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Abstract

We establish a connection between stochastic optimal control and generative mod-
els based on stochastic differential equations (SDEs) such as recently developed
diffusion probabilistic models. In particular, we derive a Hamilton–Jacobi–Bellman
equation that governs the evolution of the log-densities of the underlying SDE
marginals. This perspective allows to transfer methods from optimal control theory
to generative modeling. First, we show that the evidence lower bound is a direct
consequence of the well-known verification theorem from control theory. Fur-
ther, we develop a novel diffusion-based method for sampling from unnormalized
densities – a problem frequently occurring in statistics and computational sciences.

1 Introduction

Diffusion (probabilistic) models have established themselves as start-of-the art in generative modeling
and likelihood estimation of high-dimensional image data [1, 2, 3]. With methods from different
fields, they can be understood from multiple perspectives. In a discrete-time setting, one can, for
instance, interpret diffusion models as types of variational autoencoders (VAEs) for which the
evidence lower bound (ELBO) corresponds to a multi-scale denoising score matching objective [1].
In continuous time, the ELBO has been derived as the limit of infinitely deep VAEs [2] or based on
an interpretation in terms of stochastic differential equations (SDEs) [4, 5]. The latter encapsulates
various methods such as denoising score matching with Langevin dynamics (SMLD) and denoising
diffusion probabilistic models (DDPM) and includes normalizing flows as a special case [4, 6].

In this work, we suggest another perspective. We show that the SDE framework naturally connects
diffusion models to partial differential equations (PDEs) typically appearing in stochastic optimal
control and reinforcement learning. Using the Hopf–Cole transformation, one main insight is
that the time-reversed log-density of the diffusion process satisfies a Hamilton–Jacobi–Bellman
(HJB) equation (Section 2.1). The latter can be connected to a control problem in which one aims to
minimize specific control costs with respect to a given controlled dynamics, see [7] and Appendix A.6.
We further show that this readily yields the ELBO of the generative model (Section 2.2). For previous
work on optimal control in the context of generative modeling we refer the reader to [8, 9, 10].

While our main contribution lies in the formal connection between stochastic optimal control and
diffusion models, as described in Section 2.3, we moreover demonstrate its practical relevance by
transferring methods from control theory to generative modeling. More specifically, in Section 2.4,
we design a novel algorithm for sampling from (unnormalized) densities – a problem which frequently
occurs in Bayesian statistics and computational physics, chemistry, and biology [11, 12]. As opposed
to related approaches [13, 14, 15], our method allows for more flexibility in choosing the initial
distribution and reference SDE, offering the possibility to incorporate specific prior knowledge.
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1.1 Notation

We denote the density of a random variable Z by pZ . For a stochastic process Z = (Zt)t∈[0,T ] we
define the function pZ by pZ(·, t) := pZt

for every t ∈ [0, T ]. For a time-dependent function f ,
we denote by ⃗f the time-reversal given by ⃗f(t) := f(T − t). Finally, we define the divergence of
matrix-valued functions row-wise. More details on our notation can be found in Appendix A.1.

2 SDE-based generative modeling as an optimal control problem

Diffusion models can naturally be interpreted through the lens of time-continuous stochastic pro-
cesses [6]. To this end, let us formalize our setting in the general context of SDE-based generative
models. We define our model as the stochastic process X = (Xs)s∈[0,T ] characterized by the SDE

dXs = ⃗µ(Xs, s) ds+ ⃗σ(s) dBs (1)

with suitable3 drift and diffusion coefficients µ : Rd × [0, T ]→ Rd and σ : [0, T ]→ Rd×d. Learning
the model in (1) now corresponds to solving the following problem.
Problem 2.1 (SDE-based generative modeling). Learn an initial condition X0 as well as coefficient
functions µ and σ such that the distribution of XT approximates a given data distribution D.

While, in general, the initial condition X0 as well as both the coefficient functions µ and σ can be
learned, typical applications resort to learning the drift µ only. The following remark justifies that
this is sufficient to represent an arbitrary distribution D.
Remark 2.2 (Time-reversed SDE). Naively, one can achieve XT ∼ D by setting

X0 ∼ YT and µ := σσ⊤∇x log(pY )− f, (2)

where f : Rd × [0, T ]→ Rd and Y is a solution to the SDE

dYs = f(Ys, s) ds+ σ(s) dBs, Y0 ∼ D. (3)

This well-known result dates back to [16, 17, 18, 19] which, more generally, state that X can be
interpreted as the time-reversal of Y , in the sense that pY = ⃗pX almost everywhere, see Appendix A.3.
Apparent practical challenges are to sample from X0 ∼ YT and to compute the score ∇x log(pY ).
We will see in Section 2.3 how diffusion models provide a working solution.

As already apparent from the optimal drift µ in the previous remark, the reverse-time log-density
log( ⃗pX) of the process X will play a prominent role in deriving a suitable objective for solving
Problem 2.1. In the next section, we derive the HJB equation governing the evolution of log( ⃗pX) and
thus providing the bridge to the fields of optimal control and reinforcement learning.

2.1 HJB equation for log-density

We start with the well-known Fokker-Planck equation which describes the evolution of a density of a
solution X to an SDE via the PDE

∂tpX = divx

(
divx

(
⃗DpX

)
− ⃗µpX

)
, (4)

where we set D := 1
2σσ

⊤ for notational convenience. This implies that the time-reversed density ⃗pX
satisfies a (generalized) Kolmogorov backwards equation given by

∂t ⃗pX = divx (− divx (D ⃗pX) + µ ⃗pX) = −Tr
(
D∇2

x ⃗pX
)
+ µ · ∇x ⃗pX + divx(µ) ⃗pX . (5)

The second equality follows from the identities for divergences in Appendix A.2 and the fact that σ
does not depend on the spatial variable x. Now we use the Hopf–Cole transformation to transform
the linear PDE in (5) to an HJB equation prominent in control theory, see [20, 21] and Appendix A.5.
Lemma 2.3 (HJB equation for log-density). Let us define V := − log( ⃗pX). Then V is a solution to
the HJB equation

∂tV = −Tr
(
D∇2

xV
)
+ µ · ∇xV − divx(µ) +

1

2

∥∥σ⊤∇xV
∥∥2, V (·, T ) = − log(pX0

). (6)
3Motivated by Remark 2.2, we start with time-reversed drift and diffusion coefficients ⃗µ and ⃗σ. Further, we

assume certain regularity on the coefficient functions of all appearing SDEs, see Appendix A.1
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For approaches to directly solve Kolmogorov backwards or HJB equations via deep learning, we
refer to, e.g., [14, 22, 23, 24, 25, 26], see also Appendix A.4. Furthermore, the HJB equation allows
us to use tools from stochastic control theory to derive a suitable objective for Problem 2.1.

2.2 ELBO derivation using the verification theorem from optimal control

We will derive the ELBO for our generative model (1) using the following fundamental result from
control theory, which shows that the solution to an HJB equation such as (6) is related to an optimal
control problem, see [7, 13, 20, 26, 27] and Appendix A.7.
Theorem 2.4 (Verification theorem). Let V be a solution to the HJB equation in (6). Further, let
U ⊂ C1(Rd × [0, T ],Rd) be a suitable set of admissible controls and for every control u ∈ U let Y u

be the solution to the controlled4 SDE

dY u
s = (σu− µ) (Y u

s , s) ds+ σ(s) dBs. (7)

Then it holds almost surely that

V (Y u
0 , 0) = min

u∈U
E

[∫ T

0

(
divx(µ) +

1

2
∥u∥2

)
(Y u

s , s) ds− log
(
pX0

(Y u
T )
)∣∣∣∣∣Y u

0

]
, (8)

where the unique minimum is attained by u∗ := −σ⊤∇xV .

Plugging in the definition of V from Lemma 2.3, this readily yields the following ELBO of our
generative model in (1). The corresponding variational gap can be found in Remark A.6.
Corollary 2.5 (Evidence lower bound). For every u ∈ U it holds almost surely that

log(pXT
(Y u

0 )) ≥ E

[∫ T

0

(
−divx(µ)−

1

2
∥u∥2

)
(Y u

s , s) ds+ log
(
pX0(Y

u
T )
)∣∣∣∣∣Y u

0

]
, (9)

where equality is obtained for u∗ := σ⊤∇x log ( ⃗pX).

Comparing (8) and (9), we see that the ELBO is equivalent to the negative control costs. With the
initial condition Y u

0 ∼ D, it represents a lower bound on the negative log-likelihood of our generative
model. In practice, one can now parametrize u with, for instance, a neural network, and rely on
gradient-based optimization to maximize the ELBO using samples from D.

The optimality condition in Corollary 2.5 guarantees that ⃗pX = pY u∗ almost everywhere if we ensure
that X0 ∼ Y u∗

T , see Appendix A.3. In particular, this implies that XT ∼ D, i.e., our generative
model solves Problem 2.1. However, we still face the problem of sampling X0 ∼ Y u∗

T since the
distribution of Y u∗

T depends5 on the initial distribution D. In the next sections we will demonstrate
ways to circumvent this problem.

2.3 Connection to denoising score matching objective

This section outlines that, under a reparametrization of the generative model in (1), the ELBO in
Corollary 2.5 corresponds to the objective typically used for the training of time-continuous diffusion
models. We note that the ELBO in Corollary 2.5 in fact equals the one derived in [4, Theorem 3].
Following the arguments therein and motivated by Remark 2.2, we can now use the reparametrization
µ := σu− f to arrive at an uncontrolled inference SDE and a controlled generative SDE

dYs = f(Ys, s) ds+σ(s) dBs, Y0 ∼ D, and dXu
s =

(
⃗σ ⃗u− ⃗f

)
(Xu

s , s) ds+ ⃗σ(s) dBs. (10)

In practice, the coefficients f and σ are usually6 constructed in such a way that Y is an Ornstein–
Uhlenbeck (OU) process with YT being approximately distributed according to a standard normal

4As usually done, we assume that the initial condition Y u
0 of a solution Y u to a controlled SDE does not

depend on the control u.
5In case one has access to samples from the data distribution D, one could use these as initial data Y u∗

0 in
order to simulate X0 ∼ Y u∗

T . In doing so, however, one cannot expect to recover the entire distribution D, but
only the empirical distribution of the samples.

6For coefficients typically used in practice (leading, for instance, to continuous-time analogues of SMLD and
DDPM) we refer to [6].
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Figure 1: Sampling from ρ(x) = exp
(
−
∑5

i=1(x
2
i − 2)2 − 1

2

∑50
i=6 x

2
i

)
in d = 50 using the method

described in Section 2.4. Left: First coordinate of the trajectories of Xu in (12) starting from a
standard normal and controlled with the learned score u. Middle: Histogram of the first coordinate
of the samples Xu

T compared to a reference solution (in orange). Right: 2d-heatmap of the first two
coordinates of Xu

T illustrating that the mode separation is in line with ρ.

distribution. This is why the process Y is said to “diffuse” the data. Setting Xu
0 ∼ N (0, I) thus

satisfies that Xu
0 ≈ YT in distribution and allows to easily sample Xu

0 .

Moreover, under suitable assumptions, the corresponding ELBO can be rewritten as a denoising score
matching objective [28], i.e.,

log(pXu
T
(Y0)) ≥ −

T

2
E

[∥∥u(Yτ , τ)− σ⊤(τ)∇ log
(
pYτ |Y0

(Yτ |Y0)
)∥∥2 ∣∣∣Y0

]
+ C (11)

where τ ∼ U([0, T ]), pYτ |Y0
denotes the conditional density of Yτ given Y0 (which can be explicitly

computed for the OU process), and C ∈ R is a constant not depending on u, see Appendix A.8. Due
to its simplicity, variants of the objective (11) are typically used in implementations. Note, however,
that the setting in this section requires that one has access to samples of D. In the next section, we
consider a different scenario, where instead we only have access to the (unnormalized) density of D.

2.4 Sampling from unnormalized densities

In many practical settings, for instance in Bayesian statistics or computational physics, the data
distribution D admits the density ρ/Z , where ρ is known, but computing the normalizing constant
Z :=

∫
Rd ρ(x) dx is intractable. In this section we propose a novel method based on diffusion models

that allows to sample from D. To this end, we interchange the roles of X and Y u, i.e. consider
dYs = µ(Ys, s) ds+σ(s) dBs, Y0 ∼ D, and dXu

s = ( ⃗σu− ⃗µ) (Xu
s , s) ds+ ⃗σ(s) dBs. (12)

Analogously to Theorem 2.4, we then arrive at the control objective

− log (ZpYT
(Xu

0 )) = min
u∈U

E

[∫ T

0

(
divx( ⃗µ) +

1

2
∥u∥2

)
(Xu

s , s) ds− log (ρ(Xu
T ))

∣∣∣∣∣Xu
0

]
. (13)

Now, the optimal control u∗ := ⃗σ⊤∇x log ( ⃗pY ) guarantees that Xu
T ∼ D if we ensure that Xu

0 ∼ YT ,
see Appendix A.3. As in the previous chapter, this can approximately be achieved by choosing
Xu

0 ∼ N (0, I) and µ and σ such that YT ≈ Xu
0 . In practice, one can either minimize the control

objective (13) using gradient-based optimization or solve the corresponding HJB equation to obtain
an approximation to u∗, see Appendix A.9. We note that the former approach is similar to methods
independently presented in [14] and [15], where, however, X0 must follow a Dirac delta distribution.

Our numerical experiments displayed in Figure 1 provide a proof of concept for our method, showing
that it allows to sample from high-dimensional multimodal distributions. Further details can be found
in Appendix A.10.

3 Conclusion

We believe that the connection of diffusion models to the fields of optimal control and reinforcement
learning provides valuable new insights and allows to transfer established tools from one field to the
respective other. As first steps, we have shown how to easily re-derive the ELBO for time-continuous
diffusion models and extended this framework as to sample from unnormalized densities. We leave
further experiments and comparisons for future work.
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A Appendix

A.1 Setting

Let d, k ∈ N and T ∈ (0,∞). For a random variable X which is absolutely continuous w.r.t.
to the Lebesgue measure we write pX for its density. We denote by B a standard d-dimensional
Brownian motion. We say that a continuous Rd-valued stochastic process Y = (Yt)t∈[0,T ] has density
pY : Rd × [0, T ] → [0,∞) if for all t ∈ [0, T ] the random variable Yt has density pY (·, t) w.r.t. to
the d-dimensional Lebesgue measure, i.e., for all t ∈ [0, T ] and all measurable A ⊂ Rd it holds that

P [Yt ∈ A] =

∫
A

pY (x, t) dx =

∫
A

pYt
(x) dx. (14)

We denote by PY the law of Y on the space of continuous functions C([0, T ],Rd) equipped with
the Borel measure. We assume that the coefficient functions and initial conditions of all appearing
SDEs are sufficiently regular, such that their solution processes have densities which can be written
as unique solutions to corresponding Fokker-Planck equations, see, for instance, [29, Section 2.6]
and [30, Section 10.5] for the details. For a function f : Rd × [0, T ] → Rk, we write ⃗f for the
time-reversed function given by

⃗f(x, t) = f(x, T − t), (x, t) ∈ Rd × [0, T ]. (15)

For a scalar-valued function g : Rd × [0, T ] → R, we denote by ∇xg and ∇2
xg its gradient and

Hessian matrix w.r.t. to the spatial variable x. For matrix-valued functions A : Rd → Rd×d, we
denote by

Tr(A) :=

d∑
i=1

Aii (16)

the trace of its output. Finally, we define the divergence of matrix-valued functions row-wise, see
Appendix A.2.

A.2 Identities for divergences

Let A : Rd → Rd×d, v : Rd → Rd, and g : Rd → R. We define the divergence of A row-wise, i.e.,

div(A) := (div(Ai·))
d
i=1 =

d∑
j=1

∂xj
A·j , (17)

where Ai· and A·j denote the i-th row and j-th column, respectively. Then the following identities
hold true:

1. div(div(A)) =
∑d

i,j=1 ∂xi
∂xj

Aij

2. div(vg) = div(v)g + v · ∇g
3. div(Ag) = div(A)g +A∇g
4. div(Av) = div(A⊤) · v +Tr(A∇v).

A.3 Time-reversed SDEs

The next theorem shows that the marginals of a time-reversed Itô process can be represented as
marginals of another Itô process, see [4, 6, 16, 17, 18, 19]. We present a formulation from [4,
Appendix G] which derives a whole family of processes (parametrized by a function λ). The relations
stated in equation (2) follow from the choice λ = 0 and the fact that divx(D) = 0 if σ does not
depend on the spatial variable x.

Theorem A.1 (Reverse-time SDE). Let f ∈ Rd × [0, T ] → Rd and σ : Rd × [0, T ] → Rd×d, let
Y = (Ys)s∈[0,T ] be the solution to the SDE

dYs = f(Ys, s) ds+ σ(Ys, s) dBs, (18)
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and assume that Y has density pY , which satisfies the Fokker-Planck equation given by

∂tpY = divx (divx (DpY )− fpY ) , (19)

where D := 1
2σσ

⊤. For every λ ∈ C2([0, T ], [0, 1]) the solution X = (Xs)s∈[0,T ] to the reverse-time
SDE

dXs = ⃗µ(λ)(Xs, s) ds+ ⃗σ(λ)(Xs, s) dBs, X0 ∼ YT , (20)

with
µ(λ) := (2− λ) divx

(
D
)
+ (2− λ)D∇x log(pY )− f, (21)

and
σ(λ) :=

√
1− λσ (22)

has density pX given by
pX(·, t) = ⃗pY (·, t) (23)

almost everywhere for every t ∈ [0, T ]. In other words, for every t ∈ [0, T ] it holds that YT−t ∼ Xt.

Proof. Using the Fokker-Planck equation in (19), we observe that

∂t ⃗pY = divx

(
−divx

(
⃗D ⃗pY

)
+ ⃗f ⃗pY

)
. (24)

The negative divergence, originating from the chain-rule, prohibits us from directly viewing the above
equation as a Fokker-Planck equation. We can, however, use the identities in Appendix A.2, to show
that

divx

(
⃗D ⃗pY

)
= divx

(
⃗D
)

⃗pY + ⃗D∇x ⃗pY =
(
divx

(
⃗D
)
+ ⃗D∇x log( ⃗pY )

)
⃗pY . (25)

This implies that we can rewrite (24) as

∂t ⃗pY = divx

(
(1− λ) divx

(
⃗D ⃗pY

)
− (2− λ) divx

(
⃗D ⃗pY

)
+ ⃗f ⃗pY

)
(26a)

= divx
(
divx

(
⃗D
(λ)

⃗pY
)
− ⃗µ(λ) ⃗pY

)
, (26b)

where D(λ) := 1
2σ

(λ)(σ(λ))⊤. As the PDE in (26b) defines a valid Fokker-Planck equation associated
to the reverse-time SDE given by 20, this proves the claim.

A.4 Further details on the HJB equation

In order to solve Problem 2.1, one might be tempted to rely on classical methods to approximate the
solution of the HJB equation from Lemma 2.3 directly. However, in the setting of Remark 2.2, one
should note that the optimal drift,

µ = σσ⊤∇x log(pY )− f = −σσ⊤∇xV − f, (27)

contains the solution V itself. Plugging it into (6), we get the equation

∂tV = Tr
(
D∇2

xV
)
− f · ∇xV + div(f)− 1

2
∥σ⊤∇xV ∥2, V (·, T ) = − log (pX0

) . (28)

Likewise, when applying the Hopf–Cole transformation from Appendix A.5 to pY directly, i.e.
considering V := − log (pY ), where Y is the solution to SDE (3), we get the same PDE. We note,
however, that the signs in (28) do not match with typical HJB equations from control theory. We
therefore need to consider the time-reversed function ⃗V , which brings the HJB equation

∂t ⃗V = −Tr
(

⃗D∇2
x

⃗V
)
+ ⃗f · ∇x

⃗V − div( ⃗f) +
1

2
∥ ⃗σ⊤∇x

⃗V ∥2, ⃗V (·, T ) = − log (pXT
) . (29)

Unfortunately, for many applications the terminal condition is not available since pXT
is not known,

which seems to render methods for numerically solving the HJB equation useless. In the case of
sampling from (unnormalized) densities, however, the situation is different, see Section 2.4.
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A.5 Hopf–Cole transformation

The following lemma details the relation of the HJB equation in (6) and the linear Kolmogorov
backwards equation7 in (5). A proof can, e.g., be found in [31, Section 4.4.1] and [22, Appendix G].
Lemma 2.3 follows with the choices b := −µ and h := divx(µ).
Lemma A.2 (Hopf–Cole transformation). Let h : Rd × [0, T ]→ R and let p ∈ C2,1(Rd × [0, T ],R)
solve the linear PDE

∂tp = −1

2
Tr(σσ⊤∇2

xp)− b · ∇xp+ hp. (30)

Then V := − log(p) satisfies the HJB equation

∂tV = −1

2
Tr(σσ⊤∇2

xV )− b · ∇xV − h+
1

2

∥∥σ⊤∇xV
∥∥2. (31)

For further applications of the Hopf–Cole transformation we refer, for instance, to [27, 32, 33].

A.6 Brief introduction to stochastic optimal control

In this section we shall provide a brief introduction to stochastic optimal control. For details and
further reading we refer the interested reader to the monographs [7, 21, 27, 34]. Loosely speaking,
stochastic control theory deals with identifying optimal strategies in noisy environments, in our case
time-continuous stochastic processes defined by the SDE

dXU
s = µ̃(XU

s , s, Us) ds+ σ̃(XU
s , s, Us) dBs, (32)

where µ̃ and σ̃ are suitable functions, B is a d-dimensional Brownian motion, and U is a progressively
measurable, Rd-valued random control process. For ease of presentation, we focus on the frequent
case where U is a Markov control, which means that there exists a deterministic function u ∈ U ⊂
C(Rd × [0, T ],Rd), such that Us = u(XU

s , s). In other words, the randomness of the process U is
only coming from the stochastic process XU . The function class U then defines the set of admissible
controls. Very often one considers the special cases

µ̃(x, s, u) := µ(x, s) + σ(s)u(x, s) and σ̃(x, s, u) := σ(s), (33)
where µ and σ might correspond to the choices taken in Section 2.3 and one might think of u as a
steering force as to reach a certain target.

The goal is now to minimize specified control costs with respect to the control u. To this end, we can
define the cost functional

J(u;xinit, 0) = E

[∫ T

0

h̃(XU
s , s, u(XU

s , s))ds+ g(XU
T )

∣∣∣∣∣XU
0 = xinit

]
, (34)

where h̃ : Rd × [0, T ]× Rd → R specifies running costs and g : Rd → R represents terminal costs.
Furthermore we can define the cost-to-go as

J(u;x, t) = E

[∫ T

t

h̃(XU
s , s, u(XU

s , s))ds+ g(XU
T )

∣∣∣∣∣XU
t = x

]
, (35)

now depending on respective initial values (x, t) ∈ Rd × [0, T ]. The objective in optimal control is
now to minimize this quantity over all admissible control functions u ∈ U and we therefore introduce
the so-called value function

V (x, t) = inf
u∈U

J(u;x, t) (36)

as the optimal costs conditioned on being in position x at time t.

Motivated by the dynamic programming principle [35], one can then derive the main result from
control theory, namely that the function V defined in (36) fulfills a nonlinear PDE, which can thus be
interpreted as the determining equation for optimality8.

7For divx(µ) = 0 this can be viewed as the adjoint of the Fokker-Planck equation.
8In practice, solutions to optimal control problems may not posses enough regularity in order to formally

fulfill the HJB equation, such that a complete theory of optimal control needs to introduce an appropriate concept
of weak solutions, leading to so-called viscosity solutions that have been extensively studied for instance in
[27, 36].
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Theorem A.3 (Verification theorem for general HJB equation). Let V ∈ C2,1(Rd × [0, T ],R) fulfill
the PDE

∂tV = − inf
α∈Rd

{
h̃(·, ·, α) + b̃(·, ·, α) · ∇xV +

1

2
Tr
(
(σ̃σ̃⊤)(·, ·, α)∇2

xV
)}

, V (·, T ) = g, (37)

such that sup(x,t)∈Rd×[0,T ]
∥V (x,t)∥
1+∥x∥2 < ∞, and suppose there exists a measurable function U ∋

u∗ : Rd × [0, T ]→ Rd that attains the above infimum for all (x, t) ∈ Rd × [0, T ]. Further, let the
correspondingly controlled solution XU∗

to the SDE in (32) with U∗
s := u∗(XU∗

s , s) have a strong
solution. Then V coincides with the value function as defined in (36) and u∗ is an optimal Markovian
control.

Let us appreciate the fact that the infimum in the HJB equation in (37) is merely over the set Rd and
not over the function space U as in (36), so the minimization reduces to a pointwise operation. A
proof of Theorem A.3 can for instance be found in [7, Theorem 3.5.2].

In many applications, in addition to the choices (33), one considers the special form of running costs

h̃(x, s, u(x, s)) := h(x, s) +
1

2
∥u(x, s)∥2, (38)

where h : Rd × [0, T ]→ Rd. In this setting the minimization appearing in the general HJB equation
(37) can be solved explicitly, therefore leading to a closed-form PDE, as made precise with the
following Corollary.
Corollary A.4 (HJB equation with quadratic running costs). If the diffusion coefficient σ̃ does not
depend on the control, the control enters additively in the drift as in (33), and the running costs take
the form

h̃(x, s, u(x, s)) = h(x, s) +
1

2
∥u(x, s)∥2, (39)

then the general HJB equation in (37) can be stated in closed form as the HJB equation in (31).

Proof. We formally compute

inf
α∈Rd

{
h̃(·, ·, α) + µ̃(·, ·, α) · ∇xV

}
= h+ µ · ∇xV + inf

α∈Rd

{
1

2
∥α∥2 + σα · ∇xV

}
, (40)

and realize that the infimum is attained when choosing α∗ = −σ⊤∇xV (x, t) for each corresponding
(x, t) ∈ Rd × [0, T ], resulting in the optimal control function u∗ = −σ⊤∇xV . Plugging this into the
general HJB equation (37), we readily get the PDE in (31).

A.7 Verification theorem

The verification theorem is a classical result in optimal control and the proof can, for instance,
be found in [26, Theorem 2.2], [27, Theorem IV.4.4], [7, Theorem 3.5.2], see also Appendix A.6.
For the interested reader, we provide the theorem and a self-contained proof using Itô’s lemma
in the following. Theorem 2.4 follows with the choices t := 0, b := −µ, h := divx(µ), and
g := − log(pX0).
Theorem A.5 (Verification theorem). Let V be a solution to the HJB equation in (31). Further, let
t ∈ [0, T ] and define the set of admissible controls by

U :=
{
u ∈ C1(Rd × [t, T ],Rd) : sup(x,s)∈Rd×[t,T ]

∥u(x,s)∥
1+∥x∥ <∞

}
. (41)

For every control u ∈ U let Zu = (Zu
s )s∈[t,T ] be the solution to the controlled SDE

dZu
s = (σu+ b) (Zu

s , s) ds+ σ(s) dBs (42)

and let the cost of the control u be defined by

J(u) := E

[∫ T

t

(
h+

1

2
∥u∥2

)
(Zu

s , s) ds+ g(Zu
T )

∣∣∣∣∣Zu
t

]
. (43)
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Then for every u ∈ U it holds almost surely that

V (Zu
t , t) +E

[
1

2

∫ T

t

∥∥σ⊤∇xV + u
∥∥2 (Zu

s , s) ds

∣∣∣∣∣Zu
t

]
= J(u). (44)

In particular, this implies that V (Zu
t , t) = minu∈U J(u) almost surely, where the unique minimum is

attained by u∗ := −σ⊤∇xV .

Proof. Let us derive the verification theorem directly from Itô’s lemma, which, under suitable
assumptions, states that

V (Zu
T , T )− V (Zu

t , t) =

∫ T

t

(
∂sV + (σu+ b) · ∇xV +Tr

(
D∇2

xV
))

(Zu
s , s) ds+ S (45)

almost surely, where

S :=

∫ T

t

(σ⊤∇xV )(Zu
s , s) · dBs, (46)

see, e.g., [30, Theorem 8.3]. Combining this with the fact that V solves the HJB equation in (31) and
the simple calculation

1

2
∥σ⊤∇xV + u∥2 =

1

2

(
σ⊤∇xV + u

)
·
(
σ⊤∇xV + u

)
(47a)

=
1

2
∥σ⊤∇xV ∥2 +

(
σ⊤∇xV

)
· u+

1

2
∥u∥2, (47b)

shows that

V (Zu
t , t) =

∫ T

t

(
h+

1

2
∥u∥2 − 1

2

∥∥σ⊤∇xV + u
∥∥2) (Zu

s , s) ds+ g(Zu
T )− S (48)

almost surely. Under mild regularity assumptions, the stochastic integral S has zero expectation
conditioned on Zu

t , which proofs the claim.

Remark A.6 (Variational gap). We can interpret the term

E

[
1

2

∫ T

t

∥∥σ⊤∇xV + u
∥∥2 (Zu

s , s) ds

∣∣∣∣∣Zu
t

]
(49)

in (44) as variational gap specifying the misfit of the current and the optimal control objective. In the
setting of Corollary 2.5 it takes the form

E

[
1

2

∫ T

0

∥∥u− σ⊤∇x log( ⃗pX)
∥∥2 (Y u

s , s) ds

∣∣∣∣∣Y0

]
(50)

and can be compared to [4, Theorem 4], where, however, the factor 1/2 seems to be missing.

Remark A.7 (Path measure interpretation). In [26, Proposition 3.5] it is shown that the expected
variational gap in (50) can be rewritten as the Kullback-Leibler divergence DKL(PY u |PY u∗ ), where
we denote by PY u the path measure of Y u, i.e., the law of Y on the space of continuous functions
C([0, T ],Rd) equipped with the Borel measure.

A.8 ELBO formulations

Here we provide details on the connection of the ELBO to the denoising score matching objective.
Using the reparametrization in (10), i.e. taking µ := σu− f , Corollary 2.5 yields that

log(pXu
T
(Y0)) ≥ E

[∫ T

0

(
−divx(σu− f)− 1

2
∥u∥2

)
(Ys, s) ds+ log

(
pXu

0
(YT )

)∣∣∣∣∣Y0

]
. (51)

The next lemma shows that the ELBO in (51) equals the denoising score matching objective [28] up
to a constant, which does not depend on the control u.
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Lemma A.8 (Connection to denoising score matching). It holds that

E

[∫ T

0

(
−divx(σu− f)− 1

2
∥u∥2

)
(Ys, s) ds+ log

(
pXu

0
(YT )

)∣∣∣∣∣Y0

]

= −T

2
E

[∥∥u(Yτ , τ)− σ⊤(τ)∇ log
(
pYτ |Y0

(Yτ |Y0)
)∥∥2 ∣∣∣Y0

]
+ C,

(52)

where τ ∼ U([0, T ]), pYτ |Y0
denotes the conditional density of Yτ given Y0, and

C := E
[
log(pXu

0
)(YT ) + T divx(f)(Yτ , τ) +

T

2

∥∥σ⊤(τ)∇ log
(
pYτ |Y0

(Yτ |Y0)
)∥∥2 ∣∣∣Y0

]
. (53)

Proof. The proof closely follows the one in [4, Appendix A]. For notational convenience, let us
define p(x, s) := pYs|Y0

(x|Y0) for every x ∈ Rd and s ∈ [0, T ]. Note that we have

1

2

∥∥u− σ⊤∇x log (p)
∥∥2 =

1

2
∥u∥2 − u ·

(
σ⊤∇ log (p)

)
+

1

2

∥∥σ⊤∇ log (p)
∥∥2 . (54)

Using Fubini’s theorem and a Monte-Carlo approximation, this implies that, under mild regularity
conditions, the quantity in (52) can be written as

E

[∫ T

0

(
u ·
(
σ⊤∇x log (p)

)
+ divx(f)−

1

2
∥u∥2

)
(Ys, s) ds+ log

(
pXu

0
(YT )

)∣∣∣∣∣Y0

]
. (55)

Now, we focus on the term u ·
(
σ⊤∇x log (p)

)
(Ys, s) for fixed s ∈ [0, T ]. Using the identities for

divergences in Appendix A.2, one can show that

divx(σup)− divx(σu)p = (σu) · ∇xp = (σu) · ∇x log (p) p = u ·
(
σ⊤∇x log (p)

)
p. (56)

Further, Stokes’ theorem guarantees that under suitable assumptions it holds that∫
Rd

divx(σup)(x, s) dx = 0. (57)

Thus, using (56) and (57), we have that

E [−divx(σu)(Ys, s)|Y0] = −
∫
Rd

divx(σu)(x, s)p(x, s) dx (58a)

=

∫
Rd

(
u ·
(
σ⊤∇x log (p)

))
(x, s)p(x, s)dx (58b)

= E
[(
u ·
(
σ⊤∇x log (p)

))
(Ys, s)

∣∣Y0

]
. (58c)

Combining this with (55) finishes the proof.

Note that one can also establish equivalences to explicit, implicit, and sliced score matching [37, 38],
see [4, Appendix A]. Using the interpretation of the ELBO in terms of Kullback-Leibler divergences,
see [4, Theorem 5] and also Remark A.7, one can further derive the ELBO for discrete-time diffusion
models as presented in [1, 2].

A.9 Sampling from densities

In the setting of Section 2.4, we now present a method different from minimizing the objective (13) in
order to obtain an approximation to u∗. As the Kolmogorov backwards equation is linear, the scaled
density p := Z ⃗pY also satisfies a Kolmogorov backwards equation given by

∂tp = −Tr
(

⃗D∇2
xp
)
+ ⃗µ · ∇xp+ divx( ⃗µ)p, p(·, T ) = ρ. (59)

Deriving the HJB equation using the Hopf–Cole transform V := − log (Z ⃗pY ) from Appendix A.5
yields that

∂tV = −Tr( ⃗D∇2
xV ) + ⃗µ · ∇xV − divx( ⃗µ) +

1

2

∥∥ ⃗σ⊤∇xV
∥∥2, V (·, T ) = − log(ρ). (60)
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Figure 2: Histogram of the first component of YT (in blue) when starting the corresponding process Y
in Y0 ∼ D, where D corresponds to ρ in (63), compared to a standard Gaussian density (in orange).

Algorithm 1 Training the control in Section 2.4 via deep learning.

Input: Neural network Φ with initial parameters θ(0), optimizer method step for updating the
parameters, number of steps M , batch size K

Output: parameters θ(M)

for m← 0, . . . ,M − 1 do
(x(k))Kk=1 ← sample from N (0, I)⊗K

J(θ)← Estimate the average cost in (13) with Xu
0 = x(k), k = 1, . . . ,K, and u = Φ(θ(m))

θ(m+1) ← step
(
θ(m),∇J(θ)

)
end for

As ρ is known, viable strategies to learn u∗ would be to solve the PDEs for p or V via deep learning,
see, e.g. [14, 22, 23, 24, 25, 26], and then use automatic differentiation to compute

u∗ := ⃗σ⊤∇x log ( ⃗pY ) = ⃗σ⊤∇x log (p) = ⃗σ⊤∇xV (61)

as the score is invariant to rescaling. This adds another method to directly optimizing the control
costs in (13) for approximately learning u ≈ u∗.

Using such u, one simulates Xu as defined in (12), e.g., using the Euler–Maruyama scheme, such
that Xu

T represents an approximate sample from D. As done in [15], one can employ importance
sampling to correct for suboptimal approximations u ̸= u∗, however, potentially at the cost of an
increased variance of corresponding estimated quantities of interests, see [39]. Further, one can use
the stochastic adjoint sensitivity method to efficiently compute the gradients of the ELBO w.r.t. the
parameters of the control u using high-order adaptive solvers, see also [40, 41]. Similar to [6], one
can also obtain samples from Xu

T using the probability flow ODE, which originates from the choice
λ = 1 in Theorem A.1.

A.10 Implementation details

For our experiments we consider the following setup. We set T = 1, f = −2x, and σ = 2 I such that
the inference SDE in (10) corresponds to an Ornstein-Uhlenbeck process for which we have

YT |Y0 ∼ N
(
e−2Y0, (1− e−4) I

)
. (62)

We can numerically check whether (the unconditional) YT is indeed close to a standard normal
distribution, as demanded by Algorithm 1. To this end, we consider samples from D (in this case
corresponding to the example in Figure 1) and let the process Y run according to the inference SDE
in (3). We can now compare the empirical distributions of the different components, which each need
to follow a one-dimensional Gaussian. Figure 2 shows that this is indeed the case, where we take the
first component as an example.

We approximate the control u with a DenseNet [42, 43], which is optimized using the Adam optimizer
with batch size K = 50. We approximate the expectation in (13) with 10 samples and discretize the
SDE Xu initially with time-step ∆t = 0.01 and later with ∆t = 0.001. The optimization routine is
summarized in Algorithm 1.
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Figure 3: Sampling from ρ(x) = exp
(
−
∑2

i=1(x
2
i − 2)2 − 1

2

∑20
i=3 x

2
i

)
in d = 20 using the method

described in Section 2.4. Left: First coordinate of the trajectories of Xu in (12) starting from a
standard normal and controlled with the learned score u. Middle: Histogram of the first coordinate
of the samples Xu

T compared to a reference solution (in orange). Right: 2d-heatmap of the first two
coordinates of Xu

T illustrating that the mode separation is in line with ρ.

In our numerical example in Section 2.4 we consider the unnormalized density

ρ(x) = exp

(
−

5∑
i=1

(x2
i − 2)2 − 1

2

50∑
i=6

x2
i

)
. (63)

Note that, due to the double well structure of the negative log-density (also know as potential), the
density has 25 = 32 separated modes. In Figure 3 we repeat the same experiment, however, now in
d = 20 with

ρ(x) = exp

(
−

2∑
i=1

(x2
i − 2)2 − 1

2

20∑
i=3

x2
i

)
, (64)

which consist of only 22 = 4 modes.

In applications one is often interested in computing expected values of the form

Ξ := E [ξ(Y0)] , (65)

where Y0 ∼ D follows some distribution and ξ : Rd → R specifies an observable of interest. For an
example, let us consider ξ(x) = ∥x∥2 and approximate (65) by creating samples via Algorithm 1,
resulting in the random variable Xu

T ≈ Y0 (where the approximation is meant in distribution). We
can then approximate Ξ in (65) via Monte Carlo sampling by

Ξ̂ :=
1

K

K∑
k=1

ξ(X
u,(k)
T ), (66)

where K ∈ N specifies the sample size. In our multimodal examples we can compute a reference
solution of (65), which we shall denote by Ξref , by numerical integration since ρ factorizes in the
dimensions. We can now compute the relative error rΞ := |(Ξ̂−Ξref)/Ξref |, which can be viewed as
an evaluation of the sample quality on a global level. For the approximation of our unnormalized
density ρ in d = 50, which is displayed in Figure 1, we get a relative error of rΞ = 2.78 · 10−04 when
using K = 106 samples. For the example in d = 20, which corresponds to Figure 3, the relative error
is rΞ = 4.76 · 10−04.
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