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Abstract

The invariance principle from causality is at the heart of notable approaches such
as invariant risk minimization (IRM) that seek to address out-of-distribution (OOD)
generalization failures. Despite the promising theory, invariance principle-based
approaches fail in common classification tasks, where invariant (causal) features
capture all the information about the label. Are these failures due to the methods
failing to capture the invariance? Or is the invariance principle itself insufficient? To
answer these questions, we revisit the fundamental assumptions in linear regression
tasks, where invariance-based approaches were shown to provably generalize OOD.
In contrast to the linear regression tasks, we show that for linear classification
tasks we need much stronger restrictions on the distribution shifts, or otherwise
OOD generalization is impossible. Furthermore, even with appropriate restrictions
on distribution shifts in place, we show that the invariance principle alone is
insufficient. We prove that a form of the information bottleneck constraint along
with invariance helps address key failures when invariant features capture all the
information about the label and also retains the existing success when they do not.
We propose an approach that incorporates both of these principles and demonstrate
its effectiveness in several experiments.

1 Introduction

Recent years have witnessed an explosion of examples showing deep learning models are prone to
exploiting shortcuts (spurious features) (Geirhos et al., 2020; |[Pezeshki et al.| [2020) which make
them fail to generalize out-of-distribution (OOD). In Beery et al.| (2018), a convolutional neural
network was trained to classify camels from cows; however, it was found that the model relied on the
background color (e.g., green pastures for cows) and not on the properties of the animals (e.g., shape).
These examples become very concerning when they occur in real-life applications (e.g., COVID-19
detection (DeGrave et al.,[2020)).

To address these out-of-distribution generalization failures, invariant risk minimization (Arjovsky
et al.,|2019) and several other works were proposed (Ahuja et al.| [2020; [Pezeshki et al., 2020; [Krueger
et al.,[2020; |Robey et al., 2021} Zhang et al., [2021)). The invariance principle from causality (Peters
et al.| |2015; [Pearl| [1995) is at the heart of these works. The principle distinguishes predictors that
only rely on the causes of the label from those that do not. The optimal predictor that only focuses on
the causes is invariant and min-max optimal (Rojas-Carulla et al.,[2018; Koyama and Yamaguchi,
2020;|Ahuja et al, 2021)) under many distribution shifts but the same is not true for other predictors.
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Our contributions. Despite the promising theory, invariance principle-based approaches fail in
settings (Aubin et al., | 2021)) where invariant features capture all information about the label contained
in the input. A particular example is image classification (e.g., cow vs. camel) (Beery et al.l 2018)
where the label is a deterministic function of the invariant features (e.g., shape of the animal), and
does not depend on the spurious features (e.g., background). To understand such failures, we revisit
the fundamental assumptions in linear regression tasks, where invariance-based approaches were
shown to provably generalize OOD. We show that, in contrast to the linear regression tasks, OOD
generalization is significantly harder for linear classification tasks; we need much stronger restrictions
in the form of support overlap assumptionﬂ on the distribution shifts, or otherwise it is not possible
to guarantee OOD generalization under interventions on variables other than the target class. We
then proceed to show that, even under the right assumptions on distribution shifts, the invariance
principle is insufficient. However, we establish that information bottleneck (IB) constraints (Tishby
et al., [2000), together with the invariance principle, provably works in both settings — when invariant
features completely capture the information about the label and also when they do not. (Table [T]
summarizes our theoretical results presented later). We propose an approach that combines both these
principles and demonstrate its effectiveness on linear unit tests (Aubin et al., [2021)) and on different
real datasets.

Task Invariant features ~ Support overlap ~ Support overlap 0OD generalization guarantee (£, — Eqy1)
capture label info  invariant features  spurious features ERM IRM IB-ERM IB-IRM
Linear Full/Partial No Yes/No Impossible for any algorithm to generalize OOD [Thm2]
Classification Full Yes No (X X v/ /] [Thm3,4]
. Partial Yes No X X X v [Appendix]
Full Yes Yes 4 v v /1 [Thm3,4]
Partial Yes Yes X v X 4
Linear Full No No v v v v
Regression Partial No No X v X V] [Thm4]

Table 1: Summary of the new and existing results (Arjovsky et al.,|2019} |[Rosenfeld et al., [2021]).
IB-ERM (IRM): information bottleneck - empirical (invariant) risk minimization ERM (IRM).

2 OOD generalization and invariance: background & failures

Background. We consider a supervised training data D gathered from a set of training environments
Eir: D = {D}ecs,,, where D® = {x§,y$}7-, is the dataset from environment e € &, and n® is
the number of instances in environment e. ¢ € R¢ and y¢ € ) C R¥ correspond to the input feature
value and the label for i*” instance respectively. Each (z¢,y¢) is an i.i.d. draw from P¢, where P¢ is
the joint distribution of the input feature and the label in environment e. Let X'© be the support of the
input feature values in the environment e. The goal of OOD generalization is to use training data D
to construct a predictor f : R? — RF that performs well across many unseen environments in &,
where £y O &, Define the risk of f in environment e as R°(f) = E[¢(f(X*),Y )], where for
example ¢ can be 0-1 loss, logistic loss, square loss, (X¢,Y¢) ~ P¢, and the expectation E is w.r.t.
IP¢. Formally stated, our goal is to use the data from training environments &, to find f : R — ) to
minimize

min max R°(f). (1)

f e€€an

So far we did not state any restrictions on &,;;. Consider binary classification: without any restrictions
on &,;, no method can reduce the above objective (£ is 0-1 loss) to below one. Suppose a method
outputs f*;if 3 e € &,y \ & with labels based on 1 — f*, then it achieves an error of one. Some
assumptions on &,;; are thus necessary. Consider how &,;; is restricted using invariance for linear
regressions (Arjovsky et al.,[2019).

Assumption 1. Linear regression structural equation model (SEM). In each e € E,;

YO why - 2o+ € 2o, L€, E[e] = 0,E[[e°?] < o2
. inv . |nve inv sup (2)
X <_S( inv7Zspu)

where wi € R™, Z¢ € R™, Zg,, € R°, S € RX(M+) G is invertible (m + o = d). We focus on

nv
invertible S but several results extend to non-invertible S as well (see Appendix).

3Support is the region where the probability density for continuous random variables (probability mass
function for discrete random variables) is positive. Support overlap refers to the setting where train and test
distribution maybe different but share the same support. We formally define this later in Assumptionﬁ}



Assumptlonl states how Y and X © are generated from latent invariant features Z; \ﬂ latent spurious
features Z¢ , and noise €°. The relationship between label and invariant features is invariant, i.e.,

spu
wy,, IS fixed across all environments. However, the distributions of Z{ , Z¢,,, and €“ are allowed

tomc;lhange arbitrarily across all the environments. Suppose S is identity. If we regress only on the
invariant features Z{ , then the optimal solution is wj,,, which is mdependent of the environment,
and the error it achieves is bounded above by the variance of € (02, ) If we regress on the entire
Z° and the optimal predictor places a non-zero welght on Zg,, (e.g., Zg, < Y+ (°), then this
predictor fails to solve equation @ (3 e € Eany Zgy, — 00, error — 00, see Appendix for details).
Also, not only regressing on Z  is better than on Z¢, it can be shown that it is optimal, i.e., it solves

equation (T)) under Assumptlon and achieves a Value of asup for the objective in equation ().

Invariant predictor. Define a linear representation map ® : R™* (that transforms X ¢ as ®(X*¢))
and define a linear classifier w : R¥*" (that operates on the representation w - ®(X¢)). We want to
search for representations ® such that E[Y°|®(X )] is invariant (in Assumption|1|if ®(X°) = Z¢ ,
then E[Y¢|®(X¢)] is invariant). We say that a data representation ® elicits an invariant predictor
w - ® across the set of training environments &, if there is a predictor w that simultaneously achieves

the minimum risk, i.e., w € arg ming R¢(w - @), Ve € ;.. The main objective of IRM is stated as

weRkw %Rmd |€tr Z R(w-®) st.wé€arg min RY(w-P), Ve € &,. 3)

RkXr
e€&yr we

Observe that if we drop the constraints in the above which search only over invariant predictors,
then we get the standard empirical risk minimization (ERM) (Vapnik| [1992) (assuming all the
training environments occur with equal probability). In all our theorems, we use 0-1 loss for binary
classification ) = {0, 1} and square loss for regression ) = R. For binary classification, the output
of the predictor is given as |(w - ®(X¢)), where I(-) is the indicator function that takes 1 if the input is
> 0 and 0 otherwise, and the risk is R°(w - ®) = E[[I(w - ®(X*°)) — Y°|]. For regression, the output
of the predictor is w - ®(X ¢) and the corresponding risk is R°(w - ®) = E[(w - ®(X¢) — Y¢)?]. We
now present the main OOD generalization result from |Arjovsky et al.|(2019) for linear regressions.

Theorem 1. (Informal) If Assumption l|is satisfied, Rank[®] > 0, || > 2d, and &,, lie in a linear
general position (a mild condition on the data in &, defined in the Appendix), then each solution to
equation (B) achieves OOD generalization (solves equation (), A e € &y with risk > afup ).

Despite the above guarantees, IRM has been shown to fail in several cases including linear SEMs in
(Aubin et al.,[2021). We take a closer look at these failures next.

Understanding the failures: fully informative invariant features vs. partially informative in-
variant features (FIIF vs. PIIF). We define properties salient to the datasets/SEMs used in the OOD
generalization literature. Each e € &,y;, the distribution (X ¢, Y¢) ~ P¢ satisfies the following proper-
ties. a) 3 a map ®* (linear or not), which we call an invariant feature map, such that E [Ye | [0 (X e)]
is the same for all e € £,;; and Y© Y &*(X¢). These conditions ensure ®* maps to features that
have a finite predictive power and have the same optimal predictor across &,;;. For the SEM in
Assumption|[I} ®* maps to Z,. b) 3 a map ¥* (linear or not), which we call spurious feature map,
such that E [Ye |\I/* (Xe)] is not the same for all e € £,;; and Y¢ £ U*(X¢) for some environments.
U* often creates a hindrance in learning predictors that only rely on ®*. Note that U* should not be a
transformation of some ®*. For the SEM in Assumptlonl suppose Zg,,, is anti-causally related to
Y¢, then U™ maps to Z,, (See Appendix for an example).

In the colored MNIST (CMNIST) dataset (Arjovsky et al., 2019)), the digits are colored in such a
way that in the training domain, color is highly predictive of the digit label but this correlation being
spurious breaks down at test time. Suppose the invariant feature map * extracts the uncolored digit
and the spurious feature map U* extracts the background color. |Ahuja et al.[(2021)) studied two
variations of the colored MNIST dataset, which differed in the way final labels are generated from
original MNIST labels (corrupted with noise or not). They showed that the IRM exhibits good OOD
generalization (50% improvement over ERM) in anti-causal-CMNIST (AC-CMNIST, original data
from Arjovsky et al.|(2019)) but is no different from ERM and fails in covariate shift-CMNIST (CS-
CMNIST). In AC-CMNIST, the invariant features ®*(X¢) (uncolored digit) are partially informative
about the label, i.e., Y [ X¢|®*(X*¢), and color contains information about label not contained

“In many examples in the literature, invariant features are causal, but not always (Rosenfeld et al.,|2021)).



Fully informative invariant features (FIIF) | Partially informative invariant features (PIIF)

Ve € Eau, Y L X¢|D*(X€) Jee & Y L XC|D*(X¢)

Task: classification Task: classification or regression

Example 2/2S, CS-CMNIST Example 1/1S, Example 3/3S, AC-CMNIST

SEM in Assumption SEM in Rosenfeld et al.|{(2021)

ERM and IRM fail ERM fails, IRM succeeds sometimes

Theorem 3,4 (This paper) Theorem 9, 5.1 (Arjovsky et al.|2019] Rosenfeld et al.|[2021)

Table 2: Categorization of OOD evaluation datasets and SEMs. Example 1/18S, 2/2S, 3/3S from
(Aubin et al.| 2021), AC-CMNIST(Arjovsky et al.,[2019), CS-CMNIST(Ahuja et al., 2021)).

in the uncolored digit. On the other hand in CS-CMNIST, invariant features are fully informative
about the label, i.e., Y L X¢|®*(X¢), i.e., they contains all the information about the label that
is contained in input X °. Most human labelled datasets have fully informative invariant features;
the labels (digit value) only depend on the invariant features (uncolored digit) and spurious features
(color of the digit) do not affect the label. E] In the rare case, when the humans are asked to label
images in which the object being labelled itself is blurred, humans can rely on spurious features
such as the background making such a data representative of PIIF setting. In Table |2} we divide
the different datasets used in the literature based on informativeness of the invariant features. We
observe that when the invariant features are fully informative, both IRM and ERM fail but only in
classification tasks and not in regression tasks (Ahuja et al., 2021); this is consistent with the linear
regression result in Theorem where IRM succeeds regardless of whether Y¢ L X°|Z¢  holds or
not. Motivated by this observation, we take a closer look at the classification tasks where invariant
features are fully informative.

3 OOD generalization theory for linear classification tasks

A two-dimensional example with fully informative invariant features. We start with a 2D classi-
fication example (based on Nagarajan et al.|(2021))), which can be understood as a simplified version
of the CS-CMNIST dataset (Ahuja et al., 2021)), Example 2/2S of |Aubin et al.| (2021}, where both
IRM and ERM fail. The example goes as follows. In each training environment e € &,

1 1
Ve |(anv - 7), where X¢, € {0,1} is Bernoulli<7),

2 2 , (4)
@ W*, where W* € {0,1} is Bernoulli(1 — p®) with selection bias p® > 3
where Bernoulli(a) takes value 1 with probability a and 0 otherwise. Each training environment is
characterized by the probability p¢. Following Assumption[I] we assume that the labelling function
does not change from &, to £,;, thus the relation between the label and the invariant features does
not change. Assume that the distribution of X and X , can change arbitrarily. See Figure EP)

X& +— X°

spu inv

. . . . nv . spu .
for a pictorial representation of this example illustrating the gist of the problem: there are many

classifiers with the same error on &, while only the one identical to the labelling function I(X¢, — 1)

generalizes correctly OOD. Define a classifier |(winyZiny + WspuTspu — %(winv + wWepy)). Define a set
of classifiers S = {(Winv, Wspu) S.t. Winy > |Wepu|}. Observe that all the classifiers in S achieve a zero
classification error on the training environments. However, only classifiers for which ws,, = 0 solve
the OOD generalization (eq. (I))). With ® as the identity, it can be shown that all the classifiers S form
an invariant predictor (satisfy the constraint in equation (3) over all the training environments when
¢ is the 0-1 loss). Observe that increasing the number of training environments to infinity does not
address the problem, unlike with the linear regression result discussed in Theorem [I| (Arjovsky et al.|
2019), where it was shown that if the number of environments increases linearly in the dimension
of the data, then the solution to IRM also solves the OOD generalization (eq. (I)). E] We use the
above example to construct general SEMs for linear classification when the invariant features are
fully informative. We follow the structure of the SEM from Assumption [I]in our construction.

The deterministic labelling case was referred as realizable problems in (Arjovsky et al.l[2019).
SPlease note that this example illustrates certain important facets in a very simple fashion; only in this
example a max-margin classifier can solve the problem but not in general. (Further explanation in the Appendix).
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Figure 1: a) 2D classification example illustrating multiple invari)ant predictors: Most of these
predictors rely on spurious features and each of them achieve zero error across all &, b) illustration
of the impossibility result. If latent invariant features in the training environments are separable, then
there are multiple equally good candidates that could have generated the data, and the algorithm
cannot distinguish between these.

Assumption 2. Linear classification structural equation model (FIIF). In each e € E,;

1
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where wi;, € R™ with ||wj; || = 1 is the labelling hyperplane, Z{, € R™, Zg, € R®, N¢ is binary

noise with identical distribution across environments, & is the XOR operator, S is invertible.

If noise level g is zero, then the above SEM covers linearly separable problems. See Figure[2h) for the
directed acyclic graph (DAG) corresponding to this SEM. From the DAG observe that Y¢ 1 X¢|Z¢ |
which implies that the invariant features are fully informative. Contrast this with a DAG that follows
Assumption [I]shown in Figure 2p), where Y /. X¢|Z¢  and thus the invariant features are not fully
informative. If & follows the SEM in Assumption [2| and suppose the distribution of Z , Z¢,,
can change arbitrarily, then it can be shown that only a classifier identical to the labelling function
l(wi, - Z&,) can solve the OOD generalization (eq. (T)); such a classifier achieves an error of ¢
(noise level) in all the environments. As a result, if for a classifier we can find e € &,;; that follows
Assumption 2] where the error is greater than g, then such a classifier does not solve equation (T)). Now
we ask — what are the minimal conditions on training environments &, to achieve OOD generalization
when &, follow Assumption[2? To achieve OOD generalization for linear regressions, in Theorem|T]
it was required that the number of training environments grows linearly in the dimension of the data.
However, there was no restriction on the support of the latent invariant and latent spurious features,
and they were allowed to change arbitrarily from train to test (for further discussion on this, see the
Appendix). Can we continue to work with similar assumptions for the SEM in Assumption [2]and
solve the OOD generalization (eq. (T))? We state some assumptions and notations to answer that.

Define the support of the invariant (spurious) features Z (Zg,,) in environment e as Z | (Zg,,)-

Assumption 3. Bounded invariant features. U.c¢, 25, is a bounded set.|Z|

Assumption 4. Bounded spurious features. U.cs,, Zg,, is a bounded set.

Assumption 5. Invariant feature support overlap. Ve € .1, 2, C Uercg,, 255,

inv —
Assumption 6. Spurious feature support overlap. Ve € Eqy, Zg,, C Uerc 5”Z§:u

Assumption[5] (6 states that the support of the invariant (spurious) features for unseen environments is
the same as the union of the support over the training environments. It is important to note that support
overlap does not imply that the distribution over the invariant features does not change. We now
define a margin that measures how much the is training support of invariant features Z:,  separated

by the labelling hyperplane wy,,. Define Inv-Margin = min. ey, .., ze sgn (wh, - z) (wi, - ). This
margin only coincides with the standard margin in support vector machines when the noise level
q is 0 (linearly separable) and S is identity. If Inv-Margin > 0, then the labelling hyperplane w;'

nv
separates the support into two halves (see Figure[Ip)).

A set Z is bounded if IM < oo such that Vz € Z, ||z|| < M.



Assumption 7. Strictly separable invariant features. Inv-Margin > 0.

Next, we show the importance of support overlap for invariant features.

Theorem 2. Impossibility of guaranteed OOD generalization for linear classification. Suppose
each e € &,y follows Assumption |2 If for all the training environments &, the latent invariant
features are bounded and strictly separable, i.e., Assumption [3|and[/|hold, then every deterministic
algorithm fails to solve the OOD generalization (eq. (1)), i.e., for the output of every algorithm
d e € Ey in which the error exceeds the minimum required value q (noise level).

The proofs to all the theorems are in the Appendix. We provide a high-level intuiton as to why
invariant feature support overlap is crucial to the impossibility result. In Figure[Tp), we show that if
the support of latent invariant features are strictly separated by the labelling hyperplane w , then we

can find another valid hyperplane w;"  that is equally likely to have generated the same data. There is

inv
no algorithm that can distinguish between w?,, and w;! . As a result, if we use data from the region

where the hyperplanes disagree (yellow region Figure|Ib)), then the algorithm fails.

Significance of Theorem 2} We showed that without the support overlap assumption on the invariant
features, OOD generalization is impossible for linear classification tasks. This is in contrast to linear
regression in Theorem [I] (Arjovsky et al.l 2019), where even in the absence of the support overlap
assumption, guaranteed OOD generalization was possible. Applying the above Theorem [2]to the 2D
case (eq. (@)) implies that we cannot assume that the support of invariant latent features can change,
or else that case is also impossible to solve.

Next, we ask what further assumptions are minimally needed to be able to solve the OOD generaliza-
tion (eq. (I)). Each classifier can be written as w - X¢ = w - S(Zf,,, Zgu) = Winy - Zin, + WspuZpy-
If wepy # 0, then the classifier w is said to rely on spurious features.

Theorem 3. Sufficiency and Insufficiency of ERM and IRM. Suppose each e € &,y follows
Assumption 2| Assume that a) the invariant features are strictly separable, bounded, and satisfy
support overlap, b) the spurious features are bounded (Assumptions 313} [/ hold).

o Sufficiency: If the spurious features satisfy support overlap (Assumption|[6|holds), then both ERM
and IRM solve the OOD generalization problem (eq. (1)). Also, there exist solutions to ERM and
IRM solutions that rely on the spurious features and still achieve OOD generalization.

o Insufficiency: If spurious features do not satisfy support overlap, then both ERM and IRM fail at
solving the OOD generalization problem (eq. (I))). Also, there exist no such classifiers that rely on
spurious features and also achieve OOD generalization.

Significance of Theorem [3] From the first part, we learn that if the support overlap is satisfied for
both the invariant features and the spurious features, then either ERM or IRM can solve the OOD
generalization (eq. (I))). Interestingly, in this case we can have classifiers that rely on the spurious
features and yet solve the OOD generalization (eq. (I))). For the 2D case (eq. (@) this case implies
that the entire set S solves the OOD generalization (eq. (I)). From the second part, we learn that if
support overlap holds for invariant features but not for spurious features, then the ideal OOD optimal
predictors rely only on the invariant features. In this case, methods like ERM and IRM continue to
rely on spurious features and fail at OOD generalization. For the above 2D case (eq. @) this implies
that only the predictors that rely only on X¢_ in the set S solve the OOD generalization (eq. (I))).

inv

To summarize, we looked at SEMs for classification tasks when invariant features are fully informative,
and find that the support overlap assumption over invariant features is necessary. Even in the presence
of support overlap for invariant features, we showed that ERM and IRM can easily fail if the support
overlap is violated for spurious features. This raises a natural question — Can we even solve the
case with the support overlap assumption only on the invariant features? We will now show that the
information bottleneck principle can help tackle these cases.

4 Information bottleneck principle meets invariance principle

Why the information bottleneck? The information bottleneck principle prescribes to learn a
representation that compresses the input X as much as possible while preserving all the relevant
information about the target label Y (Tishby et al.,{2000). Mutual information (X ; ®(X)) is used
to measure information compression. If representation ® (X)) is a deterministic transformation of X,
then in principle we can use the entropy of ®(X) to measure compression (Kirsch et al.,2020). Let
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(a) FIIF (this work) (b) PIIF (Arjovsky et al.,|2019)  (c) PIIF (Rosenfeld et al., [2021)

Figure 2: Comparison of the DAG from Assumption [2|(fully informative invariant features) vs. DAGs
from Rosenfeld et al.| (2021); |Arjovsky et al.|(2019) (partially informative invariant features).

us revisit the 2D case (eq. @) and apply this principle to it. Following the second part of Theorem 3]
where ERM and IRM failed, assume that invariant features satisfy the support overlap assumption,
but make no such assumption for the spurious features. Consider three choices for ®: identity (selects
both features), selects invariant feature only, selects spurious feature only. The entropy of H(®(X¢))
when @ is the identity is H (p®) + log(2), where H (p°) is the Shannon entropy in Bernoulli(p®). If
® selects the invariant/spurious features only, then H (®(X¢)) = log(2). Among all three choices,
the one that has the least entropy and also achieves zero error is the representation that focuses on the
invariant feature. We could find the OOD optimal predictor in this example just by using information
bottleneck. Does it mean the invariance principle isn’t needed? We answer this next.

Why invariance? Consider a simple classification SEM. In each e € &, Y + X¢ @ X2¢ @ N¢

and Xsepu < Y*° @ Ve, where all the random variables involved are binary Valuéral, noislcnvNe7 Ve

are Bernoulli with parameters ¢ (identical across &), c¢¢ (varies across &) respectively. If ¢¢ < ¢,
then in &, predictions based on XS, are better than predictions based on X Le x2€ If both

spu v’ nv °
X1¢ X2 are uniform Bernoulli, then these features have a higher entropy than X . In this case,

inv » “*inv spu*
Le 2, 1,
¢ X ¢ Tnstead, we want the model to focus on X ¢

inv ’? nv ° nv ?

the information bottleneck would bar using X

2 . . 1 2 .
X;>¢ and not on X opu- Invariance constraints encourage the model to focus on X.0¢, X7 In this

example, observe that invariant features are partially informative unlike the 2D case (eq. ().

Why invariance and information bottleneck? We have illustrated through simple examples when
the information bottleneck is needed but not invariance and vice-versa. We now provide a simple
example where both these constraints are needed at the same time. This example combines the
2D case (eq. (@) and the example we highlighted in the paragraph above: Y¢ «+ X¢& & N¢,

inv

Xle o Xe @ We, and X2¢ « Y© @ Ve. In this case, the invariance constraint does not allow

spu inv spu
representations that use X2¢ but does not prohibit representations that rely on Xle;f. However,

. . spu. .
information bottleneck constraints on top ensure that representations that only use X, are used. We
now describe an objective [ﬂ that combines both these principles:

rg’ig Z he(w-®) st |;T|

e€&yr

Z Ré(w-®) <r'" wearg min RY(d-®),Ve € &, (6)
€€y wERR

where h° in the above is a lower bounded differential entropy defined below and " is the threshold
on the average risk. Typical information bottleneck based optimization in neural networks involves
minimization of the entropy of the representation output from a certain hidden layer. For both
analytical convenience and also because the above setup is a linear model, we work with the simplest
form of bottleneck which directly minimizes the entropy of the output layer. Recall the definition of
differential entropy of a random variable X, h(X) = —E x[log dPx] and dPx is the Radon-Nikodym
derivative of Px with respect to Lebesgue measure. Because in general differential entropy has
no lower bound, we add a small independent noise term ¢ (Kirsch et al., | 2020) to the classifier to
ensure that the entropy is bounded below. We call the above optimization information bottleneck
based invariant risk minimization (IB-IRM). In summary, among all the highly predictive invariant
predictors we pick the ones that have the least entropy. If we drop the invariance constraint from the
above optimization, we get information bottleneck based empirical risk minimization (IB-ERM). In
the above formulation and following result, we assume that X © are continuous random variables; the
results continue to hold for discrete X ¢ as well (See Appendix for details).

Theorem 4. IB-IRM and IB-ERM vs. IRM and ERM

8Results extend to alternate objective with information bottleneck constraints and average risk as objective.



e Fully informative invariant features (FIIF). Suppose each e € &y follows Assumption|2] Assume
that the invariant features are strictly separable, bounded, and satisfy support overlap (Assumptions
E] andl?]hold). Also, for each e € & Zg,, < AZS, + W€, where A € RO*™, W¢ € R? is
continuous, bounded, and zero mean noise. Each solution to IB-IRM (eq. @, with £ as 0-1 loss, and

r*" = q), and IB-ERM solves the OOD generalization (eq. (1)) but ERM and IRM (eq.(3)) fail.

e Partially informative invariant features (PIIF). Suppose each e € Eqy follows Assumption[l|and
3 e € &, such that Ee°Zg,,] # 0. If |Exr| > 2d and the set &, lies in a linear general position
(a mild condition defined in the Appendix), then each solution to IB-IRM (eq. (0), with { as square
loss, 062 <rth < 032,, where or% and 062 are the variance in the label and noise across E;,) and IRM

(eq.@@)) solves OOD generalization (eq. (1)) but IB-ERM and ERM fail.

Significance of Theorem 4| and remarks. In the first part (FIIF), IB-ERM and IB-IRM succeed
without assuming support overlap for the spurious features, which was crucial for success of ERM
and IRM in Theorem [3] This establishes that support overlap of spurious features is not a necessary
condition. Observe that when invariant features are fully informative, IB-ERM and IB-IRM succeed,
but when invariant features are partially informative IB-IRM and IRM succeed. In real data settings,
we do not know if the invariant features are fully or partially informative. Since IB-IRM is the
only common winner in both the settings, it would be pragmatic to use it in the absence of domain
knowledge about the informativeness of the invariant features. In the paragraph preceding the
objective in equation (6), we discussed examples where both the IB and IRM constraints were needed
at the same time. In the Appendix, we generalize that example and show that if we change the
assumptions in linear classification SEM in Assumption [2]such that the invariant features are partially
informative, then we see the joint benefit of IB and IRM constraints. At this point, it is also worth
pointing to a result in Rosenfeld et al.|(2021), which focused on linear classification SEMs (DAG
shown in Figure[2) with partially informative invariant features. Under the assumption of complete
support overlap for spurious and invariant features, authors showed IRM succeeds.

4.1 Proposed approach
We take the three terms from the optimization in equation (6)) and create a weighted combination as
> (BE@)FA Vi wmt o R ()P40 (@) ) < 3 (RE(@)+AIVuwmro R (@) [+vh(®) ).

In the LHS above, the first term corresponds to the risks across environments, the
second term approximates invariance constraint (follows the IRMv1 objective (Arjovsky
et all [2019)), and the third term is the entropy of the classifier in each environment.

In the RHS, h(®) is the entropy of ® unconditional on the environ- $
—a— ERM
LS | —— B-ERM
2 IRM
—+— IB-IRM

ment (the entropy on the left-hand side is entropy conditional on
) Nu:nberlgf deslzént s:f‘éps

the environment assuming all the environments are equally likely).
Optimizing over differential entropy is not easy, and thus we resort
to minimizing an upper bound of it (Kirsch et al., [2020). We use
the standard result that among all continuous random variables with
the same variance, Gaussian has the maximum differential entropy.
Since the entropy of Gaussian increases with its variance, we use the
variance of ® instead of the differential entropy (For further details,
see the Appendix). Our final objective is given as

Figure 3: Comparing conver-

gence of —A22L__ (metric from

2 Vwdtw?,
Z (Re(q)) + AHVWW:LORe (w-@)[° + 7Var(<I))). N Nagarajan et al.|(2021)) for aver-

¢ ) . . . . age selection bias p = 0.9.
On the behavior of gradient descent with and without informa-

tion bottleneck. In the entire discussion so far, we have focused on ensuring that the set of optimal
solutions to the desired objective (IB-IRM, IB-ERM, etc.) correspond to the solutions of the OOD
generalization problem (eq. (I})). In some simple cases, such as the 2D case (eq. (@), it can be shown
that gradient descent is biased towards selecting the ideal classifier (Soudry et al.,|2018; Nagarajan
et al., | 2021). Even though gradient descent can eventually learn the ideal classifier that only relies
on the invariant features, training is frustratingly slow as was shown by |[Nagarajan et al.[(2021). In
the next theorem, we characterize the impact of using IB penalty (Var(®)) in the 2D example (eq.

(@)). We compare the methods in terms of |7$”7((tt))

(2021); wepy (t) and winy (t) are the weights for the spurious feature and the invariant feature at time ¢
of training (assuming training happens with continuous time gradient descent).

|, which was the metric used in|Nagarajan et al.



Theorem 5. Impact of IB on learning speed. Suppose each e € &, follows the 2D case from
equation @). Set A = 0, v > 0 in equation ({)) to get the IB-ERM objective with { as exponential loss.

Continuous-time gradient descent on this IB-ERM objective achieves |I$L((tt))| < € in time less than

W;( 2)2 (Wo(-) denotes the principal branch of the Lambert W function), while in the same time the
Wspy t Wi (%,) e
ratio for ERM | —r ((t) | > ln(é+§§)/ln (1 + 2(2_2)6), where p = 7|51T| Zee&,r D

| wspu(
Winy (

| converges to zero for both methods, but it converges much faster for IB-ERM (for p =

0.9,€ = 0.001,y = 0.58, the ratio for IB-ERM is | %22 | < 0.001 and ratio for ERM is | 2221 | >
0.09). In the above theorem, we analyzed the impact of information bottleneck only. The convergence
analysis for both the penalties jointly comes with its own challenges, and we hope to explore this in
future work. However, we carried out experiments with gradient descent on all the objectives for the

2D example (eq. (@)). See Figure 3 for the comparisons.

5 Experiments

Methods, datasets & metrics. We compare our approaches — information bottleneck based ERM (IB-
ERM) and information bottleneck based IRM (IB-IRM) with ERM and IRM. We also compare with
an Oracle model trained on data where spurious features are permuted to remove spurious correlations.
We use all the datasets in Table |2 Terra Incognita dataset (Beery et al.,[2018)), and COCO (Ahmed
et al.| |2021). We follow the same protocol for tuning hyperparameters from Aubin et al.| (2021));
Arjovsky et al.|(2019) for their respective datasets (see the Appendix for more details). As is reported
in literature, for Example 2/2S, Example 3/3S we use classification error and for AC-CMNIST,
CS-CMNIST, Terra Incognita, and COCO we use accuracy. For Example 1/1S, we use mean square
error (MSE). The code for experiments can be found athttps://github.com/ahujak/IB-IRM.

Summary of results. In Table 3] we provide a comparison of methods for different examples in
linear unit tests (Aubin et al.,|2021) for three and six training environments. In Table |4} we provide a
comparison of the methods for different CMNIST datasets, Terra Incognita and COCO dataset. Based
on our Theorem[d] we do not expect ERM and IB-ERM to do well on Example 1/1S, Example 3/3S
and AC-CMNIST as these datasets fall in the PIIF category, i.e, the invariant features are partially
informative. On these examples, we find that IRM and IB-IRM do better than ERM and IB-ERM
(for Example 3/3S when there are three environments all methods perform poorly). Based on our
Theorem El], we do not expect IRM and ERM to do well on Example 2/2S, CS-CMNIST, Terra
Incognita and COCO datasetﬂ as these datasets fall in the FIIF category, i.e., the invariant features
are fully informative. On these FIIF examples, we find that IB-ERM always performs well (close to
oracle), and in some cases IB-IRM also performs well. Our experiments confirm that IB penalty has
a crucial role to play in FIIF settings and IRMv1 penalty has a crucial role to play in PIIF settings (to
further this claim, we provide an ablation study in the Appendix). On Example 1/1S, AC-CMNIST,
we find that IB-IRM is able to extract the benefit of IRMv1 penalty. On CS-CMNIST and Example
2/2S we find that IB-IRM is able to extract the benefit of IB penalty. In settings such as COCO
dataset, where IB-IRM does not perform as well as IB-ERM, better hyperparameter tuning strategies
should be able to help IB-IRM adapt and put a higher weight on IB penalty. Overall, we can conclude
that IB-ERM improves over ERM (significantly in FIIF and marginally in PIIF settings), and IB-IRM
improves over IRM (improves in FIIF settings and retains advantages in PIIF settings).

Remark. As we move from three to six environments, we observe that MSE in Example 1/1S exhibits
a larger variance. This is because of the way data is generated, the new environments that are sampled
have labels that have a higher noise level (we follow the same procedure as in|Aubin et al.|(2021)).

6 Extensions, limitations, and future work

Extension to non-linear models and multi-class classification. In this work our theoretical analysis
focused on linear models. Consider the map X < S(Ziny, Zepu) in Assumption 2| Suppose S is
non-linear and bijective. We can divide the learning task into two parts a) invert S to obtain Ziny, Zspy
and b) learn a linear model that only relies on the invariant features Z;,, to predict the label Y. For

“We place Terra Incognita and COCO dataset in the FIIF assuming that the humans who labeled the images
did not need to rely on unreliable/spurious features such as background to generate the labels.


https://github.com/ahujak/IB-IRM

#Envs ERM IB-ERM IRM IB-IRM Oracle
Examplel 3 13.36 £ 1.49 12.96 + 1.30 11.15+ 0.71 11.68 + 0.90 10.42+0.16
Examplels 3 1333 +£149 1292+130 11.07£0.68 11.74+1.03 10.45+0.19
Example2 3 0.42 £0.01 0.00 £ 0.00 0.45 £ 0.00 0.00 £ 0.00 0.00 £ 0.00
Example2s 3 0.45 + 0.01 0.00 £ 0.01 0.45 +0.01 0.06 £ 0.12 0.00 £ 0.00
Example3 3 0.48 + 0.07 0.49 £ 0.06 0.48 + 0.07 0.48 £ 0.07 0.01 £ 0.00
Example3s 3 0.49 £ 0.06 0.49 £ 0.06 0.49 £ 0.07 0.49 £ 0.07 0.01 £+ 0.00
Examplel 6 3374 £60.18 32.03 £57.05 23.04 +40.64 25.66+4596 22.21+39.25
Examplels 6 33.62+£59.80 31.92£56.70 22.92+40.60 25.60+45.62 22.13£38.93
Example2 6 0.37 £+ 0.06 0.02 £ 0.05 0.46 + 0.01 043 £0.11 0.00£0.00
Example2s 6 0.46 £ 0.01 0.02 £ 0.06 0.46 £ 0.01 0.45 £ 0.10 0.00£0.00
Example3 6 0.33 +0.18 0.26 £ 0.20 0.14 £ 0.18 0.19 £ 0.19 0.01£0.00
Example3s 6 0.36 £ 0.19 0.27 £ 0.20 0.14 £ 0.18 0.19 £ 0.19 0.01£0.00

Table 3: Comparisons on linear unit tests in terms of mean square error (regression) and classification
error (classification). “#Envs” means the number of training environments.

ERM IB-ERM IRM IB-IRM
CS-CMNIST 60.27 +1.21 71.80+£0.69 61.49+145 71.79+0.70
AC-CMNIST 16.84 £0.82 5024 047 6698 £1.65 67.67+1.78
Terra Incognita 49.80 £4.40 56.40+2.10 54.60=+ 130 54.10 £ 2.00
COoCoO 22770 £1.04 31.66 +2.39 18.47 £10.20 25.10£1.03

Table 4: Classification accuracy percentage on colored MNISTs, Terra Incognita and COCO dataset.

part b), we can rely on the approaches proposed in this work. For part a), we need to leverage
advancements in the field of non-linear ICA (Khemakhem et al.l [2020). The current state-of-the-art
to solve part a) requires strong structural assumptions on the dependence between all the components
of Ziny, Zspu (Lu et al., [2021)). Therefore, solving part a) and part b) in conjunction with minimal
assumptions forms an exciting future work. In the entire work, the discussion was focused on binary
classification tasks and regression tasks. For multi-class classification settings, we consider natural
extension of the SEM in Assumption 2] (See the Appendix) and our main results continue to hold.

On the choice for IB penalty and IRMv1 penalty. We use the approximation for entropy (in
equation (7)) described in [Kirsch et al| (2020). The approximation (even though an upper bound)
serves as an effective proxy for the true information bottleneck as shown in the experiments in Kirsch
et al.| (2020) (e.g., see their experiment on Imagenette dataset). Also, our experiments validate this
approximation even in moderately high dimensions, as an example in CS-CMNIST, the dimension
of the layer at which bottleneck constraints are applied is 256. Developing tighter approximations
for information bottleneck in high dimensions and analyzing their impact on OOD generalization is
an important future work. In recent works (Rosenfeld et al., [2021; [Kamath et al.,|2021; |Gulrajani
and Lopez-Paz},2021)), there has been criticism of different aspects of IRM, e.g., failure of IRMv1
penalty in non-linear models, the tuning of IRMv1 penalty, etc. Since we use IRMv1 penalty in our
proposed loss, these criticisms apply to our objective as well. Other approximations of invariance
have been proposed in the literature (Koyama and Yamaguchi, 2020; Ahuja et al.l 20205 |Chang et al.,
2020). Exploring their benefits together with information bottleneck is a fruitful future work. Before
concluding, we want to remark that we have already discussed the closest related works. However,
we also provide a detailed discussion of the broader related literature in the Appendix.

7 Conclusion

In this work, we revisited the fundamental assumptions for OOD generalization for settings when
invariant features capture all the information about the label. We showed how linear classification
tasks are different and need much stronger assumptions than linear regression tasks. We provide
a sharp characterization of performance of ERM and IRM under different assumptions on support
overlap of invariant and spurious features. We showed that support overlap of invariant features is
necessary or otherwise OOD generalization is impossible. However, ERM and IRM seem to fail
even in the absence of support overlap of spurious features. We prove that a form of the information
bottleneck constraint along with invariance goes a long way in overcoming the failures while retaining
the existing provable guarantees.
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contributions and scope? [Yes] See Section 2-5 and the additional details such as the
proofs in the supplementary material.

(b) Did you describe the limitations of your work? [Yes] See Section 4.1 and Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section A.1 in the Appendix in the supplementary material.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section
2-4.

(b) Did you include complete proofs of all theoretical results? [Yes] See the Appendix in
the Supplementary Material.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See
https://github.com/ahujak/IB-IRM
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section A.2 in the Appendix in the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section A.2 in the Appendix in the supplementary
material.
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InvariantRiskMinimization and https://github.com/facebookresearch/
InvarianceUnitTests| and we have cited the creators in the Section A.2 in the
Appendix in the supplementary material.

(b) Did you mention the license of the assets? [Yes] All the repositories mentioned above
use MIT license. We have mentioned this in Section A.2 in the Appendix in the
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(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We have included code for our experiments in the supplementary material.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]
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