder synergy, and observing novel classes
during inference, further analysis on BMA, are mentioned in Sup. Mat.

5 Takeaways

We addressed the underexplored challenge of FSDIL, a setting critical for deploying continual learning systems
in dynamic and low-supervision environments. We proposed PGO-BEn, a unified framework integrating multi-
modal prompting, proxy-guided orthogonalization, and Beta-based ensembling. Our method demonstrates
strong resilience to catastrophic forgetting while enabling efficient adaptation under severe domain shifts.
Comprehensive evaluations across multiple benchmarks confirm the effectiveness and generalization of PGO-
BEn, highlighting the value of stabilizing gradient trajectories, and adaptively balancing stability and
plasticity. Furthermore, the framework’s ability to scale across domain variations positions it is a practical
solution for real-world continual learning tasks. Future directions include extending PGO-BEn to handle
unlabeled domain adaptation scenarios, and improving sample-efficiency further via generative replay or
self-supervised objectives.

Broader Impact and Limitation: This work can enable AI to adapt in critical data-scarce fields (e.g.,
healthcare, robotics), though risks of flawed adaptation or model bias are data dependent. The method
assumes fixed label spaces across domains, and its long-term scalability to numerous, highly diverse domains
needs further study.
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A Appendix

We discuss the additional details like dataset details, evaluation metrics and additional results in the appendix.

B Contents in this Supplementary document.

This supplementary document provides detailed insights and analyses to support the main paper. The
contents are organized as follows:

• Section C: Proxy-Guided Orthogonalization (PGO)
Elaborates on the Proxy Guided Orthogonalization mechanism, connecting it with existing
orthogonality-based continual learning literature. It also presents empirical observations that justify
the chosen hyperparameters.

• Section D: Theoretical Justification via PAC-Bayesian Framework
Discusses the theoretical underpinnings of our proposed method, PGO-BEn, utilizing the PAC-
Bayesian framework to provide generalization guarantees.

• Section E: Comparative Analysis of EMA and BMA
Offers a theoretical comparison between Exponential Moving Average (EMA) and Beta-based Moving
Average (BMA). We analyze prediction variance across domain sequences and assess representation
stability, especially under significant domain shifts.

• Section F: Distinction of our approach with Multi-Task Learning
Discusses the fundamental differences of our approach with respect to the Multi-Task Learning from
which our method takes inspiration. We highlight the aspects where our formulation differs from it,
with experimental results highlighting that direct application of MTL method is sub-optimal.

• Section G: Dataset and Domain Order Details
Outlines the datasets used and the specific domain sequences followed in our experiments.

• Section H: Evaluation Metrics
Details the metrics employed for evaluation, providing formulas and explanations for clarity.

• Section I: Implementation and Hardware Details
Discusses the implementation specifics of our method and the hardware configurations utilized during
experimentation.

• Section J: Algorithm Pseudocode
Presents the pseudocode of our proposed algorithm, offering a step-by-step procedural understanding.

• Section K: Model agnostic nature of our methodology
Experimentally verifies that our method is model-agnostic and can be applied to any CLIP like
architecture with Transformer based backbone in the encoders. Specifically, we re-run several baselines
with ViTL/14 backbone of the Vision encoder of the CLIP model.

• Section L: Comparison with Zero-shot CLIP with manual prompt
Presents the results obtained by prompting CLIP-ViTB/16 model with various manual prompts for
all the benchmark datasets. The results highlight that existing large-scale models require careful
adaptation algorithms and pre-trained weights with manual prompts provide sub-optimal performance.
This also highlight that manual prompting is very hard in fine-grain datasets like CoRE50.

• Section M: Comprehensive Results
Provides detailed results for 1, 2, 4, and 8-shot settings across three benchmark datasets: DomainNet,
CORe50, and CDDB-Hard. Additionally, we present results corresponding to a seed value of 2 for all
datasets.

18



Published in Transactions on Machine Learning Research (01/2026)

• Section O: Encoder-Synergy Module Depth Analysis
Examines the performance implications of varying the depth of the Encoder-Synergy module.

• Section P: Prompt Length Modulation
Analyzes how changes in prompt length affect performance, providing insights into optimal configu-
rations.

• Section Q: Novel Class Inference
Explores scenarios where novel classes are introduced during inference, demonstrating that PGO-BEn
effectively recognizes new classes, attributed to the robust prior knowledge from CLIP.

• Section R: Experiments with 5 seeds
Explores the effect of using 5 seeds instead of 3 seeds. We rerun all the baselines for all the datasets
across all the shots and report the individual score along with the average.

C Further Discussions on Proxy-Guided Orthogonalization

We address concerns regarding the robustness, theoretical justification, and convergence properties of our
Proxy-Guided Orthogonalization (PGO) strategy, designed to enhance stability across sequential domain
shifts in the Few-Shot Domain-Incremental Learning (FSDIL) setting.

A primary concern is the reliability of predictions from the previous model Mt−1 when adapting to a new
domain Dt, especially when Dt significantly differs from prior domains {D1, . . . ,Dt−1}. To mitigate this,
PGO employs a soft directional filter rather than a hard constraint. Specifically, when the cosine angle ψ
between the current gradient Gcurr and the previous gradient Gprev exceeds 90◦, indicating potential conflict,
we project out the conflicting component and retain only the orthogonal component G⊥

curr (see Fig. 5). This
approach ensures that adaptation to new domains does not adversely affect previously acquired knowledge,
thus enhancing stability.
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Figure 5: Illustration of conflicting and non-conflicting gradient update scenarios with respect
to prior knowledge. We illustrate the scenarios where the current adaptation may or may not interfere
with prior knowledge. When ψ ∈ [−π

2 ,
π
2 ], there is no conflict, allowing direct updates. In cases of conflict,

updates are made in the orthogonal direction G⊥
curr.

Unlike prior methods that rigidly project gradients into stored subspaces or freeze parameters Farajtabar
et al. (2020); Saha et al. (2021); Liang & Li (2024; 2023), our approach allows for flexible adaptation even
under significant domain shifts. Empirical results demonstrate strong retention of prior knowledge despite
domain divergence.

We adopt a fixed cosine angle threshold of 90◦ to detect conflicting gradients. This choice is simple,
interpretable, and aligns with orthogonality-based continual learning literature Farajtabar et al. (2020); Saha
et al. (2021); Liang & Li (2024; 2023). To assess sensitivity, we perform ablations by varying the threshold
across multiple angular deviations. The results, detailed in Table 9, indicate that PGO’s performance remains
robust across a range of threshold values, validating the effectiveness of our chosen threshold.

Table 9: Using 90° as a cosine similarity threshold. The choice of 90° as the threshold to identify
conflicting knowledge among Gprev and Gcurr is observed to empirically also enhance the stability-plasticity
tradeoff.

ψ ≤ 45° & ψ ≥ 315° ψ ≤ 75° & ψ ≥ 285° ψ ≤ 90° & ψ ≥ 270° ψ ≤ 110° & ψ ≥ 250°
AA*↑ FA*↑ AA*↑ FA*↑ AA*↑ FA*↑ AA*↑ FA*↑

1-shot 73.77 62.89 73.89 62.95 74.27 63.76 74.11 63.01
4-shot 74.40 64.02 74.54 64.09 74.93 64.48 74.46 64.01

Our approach operates within the CLIP framework, where the vision and text encoders remain frozen,
and only lightweight prompt and adapter parameters are updated. This low-dimensional setting mitigates
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optimization complexity. While formal convergence guarantees for non-convex losses are challenging, the
cosine-based gating in PGO ensures that updates do not destructively interfere with previously optimized
directions, leading to smoother loss trajectories. Moreover, PGO functions as a directional regularizer,
avoiding gradient interference without introducing projection errors common in subspace-based continual
learning.

In summary, Gradient-Aligned Distillation is a lightweight, theoretically motivated, and empirically stable
mechanism for continual adaptation under domain shifts. It effectively handles domain divergence, is robust
to threshold variations, and supports convergence in practice, even in non-convex prompt learning setups.

D Theoretical Justification of PGO-BEN via PAC-Bayesian Framework

We formally justify the generalization behavior of PGO-BEn under the FSDIL setting using PAC-Bayesian
analysis. The bound characterizes generalization performance for stochastic predictors trained on finite
samples under a prior–posterior distributional framework.

Let H denote the hypothesis space parameterized by model weights θ, and let Dt be the domain distribution
at session t. Consider a bounded loss ℓ : H×X ×Y → [0, 1], empirical risk L̂Dt

(h) = 1
n

∑n
i=1 ℓ(h, xt

i, y
t
i), and

expected risk LDt
(h) = E(x,y)∼Dt

[ℓ(h, x, y)].
Theorem 1 (PAC-Bayes Generalization Bound McAllester (1999)). Let π be a prior distribution over H,
and ρ be a data-dependent posterior. Then, for any δ ∈ (0, 1), with probability at least 1− δ over the choice
of sample S ∼ Dn

t , we have:

Eh∼ρ[LDt(h)] ≤ Eh∼ρ[L̂Dt(h)] +

√
KL(ρ∥π) + log 2

√
n

δ

2n .

Prior π: We define the prior π as the parameter distribution of the pretrained CLIP model (θ0) before
adaptation begins. Due to CLIP’s exposure to broad domain diversity, this prior is semantically rich and
well-aligned with the hypothesis space for downstream domains, particularly useful in the few-shot regime
where ρ must stay close to π.

Posterior ρ via BMA: The posterior ρ is implicitly constructed as a mixture of model checkpoints across
training steps:

ρ =
T ′∑

t′=0
αt′ δMt′ where αt′ ∝ Beta(β, β)

(
t′+0.5
T ′+1

)
.

This formulation yields a smoothed, trajectory-aware posterior that reduces overfitting to the final iterate
and aligns with posterior averaging methods shown to tighten PAC-Bayesian bounds Dziugaite & Roy (2017);
Wu et al. (2019).

Stability via Proxy-Guided Orthogonalization: The cosine-based masking of gradient directions in
PGO prevents catastrophic drift from Mt−1, enforcing update stability without requiring stored gradients.
This aligns with algorithmic stability theory Bousquet & Elisseeff (2002), which bounds the empirical–expected
risk gap and improves generalization.

Summarily, each component of PGO-BEn contributes to a tighter PAC-Bayesian bound:

• A strong prior π via CLIP reduces the complexity term KL(ρ∥π);

• The BMA-based posterior ρ smooths model updates, lowering variance in empirical loss;

• Gradient-aligned updates stabilize training, narrowing the empirical–expected loss gap.

While deriving exact closed-form bounds in deep networks remains intractable Bousquet & Elisseeff (2002);
Dziugaite & Roy (2017), our formulation aligns with established PAC-Bayes theory and is supported by
robust empirical generalization across non-i.i.d. domain streams.
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Figure 6: Beta-distribution with different parameters. Variation of the Beta-distribution curve with
different parameters.

E Theoretical and Empirical Analysis of Beta-based Moving Average (BMA)

EMA is a first-order recursive smoother of model parameters:

θEMA
t = λθt + (1− λ)θEMA

t−1 ,

where λ ∈ [0, 1] is the decay parameter. Its recursive nature gives exponentially diminishing weights to early
iterates, rapidly discarding useful information from past domains.

BMA, in contrast, uses a non-recursive weighted sum of intermediate model checkpoints:

θBMA =
T ′∑

t′=0
αt′θt′ , αt′ ∝ Beta(β, β)

(
t′ + 0.5
T ′ + 1

)
.

This induces a non-monotonic, symmetric weighting over time, explicitly preserving early-stage information
while still incorporating late-stage adaptation. Unlike Gaussian posterior smoothing or Bayesian ensembling,
which require approximate posterior distributions over parameters (e.g., Laplace or variational), BMA is an
implicit posterior smoother operating over deterministic iterates. This avoids costly uncertainty estimation or
sampling, while still capturing temporal uncertainty through weighting. This choice is deliberate: in FSDIL,
labeled data is too sparse to fit full Bayesian posteriors per domain, and BMA provides an efficient surrogate.

Figure 6 describes the shape of the Beta-distribution curve. As we see, with β < 1, the models at either
end of the adaptation strategy are given more weightage. This aligns with the intuition that model state
during the initial iterations of the adaptation step in domain Dt is likely to have more knowledge about
domains {D1, · · · ,Dt−1}, and hence should be given more weightage to ensure that even after adaptation,
the model Mt, adapted on domain Dt preserves the knowledge of domains {D1, · · · ,Dt−1}. β = 1, gives
equal weightage to all the intermediate states.

Variance Reduction: Let θ̄ = Et′∼α[θt′ ]. The total variance under BMA is:

Varα(θt′) = Eα[∥θt′ − θ̄∥2],

which, for symmetric β < 1, gives more uniform support across the training trajectory, reducing the bias
toward terminal points that plagues EMA. This stabilization is critical in FSDIL, where prior domain
knowledge must not be erased. In Fig. ?? (main paper), we show the prediction variance comparisons
between BMA and EMA on the prediction on the test set of Real domain dataset as the model keeps adapting
to a sequence of domains, in 4-shot scenario. BMA is found to reduce the prediction variance more effectively,
thus maintaining steady performance as compared to EMA much better. We also compute the change in
cosine-similarity of the output of text and vision encoder, as the model has to adapt to a large domain-shift.
After learning about the Real domain, the average cosine-similarity on the Real domain test set is 0.3480. As
we observe, for both the adaptation scenarios (Real → Clipart and Real → Sketch), the drop in the cosine
similarity of the text and vision encoder representations for the EMA model is higher compared to BMA,
which indicates that the representations learnt by EMA is more stable than EMA.
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Ours MTL
1-shot 62.33 55.07
2-shot 62.42 55.16
8-shot 64.54 56.63

Table 10: Comparison of our method and MTL Yu et al. (2020) on DomainNet dataset, with respect to AAT .
We observe that our method is significantly better than the applying MTL approach directly, which results in
more conflicting graident updates, hampering the learning.

The choice of β = (0.5, 0.5) corresponds to the arcsine distribution, which maximally weights both early and
late checkpoints:

Beta(0.5, 0.5) ∼ 1
π

√
x(1− x)

, x ∈ (0, 1).

This is particularly suitable in continual learning where: - Early iterates capture prior domain knowledge, and
- Later iterates specialize to the current domain.

In summary, BMA offers a principled, interpretable, and efficient strategy to smooth adaptation across
domains in FSDIL. It reduces variance, preserves early domain knowledge, and improves generalization
stability over EMA. While formal convergence bounds remain an open direction, our empirical and intuitive
justification strongly supports its use over classical EMA or probabilistic smoothing methods in the continual
few-shot regime.

F Distinction with Multi-Task Learning

While our method is inspired by Yu et al. (2020), it significantly departs from standard multi-task learning
(MTL) due to the unique constraints of FSDIL.

In Multi-Task Learning Yu et al. (2020), all task data is available simultaneously, allowing per-task gradient
computation and direct conflict resolution. In contrast, FSDIL restricts access to only the current domain Dt,
with no replay or task labels, and faces few-shot supervision and unconstrained domain shifts—conditions
where direct gradient projection (as in Liang & Li (2024)) becomes unreliable.

Our key innovations are as follows:

• We use the frozen modelMt−1 as a proxy for prior domain knowledge. By passing current inputs Dt

through Mt−1, we approximate prior gradients without accessing old data.

• We compare gradients from Mt (CE loss) and Mt−1 (KL loss). When conflicting directions are
detected, we project the current CE loss gradient orthogonally to preserve prior knowledge—achieving
forgetting mitigation without memory or subspace estimation.

• Since Mt−1 is evaluated on an unseen domain, its gradients may be noisy. To stabilize updates, we
introduce BMA, which adaptively ensembles model states and improves retention under shift.

Thus, while inspired by MTL conflict resolution, our formulation is fundamentally adapted to FSDIL:
exemplar-free, domain-incremental, and few-shot. We will further clarify this in the revised version.

We conducted an experiment where data from all domains was introduced jointly and trained using Yu et al.
(2020), treating each domain as a separate task—referred to as MTL*. We compared this against our method,
which observes each domain sequentially. Average accuracy (AA) across all domains is reported below.

G Dataset details

We perform our experiments on three standard Domain Incremental Learning(DIL) benchmarks. The detailed
descriptions and statistics These datasets are as follows:
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• CDDB Li et al. (2023) is a dataset used for continuous deepfake detection, where the DIL objective
involves recognizing authentic and fake images across different domains. We adopted the Hard Setting
from Wang et al. (2022a), requiring learning on 5 continuous deepfake detection domains: GauGAN,
BigGAN, WildDeepfake, WhichFaceReal, and SAN. This entails approximately 27,000 images. The
domain order followed aligns with Wang et al. (2022a), i.e. GauGAN → BigGAN → WildDeepfake
→ WhichFaceReal → SAN.

• CORe50 Lomonaco & Maltoni (2017) is designed for continuous object recognition, consisting of 11
domains, each with 50 categories. In DIL, we perform incremental learning on the first eight domains,
as s1 → s2 → s3 → s4 → s5 → s6 → s7 → s8.

• DomainNet Peng et al. (2019) is a domain adaptation dataset commonly used as a benchmark for
DIL methods. It comprises 6 domains, each with 345 categories. The domain order is the same as
Rakshit et al. (2022), followed by Real → Painting → Clipart → Sketch → Quickdraw → Infograph,
which follows an incrementally more difficult domain to learn.

H Evaluation metric details

After adapting to a domain Dt we evaluate the performance on domains {D1 · · · Dt}. To measure the
effectiveness of our method towards handling the stability-plasticity trade-off, we use two standard metrics,
Average Accuracy (AA) and Forgetting Alleviation (FA). Average Accuracy for domain Dt is defined as

AAt =
t∑

i=1
Ai,t (7)

where Ai,t denotes the accuracy obtained by the model on the i-th domain adapting to t-th domain.

We used AA∗ as our metric which is defined as

AA∗ = 1
N

N∑
t=1

AAt (8)

where N denotes the number of domains. This metric provides a more comprehensive measure of how the
performance varies across all the training sessions and thus reduces the bias of only checking the performance
on the last session. As AA∗ is an average of average values, a little improvement indicates much superior
performance than the other counterpart.

Forgetting Alleviation for domain Dt is defined as

FAt =
N∑

i=t+1
At,i (9)

This measures the average performance of the model on the domain Dt after being adapted to subsequent
domains Dt+1 · · · DN . We used FA∗ as our metric which is defined as

FA∗ = 1
N

N∑
t=1

FAt (10)

We present a walthrough of the calculation of the metrics in Fig 7, taking a toy example of three domains
{D1,D2,D3}, with the domain sequence being {D1 → D2 → D3}.

I Implementation details

We maintained CLIPRadford et al. (2021) ViT-B/16 as our backbone architecture for all the datasets, and
all baselines (except in Sec. K). We used SGD as our optimizer with an initial learning rate of 0.002. The
input images are resized to (224× 224) for all the baselines and our proposed method. We did our training
on a single NVIDIA RTX A6000 48GB-GPU, and used Pytorch as our Deep learning framework, running the
models for 20 epochs.
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Figure 7: Metric calculation walkthrough: A simple walkthrough using an example of three domains.
We detail the individual steps to calculate AA∗ and FA∗.
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J Algorithm

We detail our learning process in the first session and in the incremental sessions with few-shot labeled
examples in the form of a pseudo-code in Algorithm 1.
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Algorithm 1 Training and inference procedure of PGO-BEn
Require: Dataset {D1, D2, ..., DN }, Model M, max epochs max_epoch, parameter β for Beta distribution.

1: for t = 1 to N do
2: (xt, yt)← Dt

3: if t == 1 then ▷ First domain
4: for epoch = 1 to max_epoch do
5: for j = 1 to |D1| do
6: ypred ←M1(x1

j )
7: Lce ← crossentropy(ypred, y

1
j )

8: Lce.backward()
9: optimizer.step() ▷ Updates all the learnable parameters.

10: end for
11: end for
12: Use M1 for inference at t = 1.
13: else ▷ Incremental domains with few-shot samples per class.
14: Mt ←Mt−1 ▷ Initializing model to be adapted to domain Dt using the model which has been

adapted to {D1 · · · Dt−1}
15: MBMA

t ←Mt−1 ▷ Initializing the BMA model using the model which has been adapted to
{D1 · · · Dt−1}

16: for epoch = 1 to max_epoch do
17: iter ← 0
18: for j = 1 to |Dt| do
19: yt

pred ←Mt(xt
j) ▷ Prediction probability vector from the model we are adapting to domain

Dt

20: yt−1
pred ←Mt−1(xt

j) ▷ Prediction probability vector from the frozen model which has been
adapted sequentially D1 · · · Dt−1

21: Lce ← CrossEntropy(yt
pred, y

t
j)

22: Lkd ← KL - Divergence(yt
pred, y

t−1
pred)

23: Gcurr ← Gradient of Lce
24: Gprev ← Gradient of Lkl
25: Compute ψ, angle between Gcurr & Gprev for each learnable paramters of Mt.
26: if ψ < 90◦ or ψ > 270◦ then
27: Gupdate ← Gcurr ▷ No conflict with knowledge of previous domains.
28: else
29: Decompose Gcurr into G||

curr and G⊥
curr which denote component of Gcurr parallel to

Gprev and perpendicular to Gprev respectively.
30: Gupdate ← G⊥

curr

31: end if
32: optimizer.step()
33: Obtain αt′ from Equation 9 with t′ = iter.
34: Compute γt ← αt′∑t′

k=0
αk

35: Compute MBMA
t′ ← (1− γ)MBMA

t′−1 + γ · Mt′

36: iter ← iter + 1
37: end for
38: end for
39: Use MBMA

t for inferencing on domains {D1 · · · Dt} seen so far.
40: end if
41: end for
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K Other backbone models (CLIP ViT-L)

To asses the model-agnostic effectiveness of our proposed method, we conducted additional experiments using
the CLIP ViT-L/14 backbone and compared with one regularizer based baseline and gradient approximation
technique respectively. We evaluate our method across various levels of supervision, specifically in 1-shot,
2-shot and 4-shot settings, in Table 11. We observed that our method consistently outperforms the baseline
methods across all supervision levels.

Table 11: Performance with CLIP ViT-L/14 backbone. We replace the backbone of PGO-BEn and
baseline methods with CLIP ViT-L/14 to assess generality. PGO-BEn maintains the best performance under
all supervision levels, validating its backbone-agnostic continual adaptation capability.

1-shot 2-shots 4-shots
Method AA*↑ FA*↑ AA*↑ FA*↑ AA*↑ FA*↑
EwC 76.07 65.71 75.98 65.24 75.78 64.43
LwF 76.59 67.45 77.07 67.33 76.50 65.87
InfLORA 76.81 67.50 77.34 67.72 76.95 66.57
Ours 78.12 68.76 78.15 68.81 78.25 68.75

L Comparison with Zero-shot CLIP with various manual prompt

In Table 12, 13 and 14 we discuss the performance obtained upon changing the manual prompt. As we
observe, the performance varies quite drastically for all the benchmarks. This highlights that, large-scale
pretrained models like CLIP fail to adapt to changing domains, or even fine-grain classification like identifying
identity of individual objects. It is thus required to design efficient methods to train the pre-trained models
to adapt to this evolving domain scenarios.

Table 12: DomainNet

Prompt Real Painting Clipart Sketch Quickdraw Infograph
a photo of a — 83.19 63.00 69.86 64.12 13.91 49.08
Ours (1-shot) 86.37 68.77 75.68 67.87 20.84 54.47

Table 13: CDDB-Hard

Prompt GauGAN BigGAN Wild WhichfaceisReal SAN
a photo of a — image 57.75 52.75 52.01 68.50 50.60

a — image 57.00 53.75 51.53 68.50 49.40
Ours (4-shot) 90.45 86.12 56.51 70.50 61.44

Table 14: CoRE50

Prompt s1 s2 s3 s4 s5 s6 s7 s8
a photo of a — 11.67 12.20 9.20 11.33 10.53 8.20 10.20 9.83

there is a — in this image 14.43 13.73 11.97 11.37 12.77 10.50 12.90 13.73
this is an image of — 13.33 15.47 11.80 11.33 11.10 9.27 12.10 11.37

Ours (1-shot) 88.67 77.23 75.26 80.33 76.40 68.53 73.30 83.96

M Result

In this section we expand out the results on DomainNet, CDDB-Hard and CoRE50 dataset that we have
shown in Table 2 of the main paper. We report the average AA* and FA* across 1, 2, 4, and 8 shots in the
main paper. Here we detail them individually.
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Table 15 details results on DomainNet. Table 16 details obtained results on CDDB-Hard and Table 17 details
obtained results on CoRE50 dataset.

The results, averaged over three seeds, are in the next page owing to the orientation.
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N Detailed results for all datasets

We detail the results of the performance of PGO-BEn on DomainNet Peng et al. (2019) in Table 18,
CDDB-Hard Li et al. (2023) in Table 19, and about the CoRE50 dataset Lomonaco & Maltoni (2017) in
Table 20, across 1, 2, 4, 8 and 16 shots.

Table 18: Performance change across varying levels of supervision for DomainNet dataset with
seed = 2.

(a) 1-shot

Real Painting Clipart Sketch Quickdraw Infograph
Real 88.52 - - - - -

Painting 87.89 69.52 - - - -
Clipart 87.57 69.46 75.15 - - -
Sketch 87.28 69.78 75.86 67.43 - -

Quickdraw 85.45 67.66 75.62 66.34 21.09 -
Infograph 86.37 68.77 75.68 67.87 20.84 54.47

(b) 2-shot

Real Painting Clipart Sketch Quickdraw Infograph
Real 88.52 - - - - -

Painting 87.98 70.16 - - - -
Clipart 87.58 69.91 75.86 - - -
Sketch 87.59 69.83 75.87 67.55 - -

Quickdraw 85.70 68.28 75.29 67.59 20.82 -
Infograph 86.64 69.64 75.48 67.28 20.53 54.98

(c) 4-shot

Real Painting Clipart Sketch Quickdraw Infograph
Real 88.52 - - - - -

Painting 86.93 72.48 - - - -
Clipart 87.57 71.38 76.25 - - -
Sketch 86.92 70.98 76.24 68.74 - -

Quickdraw 86.49 68.92 75.21 67.50 25.67 -
Infograph 86.94 69.42 75.72 67.49 22.98 55.73

(d) 8-shot

Real Painting Clipart Sketch Quickdraw Infograph
Real 88.52 - - - - -

Painting 87.42 72.13 - - - -
Clipart 87.11 72.90 76.36 - - -
Sketch 86.76 71.65 76.54 68.59 - -

Quickdraw 85.82 69.41 76.38 68.29 29.53 -
Infograph 87.21 72.25 75.98 67.82 27.15 56.84
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Table 19: Performance change across varying levels of supervision for CDDB-Hard dataset, with
seed value=2.

(a) 1-shot

GauGAN BigGAN Wild WhichfaceisReal SAN
GauGAN 98.90 - - - -
BigGAN 89.15 66.75 - - -

Wild 69.35 68.12 45.95 - -
WhichfaceisReal 51.00 53.00 51.04 50.25 -

SAN 53.75 56.87 52.30 50.25 63.85

(b) 2-shot

GauGAN BigGAN Wild WhichfaceisReal SAN
GauGAN 98.85 - - - -
BigGAN 91.40 91.37 - - -

Wild 79.60 76.87 55.21 - -
WhichfaceisReal 80.05 83.87 55.45 67.75 -

SAN 63.65 47.37 51.09 42.00 45.78

(c) 4-shot

GauGAN BigGAN Wild WhichfaceisReal SAN
GauGAN 98.80 - - - -
BigGAN 96.15 79.62 - - -

Wild 90.70 84.37 64.03 - -
WhichfaceisReal 85.60 86.00 64.42 80.25 -

SAN 90.45 86.12 56.51 70.50 61.44

(d) 8-shot

GauGAN BigGAN Wild WhichfaceisReal SAN
GauGAN 98.95 - - - -
BigGAN 95.35 90.50 - - -

Wild 86.55 83.12 63.06 - -
WhichfaceisReal 87.95 87.12 62.43 81.50 -

SAN 82.50 82.87 65.87 74.25 54.21

(e) 16-shot

GauGAN BigGAN Wild WhichfaceisReal SAN
GauGAN 98.95 - - - -
BigGAN 94.60 94.50 - - -

Wild 74.95 84.00 61.85 - -
WhichfaceisReal 93.60 88.50 59.91 83.00 -

SAN 93.90 88.75 63.59 83.25 59.03
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Table 20: Performance change across varying levels of supervision for CoRE50 dataset with seed
value = 2.

(a) 1-shot

s1 s2 s3 s4 s5 s6 s7 s8
s1 98.00 - - - - - - -
s2 91.70 80.93 - - - - - -
s3 92.50 81.83 80.86 - - - - -
s4 92.30 80.76 79.67 82.93 - - - -
s5 90.73 80.23 78.90 79.67 84.27 - - -
s6 89.16 75.76 74.93 78.33 78.46 79.30 - -
s7 88.33 74.43 72.87 78.56 74.53 71.70 77.13 -
s8 88.67 77.23 75.26 80.33 76.40 68.53 73.30 83.96

(b) 2-shot

s1 s2 s3 s4 s5 s6 s7 s8
s1 98.00 - - - - - - -
s2 95.00 82.20 - - - - - -
s3 95.00 82.33 74.80 - - - - -
s4 93.33 80.90 80.00 87.50 - - - -
s5 94.06 79.17 77.27 80.40 86.30 - - -
s6 91.00 77.27 73.96 79.63 81.50 82.53 - -
s7 91.23 80.57 75.97 81.37 79.63 80.86 80.76 -
s8 91.56 80.50 79.03 82.67 81.50 78.60 80.17 86.60

(c) 4-shot

s1 s2 s3 s4 s5 s6 s7 s8
s1 98.00 - - - - - - -
s2 92.63 80.13 - - - - - -
s3 93.20 81.33 84.03 - - - - -
s4 93.50 79.76 82.56 87.96 - - - -
s5 94.96 79.63 80.30 82.40 86.93 - - -
s6 93.43 78.13 78.00 82.80 80.70 83.20 - -
s7 94.13 81.36 78.60 84.93 83.13 80.00 82.90 -
s8 93.77 82.80 80.00 83.66 83.36 78.13 80.43 88.60

(d) 8-shot

s1 s2 s3 s4 s5 s6 s7 s8
s1 98.00 - - - - - - -
s2 92.13 87.27 - - - - - -
s3 92.87 85.67 87.57 - - - - -
s4 94.07 84.50 84.40 90.27 - - - -
s5 94.20 84.20 83.10 86.50 91.20 - - -
s6 92.37 83.40 78.33 85.37 85.03 88.57 - -
s7 93.40 84.47 82.47 85.80 85.33 83.33 86.53 -
s8 92.57 85.77 82.87 86.27 85.20 80.37 82.87 91.23

(e) 16-shot

s1 s2 s3 s4 s5 s6 s7 s8
s1 96.47 - - - - - - -
s2 78.23 76.87 - - - - - -
s3 87.13 81.03 84.63 - - - - -
s4 88.43 81.50 80.60 88.53 - - - -
s5 88.23 82.10 79.33 84.90 90.80 - - -
s6 89.23 81.33 75.40 81.70 85.77 87.30 - -
s7 88.80 82.20 77.57 81.77 83.97 82.07 86.07 -
s8 89.60 83.03 80.20 85.47 85.67 79.73 81.90 90.47
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O Prompt depth

We experiment with the depth of encoder blocks that we synergize with the proposed Encoder synergy
module. We experiment with J = 1, 3, 5, 9 and 11. As we see in Table 21, as we increase the depth of the
Encoder synergy module, we see the performance increases, which indicates that the model is able to use
CLIP pre-trained knowledge better, and hence, representation is learned and better stability of performance.
But as we go to the last block, where the features are already mature, we see a dip in performance, which
aligns with observations made in Khattak et al. (2022).

Table 21: Encoder synergy depth ablation

Shots J = 1 J = 3 J = 5 J = 9 J = 11
AA*(↑) FA*(↑) AA*(↑) FA*(↑) AA*(↑) FA*(↑) AA*(↑) FA*(↑) AA*(↑) FA*(↑)

1-shot 73.22 62.58 72.32 60.71 73.10 62.23 74.27 63.76 73.34 63.12
2-shot 73.39 62.39 72.95 61.76 73.67 63.02 74.36 63.92 73.45 63.23
4-shot 73.58 62.65 73.53 62.56 73.83 63.30 74.93 64.48 73.49 63.45
8-shot 73.67 62.73 73.58 62.61 74.01 63.32 75.51 66.93 73.92 63.87

P Prompt Length ablation

Prompt length is an important hyperparameter of PGO-BEn. We detail the changes in the figure 8

Figure 8: Prompt length v/s AA* and FA* measure by taking average of 1, 2, 4 and 8-shots.

As we observe with very high prompt length, the performance dips.

Q Novel classes during inference

We experiment the scenario where the model encounters novel classes during inference time, and compare
the results in Table 22. This is a very practical scenario in different use cases. Following the experimental
setup of Khattak et al. (2022); Zhou et al. (2022b;a), we separate the set of classes of every domain into two
groups, Base and New. During training, the model observes base classes, and we evaluate the performance on
base classes and new classes.

We implemented the LwF, InfLORA and our method in this experiment with DomainNet dataset in 1-shot
and 4-shot, where we learn the context vectors in the base class and for inference, we change the [CLS]
token in the prompt Pr, to perform inference on new classes. Our method achieves superior stability as
compared to other baselines, highlighting the superiority of our method and the applicability of our method
in real-world scenarios where we can come across new classes after deployment, like autonomous driving.
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Table 22: Comparing performance of PGO-BEn with two baseline methods (LwF, InfLORA) towards
recognizing novel classes during inference.

Base New
Shots Method AA*(↑) FA*(↑) AA*(↑)

1-shot

LwF* 72.04 66.77 70.29
InfLORA 70.77 63.70 68.76

PGO-Ben 77.74 68.51 76.00

4-shot

LwF* 71.79 69.04 70.10
InfLORA 68.87 64.93 67.51

PGO-Ben 78.88 69.58 77.08

R Experiments with more seed values

We discuss the results with more number of seed values in this section. The average of 1, 2, 4 and 8-shot
performance across five different seeds are detailed in Table 23. The results for DomainNet dataset is in
Table 24, CDDB-Hard results in Table 25 and CoRE50 results in Table 26

Table 23: Comparison across DomainNet, CDDB-Hard, and CoRE50 averaged over 1, 2, 4, and
8-shot settings. Bold and underlined denote the best and second-best scores. PGO-BEn outperforms all
baselines without using prompt pools, demonstrating its generalization strength. * indicates CLIP-ViTB/16-
based reimplementation. Results are mean ± std over 5 seeds. Red font denotes least std method.

DomainNet CDDB-Hard CoRE50

Method Average Average Average

Prompt Pool Backbone AA*(↑) FA*(↑) AA*(↑) FA*(↑) AA*(↑) FA*(↑)

DyTox Douillard et al. (2021) × ViT 31.66±0.92 19.74±0.69 57.24±0.66 53.54±0.93 47.19±0.79 29.49±1.04

Zero-shot CLIP Radford et al. (2021) × CLIP 69.05 − 56.32 − 12.67 −

LwF* Li & Hoiem (2017) × CLIP 72.21±0.86 60.77±0.96 68.06±0.83 58.85±0.82 64.80±0.86 57.75±0.66
EwC* Kirkpatrick et al. (2017) × " 70.88±0.94 59.12±0.87 70.99±0.91 62.25±0.88 63.57±0.72 55.54±0.48
L2P* Wang et al. (2022c) ✓ " 67.29±0.64 54.70±0.49 71.45±1.04 64.03±0.94 80.17±0.94 78.44±0.97
DualPrompt* Wang et al. (2022b) ✓ " 73.51±0.64 63.50±0.74 72.85±0.74 66.46±0.90 55.87±0.59 50.89±0.74
S-Prompt Wang et al. (2022a) ✓ " 67.84±0.43 56.27±0.33 65.60±0.61 60.80±0.59 79.44±0.84 76.29±0.55
CODA-Prompt Smith et al. (2023) ✓ " 73.67±0.81 63.50±0.68 70.58±0.57 60.46±0.54 57.14±0.93 43.79±0.86
InfLORA* Liang & Li (2024) × " 72.15±0.70 60.70±0.80 67.03±0.54 57.41±0.86 65.15±0.97 58.15±0.76
CP-Prompt Feng et al. (2024) ✓ " 72.19±0.85 61.13±0.77 66.88±0.41 62.21±0.25 81.68±0.70 79.96±0.59

PGO-BEn (Ours) × CLIP 74.85±0.24 64.92±0.30 79.69±0.33 72.61±0.19 86.38±0.39 82.52±0.57

∆ +1.18 +1.42 +6.84 +6.15 +4.70 +2.56

As we can see, there are no changes to the relative ordering of the baseline methods with us, with our method
clearly superior across all scenarios. The previous table with 3 seeds is mentioned in Table 2
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