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Abstract

Exploration remains a central challenge for reinforcement learning (RL). Virtually1

all existing methods share the feature of a monolithic behaviour policy that changes2

only gradually (at best). In contrast, the exploratory behaviours of animals and hu-3

mans exhibit a rich diversity, namely including forms of switching between modes.4

This paper presents an initial study of mode-switching, non-monolithic exploration5

for RL. We investigate different modes to switch between, at what timescales it6

makes sense to switch, and what signals make for good switching triggers. We7

also propose practical algorithmic components that make the switching mechanism8

adaptive and robust, which enables flexibility without an accompanying hyper-9

parameter-tuning burden. Finally, we report a promising and detailed analysis on10

Atari, using two-mode exploration and switching at sub-episodic time-scales.11

1 Introduction12

The trade-off between exploration and exploitation is described as the crux of learning and behaviour13

across many domains, not just reinforcement learning [Sutton and Barto, 2018], but also in decision14

making [Cohen et al., 2007], evolutionary biology [Cremer et al., 2019], ecology [Kembro et al.,15

2019], neuroscience (e.g., focused versus diffuse search in visual attention [Wolfe et al., 1989],16

dopamine regulations [Chakroun et al., 2020]), cognitive sciences [Hills et al., 2015], as well as17

psychology and psychiatry [Addicott et al., 2017]. In a nutshell, exploration is about the balance18

between taking the familiar choice that is known to be rewarding and learning about unfamiliar19

options of uncertain reward, but which could ultimately be more valuable than the familiar options.20

Ample literature has studied the question of how much to explore, that is how to set the overall21

trade-off (and how to adjust it over the course of learning) [Jaksch et al., 2010, Cappé et al., 2013,22

Lattimore and Szepesvári, 2020, Thrun, 1992], and the question of how to explore, namely how23

to choose exploratory actions (e.g., randomly, optimistically, intrinsically motivated, or otherwise)24

[Schmidhuber, 1991, Oudeyer and Kaplan, 2009, Linke et al., 2019]. In contrast, the question of when25

to explore has been studied very little, possibly because it does not arise in bandit problems, where a26

lot of exploration methods are rooted. The ‘when’ question and its multiple facets are the subjects of27

this paper. We believe that addressing it could lead to more intentional forms of exploration.28

Consider an agent that has access to two modes of behaviour, an ‘explore’ mode and an ‘exploit’29

mode (e.g., a random policy and a greedy policy, as in ε-greedy). Even when assuming that the30

overall proportion of exploratory steps is fixed, the agent still has multiple degrees of freedom: it31

can explore more at the beginning of training and less in later phases; it may take single exploratory32

steps or execute prolonged periods of exploration; it may prefer exploratory steps early or late within33

an episode; and it could trigger the onset (or end) of an exploratory period based on various criteria.34

Animals and humans exhibit non-trivial behaviour in all of these dimensions, presumably encoding35

useful inductive biases that way [Power, 1999]. Humans make use of multiple effective strategies,36

such as selectively exploring options with high uncertainty (a form of directed, or information-seeking37

exploration), and increasing the randomness of their choices when they are more uncertain [Gershman,38
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2018, Gershman and Tzovaras, 2018, Ebitz et al., 2019]. Monkeys use directed exploration to manage39

explore-exploit trade-offs, and these signals are coded in motivational brain regions [Costa et al.,40

2019]. Patients with schizophrenia register changes in directed exploration and experience low-grade41

inflammation when shifting from exploitation to random exploration [Waltz et al., 2020, Cathomas42

et al., 2021]. This diversity is what motivates us to study which of these can benefit RL agents in turn,43

by expanding the class of exploratory behaviours beyond the commonly used monolithic ones (where44

modes are merged homogeneously in time).45

2 Methods46

The objective of an RL agent is to learn a policy that maximises external reward. At the high level,47

it achieves this by interleaving two processes: generating new experience by interacting with the48

environment using a behaviour policy (exploration) and updating its policy using this experience49

(learning). As RL is applied to increasingly ambitious tasks, the challenge for exploration becomes50

to keep producing diverse experience, because if something has not been encountered, it cannot be51

learned. Our central argument is therefore simple: a monolithic, time-homogeneous behaviour policy52

is strictly less diverse than a heterogeneous mode-switching one, and the former may hamstring53

the agent’s performance. As an illustrative example, consider a human learning how to ride a bike54

(explore), while maintaining their usual happiness through food, sleep, work (exploit): there is a stark55

contrast between a monolithic, time-homogeneous behaviour that interleaves a twist of the handlebar56

or a turn of a pedal once every few minutes or so, and the mode-switching behaviour that dedicates57

prolonged periods of time exclusively to acquiring the new skill of cycling.58

2.1 Exploration modes59

While the choice of behaviour in pure exploit mode is straightforward, namely the greedy pursuit60

of external reward (or best guess thereof), denoted by G, there are numerous viable choices for61

behaviour in a pure explore mode (denoted by X ). In this paper we consider two standard ones:62

XU , the naive uniform random policy, and XI , an intrinsically motivated behaviour that exclusively63

pursues a novelty measure based on random network distillation (RND, [Burda et al., 2018]). See64

Section 4 and Appendix B for additional possibilities of X . In this paper we choose fixed behaviours65

for these modes, and focus solely on the question of when to switch between them. In our setting,66

overall proportion of exploratory steps (the how much), denoted by pX , is not directly controlled but67

derives from the when.68

2.2 Granularity69

An exploration period is an uninterrupted sequence of steps in explore mode. We consider four70

choices of temporal granularity for exploratory periods, also illustrated on Figure 1:71

Step-level exploration is the most common scenario, where the decision to explore is taken indepen-72

dently at each step, affecting one action.1 The canonical example is ε-greedy (Fig.1:C).73

Experiment-level exploration is the other extreme, where all behaviour during training is produced74

in explore mode, and learning is off-policy (the greedy policy is only used for evaluation).75

This scenario is also very common, with most forms of intrinsic motivation falling into this76

category, namely pursuing reward with an intrinsic bonus throughout training (Fig.1:A).277

Episode-level exploration is the case where the mode is fixed for an entire episode at a time (e.g.,78

training games versus tournament matches in a sport), see Fig.1:B. This has been investigated79

for simple cases, where the policy’s level of stochasticity is sampled at the beginning of80

each episode [Horgan et al., 2018, Kapturowski et al., 2019, Zha et al., 2021].81

Intra-episodic exploration is what falls in-between step- and episode-level exploration, where82

exploration periods last for multiple steps, but less than a full episode. This is the least83

commonly studied scenario, and will form the bulk of our investigations (Fig.1:D,E,F,G).84

1The length of an exploratory period tends to be short, but it can be greater than 1, as multiple consecutive
step-wise decisions to explore can create longer periods.

2Note that it is also possible to interpret ε-greedy as experiment-level exploration, where the X policy is
fixed to a noisy version of G.
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Figure 1: Illustration of different types of temporal structure for two-mode exploration. Left: Each
line A-G depicts an excerpt of an experiment (black lines show episode boundaries, experiment
continues on the right), with colour denoting the active mode (blue is exploit, magenta is explore).
A is of experiment-level granularity, B episode-level, C step-level, and D-G are of intra-episodic
exploration granularity. Right: The same examples, mapped onto a characteristic plot of summary
statistics: overall exploratory proportion pX versus typical length of an exploratory period medX .
The yellow-shaded area highlights the intra-episodic part of space studied in this paper (some points
are not realisable, e.g., when pX ≈ 1 then medX must be large). C, D, E, F share the same pX ≈ 0.2,
while interleaving exploration modes in different ways. D and E share the same medX value, and
differ only on whether exploration periods are spread out, or happen toward the end of episode.

We denote the length of an exploratory period by nX (and similarly nG for exploit mode). To85

characterise granularity, our summary statistic of choice is medX := median(nX ). Note that there86

are two possible units for these statistics: the raw steps or the proportion of the episode length L.87

The latter has different (relative) semantics, but may be more appropriate when episode lengths vary88

widely across training. We denote it as rmedX := median(nX /L).89

2.3 Switching for intra-episodic exploration90

Granularity is but the coarsest facet of the ‘when’ question, but more precise intra-episode timings91

(when to start and when to stop an exploratory period) are important aspects too.92

Blind switching The simplest type of switching mechanism does not take state or time into account93

(thus we call it blind), and is only concerned with producing switches at some desired time resolution.94

It can be implemented deterministically through a counter (e.g., enter explore mode after 100 exploit95

mode steps), or probabilistically (e.g., at each step, enter explore mode with probability 0.01). Its96

expected duration can be parameterised in terms of raw steps, or in terms of fractional episode length.97

The opposite of blind switching is informed switching, as discussed in Section 2.4.98

Asymmetry In general, the mechanism for entering the explore mode can differ from the one99

for exiting it (to enter the exploit mode), and this is crucial to obtain flexible overall amounts of100

exploration – if switching were symmetric, the proportion would be pX ≈ 0.5.101

Starting mode When periods last for a significant fraction of episode length, it also matters how102

the sequence is initialised, i.e., whether an episode starts in explore or in exploit mode, or more103

generally, whether the agent explores more early in an episode or more later on. It is conceivable104

that the best choice among these is domain dependent (see Figure 6): in most scenarios, the states at105

the beginning of an episode have been visited many times, thus starting with exploit mode can be106

beneficial; in other domains however, early actions may disproportionately determine the available107

future paths (e.g., build orders in StarCraft [Churchill and Buro, 2011]).108

2.4 Informed switching with triggers109

Going beyond blind switching opens up another rich set of design choices. We decompose the110

mechanism into two parts. First, a scalar trigger signal is produced by the agent at each step, based on111

its current information – drawing inspiration from human behaviour, the triggering signal is intended112
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to be a proxy for uncertainty [Schulz et al., 2019]. Second, a binary switching decision is taken based113

on the trigger signal, for example by comparing it to a threshold. Again, the type of trigger and its114

configuration will in general not be symmetric between entering and exiting an exploratory period.115

Value promise trigger To keep this paper focused, we will look at one such trigger, dubbed ‘value116

promise discrepancy’ (see Appendix B for additional competitive variants). This is an online proxy117

of how much of the reward that the agent’s past value estimate promised (k steps ago) have actually118

come about. The intuition is that in uncertain parts of state space, this discrepancy will generally be119

larger than when everything goes as expected. Formally,120

Dpromise(t− k, t) :=

∣∣∣∣∣V (st−k)−
k−1∑
i=0

γiRt−i − V (st)

∣∣∣∣∣
where V (s) is the agent’s value estimate at state s, R is the reward, and γ is a discount factor.121

Homeostasis In practice, the scales of trigger signals may vary substantially across domains, and122

across training time, for example, the magnitude of Dpromise will depend on reward scales and123

density, and can decrease over time as accuracy improves (the signals could also be noisy). This124

means that naively setting a threshold hyper-parameter is impractical. For a simple remedy, we have125

taken inspiration from neuroscience [Turrigiano and Nelson, 2004] to add homeostasis to the binary126

switching mechanism, which tracks recent values of the signal and adapts the threshold for switching127

so that a specific average target rate is obtained. This functions as an adaptive threshold, making128

tuning straightforward because the target rate of switching can be configured independently of the129

scales of the trigger signal. See Appendix A for the details of the implementation.130

2.5 Adaptation instead of tuning131

Our approach introduces additional flexibility to the exploration process, even when holding the132

specifics of the learning algorithm and the exploration mode fixed. The two main added dimensions133

are when (or how often) to enter explore mode, and when (or how quickly) to exit it. To avoid this134

becoming a hyper-parameter tuning burden, we propose to follow [Schaul et al., 2019] and [Badia135

et al., 2020a], and delegate the adaptation of these settings to a meta-controller (implemented as a136

non-stationary multi-armed bandit that maximises episodic return). As an added benefit, the ‘when’137

of exploration can now become adaptive to both the task, and the stage of learning.138

3 Results139

The design space we propose contains a number of atypical ideas for how to structure exploration.140

For this reason, we opted to keep the rest of our experimental setup very conventional, and include141

multiple comparable baselines, ablations and variations.142

Setup: R2D2 on Atari We conduct our investigations on a subset of games of the Atari Learning143

Environment [Bellemare et al., 2013], a common benchmark for the study of exploration. All144

experiments are conducted across 7 games (FROSTBITE, GRAVITAR, H.E.R.O., MONTEZUMA’S145

REVENGE, MS. PAC-MAN, PHOENIX, STAR GUNNER), the first 5 of which are classified as hard146

exploration games [Bellemare et al., 2016], using 3 seeds per game. For our agent, we use the R2D2147

architecture [Kapturowski et al., 2019], which is a modern, distributed version of DQN [Mnih et al.,148

2015] that employs a recurrent network to approximate its Q-value function. This is a common149

basis used in exploration studies, e.g., [Dabney et al., 2020, Badia et al., 2020b,a]. The only major150

modification to conventional R2D2 is its exploration mechanism, where instead we implement all the151

variants of mode-switching introduced in Section 2. Separately from the experience collected for152

learning, we run an evaluator process that assesses the performance of the current greedy policy. This153

is what we report in all our performance curves (see Appendix A for more details).154

Baselines There are a few simple baselines worth comparing to, namely the pure explore mode155

(pX = 1, Fig.1:A) and the pure exploit mode (pX = 0), as well as the step-wise interleaved ε-greedy156

execution (Fig.1:C), where pX = 0.01 = ε (without additional episodic or intra-episodic structure).157

Given its wide adoption in well-tuned prior work, we expect the latter to perform well overall.158
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Figure 2: Illustrating the space of design decisions for intra-episodic exploration.

The fourth baseline picks a mode for an entire episode at a time (Fig.1:B), with the probability of159

picking X being adapted by a bandit meta-controller. We denote these as experiment-level-X,160

experiment-level-G, step-level-0.01 and episode-level-* respectively. For each of these,161

we have a version with uniform (XU ) and intrinsic (XI ) explore mode.162

3.1 Variants of intra-episodic exploration163

As discussed in Section 2, there are multiple dimensions along which two-mode intra-episodic164

exploration can vary. The concrete ones for our experiments are:165

• Explore mode: uniform random XU , or RND intrinsic reward XI (denoted XU and XI).166

• Explore duration (nX ): this can be a fixed number of steps (1, 10, 100), or one of these167

is adaptively picked by a bandit (denoted by *), or the switching is symmetric between168

entering end exiting explore mode (denoted by =).169

• Trigger type: either blind or informed (based on value promise, see Section 2.4).170

• Exploit duration (nG): for blind triggers, the exploit duration can be parameterised by fixed171

number of steps (10, 100, 1000, 10000), indirectly defined by a probability of terminating172

(0.1, 0.01, 0.001, 0.0001), or adaptively picked by a bandit over these choices (denoted by n*173

or p*, respectively). For informed triggers, the exploit duration is indirectly parameterised174

by a target rate in (0.1, 0.01, 0.001, 0.0001), or a bandit over them (p*), which is in turn175

transformed into an adaptive switching threshold by homeostasis (Section 2.4).176

• Starting mode: G greedy (default) or X explore (denoted by G or X).177

We can concisely refer to a particular instance by a tuple that lists these choices. For example,178

XU-intra(100,informed,p*,X) denotes uniform random exploration XU , with fixed 100-step179

explore periods, triggered by the value-promise signal at a bandit-determined rate, and starting in180

explore mode. See Figure 2 for an illustration.181

3.2 Performance results182

We start by reporting overall performance results, to reassure the reader that our method is viable (and183

convince them to keep reading the more detailed and qualitative results in the following sections).184

Figure 3 shows performance across 7 Atari games according to two human-normalised aggregation185

metrics (mean and median), comparing one form of intra-episodic exploration to all the baselines,186

separately for each explore mode (XU and XI ). The headline result is that intra-episodic exploration187

improves over both step-level and episode-level baselines (as well as the pure experiment-level modes188

that we would not expect to be very competitive). The full learning curves per game are found in the189

appendix, and show scores on hard exploration games like MONTEZUMA’S REVENGE or PHOENIX190

that are also competitive in absolute terms (at our compute budget of 1B frames).191

Note that there is a subtle difference to the learning setups between XU and XI , as the latter requires192

training a separate head to estimate intrinsic reward values. This is present even in pure exploit mode,193

where it acts as an auxiliary task only [Jaderberg et al., 2016], hence the differences in pure greedy194

curves in Figure 3. For details, see Appendix A.195

3.3 Diversity results196

In a study like ours, the emphasis is not on measuring raw performance, but rather on characterising197

the diversity of behaviours arising from the spectrum of proposed variants. A starting point is to198

5



Figure 3: Human-normalized performance results aggregated over 7 Atari games and 3 seeds,
comparing the four levels of exploration granularity. Left two: uniform explore mode XU . Right
two: RND intrinsic reward explore mode XI . In each case, the baselines are pure modes X and G,
step-level switching with ε-greedy, and episodic switching (with a bandit-adapted proportion). In
each setting, intra-episodic exploration is on par or better than the baselines.

Figure 4: Rows 1 and 3: Summary characteristics pX and rmedX of induced exploration behaviour,
for different variants of intra-episodic exploration (and an episodic baseline for comparison), on
a subset of 4 Atari games. Bandit adaptation can change these statistics over time, hence square
and cross markers show averages over first and last 10% of training, respectively. Rows 2 and 4:
Corresponding final scores (averaged over final 10% of training). Error bars show the span between
min and max performance across 3 seeds. Note how different variants cover different parts of
characteristic space, and how the bandit adaptation shifts the statistics into different directions for
different games. See main text for further discussion of these results and Appendix C for other games
and variants.

return to Figure 1 (right), and assess how much of the previously untouched space is now filled199

by intra-episodic variants, and how the ‘when’ characteristics translate into performance. Figure 4200

answers these questions, and raises some new ones. First off, the raw amount of exploration pX is201

not a sufficient predictor of performance, implying that the temporal structure matters. It also shows202

substantial bandit adaptation at work: compare the exploration statistics at the start (squares) and203

end-points of training (crosses), and how these trajectories differ per game; a common pattern is204

that reducing pX far below 0.5 is needed for high performance. Interestingly, these adaptations are205

similar between XU and XI , despite very different explore modes (and differing performance results).206

We would expect prolonged intrinsic exploration periods to be more useful than prolonged random207

ones, and indeed, comparing the high-rmedX variant (purple) across XU and XI , it appears more208
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Figure 5: Left and center: Illustration of detailed temporal structure within individual episodes,
on FROSTBITE (top) and GRAVITAR (bottom), contrasting two trigger mechanisms. Each subplot
shows 15 randomly selected episodes (one per row) that share the same overall exploration amount
pX = 0.1. Each vertical bar (magenta) represents an exploration period of fixed length nX = 10;
each blue chunk represents an exploitation period. Left: blind, step-based trigger leads to equally
spaced exploration periods. Center: a trigger signal informed by value promise leads to very different
within-episode patterns, with some parts being densely explored, and others remaining in exploit
mode for very long. Right: the corresponding learning curves show a clear performance benefit for
the informed trigger variant (orange) in this particular setting. Appendix C has similar plots for many
more variants and games.

Figure 6: Starting mode effect. Final mean episode return for two blind intra-episode experiments
that differ only in start mode, greedy (blue) or explore (orange). Scores are normalised so that 1 is the
maximum result across the two start modes. Either choice can reliably boost or harm performance,
depending on the game. Left: uniform explore mode XU . Right: intrinsic reward explore mode XI .

beneficial for the latter. Zooming in on specific games, a few results stand out: in XU mode, the209

only variant that escapes the inherent local optimum of PHOENIX is the blind, doubly adaptive one210

(purple), with the bandits radically shifting the exploration statistics over the course of training. In211

contrast, the best results on MONTEZUMA’S REVENGE are produced by the symmetric trigger variant212

(blue), which is forced to retain a high pX . Finally, FROSTBITE is the one game where an informed213

trigger (red) clearly outperforms its blind equivalent (purple).214

These insights are still limited to summary statistics, so Figure 5 looks in more depth at the detailed215

temporal structure within episodes (as in Figure 1, left). Here the main comparison is between blind216
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Figure 7: Left and center: Contrasting the behavioural characteristics between two forms of blind
switching, step-based (left) and probabilistic (center), on the example of FROSTBITE. Each point
is an actor episode, with colour indicating time in training (blue for early, red for late). Note the
higher diversity of pX when switching probabilistically. Right: Corresponding performance curves
indicate that the probabilistic switching (red) has a performance benefit, possibly because it creates
the opportunity for ‘lucky’ episodes with much less randomness in a game where random actions can
easily kill the agent. For more games, please see the Appendix C.

and informed triggers, illustrating that the characteristics of the fine-grained within-episode structure217

can differ massively, despite attaining the same high-level statistics pX and medX . We can see quite218

a lot of variation in the trigger structure – the moments we enter exploration are not evenly spaced219

anymore. As a bonus, the less rigid structure of the informed trigger (and possibly the more carefully220

chosen switch points) end up producing better performance too.221

Figure 6 sheds light on a complementary dimension, differentiating the effects of starting in explore222

or exploit mode. In brief, each of these can be consistently beneficial in some games, and consistently223

harmful in others. Another observation here is the dynamics of the bandit adaptation: when starting224

in exploit mode, it exhibits a preference for long initial exploit periods in many games (up to 10000225

steps), but that effect vanishes when starting in explore mode (see also Appendix C). More subtle226

effects arise from the choice of parameterisation of switching rates. Figure 7 shows a stark qualitative227

difference on how probabilistic switching differs from step-count based switching, with the former228

spanning a much wider diversity of outcomes, which improves performance.229

3.4 Take-aways230

Summarising the empirical results in this section, two messages stand out. First, there seems to be a231

sweet spot in terms of temporal granularity, and intra-episodic exploration is the right step towards232

finding it. Second, the vastly increased design space of our proposed family of methods gives rise to233

a large diversity of behavioural characteristics; and this diversity is not superficial, it also translates234

to meaningful performance differences, with different effects in different games, which cannot be235

reduced to simplistic metrics, such as pX . In addition, we provide some sensible rules-of-thumb for236

practitioners willing to join us on the journey of intra-episodic exploration. In general, it is useful to237

let a bandit figure out the precise settings, but it is worth curating its choices to at most a handful.238

Jointly using two bandits across factored dimensions is very adaptive, but can sometimes be harmful239

when they decrease the signal-to-noise ratio in each other’s learning signal. Finally, the choice of the240

uncertainty-based trigger should be informed by the switching modes (see Appendix B for details).241

4 Discussion242

Time-based exploration control The emphasis of our paper has been on the potential benefits243

of heterogeneous temporal structure in mode-switching exploration. But there is another, more244

mundane potential advantage over monolithic approaches: it may be easier and more natural to tune245

hyper-parameters related to an explicit exploration budget (e.g., via pX ) than to tune an intrinsic246

reward coefficient, especially if extrinsic reward scales change across tasks or across time, and if the247

non-stationarity of the intrinsic reward affects its overall scale.248

Diversity for diversity’s sake One role of a general-purpose exploration method is to allow an249

agent to get off the ground in a wide variety of domains. While this may clash with sample-efficient250
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learning on specific domains, we believe that the former objective will come to dominate in the long251

run. In this light, methods that exhibit more diverse behaviour are preferable for that reason alone,252

because they are more likely to escape local optima or misaligned priors.253

Related work While not the most common approach to exploration in RL, we are aware of some254

notable work that has investigated non-trivial temporal structure. The εz-greedy algorithm [Dabney255

et al., 2020] is inspired by Levy flights in nature [Baronchelli and Radicchi, 2013] and initiates256

contiguous chunks of directed behaviour (‘flights’) with the length sampled from a heavy-tailed257

distribution. In contrast to our proposal, these flights act with a single constant action, instead258

of invoking an explore mode. [Campos et al., 2021] pursue a similar idea, but with flights along259

pre-trained coverage policies, while [Ecoffet et al., 2021] chain a ‘return-to-state’ policy to an explore260

mode. Maybe closest to ourXI setting is [Bagot et al., 2020], where periods of intrinsic reward pursuit261

are explicitly invoked by the agent. Exploration with gradual change instead of abrupt mode switches,262

appears generally at long time-scales, such as when pursuing intrinsic rewards [Schmidhuber, 2010,263

Oudeyer and Kaplan, 2009], but can also be effective at shorter time-scales e.g., Never-Give-Up264

[Badia et al., 2020b]. Related work on the question of which states to prefer for exploratory decisions265

[Tokic, 2010] tends to not consider starting prolonged exploratory periods.266

Relation to options Ideas related to switching behaviours at intra-episodic time-scales are well-267

known outside of the context of exploration, the best-known framework being options in hierarchical268

RL, where the goal is to chain together a sequence of sub-behaviours into a reward-maximising269

policy [Sutton et al., 1999, Mankowitz et al., 2016]; but some work has looked at using options for270

exploration too [Jinnai et al., 2019a, Bougie and Ichise, 2021]. In its full generality, the options271

framework is a substantially more ambitious endeavour than our proposal, as it requires learning a272

full state-dependent hierarchical policy that picks which option to start (and when), as well as jointly273

learning the options themselves.274

Limitations Our proposed approach inherits many of the challenges that are typical for exploration275

methods, such as sample efficiency or trading off risk. An aspect that is particular to the intra-episode276

switching case is the different nature of the off-policy-ness. The resulting effective policy can produce277

state distributions that differ substantially from those of either of the two base mode behaviours that278

are being interleaved. It can potentially visit parts of the state space that neither base policy would279

reach if followed from the beginning of the episode. While a boon for exploration, this might pose a280

challenge to learning, as it could require off-policy corrections that treat those states differently and281

do not only correct for differences in action space. We leave this as an intriguing consideration for282

future work; this paper does not use any non-trivial off-policy correction (see Appendix A).283

Future work With the dimensions laid out in Section 2, it should be clear that this paper can284

but scratch the surface. We see numerous opportunities for future work, on some of which we285

already carried out initial investigations, see Appendix B. For starters, there is no inherent need286

to restrict the mechanism to just two modes: A richer form of exploration could switch between287

exploit, explore, novelty and mastery [Thomaz and Breazeal, 2008], or between many diverse forms288

of exploration (such as different levels of optimism [Derman et al., 2020, Moskovitz et al., 2021]). It289

is also conceivable to switch less abruptly; for example, if both exploit- and explore-mode behaviours290

are induced by a reward function, a Q-value-based agent with successor features [Barreto et al., 2017,291

Borsa et al., 2019] could interpolate between them to make switching more gradual [Barreto et al.,292

2019]. Triggers are another aspect that could be expanded or refined: there are different candidates293

for estimating uncertainty, such as ensemble discrepancy [Wiering and Van Hasselt, 2008, Buckman294

et al., 2018], amortised value errors [Flennerhag et al., 2020], or density models [Bellemare et al.,295

2016, Ostrovski et al., 2017]; also, triggers could be based on other signals that are not derived from296

uncertainty, such as salience [Downar et al., 2002], minimal coverage [Jinnai et al., 2019a,b], or297

empowerment [Klyubin et al., 2005, Gregor et al., 2016, Houthooft et al., 2016].298

Conclusion We have presented an initial study of intra-episodic exploration, centred on the scenario299

of switching between an explore and an exploit mode. We hope this has broadened the available300

forms of temporal structure in behaviour, leading to more diverse, adaptive and intentional forms of301

exploration, in turn enabling RL to scale to ever more complex domains.302
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