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Abstract

Despite the strong performance of current001
NLP models, they can be brittle against ad-002
versarial attacks. To enable effective learn-003
ing against adversarial inputs, we introduce004
the use of rationale models that can explicitly005
learn to ignore attack tokens. We find that006
the rationale models can ignore over 90% of007
attack tokens. This approach leads to consis-008
tent sizable improvements (∼8%) over base-009
line models in robustness, for both BERT and010
RoBERTa, on MULTIRC and FEVER, and011
also reliably outperforms data augmentation012
with adversarial examples alone. In many013
cases, we find that our method is able to close014
the gap between model performance on a clean015
test set and an attacked test set, eliminating the016
effect of adversarial attacks.017

1 Introduction018

Adversarial robustness is an important issue in NLP,019

asking how to proof models against confounding020

tokens designed to maliciously manipulate model021

output. As such models become more powerful022

and ubiquitous, research continues to discover sur-023

prising vulnerabilities (e.g., Wallace et al. (2019)),024

demanding improved robustness methods.025

Given a specific attack method, a straightfor-026

ward way to improve model robustness is to incor-027

porate adversarial examples, attacked using that028

method, during training in addition to clean exam-029

ples (Zhang et al., 2020). The goal in doing this is030

that the model will implicitly learn to ignore attack-031

ing tokens and become more robust to that attack032

type. However, in practice this can be a challenging033

learning objective.034

In this study we explore an alternative method035

of leveraging such data augmentation: explicitly036

training the model to ignore adversarial tokens. We037

do this by augmenting the underlying model with a038

rationale extractor (Lei et al., 2016) to serve as an039

input filter, and then training this extractor to ignore040
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Figure 1: In addition to the typical predictor, an ideal
rationale model identifies the “relevant” tokens in the
input with a rationale extractor and only present rel-
evant tokens to the predictor after filtering the attack
text. The main goal of this work is to explore whether
such rationale models can be effectively used to ignore
adversarial attacks.

attacking tokens as an additional joint objective to 041

overall label accuracy (Fig. 1). 042

In addition to training the extractor to respect the 043

attacking/nonattacking token dichotomy, we also 044

explore the utility of human-provided explanations 045

in this regard. Doing so, we ask: does learning 046

from human rationales help the model avoid attend- 047

ing to attacking tokens? 048

Training BERT (Devlin et al., 2018) and 049

RoBERTa (Liu et al., 2019) as underlying models 050

on the MultiRC (Khashabi et al., 2018) and FEVER 051

(Thorne et al., 2018) datasets, we demonstrate that 052

the additive attack of Jia and Liang (2017) do re- 053

duce model accuracy, and that data augmentation 054

with adversarial examples provides benefit in de- 055

fending these models from this attack in most cases. 056

Our main results are that rationale-style mod- 057

els are better able to learn to ignore these attacks 058

than only with data augmentation, leading to an 059

improvement of ∼8% in accuracy on attacked ex- 060

amples compared to baseline models and an ad- 061

vantage of 2.6% over data augmentation alone, 062
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mostly returning to clean test performance. While063

human explanations may potentially improve the064

interpretability of these models, they are of limited065

use in improving this defense even further.066

In summary, we offer three main contributions:067

• We show that explicitly training an extractive068

rationale layer to ignore attack tokens is more ef-069

fective at defending from an otherwise-effective070

attack than implicitly training a model via data071

augmentation with adversarial examples.072

• We assess whether human-annotated rationales073

augment this defense, showing that they have074

only a limited benefit.075

• We conduct an in-depth error analysis of differ-076

ences between models, explaining some of the077

patterns we observe in our primary results.078

2 Related work079

Our work builds on prior work on adversarial ro-080

bustness and learning from explanations.081

Adversarial robustness. Adversarial attacks082

against NLP models seek to maliciously manip-083

ulate model output by perturbing model input.084

Zhang et al. (2020) present a survey of both attacks085

and defenses. Researchers have explored character-086

level manipulations (Gao et al., 2018; Li et al.,087

2019), input removal (Li et al., 2017; Feng et al.,088

2018), synonym substitutions (Ren et al., 2019),089

language model-based slot filling (Li et al., 2020;090

Garg and Ramakrishnan, 2020; Li et al., 2021).091

Another distinction is based on whether the attack092

requires access to the model (Ebrahimi et al., 2018;093

Yoo and Qi, 2021; Wallace et al., 2019) or not094

(Alzantot et al., 2018; Jin et al., 2020). Morris et al.095

(2020) presents the TextAttack framework and pro-096

vides a collection of attack implementations. Our097

work focuses on the ADDSENT attack proposed098

by Jia and Liang (2017) in the context of reading099

comprehension.100

As interest in adversarial attacks has increased,101

so has interest in developing models robust to these102

attacks. A popular defense method is adversarial103

training via data augmentation, first proposed by104

Szegedy et al. (2014) and employed by Jia and105

Liang (2017) to bring their model almost back to106

clean test performance. A recent example in this107

vein is Zhou et al. (2020), which proposes Dirichlet108

Neighborhood Ensemble as a means for generating109

dynamic adversarial examples during training. An-110

other popular approach is knowledge distillation111

(Papernot et al., 2016), which trains an intermedi-112

ate model to smooth between the training data and 113

the final model. Our work explores a new direction 114

that explicitly learns to ignore attacks. 115

Learning from explanations. Recent work has 116

sought to collect datasets of human-annotated ex- 117

planations, often in the form of binary rationales, 118

in addition to class labels (DeYoung et al., 2019; 119

Wiegreffe and Marasović, 2021), and to use these 120

explanations as additional training signal to im- 121

prove model performance and robustness, some- 122

times also known as feature-level feedback (Hase 123

and Bansal, 2021; Beckh et al., 2021). 124

An early work in this vein is Zaidan et al. (2007), 125

which uses human rationales as constraints on an 126

SVM. More recently, Ross et al. (2017) uses hu- 127

man rationales to penalize neural net input gra- 128

dients showing benefits for out-of-domain gener- 129

alization, while Erion et al. (2021) use a similar 130

method based on “expected gradients” to produce 131

improvements in in-domain test performance in cer- 132

tain cases. Katakkar et al. (2021) evaluates feature 133

feedback for two attention-style models, finding, 134

again, gains in out-of-domain performance, while 135

Han and Tsvetkov (2021) uses influence functions 136

(Koh and Liang, 2017) to achieve a similar out- 137

come. Where our study differs from most previous 138

work is in using feature feedback for adversarial 139

rather than out-of-domain robustness. 140

3 Adversarial Attacks and Datasets 141

In this paper, we focus on model robustness against 142

the ADDSENT additive attack proposed by Jia and 143

Liang (2017). The attack is designed for reading 144

comprehension: consider each instance as a tuple 145

of document, query, and label (d, q, y), where y 146

indicates whether the query is supported by the 147

document. The attack manipulates the content of 148

the query to form an attack sentence (A) and addsA 149

to the document to confuse the model. Specifically, 150

ADDSENT proceeds as following: 151

1. We modify the query q by converting all named 152

entities and numbers to their nearest neighbor in 153

the GloVe embedding space (Pennington et al., 154

2014). We flip all adjectives and nouns to their 155

antonyms using WordNet (Miller, 1995), and 156

yield a mutated query q̂. If we fail to mutate 157

the query due to not being able to find matching 158

named entities or antonyms of adjectives and 159

nouns, we skip the example. 160

2. If the query is the concatenation of a question 161

and an answer, we convert the mutated query 162
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Query c:
FC Bayern Munich was founded in 2000.
Mutated Query ĉ:
DYNAMO Leverkusen Cologne was founded
in 1998.
Modified Document d′
. . . has won 9 of the last 13 titles. DYNAMO
Leverkusen Cologne was founded in 1998.
They have traditional local rivalries with . . .

Figure 2: An example of the ADDSENT attack.

q̂ into an adversarial attack A using CoreNLP163

(Manning et al., 2014) constituency parsing, un-164

der a set of about 50 rules enumerated by Jia and165

Liang (2017). This step converts it into a factual166

statement that resembles but is not semantically167

related to the original query q.168

3. The adversarial attack A is inserted at a random169

location within the original document and leads170

to a new tuple (d′, q, y).1171

The key idea behind the ADDSENT attack is172

that the mutations alter the semantics of the query173

by mutating the named entities and numbers, so174

that the attack contains words or phrases that are175

likely confusing to the model. An example of the176

ADDSENT attack is given below.177

The original approach includes an additional step178

of using crowdsourced workers to filter ungrammat-179

ical attacks . For the sake of simplicity, we skip180

this manual validation process. Qualitatively, we181

observe that the attack do result in a significant182

number of ungrammatical attacks, but the attacks183

prove empirically effective in reducing the perfor-184

mance of our models.185

Datasets. To evaluate our hypotheses on learning186

to ignore adversarial attacks, we train and evaluate187

models on the Multi-Sentence Reading Comprehen-188

sion (MULTIRC) (Khashabi et al., 2018) and Fact189

Extraction and VERification (FEVER) (Thorne190

et al., 2018) datasets. Both are reading comprehen-191

sion datasets, compatible with ADDSENT attack.192

For MULTIRC, the query consists of a question193

and potential answer about the document, labeled194

as true or false, while for FEVER it is a factual195

claim about the document labeled as “supported”196

or “unsupported”. Both datasets include human197

rationales for all examples, indicating which to-198

1We experimented with variants of inserting only at the
beginning or the end. The results are qualitatively similar, so
we only report random in this paper.

Dataset
Text
length

Rationale
length

Total
size

MULTIRC 336.0 52.0 32,088
FEVER 335.9 47.0 110,187

Table 1: Basic statistics of the datasets.

kens in the document are pertinent to assessing the 199

query. Table 1 summarizes their basic statistics. 200

In modeling these two datasets, we follow stan- 201

dard practice in appending the query to the end 202

of the document with [SEP] tokens. We use 203

train/validation/test splits prepared by the ERASER 204

dataset collection (DeYoung et al., 2019). For the 205

sake of training efficiency, and because we are in- 206

terested in relative differences between training 207

regimes rather than absolute performance, we sub- 208

sample the FEVER training set to 25% so that it is 209

comparable to MULTIRC. 210

4 Modeling 211

Our study assesses whether adding an explicit ra- 212

tionale extractor to a fine-tuned model and training 213

it to ignore adversarial tokens results in a more 214

effective defense than simply adding attacked ex- 215

amples to the training set. This comparison results 216

in several combinations of model architecture and 217

training regime. 218

We denote each training instance as (x, r, y): a 219

text sequence x consisting of the concatenated doc- 220

ument and query, a ground-truth binary rationale 221

sequence r, and a binary label y. 222

Baseline models and training. We use BERT 223

(Devlin et al., 2018) and RoBERTa (Liu et al., 224

2019) as basic models. In the baseline training con- 225

dition we fine-tune these models as normal, evaluat- 226

ing them on both the original test set and a version 227

of the test set where each item has been corrupted 228

with the ADDSENT attack described above. We 229

denote this condition as “NO ADV.” 230

In the baseline adversarial training via data 231

augmentation condition (denoted ADV.), we add 232

ADDSENT-attacked versions of each training ex- 233

ample to the training set on a one-to-one basis, 234

allowing the model to train for the presence of such 235

attacks. This represents a fairly standard baseline 236

defense in the literature (Zhang et al., 2020). 237

Rationale model. To lend the baseline model an 238

extractor capable of filtering out confounding to- 239
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kens, we use the rationale model proposed by Lei240

et al. (2016). It comprises a rationale extractor g241

and a label predictor f (Fig. 1). The rationale242

extractor generates a binary predicted rationale r̂,243

which is applied as mask over the input to the pre-244

dictor via masking function m, producing a pre-245

dicted label:246

g(x)→ r̂

f(m(x, r̂))→ ŷ
(1)247

The two components are trained together to opti-248

mize predicted label accuracy as well as loss as-249

sociated with the predicted rationale. In an unsu-250

pervised scenario, this loss punishes the norm of251

the predicted rationale, encouraging sparsity on252

the (heuristic) assumption that a sparse rationale is253

more interpretable. In this study, we rather consider254

the supervised scenario, where we punish r̂’s error255

with respect to a ground-truth rationale r. How-256

ever, we find empirically that the rationale sparsity257

objective is useful in combination with the ratio-258

nale supervision objective, leading to the following259

joint objective function using cross-entropy loss260

LCE with hyperparameter weights λ1 and λ2:261

LCE(ŷ, y) + λ1LCE(r̂, r) + λ2||r̂||. (2)262

Adversarial training with rationale supervision.263

To introduce rationale supervision, we augment264

the training set with attacked examples on a one-265

to-one basis with original examples, identical to266

the scenario of data augmentation with adversarial267

examples. Moreover, we can change the ground-268

truth rationale to reflect the desired behavior for269

the model. We consider two options for this new270

ground-truth r: 1) a binary indicator of whether271

tokens are adversarial or not (ADV. + ATK. SUP.);272

and 2) the human-annotated rationale (ADV. + HU-273

MAN SUP.), which also filters adversarial tokens.274

Table 2 shows all the combination of setups that use275

in our study. For each of these setups, We test one276

rationale model using independent BERT modules277

for g and f , and one using independent RoBERTa278

modules for both.279

Taken together, these conditions address our280

three research questions: 1) does training the model281

to emulate human explanation make it intrinsically282

more robust to attack?; 2) is adversarial training283

via rationale supervision more effective than via284

attacked examples?; and 3) do human explanations285

improve upon this latter effect?286

Data augmentation? Rationale?

No data
augmentation

None
Human (HUMAN SUP.)

Augmented with
attack data (Adv.)

None
Nonattack (ADV. + ATK. SUP.)
Human (ADV. + HUMAN SUP.)

Table 2: Summaries of all model setups in this work.

Design choices and implementation details. 287

We use the HuggingFace (Wolf et al., 2020) dis- 288

tributions of BERT and RoBERTa, and Pytorch 289

Lightning (Falcon, 2019) for model training. Mod- 290

els are trained for a minimum of 3 epochs with 291

early stopping based on a patience of 5 validation 292

intervals, evaluated every 0.2 epochs. Hyperparam- 293

eter and computation details are in the appendix. 294

In practice, we find it useful to pretrain the pre- 295

dictor layer f of the rationale model on full input 296

before jointly training it with the extractor g. We 297

observe that this trick stabilizes training and helps 298

prevent mode collapse. In producing the predicted 299

rationale, we automatically assign a 1 (indicating 300

relevance) to every token in the query, so that they 301

are always fully visible to the predictor and the ef- 302

fect of the extractor is in adjudicating which tokens 303

of the document are used or ignored. 304

Traditionally, this style of rationale model pro- 305

duces binary predicted rationales via either rein- 306

forcement learning (Williams, 1992) or categorical 307

reparameterization such as Gumbel Softmax (Jang 308

et al., 2016). One argument for this approach is 309

that binary rationales are more interpretable, leav- 310

ing less ambiguity about the precise role of a given 311

token in the model’s output. Another argument 312

is that transformer-based models like BERT don’t 313

have a native interpretation for partially-masked 314

input, whereas fully-masked input can represent 315

in-distribution modifications such as the [MASK] 316

token substitution used in masked-LM pretraining. 317

However, we find that relaxing this binary con- 318

straint leads to better outcomes for adversarial train- 319

ing. Thus, our model produces predicted rationale 320

r̂ by passing predicted rationale logits φ through a 321

sigmoid function. The masking function m we use 322

is simply to multiplicatively weight x by predicted 323

rationale r̂ during training (we discretize r during 324

testing), 325

m(x, r̂) = r̂ · x 326

From a theoretical perspective, jointly optimiz- 327

ing the rationale extractor g and label predictor f 328
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should allow the model to predict rationale r̂ that329

is more adapted to the predictor. Separately opti-330

mizing both components implies that the rationale331

extractor does not get penalized for poor label pre-332

diction performance, and often leads to predicted333

rationale that is closer to human rationale r. In our334

experiments, we include both training setups as a335

hyperparameter.336

5 Experimental Setup and Results337

We start by describing our experimental setup and338

evaluation metrics. We then investigate model per-339

formance with different training regimes, and con-340

duct an in-depth error analysis to understand model341

behavior.342

5.1 Experimental Setup343

Our study compares whether rationale-style models344

are better at learning to explicitly ignore adversarial345

tokens than standard models via adversarial train-346

ing. As we describe above, we train two variants of347

the standard classification model (NO ADV., ADV.),348

and three variants of the rationale model (Human,349

ADV. + ATK. SUP., ADV. + HUMAN SUP.).350

Exploring these 5 architecture/training combi-351

nations for two datasets (MULTIRC and FEVER)352

and two underlying models (BERT and RoBERTa),353

we report results from 20 trained models in Table 3.354

We report both clean test set accuracy and attacked355

test set accuracy for each model. The attacked test356

set accuracy is our key measure of robustness.357

For just the rationale model results, we report358

the mean percentage of attack and non-attack to-359

kens included in each predicted rationale, two met-360

rics which helps explain our accuracy results. The361

mean percentage of attack tokens included in the362

predicted rationale indicates the effectiveness of363

ignoring attack tokens: the lower the better.364

5.2 Experimental Results365

We focus our analysis on three basic questions:366

1. Does human rationale supervision improve367

adversarial robustness over a standard model?368

2. Does adversarial rationale supervision on aug-369

mented data improve robustness over adver-370

sarial data augmentation alone?371

3. Does the addition of human rationale super-372

vision to this adversarial supervision further373

improve robustness?374

Table 3 summarizes the main results of the paper,375

showing the accuracy of each combination of ar-376

chitecture, training regime, underlying model and 377

dataset. Looking at the attacked versus clean test 378

set performance for the standard model, we see that 379

the ADDSENT attack is effective, reducing accu- 380

racy by roughly 6% on MULTIRC for BERT and 381

RoBERTa, and roughly 10% on FEVER as well. 382

Effect of human rationale supervision alone 383

(HUMAN SUP.). We find mixed evidence for 384

whether human rationale supervision alone im- 385

proves adversarial robustness. For BERT on MUL- 386

TIRC and RoBERTa on FEVER, human rationale 387

outperforms the standard classification model, but 388

the opposite occurs for the other two model/dataset 389

combinations. 390

Table 4 explains this negative result: the ratio- 391

nale model supervised solely on human rationales 392

includes 60.0% to 92.4% of attack tokens in its 393

rationale (compared to between 8.2% and 17.8% 394

of non-attack tokens), indicating that it is largely 395

fooled by the ADDSENT attack into exposing the 396

predictor to attack tokens. 397

Intuitively this is an unsurprising result. Human 398

rationales for these datasets identify the part of the 399

document that pertains particularly to the query, 400

while the ADDSENT attack functions by crafting 401

adversarial content with a semantic resemblance to 402

that same query. Hence, it is understandable that 403

human rationale training alone would not improve 404

adversarial robustness. 405

Adversarial rationale supervision (ADV. + ATK. 406

SUP.). Although human rationale supervision 407

does not seem to improve adversarial robustness, 408

the rationale mechanism offers an interface for ex- 409

plicitly supervising the model to ignore attack to- 410

kens. We investigate the question of whether this 411

mechanism can be used to improve the effective- 412

ness of data augmentation. 413

Data augmentation with adversarial examples 414

works, mostly. In almost all cases, it does result in 415

improved performance on the attacked test set, im- 416

proving +5.9% for BERT on FEVER, +6.4% and 417

+9.7% for RoBERTa on MULTIRC and FEVER 418

respectively. The exception is BERT on MULTIRC, 419

where it causes a decrease of -1.0%. However, in 420

only one case out of four does data augmentation 421

with adversarial examples bring the model back to 422

clean test performance (RoBERTa on MULTIRC, 423

+0.3%). 424

Adversarial rationale supervision improves on 425

adversarial data augmentation in all cases. We 426
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Model Architecture Training
MULTIRC FEVER

Clean Attacked Clean Attacked

BERT

Standard
NO ADV. 68.6 62.6 88.2 78.9
ADV. 67.3 61.6 88.5 84.8

Rationale
HUMAN SUP. 70.0 64.4 88.0 76.7
ADV. + ATK. SUP. 69.6 66.2 87.1 87.7
ADV. + HUMAN SUP. 70.5 69.4 87.5 87.5

RoBERTa

Standard
NO ADV. 82.6 76.5 93.5 83.0
ADV. 84.4 82.9 93.2 92.7

Rationale
HUMAN SUP. 84.0 74.9 94.1 85.7
ADV. + ATK. SUP. 85.2 85.1 93.4 93.4
ADV. + HUMAN SUP. 85.0 82.5 93.4 93.4

Table 3: Model accuracy on clean and attacked test sets for MULTIRC and FEVER.

Model Training
MULTIRC FEVER

Attack % Non-Attack % Attack % Non-Attack %

BERT
HUMAN SUP. 87.5 8.2 66.7 17.8
ADV. + ATK. SUP. 1.4 98.4 0.2 96.7
ADV. + HUMAN SUP. 9.5 14.4 0.5 24.4

RoBERTa
HUMAN SUP. 92.4 12.6 60.0 12.2
ADV. + ATK. SUP. 6.0 96.7 0.9 95.8
ADV. + HUMAN SUP. 32.1 15.6 0.1 23.0

Table 4: Percentage of attack and nonattack tokens included in rationale model predicted rationales. Lower is better
for attack tokens, and arguably better for nonattack tokens (all else being equal) as it improves interpretability.

see an improvement of +4.6% for BERT on MUL-427

TIRC, +2.9% for BERT on FEVER, +2.2% for428

RoBERTa on MULTIRC, and +0.7% for RoBERTa429

on FEVER (2.6% on average). For the one case430

where adversarial data augmentation recovered431

clean test performance (RoBERTa on MULTIRC),432

adversarial rationale supervision actually improves433

on clean test performance by +2.5%. The effective-434

ness of ADV. + ATK. SUP. is even more salient if435

we compare with NO ADV. on attacked test: 3.6%436

and 8.8% for BERT on MULTIRC and FEVER,437

8.6% and 10.4% for RoBERTa on MULTIRC and438

FEVER (7.9% on average).439

Table 4 explains this success. The adversarially-440

supervised rationale model includes 6% or fewer441

attacking tokens in all settings, indicating that it did442

largely succeed in learning to occlude these tokens443

w.r.t the predictor. This is an exciting result because444

it shows that explicitly training the model to ignore445

adversarial tokens is an effective defense against446

this particular attack. Moreover, the supervision of447

non-attack tokens does not require any additional448

human effort.449

Human and adversarial rationale supervision450

(ADV. + HUMAN SUP.). The previous result451

shows that the rationale model can learn to ignore 452

adversarial tokens added to the input. A final ques- 453

tion is whether human rationales can serve as a 454

useful addition to this mechanism. Does training 455

the model to both ignore adversarial tokens and 456

emulate human explanations further improve ro- 457

bustness against the ADDSENT attack? 458

In two out of four cases, the human + adversar- 459

ial rationale supervision performance is equal to 460

that of the adversarial rationale supervision alone. 461

Only for BERT on MULTIRC does it result in an 462

improvement, being the only configuration for that 463

model and dataset that brings performance back to 464

that of clean test. For RoBERTa on MULTIRC, it 465

actually weakens attacked test performance. 466

While these results are mixed, Table 4 does show 467

that the model does at least achieve this result at 468

a much lower included percentage of nonattack 469

tokens (∼20% vs. >95%), a concession toward 470

model interpretability. 471

5.3 Error Analysis 472

To better understand the behavior of the models, we 473

examine mistakes from BERT compared to explic- 474

itly training a rationale extractor on MULTIRC. We 475
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Human rationale & attack ADV. + ATK. SUP. ADV. + HUMAN SUP.

(A) Example 1, true label: False

[CLS] ... in may 1904 , the couple ’ s
first son , hans albert einstein , was born
in bern , switzerland . their second son ,
eduard , was born in zurich in july 1910 .
in 1914 , the couple separated ; einstein
moved to berlin and his wife remained in
zurich with their sons . they divorced on
14 february 1919 , having lived apart for
five years . ... a - tete did n ’ t stay in
basel after charles and houben separated
. ... [SEP] who did n ’ t stay in zurich
after albert and maric separated ? | | tete
[SEP] ADV. prediction: True

[CLS] ... in may 1904 , the couple ’ s
first son , hans albert einstein , was born
in bern , switzerland . their second son ,
eduard , was born in zurich in july 1910 .
in 1914 , the couple separated ; einstein
moved to berlin and his wife remained in
zurich with their sons . they divorced on
14 february 1919 , having lived apart for
five years . ... a - tete did n ’ t stay in
basel after charles and houben separated
. ... [SEP] who did n ’ t stay in zurich
after albert and maric separated ? | | tete
[SEP] ADV. + ATK. SUP. prediction:
False

[CLS] ... in may 1904 , the couple
’ s first son , hans albert einstein , was
born in bern , switzerland . their second
son , eduard , was born in zurich in july
1910 . in 1914 , the couple separated ;
einstein moved to berlin and his wife re-
mained in zurich with their sons . they
divorced on 14 february 1919 , having
lived apart for five years . ... a - tete
did n ’ t stay in basel after charles and
houben separated . ... [SEP] who did n ’
t stay in zurich after albert and maric sep-
arated ? | | tete [SEP] ADV. + HUMAN
SUP. prediction: False

(B) Example 2, true label: True

[CLS] ... on the day of the party , all
five friends showed up . each friend had
a present for susan . 6 thank - you cards
did helen send . susan was happy and
sent each friend a thank you card the next
week . [SEP] how many thank - you cards
did susan send ? | | 5 [SEP] ADV. predic-
tion: False

[CLS] ... on the day of the party , all
five friends showed up . each friend had
a present for susan . 6 thank - you cards
did helen send . susan was happy and
sent each friend a thank you card the next
week . [SEP] how many thank - you cards
did susan send ? | | 5 [SEP] ADV. + ATK.
SUP. prediction: True

[CLS] ... on the day of the party , all
five friends showed up . each friend had
a present for susan . 6 thank - you cards
did helen send . susan was happy and
sent each friend a thank you card the next
week . [SEP] how many thank - you cards
did susan send ? | | 5 [SEP] ADV. + HU-
MAN SUP. prediction: False

(C) Example 3, true label: False

[CLS] ... roman legions encountered the
strongholds of the castle rock and arthur ’
s seat , held by a tribe of ancient britons
known as the votadini . the mercians
were probably the ancestors of the manaw
. little is recorded about this group , but
they were probably the ancestors of the
gododdin , whose feats are told in a sev-
enth - century old welsh manuscript . ...
the god ... din ... [SEP] who were
probably the ancestors of the gododdin ? |
| the picts [SEP] ADV. prediction: True

[CLS] ... roman legions encountered
the strongholds of the castle rock and
arthur ’ s seat , held by a tribe of an-
cient britons known as the votadini . the
mercians were probably the ancestors of
the manaw . little is recorded about this
group , but they were probably the an-
cestors of the gododdin , whose feats
are told in a seventh - century old welsh
manuscript . ... the god ... din ...
[SEP] who were probably the ancestors
of the gododdin ? | | the picts [SEP] ADV.
+ ATK. SUP. prediction: True

[CLS] ... roman legions encountered the
strongholds of the castle rock and arthur ’
s seat , held by a tribe of ancient britons
known as the votadini . the mercians were
probably the ancestors of the manaw .
little is recorded about this group , but
they were probably the ancestors of the
gododdin , whose feats are told in a sev-
enth - century old welsh manuscript . ...
the god ... din ... [SEP] who were
probably the ancestors of the gododdin
? | | the picts [SEP] ADV. + HUMAN
SUP. prediction: False

Table 5: Example outputs from ADV. + ATK. SUP. and ADV. + HUMAN SUP. with BERT in MULTIRC. Attack
tokens are marked in red. True human rationales are marked orange in the first column. We only show tokens
where generated rationales disagree with each other or with human rationale and attack.

start with a qualitative analysis of example errors,476

and then discuss general trends, especially on why477

human rationales provide limited benefit over ADV.478

+ ATK. SUP. More in-depth analyses can be found479

in the appendix for space reasons, including a Venn480

diagram of model mistakes.481

Qualitative analysis. We look at example errors482

of ADV. to investigate attacks that are confusing483

even after adversarial augmentation. Table 5 shows484

example outputs of the rationale models based on485

either non-attack tokens or human rationales.486

Example 1 shows a case where models with ex-487

plicit rationale extractors ignore attack more effec- 488

tively than ADV. In the attack sentence, “tete did n 489

’ t stay in” is highly similar to the query, so a model 490

likely predicts True if it uses the attack information. 491

In comparison, both rationale models ignore the 492

attack in label prediction, which enables them to 493

make correct predictions. 494

Example 2 demonstrates that ADV. + HUMAN 495

SUP. makes mistakes when it fails to include cru- 496

cial information in rationales while avoiding attack 497

tokens. ADV. + HUMAN SUP. predicts the wrong 498

label because it misses information for the number 499

of friends in its rationale. ADV. + ATK. SUP. gets 500

7



this example correct because it can both ignore at-501

tack and include the necessary information. In fact,502

ADV. + ATK. SUP. generates perfect non-attack ra-503

tionales in all three examples. Generally, it is more504

challenging to generate human rationales than to505

generate non-attack rationales, likely because the506

attack sentences are derived from a heuristical al-507

gorithm.508

Finally, Example 3 shows an example where509

ADV. + HUMAN SUP. is better than ADV. + ATK.510

SUP. when generating rationales to ignore noise.511

ADV. + HUMAN SUP. includes attack in rationale,512

but it is still able to predict the label because the513

attack is not confusing given the selected rationale.514

The generated rationale helps ADV. + HUMAN SUP.515

to avoid unnecessary information that may confuse516

the model. For example, the sentence with “picts”517

could confuse the model to predict True. On the518

other hand, ADV. + ATK. SUP. gets this example519

wrong, despite avoiding attack completely.520

More generally, we find that ADV. + HUMAN521

SUP. tends to have high false negatives. When only522

ADV. + HUMAN SUP. is wrong, 92% of the errors523

are in the positive class. Indeed, when ADV. +524

HUMAN SUP. fails to find good rationales, it tends525

to predict False because of the high sparsity. In526

contrast, ADV. + ATK. SUP. does not have the ten-527

dency to predict False, as its generated rationales528

contain the necessary information most of the time.529

ADV. + ATK. SUP. is better than ADV. +530

HUMAN SUP. when human rationale is denser531

and passage length is longer (see Table 7 in the532

appendix). We observe that denser human rationale533

usually comprises evidence from different parts of534

the passage. Since ADV. + ATK. SUP. generates535

rationales with almost every non-attack token, they536

will have higher human rationale recall (98.6%)537

than human-supervised BERT (57.6%). Thus, ADV.538

+ ATK. SUP. will generate better rationales when539

human rationale is dense, but this can be difficult540

for ADV. + HUMAN SUP. to pick up. Similarly,541

long passage length also makes it harder for ADV. +542

HUMAN SUP. to select which non-human rationale543

tokens to drop when generating rationales.544

Taken together, these analyses highlight the chal-545

lenges of learning from human rationales: it re-546

quires precise occlusion of irrelevant information547

while keeping valuable information, and account548

for the diverse ranges of human rationales and in-549

put lengths. This partly explains the limited benefit550

of ADV. + HUMAN SUP. over ADV. + ATK. SUP.551

6 Concluding Discussion 552

In this study we find that adding (and supervis- 553

ing) an explicit extractor layer helps a pretrained 554

model learn to ignore additive adversarial attacks 555

produced by the ADDSENT method more effec- 556

tively than conventional adversarial training via 557

data augmentation. 558

This is an exciting result because it demonstrates 559

a novel use for this type of explicit token relevance 560

representation, which is more typically applied for 561

the sake of model interpretability (Lei et al., 2016). 562

It is related to defenses like Cohen et al. (2019) 563

which allow the model to reject inputs as out-of- 564

distribution and abstain from prediction, but it dif- 565

fers in rejecting only part of the input, making a 566

prediction from the remainder as usual. 567

Generality. As Carlini et al. (2019) notes, it is 568

easy to overstate claims in evaluating adversarial 569

defenses. Hence, we note that our results pertain 570

only to the ADDSENT attack, and perform favor- 571

ably only against a baseline defense in adversarial 572

training via data augmentation. 573

Nevertheless, the success of the rationale model 574

architecture in learning to occlude adversarial to- 575

kens does hold promise for a more general defense 576

based on a wider range of possible attacks and pos- 577

sible defenses by the extractor layer. 578

Utility of human rationales. We explore the pos- 579

sibility in this study that feature feedback based on 580

human-provided explanations may make the model 581

more robust against adversarial attack. We mostly 582

find that they do not, with the notable exception 583

of BERT on MULTIRC, where it is only this aug- 584

mentation that brings the model back to clean test 585

accuracy. While it does provide an advantage of 586

sparsity over supervision with non-attack tokens, 587

this advantage alone may not justify the cost of 588

collecting human explanations for robustness. 589

Future directions. A generalization of our ap- 590

proach might convert the “extractor” layer into a 591

more general “defender” layer capable of issuing a 592

wider range of corrections in response to a wider 593

range of attacks. It could, for example, learn to 594

defend against attacks based on input removal (e.g. 595

Feng et al. (2018)) by training to recognize gaps in 596

the input and fill them via generative closure. This 597

defender could be coupled with a self-supervision 598

style approach (e.g., Hendrycks et al. (2019)) in- 599

volving an “attacker” capable of levying various 600

types of attack against the model. We leave such a 601

generalization for future work. 602
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A Hyperparameters840

For our experiments, we fine-tune both the ratio-841

nale extractor g and predictor f for the rationale842

models from a pretrained language model. We fine-843

tune BERT components from a pre-trained bert-844

base-uncased model, and RoBERTa from a pre-845

trained roberta-large model. We use an Adam op-846

timizer with with β1 = 0.9 and β2 = 0.999 for all847

experiments.848

We find gradient accumulation helps with train-849

ing stability of BERT and RoBERTa, and we report850

gradient accumulation as a hyperparameter for both851

models. Table 6 describes a list of hyperparameters852

we use for both BERT and RoBERTa. We do a853

grid search over all combinations of hyperparam-854

eters listed in table 6, and we report results of the855

model that achieves the highest performance on the856

original dev set.857

B More error analysis858

Easy examples have high jaccard similarity be-859

tween human rationale and QUERY+ANSWER.860

All three models excel at these examples. High sim-861

ilarity should help models to find human rationale862

or generate rationales that mimic human rationale863

easily, but we also observe that the generated ratio-864

nales do not necessarily provide the greatest align-865

ment with human rationale for examples BERT866

rationale models get correct. For instance, ratio-867

nale F1 is 53.9 for examples that human-supervised868

BERT gets correct and BERT gets wrong, which is869

smaller than rationale F1 (56.2) for examples both870

models get wrong. Notice that attack and human871

rationale are similar due to the attack generation872

technique, but this does not affect model perfor-873

mance because training with augmentation allows874

the rationale models to ignore attack tokens (attack875

Figure 3: Venn diagram for errors by BERT (ADV.),
human-supervised BERT, and attack-supervised
BERT.

recall = 89.3 and 97.4 for BERT rationale models). 876

Likewise, we think BERT (ADV.) also benefits 877

from the high similarity to identify important text 878

areas and learns to ignore attacks from training 879

augmentation. 880

BERT rationale models handle denser hu- 881

man rationale slightly better than BERT 882

(ADV.). We define sparsity of X as the number 883

of tokens in X divided by the total number of to- 884

kens in the input, so larger sparsity correspond to 885

dense rationales. Counter-intuitively, all three mod- 886

els are bad at examples with the most dense human 887

rationale. This can be accounted for by the fact that 888

these are also examples where QUERY+ANSWER 889

and human rationale have the least jaccard simi- 890

larity: human rationale sparsity and the jaccard 891

similarity has a Pearson’s coefficient of 0.25 (p < 892

0.001). Thus, examples with denser human ratio- 893

nale are likely to contain confusing information 894

for models. We find BERT rationale models can 895

resist this confusion better than BERT (ADV.). For 896

instance, human rationale sparsity = 0.167 when 897

human-supervised BERT is correct bu BERT is 898

wrong, and it is 0.165 when BERT is correct but 899

BERT rationale is wrong. 900

11

https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
http://arxiv.org/abs/2006.11627
http://arxiv.org/abs/2006.11627
http://arxiv.org/abs/2006.11627
http://arxiv.org/abs/2006.11627
http://arxiv.org/abs/2006.11627


Parameter BERT Rationale RoBERTa Rationale

Batch Size 8 8
Learning Rate 2e-5 5e-6
Gradient Accumulation 10 batches 8 batches
Masking Strategy m mzero, mmask mzero, mmask
Prediction Supervision Loss Weight 1.0 1.0
Rationale Supervision Loss Weight λ1 1.0 1.0
Sparsity Loss Weight λ2 0.0, 0.1, 0.2, 0.3 0.0, 0.1, 0.2, 0.3
Jointly Optimized True, False True, False

Table 6: Hyperparameters used in parameter search and training.

Input Length Human Rationale Length

human-supervised BERT correct,
attack-supervised BERT wrong 357.097 360.278

attack-supervised BERT correct,
human-supervised BERT wrong 81.191 79.098

Table 7: Input and human rationale length of mistakes by attack-supervised BERT and human-supervised BERT.
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