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Abstract001

Event extraction (EE) and opinion or senti-002
ment analysis have been extensively studied003
within recent decades, but their joint research004
remains an under-explored area. To bridge the005
gap in event-level opinion and sentiment anal-006
ysis, we introduce the Cross-Document Event-007
Opinion Extraction (CodEOE) task, which008
aims to capture complex event-opinion in-009
teractions and jointly extract event triggers,010
event arguments, opinions and sentiment po-011
larities towards events from multiple docu-012
ments. The CodEOE task requires a model013
extracting trigger-argument pairs and trigger-014
opinion-sentiment triplets by understanding015
cross-document contexts. We manually con-016
struct a high-quality bilingual CodEOE dataset017
in both Chinese and English with 6,000+018
trigger-argument pairs and 4,000+ trigger-019
opinion-sentiment triplets. We develop an end-020
to-end model based on the grid-tagging method021
to benchmark the task, which can effectively022
perform cross-document context understanding023
and achieve pair and triplet prediction. The re-024
sults of our model surpass those of two strong025
baselines and are comparable to large language026
models. We hope that this new benchmark will027
advance research on event-level opinion and028
sentiment analysis. Our data and code are avail-029
able here for peer review.030

1 Introduction031

Extracting structured information from unstruc-032

tured text is a fundamental challenge in natural033

language processing (NLP). Event extraction (EE)034

(Doddington et al., 2004), a pivotal task in this035

domain, aims to transform unstructured text into036

trigger-argument structures. Simultaneously, the037

need for machines to understand human opinions038

and sentiments has driven extensive research in039

sentiment analysis (McDonald et al., 2007; Cam-040

bria et al., 2017). Aspect-based sentiment analysis041

(ABSA), a prominent subfield, focuses on detecting042

On December 22, the U.S. International Trade Commission (ITC)'s Apple Watch sales ban officially came 
into effect. The official website of Apple has stopped selling Apple Watch Series 9 and Apple Watch Ultra 2. 

Apple's official website shows that after opening the product page, the "Buy" button on the right has been 
removed, and a "currently unavailable" reminder is printed in the upper left corner of the product.

I thought the two sides could finally reach an 
agreement, but I didn't expect the final result to be 
a ban on sales. It's really uncomfortable for Apple 
watch fans. I hope next year's Apple watch can be 

updated normally!

Apple Watch infringes some of Masimo's blood 
oxygen sensor patents. Didn't you spend money to 

solve this kind of thing in the past? ... To tell the truth, sometimes I really admire the 
intensity of infringement enforcement in the 
United States. It is really unaccustomed to 

infringement, and it is banned when it should be 
banned. This plays a very important role in patent 
protection and intellectual property development. 

If patents are trampled on wantonly, who ... 
and use them directly.
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Figure 1: An example of the cross-document event-
opinion extraction (CodEOE) task. (a) illustrates a news
document along with multiple user comments. Event
triggers and arguments as well as related opinions are
highlighted in red, purple and blue. (b) presents the
extracted event triggers, their corresponding arguments
and types, as well as event-specific opinion expressions
and sentiment polarities across all documents.

fine-grained sentiment orientations toward specific 043

targets. 044

Existing EE research primarily focuses on 045

sentence-level and document-level tasks. For 046

sentence-level event extraction (SEE), the 047

ACE2005 dataset (Doddington et al., 2004) has 048

been widely used, establishing EE as a mainstream 049

task and inspiring numerous studies (Chen et al., 050

2015; Liu et al., 2018; Wadden et al., 2019; Wang 051

et al., 2022). To overcome sentence boundary 052

limitations, document-level event extraction (DEE) 053

has further advanced this field. Datasets like 054

RAMS (Ebner et al., 2020) and WIKIEVENTS 055

(Li et al., 2021) catalyze a wave of research, 056

including span-based (Liu et al., 2017; Zhang 057

et al., 2020; Liu et al., 2023) and generation-based 058
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(Li et al., 2021; Wei et al., 2021) approaches.059

Gao et al. (2024) proposes the Cross-Document060

Event Extraction (CDEE) task, extending EE061

to the cross-document level. However, these062

studies predominantly emphasize isolated event063

information, overlooking the equally valuable064

exploration of opinions and sentiments expressed065

about events, particularly in social media contexts.066

Similarly, ABSA originates with aspect-based067

sentiment analysis (Tang et al., 2016; Fan et al.,068

2018; Li et al., 2019). Opinion terms and category069

elements are later incorporated, leading to triplet070

and quadruple extraction of ABSA (Chen et al.,071

2022; Li et al., 2024; Cai et al., 2021; Zhang et al.,072

2021; Fei et al., 2022; Li et al., 2023). However,073

these works mainly focus on sentiment analysis of074

specific aspects, limiting their application to do-075

mains like restaurants, laptops, and mobile phones.076

In contrast, events convey richer information than077

noun-based aspects and are prevalent on social me-078

dia. Compared to ABSA, event-level opinion and079

sentiment analysis have broader applications.080

In this paper, we address the gap in event-level081

opinion and sentiment analysis by proposing the082

task of Cross-Document Event-Opinion Extrac-083

tion (CodEOE). The objective of CodEOE task is084

to detect event trigger-argument pairs and event085

trigger-opinion-sentiment triplets from a given086

news article and multiple associated comment doc-087

uments. As illustrated in Figure 1, multiple so-088

cial media users provide comments on a hot news.089

The task aims to extract eight trigger-argument090

pairs, such as (‘came into effect’, ‘December 22’)091

and (‘stopped selling’, ‘Apple’), and two trigger-092

opinion-sentiment triplets, such as (‘came into ef-093

fect’, ‘I thought ... updated normally!’, ‘Negative’).094

This design is motivated by two considera-095

tions: 1) Event arguments associated with a trigger096

are typically numerous and unordered. Directly097

constructing trigger-argument-opinion-sentiment098

quadruples would exacerbate data sparsity. 2)099

The relations between arguments and opinions for100

an event are relatively loose, making their direct101

coupling in a quadruple less suitable. Our event-102

centered design ensures that the extracted opinions103

and sentiments are grounded in specific events.104

To support this task, we manually annotate a105

novel CodEOE dataset. We collecte approximately106

30,000 trending news items from Chinese social107

media, each item with a news article and several108

associated comment documents. Two experienced109

annotators follow an iteratively refined guideline to110

label key elements, including event triggers, argu- 111

ments, opinions, and sentiment polarities, ensuring 112

systematic and consistent annotations. After rigor- 113

ous data selection, the dataset comprises 865 news 114

articles and 6,236 associated comments. To en- 115

hance multilingual benchmarks for event-opinion 116

analysis, we translate the Chinese corpus into En- 117

glish and re-annotate it. The dataset statistics show 118

that each news article involves approximately seven 119

comment documents, three events, and five opin- 120

ions on different events. 121

To benchmark the CodEOE task, we propose an 122

end-to-end framework, which integrates an inter- 123

active attention module and cross-document rela- 124

tive distance encoding. We employ a grid-filling 125

method (Wu et al., 2020) for pair and triplet de- 126

coding and adopt a multi-task learning strategy 127

with weighted loss functions. Experimental results 128

demonstrate that our model achieves comparable 129

performance to two large language models (LLMs), 130

providing a strong baseline for future research. 131

To sum up, this work contributes in threefold: 132

• We extend opinion and sentiment analysis 133

to the event level by introducing the cross- 134

document event-opinion extraction (CodEOE) 135

task, which includes trigger-argument pair and 136

trigger-opinion-sentiment triplet extraction. 137

• We construct a high-quality bilingual 138

CodEOE dataset in both Chinese and English, 139

addressing the research gap in event-level 140

opinion and sentiment analysis. 141

• We propose an end-to-end framework to 142

benchmark this task. Our method achieves 143

comparable performance to large language 144

models on the CodEOE task, effectively han- 145

dling multi-document contexts and recogniz- 146

ing intricate event-opinion relations. 147

2 Related Work 148

2.1 Event Extraction 149

Event extraction can be categorized into sentence- 150

level, document-level, and cross-document level. 151

For sentence-level event extraction (SEE), Auto- 152

matic Content Extraction (ACE2005) (Dodding- 153

ton et al., 2004) has facilitated numerous break- 154

through studies (Lu et al., 2021; Liu et al., 2018; 155

Xu et al., 2023; Wadden et al., 2019; Wang et al., 156

2022). Later, Deng et al. (2022) proposed the Ti- 157

tle2Event dataset, applying open event extraction 158

(OpenEE) to news headlines for the first time. 159
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The latest attention has been placed on160

document-level event extraction (DEE). Ebner et al.161

(2020) introduced the Roles Across Multiple Sen-162

tences (RAMS) dataset. Li et al. (2021) proposed163

a new document-level event extraction benchmark164

dataset, WIKIEVENTS. The mainstream meth-165

ods for DEE typically include span-based methods166

(Liu et al., 2017; Zhang et al., 2020; Yang et al.,167

2023; Liu et al., 2023) and generation-based meth-168

ods (Li et al., 2021; Du et al., 2021; Wei et al.,169

2021). Recently, prompt-based (Ma et al., 2022;170

Nguyen et al., 2023; Liu et al., 2024; He et al.,171

2023; Zeng et al., 2022) and QA-based methods172

(Liu et al., 2020; Li et al., 2020; Du and Cardie,173

2020; Lu et al., 2023; Hong and Liu, 2024) have174

also been employed to guide models in event extrac-175

tion. Moreover, Gao et al. (2024) introduced the176

Cross-Document Event Extraction (CDEE) task.177

2.2 Opinion Mining and Sentiment Analysis178

Opinion mining and sentiment analysis (SA) are179

pivotal research topics in the NLP community, par-180

ticularly the ABSA task. The original ABSA task181

aimed at classifying the sentiment polarity of given182

aspects (Tang et al., 2016; Fan et al., 2018; Li et al.,183

2019). Subsequently, researchers proposed vari-184

ous composite ABSA-related tasks, such as aspect-185

opinion pair extraction (Zhao et al., 2020; Wu et al.,186

2021), aspect sentiment triplet extraction (Peng187

et al., 2020; Chen et al., 2021, 2022; Li et al., 2024),188

and structured opinion mining (Shi et al., 2022; Wu189

et al., 2022). To further refine ABSA tasks, aspect-190

category-opinion-sentiment quadruple extraction191

(Cai et al., 2021; Zhang et al., 2021; Fei et al., 2022)192

and comparative opinion quintuple extraction (Liu193

et al., 2021) have also garnered considerable at-194

tention. Recently, Li et al. (2023) introduced the195

dialogue-level aspect-based sentiment quadruple196

extraction task. Furthermore, some works focus197

on event-based sentiment analysis without opin-198

ion terms (Zhou et al., 2013; Jagdale et al., 2016;199

Petrescu et al., 2019; Zhang et al., 2022).200

3 Data Construction201

To further analyze the relations between events and202

opinions, we construct a new dataset sourced from203

Weibo hot searches. This dataset is designed to204

jointly analyze the triggers and arguments of events,205

as well as the opinion clauses in news articles or206

comments.207

3.1 Data Collection and Preprocessing 208

To facilitate event-oriented opinion analysis, we 209

construct a new dataset to promote the task of joint 210

extraction of events and opinions. The original 211

data is collected from Weibo1, China’s largest so- 212

cial media platform. Considering the timeliness, 213

importance, and social impact of news events, we 214

select posts and comments related to major news 215

events from Weibo’s trending topics, totaling about 216

30,000 hot search data entries. Each entry includes 217

a news article and several related comments, rang- 218

ing from December 2023 to July 2024. Initially, 219

we exclude news that does not contain real-world 220

event information, such as discussions on event top- 221

ics, government reports, and personal statements. 222

Comments containing commercial advertisements, 223

spam content, personal attacks, or other discourse 224

unrelated to the core event theme are filtered out 225

to ensure the relevance of textual analysis. Subse- 226

quently, we normalize the expressions in the news 227

and comments, identifying abusive or inappropriate 228

remarks through manual inspection. We limit the 229

maximum number of comments per news article to 230

20 to achieve better controllable modeling. After 231

rigorous data cleaning, we obtain a final dataset 232

comprising 865 news articles and their 6,236 re- 233

lated comments. 234

3.2 Annotation Framework 235

We summarize some crucial parts of the annotation 236

standards, mainly divided into event annotation and 237

opinion annotation. The details about the annota- 238

tion standard are shown in Appendix §A.1. 239

The annotation process is carried out by two ex- 240

perienced graduate students, who are familiarized 241

with the specific requirements and complexities 242

of the event extraction task through specialized 243

training. The annotation work follows a set of 244

detailed guidelines2 that has been iteratively opti- 245

mized, clearly defining key elements such as event 246

triggers, event arguments, opinions, and sentiment 247

polarities to ensure systematic and consistent anno- 248

tations. 249

The annotators strictly adhere to these guidelines 250

during the annotation process, precisely identifying 251

and categorizing event and opinion information in 252

the text. Additionally, to ensure the quality of the 253

annotations, we implement strict quality control 254

measures, including but not limited to double an- 255

1https://weibo.com/
2https://anonymous.4open.science/r/CodEOE-08BD
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Table 1: Data statistics of CodEOE. ‘Com.’ refers to
comment. ‘Tri.’, ‘Arg.’ and ‘Opi.’ refer to event trigger,
event argument and opinion terms, respectively. ‘Tri-
Arg’ refers to trigger-argument pairs. ‘Tri-Opi-Senti’
refers to trigger-opinion-sentiment triplets.

Documents Items Pairs & Triplets

News Com. Tri. Arg. Opi. Tri-Arg Tri-Opi-Senti

ZH

train 690 5,011 2,011 4,721 3,654 5,167 3,654
valid 88 612 241 565 444 623 444
test 87 613 248 635 441 705 441
total 865 6,236 2,500 5,921 4,539 6,495 4,539

EN

train 681 4,870 1,990 4,672 3,562 5,139 3,562
valid 87 594 234 563 429 625 429
test 87 608 253 633 448 704 448
total 855 6,072 2,477 5,868 4,439 6,468 4,439

notations and random checks, as well as regular256

annotation review meetings. The annotation pro-257

cess is divided into span-level and relation-level258

steps, which is shown in Appendix §A.2.259

260 To ensure annotation quality at both span and261

relational levels, we adopt a two-stage evaluation.262

For span consistency, the Cohen’s Kappa score263

reaches 0.95 through exact span boundary align-264

ment. We also calculate the Cohen’s Kappa score265

across all pairs and triplets, which is 0.83, indicat-266

ing a high level of consistency in our annotated267

corpus. For instances with inconsistent annota-268

tions, we determine the final annotation results269

through detailed consistency check meetings con-270

ducted by a third expert with extensive experience.271

Furthermore, We construct an English version of272

the dataset. The details are shown in Appendix §C.273

3.3 Data Analysis274

We randomly divide the corpus into train/valid/test275

sets by the number of news articles, in the ratio of276

8:1:1. As shown in Table 1, the Chinese version277

of the dataset contains 865 news articles, 6,236278

comments, 6,495 trigger-argument pairs, and 4,539279

trigger-opinion-sentiment triplets. The English ver-280

sion of the dataset includes 855 news articles, 6,072281

comments, 6,468 trigger-argument pairs, and 4,439282

trigger-opinion-sentiment triplets.283

To comprehensively assess the characteristics of284

our dataset, we conduct a detailed statistical anal-285

ysis. As shown in Table 2, in the Chinese dataset,286

each cross-document instance (consisting of a news287

article and its related comments) contains an aver-288

age of 2.89 event triggers, 6.84 event arguments,289

and 5.25 opinions. Correspondingly, the English290

dataset instances contain an average of 2.9 event291

triggers, 6.86 event arguments, and 5.19 opinions.292

These statistics highlight the multi-event and multi-293

Table 2: Statistics related to triggers, arguments, opin-
ions and their lengths. All lengths refer to the numbers
of words. ‘Com.’ represents comment. ‘per ins.’ rep-
resents each instance with one news and several com-
ments.

ZH EN

Train / Valid / Test Train / Valid / Test

News min len. 17 / 33 / 18 13 / 26 / 16
News max len. 494 / 409 / 453 398 / 351 / 344
News avg len. 159.39 / 166.17 / 154.42 131.08 / 136.59 / 129.98

Com. max len. 506 / 446 / 444 371 / 323 / 377
Com. avg len. 51.92 / 54.12 / 52.55 43.53 / 46.63 / 42.14

Tri. avg len. 2.76 / 2.62 / 2.62 1.61 / 1.5 / 1.59
Tri. per ins. 2.91 / 2.74 / 2.85 2.92 / 2.69 / 2.91

Arg. avg len. 4.65 / 4.7 / 4.66 3.26 / 3.21 / 3.23
Arg. per ins. 6.84 / 6.42 / 7.3 6.86 / 6.47 / 7.28

Opi. avg len. 32.24 / 32.05 / 32.24 28.20 / 28.05 / 28.15
Opi. per ins. 5.29 / 5.03 / 5.07 5.27 / 4.92 / 5.15

opinion nature of our dataset, posing challenges 294

for the development and evaluation of complex in- 295

formation extraction models. More data statistics 296

about polarity and topic distribution are shown in 297

Appendix §B. 298

4 Methodology 299

We present an end-to-end model to accomplish the 300

CodEOE task based on the grid-tagging method. 301

Figure 2 shows an overview of the overall architec- 302

ture of our end-to-end CodEOE framework. 303

4.1 Problem Definition 304

Given a news text N and a set of comments 305

C = {c1, c2, . . . , ck}, we define a document set 306

D = {N,C} as input, where the number of the 307

document set in D is k + 1. Let T denote the 308

set of event triggers, A the set of event arguments, 309

O the set of opinions, and P the set of sentiment 310

polarities. An event trigger ti (ti ∈ T ) or event 311

argument ai (ai ∈ A) consists of one word or mul- 312

tiple consecutive words within a sentence, while an 313

opinion oi (oi ∈ O) includes one or more consecu- 314

tive clauses. The sentiment of an opinion is denoted 315

by pi (pi ∈ P ), where P = {POS,NEU,NEG}, 316

with POS, NEU , and NEG representing the pos- 317

itive, neutral and negative sentiments expressed 318

by opinion oi towards the event trigger tj , respec- 319

tively. The goal of the CodEOE task is to extract 320

trigger-argument pairs TAP = {(ti, ai)}|TAP |
i=1 321

and trigger-opinion-sentiment triplets TOST = 322

{(ti, oi, pi)}|TOST |
i=1 , where |TAP | and |TOST | 323

denote the number of trigger-argument pairs and 324

trigger-opinion-sentiment triplets, respectively. 325
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Figure 2: The overall framework of our CodEOE model. The base encoder first learns the base contextual
representations of multiple input documents. The interactive attention module then captures task-specific features
for span and pair. We further integrate rotary position embeddings (RoPE) to better understand cross-document
relations. Finally, the system decodes all pairs and triplets based on grid-tagging labels.

4.2 Base Encoding326

We utilize a pre-trained language model (PLM),327

such as BERT (Devlin et al., 2019), to encode the328

document set D. Since the length of D may sig-329

nificantly exceed the maximum length that BERT330

can handle, we encode each document di (di ∈ D)331

individually using separate PLMs. Specifically, we332

represent document d1 (d1 = N ) as the news text,333

and dj (dj ∈ C) as the related comments. To334

prevent cross-document span extraction, we use335

[CLS] and [SEP] tokens to separate each document336

di = {w1, w2, . . . , wn}, n is the length of docu-337

ment di, and wj represents the j-th token of di.338

d′i =< [CLS], w1, w2, ..., wn, [SEP] >, (1)339

Hi = PLM(d′i) = hcls,h1, . . . ,hn,hsep, (2)340

where hn is the contextual embedding of wn.341

4.3 Interactive Attention Module342

The CodEOE task extracts TAP and TOST343

through two steps: Entity Span Recognition (ESP)344

and Pair Recognition (PR), conceptualized as joint345

entity-relation extraction leveraging independent346

and shared feature spaces (Yan et al., 2021).347

Firstly, we employ two independent MLPs to348

initialize the task-specific representations for ESP349

and PR. It is noteworthy that our Interactive At-350

tention Module consists of L identical layers. The351

first layer uses initialized text embeddings, while352

the initial features of other layers come from the353

feature representations of the previous layer. We354

denote E, P , S as the entity feature, pair feature355

and shared feature, respectively. For simplicity, we356

define F ∈ {E,P}. 357

H(l)(F ) =

{
MLP(H), l = 1

MLP(ζ(l−1)(F )), else
(3) 358

where H(l)(F ) ∈ RM×dmodel represents the task- 359

specific representation in the l-th layer. H is the 360

representation of the multi-document sequence ob- 361

tained by concatenating token representations of 362

each document (Hi in Eq. (2)). ζ(l−1)(F ) rep- 363

resents the updated task-specific representations 364

from the previous layer, which are defined in Eq. 365

(6). M is the token-level length of D. dmodel is the 366

dimension of the encoded hidden layer. l indicates 367

the depth of the interactive attention module, and 368

L represents the number of layers of the interactive 369

attention module. l ∈ {1, 2, . . . , L}. 370

We combine the task-specific representations of 371

the two subtasks, and then obtain a shared feature 372

map through a 3× 3 convolutional layer. 373

H(l)(S) =

{
Conv

(
[H(l)(E;P )]

)
, l = 1

Conv
(
[H(l)(E;P );H(l−1)(S))]), else

(4) 374

where H(l)(S) ∈ RM×M×dshare is the shared 375

feature map representation between H(l)(E) and 376

H(l)(P ). dshare is the dimension of the shared 377

representation. 378

The shared features H(l)(S) are then used to 379

calculate the interactive attention scores between 380

tasks. We use feedforward neural networks (FFNs) 381

and softmax activation function to calculate the 382

interactive attention score. 383

α(E) = Softmax(FFNs(H(l)(S))),

α(P ) = Softmax(FFNs(H(l)(S))
T ),

(5) 384
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where α(E) ∈ RM×M and α(P ) ∈ RM×M rep-385

resent the Entity-to-Pair attention, and the Pair-to-386

Entity attention, respectively.387

We then use matrix multiplication to integrate388

the interactive attention into the task-specific repre-389

sentations and incorporate the attention interaction390

information back into the initial representations of391

the two subtasks through residual connections:392

ζ(l)(E) = H(l)(E) +α(E)⊗H(l)(P ),

ζ(l)(P ) = H(l)(P ) +α(P )⊗H(l)(E),
(6)393

where ⊗ represents matrix multiplication.394

After multiple layers of the interactive attention395

module, the task-specific representations ζ(L)(E)396

and ζ(L)(P ) exchange useful information, promot-397

ing feature enhancement between the two subtasks.398

4.4 Cross-Document Relative Distance399

Limited by PLMs, we can only encode each doc-400

ument in the document set D individually, which401

may impair cross-document context understanding.402

To compensate for this, we integrate Rotary Posi-403

tion Embedding (RoPE) (Su et al., 2021) into the404

task-specific feature representations, which dynam-405

ically encodes the global relative distance across406

multiple documents.407

Firstly, we perform Max-Pooling over the shared408

features across two tasks and concatenate the task-409

specific features with the shared features.410

H ′(S) = Max-Pooling(H(L)(S)),

H ′(F ) = [ζ(L)(F );H ′(S)],
(7)411

We then employ a tag-wise MLP layer to obtain the412

final task-specific feature representations.413

gt
i(F ) = MLPt(h′

i(F )), (8)414

where t ∈ {tri, . . . , h2h, . . . , pos, . . . , ϕent} rep-415

resents our predefined special tags, shown in Ap-416

pendix §D.1. ϕent denotes the non-type label in the417

entity matrix. h′
i(F ) ∈ H ′(F ).418

Finally, we apply rotary position embeddings to419

the task-specific feature representations.420

ut
i(F ) = R(θ, i)gt

i(F ), (9)421

where R(θ, i) is a positioning matrix parameter-422

ized by θ and the absolute index i of gt
i .423

4.5 Pair Decoding 424

We calculate the unary score between any token 425

pair based on the label t through each tag-wise 426

representation ut
i: 427

stij = (ut
i)
Tut

j , (10) 428

Where stij is the probability of the relation label 429

type t between tokens wi and wj . We then apply a 430

softmax layer over all elements in each matrix to 431

determine the final relation label t. More details 432

about grid-tagging scheme and pair decoding are 433

shown in Appendix §D.1 and §D.2. 434435

4.6 Multi-Task Learning 436

We employ the entity matrix, pair matrix, and sen- 437

timent matrix for task modeling, which are consid- 438

ered as three subtasks, thus the training objective 439

of the model is to minimize the cross-entropy loss 440

of each subtask: 441

Lm = − 1

BN2

B∑
b=1

N∑
i=1

N∑
j=1

ωmqmij log(p
m
ij ), (11) 442

where m ∈ {ent, pair, senti} represents a sub- 443

task, B is the total number of training data in- 444

stances, N is the sum of the lengths of all document 445

tokens in an instance’s document set D. qmij is the 446

ground truth label, and pmij is the predicted label. 447

Due to the label imbalance, we adopt a tag-wise 448

weighting vector ωm to alleviate this issue. The 449

final loss is the weighted sum of the losses from 450

the three subtasks. 451

L = αLent + βLpair + γLsenti. (12) 452

5 Experiments 453

5.1 Settings 454

We conduct experiments on our CodEOE dataset 455

with the model proposed in Section 4. We fo- 456

cus on two main aspects of model performance: 457

1) span match, which concerns the boundaries of 458

event triggers, event arguments, and opinion spans; 459

and 2) pair & triplet extraction, which involves 460

the detection of span pairs or triplets, including 461

trigger-argument, trigger-opinion pairs, and trigger- 462

opinion-sentiment triplets. We utilize both Exact 463

F1 (F1) and Partial F1 (PF1) as our evaluation 464

metrics. The details of our evaluation metrics are 465

shown in Appendix §D.4. 466

For Chinese and English datasets, we utilize 467

Chinese-Roberta-wwm-base (Cui et al., 2021) and 468

6



Table 3: Main Results on the CodEOE task. ‘T/A/O’ represent Event Trigger/Event Argument/Opinion, respectively.

Span (F1) Pair (F1) Triplet (F1) Span (PF1) Pair (PF1) Triplet (PF1)

T A O T-A T-O T-O-S T A O T-A T-O T-O-S

ZH

CRF-Extract-Classify 58.17 65.85 42.82 21.73 20.02 17.35 73.22 78.54 61.97 43.59 36.04 31.27
InstructUIE 54.44 57.52 45.85 37.09 22.93 17.60 72.98 73.22 71.25 56.84 46.82 34.50
Llama3-Chinese-8B 60.83 64.20 52.62 45.22 27.73 23.14 73.52 76.87 76.42 60.24 47.16 39.30
Qwen2.5-7B-Instruct 59.24 63.99 54.75 42.99 30.21 23.15 72.28 75.50 76.70 60.99 49.51 40.93
Ours 67.47 70.05 53.66 50.82 31.76 25.81 74.25 80.22 76.99 61.47 51.84 39.28

EN

CRF-Extract-Classify 60.36 64.14 45.98 22.91 18.42 14.74 68.24 71.21 58.66 32.19 30.05 26.44
InstructUIE 56.98 59.07 46.65 42.54 23.62 17.76 65.66 65.69 72.80 47.82 39.08 29.89
Llama3-8B-Instruct 58.30 60.42 58.39 40.00 30.41 23.79 68.09 71.20 69.83 52.57 41.99 33.01
Qwen2.5-7B-Instruct 57.21 61.22 57.25 41.87 30.48 24.01 64.30 69.75 66.42 51.23 41.58 33.91
Ours 66.00 66.50 53.38 49.52 30.85 23.78 73.60 77.06 74.07 57.53 43.99 32.62

Roberta-base (Liu et al., 2019) as our base en-469

coders, respectively. The learning rate is set to470

1e-5 for the Chinese dataset and 2e-5 for the En-471

glish dataset. The testing results are obtained from472

models fine-tuned on the the validation set. All473

experiments are conducted using five different ran-474

dom seeds, and the reported scores represent the475

average of five runs. Other experimental settings476

are shown in Appendix §D.5.477

5.2 Baselines478

Since there is currently no model for joint event and479

opinion extraction, we consider re-implementing480

two strong baseline models for our CodEOE task,481

including CRF-Extract-Classify (Cai et al., 2021)482

and InstructUIE (Wang et al., 2023). Our experi-483

mental details about baselines are shown in D.3.484

CRF-Extract-Classify takes the same PLMs as485

used in our model. InstructUIE uses mT5-base486

(Xue et al., 2021). Moreover, we conduct addi-487

tional experiments with LLMs. We use Llama3-8B-488

Instruct (AI@Meta, 2024) and Llama3-Chinese-489

8B (Cui et al., 2023) to fine-tune on the English490

and Chinese datasets, respectively, using LLaMA-491

Factory (Zheng et al., 2024). We use Qwen2.5-7B-492

Instruct (Yang et al., 2024) to fine-tune on both493

datasets within the same framework. The input494

prompt template is shown in Appendix §E.495

5.3 Main Results496

Table 3 compares the performance of various mod-497

els on the CodEOE task. Compared to base-498

line models, our proposed method achieves near-499

optimal results across all metrics, particularly ex-500

celling in pair and triplet extraction tasks.501

Firstly, our method achieves nearly the highest502

exact F1 scores across the board for span categories.503

Specifically, in the Chinese dataset, it surpasses504

Llama3-Chinese-8B, the next best performer, by505

margins of 6.64, 5.85, and 1.04 points for triggers506

Table 4: Ablation Results (F1). ‘w/o All’: removing all
three components (IA, RoPE and Wei.(ωm)).

ZH EN

T-A T-O T-O-S T-A T-O T-O-S

Ours 50.82 31.76 25.81 49.52 30.85 23.78
w/o IA 45.34 27.42 24.02 43.15 26.83 21.14
w/o RoPE 44.01 28.79 25.09 45.81 27.22 22.62
w/o Wei.(ωm) 46.97 28.29 24.35 48.07 28.91 21.32
w/o IA & RoPE 39.69 26.77 22.47 42.15 27.07 22.01
w/o All 39.05 26.13 21.56 37.44 26.85 20.94

(T), arguments (A), and opinions (O), respectively. 507

Notably, Qwen2.5-7B-Instruct shows competitive 508

performance, particularly in opinion span detection 509

with the highest F1 score of 54.75. 510

Secondly, our model shows its strength in more 511

complex scenarios involving pair and triplet ex- 512

traction. For example, in the Chinese dataset, our 513

model leads Llama3-Chinese-8B by 5.60, 4.03, 514

and 2.67 points in exact F1 scores for T-A, T-O, 515

and T-O-S, respectively. Qwen2.5-7B-Instruct also 516

demonstrates strong performance, particularly in 517

the English dataset, achieving the highest F1 score 518

for T-O-S. 519

Finally, while our model excels in PF1 scores, 520

Qwen2.5-7B-Instruct demonstrates excellent per- 521

formance in PF1 scores for T-O-S in both Chinese 522

(40.93) and English (33.91) datasets. This result 523

highlights the ability of LLMs to match ambiguous 524

boundaries and recognize emotions, leading to su- 525

perior performance in partial matching evaluations. 526

5.4 Ablation Study 527

We conduct ablation experiments on the CodEOE 528

task. We progressively remove key components, in- 529

cluding the Interactive Attention module (IA), Ro- 530

tary Position Embeddings (RoPE), the weighting 531

strategy (ωm), and combinations of these compo- 532

nents. Results in Table 4 provide valuable insights 533

into the effectiveness of each component. 534

Removing the Interactive Attention module (w/o 535
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Table 5: The impact of interactive attention module
depths on the CodEOE dataset

Layers
ZH EN

T-A T-O T-O-S T-A T-O T-O-S

L=1 48.83 28.98 24.52 48.44 28.37 21.64
L=2 51.08 30.03 25.00 49.52 30.85 23.78
L=3 50.82 31.76 25.81 48.47 29.10 22.49
L=4 50.37 29.41 23.89 46.73 29.44 21.26

IA) causes substantial degradation across tasks536

(e.g., 4.34 F1 drop for T-O in Chinese), validating537

its critical role in modeling trigger-opinion depen-538

dencies. Eliminating Rotary Position Embeddings539

(RoPE) significantly impairs pair extraction (6.81540

F1 decline for Chinese T-A), confirming its effec-541

tiveness in capturing cross-document positional re-542

lations. After removing the task-weighting strategy543

(w/o Wei.(ωm)) reduces T-A performance by 3.85544

F1 in Chinese dataset, indicating its necessity for545

balanced multi-task learning.546

Component combinations reveal synergistic ef-547

fects: concurrent removal of IA and RoPE causes548

catastrophic performance collapse (11.13 F1 drop549

for Chinese T-A), while removing all components550

yields the lowest scores. These results collectively551

establish the complementary nature of the inter-552

document interaction of IA, the positional aware-553

ness of RoPE, and adaptive task weighting in ad-554

dressing challenges of the CodEOE task.555

5.5 Further Analysis556

Impact of the Interactive Attention Module557

Depths. As shown in Table 5, we conduct a further558

analysis on the number of layers in the Interactive559

Attention (IA) module. The results show that the560

model achieves the best performance with 3 layers561

on the Chinese dataset, while 2 layers yield the562

best results on the English dataset. This difference563

can be attributed to the distinct grammatical and564

syntactic characteristics of Chinese and English.565

Chinese sentences are more flexible in structure,566

with semantic relations often implicit in the context,567

requiring deeper interactive modeling to capture568

the complex relations between triggers and their569

associated elements. When the number of layers570

increases to 4, the model performance on both the571

Chinese and English datasets decreases, which can572

be attributed to noise accumulation or overfitting.573

Analysis on the Number of Event Triggers. Ta-574

ble 2 highlights that instances containing multi-575

ple events are a key characteristic of the CodEOE576

1 2 3 >3
0
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F
1
S
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1 2 3 >3
0

20

40

60

Number of triggers per instance

F
1
S
co
re

(c) Trigger-Argument Pair Extraction (ZH)
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(d) Trigger-Opinion Pair Extraction (ZH)

Figure 1: Comparison of F1 scores for different models across various numbers
of triggers per instance.

1

Figure 3: Results of pair extraction on instances con-
taining different number of event triggers for English
and Chinese Datasets.

dataset. To further investigate model performance 577

under different numbers of events, we evaluate our 578

model and two strong baselines (InstructUIE and 579

Llama3-8B) on trigger-argument pair extraction 580

and trigger-opinion pair extraction tasks, as shown 581

in Figure 3. The results demonstrate that our model 582

shows significant advantages in single-trigger sce- 583

narios, achieving much higher F1 scores than the 584

other two models. However, as the number of trig- 585

gers increases, the performance of all models de- 586

clines, particularly in multi-trigger scenarios (3 587

triggers or more). This indicates that multi-trigger 588

scenarios bring greater challenges for models to 589

understand cross-document contexts. Additionally, 590

in multi-trigger scenarios, Llama-3-8B slightly out- 591

performs our model in trigger-opinion pair extrac- 592

tion, reflecting the strong understanding capability 593

of large language models when handling long texts. 594

We also conduct a case study and make a com- 595

parison with two strong baselines, which is shown 596

in Appendix §D.6. 597

6 Conclusion 598

In this paper, we introduce a novel task of Cross- 599

Document Event-Opinion Extraction (CodEOE), 600

bridging the gap in the understanding of event- 601

level opinions and sentiments. We manually con- 602

struct a high-quality, bilingual dataset, provid- 603

ing a significant resource for research into cross- 604

document semantic understanding. We bench- 605

mark the CodEOE task using an end-to-end model, 606

which demonstrates robust capability in capturing 607

cross-document contextual interactions. Experi- 608

mental results reveal the challenges of the task, 609

such as the diversity of opinion expressions and the 610

complex relations between opinions and events. 611
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Limitations612

Our work has the following potential limitations.613

Firstly, our CodEOE dataset is collected from the614

social media platform, Weibo, which predomi-615

nantly emphasize public events with immediate616

dissemination value. This could relatively limit617

coverage of events in specialized platforms such as618

News platforms and financial websites. Secondly,619

we only annotate the CodEOE dataset in two lan-620

guages. We plan to extend multilingual support to621

enhance cultural and linguistic coverage.622

Ethics Statement623

This research utilizes data exclusively sourced from624

the publicly accessible platform, Weibo, ensuring625

no inclusion of personally identifiable information.626

We implement rigorous measures including diverse627

sampling strategies and manual verification pro-628

cesses to enhance data representativeness and relia-629

bility. The methodologies and dataset construction630

details are transparently documented to enable re-631

producibility, with the full dataset to be publicly632

released to support academic inquiry. We adhere to633

ethical standards in research and ensure compliance634

with institutional and national guidelines.635
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A Annotation Details1050

A.1 Annotation Standard1051

Event Annotation: Given the diversity of hot news1052

event types on social media, manual design of spe-1053

cific event schema is costly and time-consuming,1054

and predefined event types often fail to capture1055

the diversity of events originating from social me-1056

dia news. Similar to open event extraction (Deng1057

et al., 2022), an event is defined as an action or1058

a state of change which occurs in the real world.1059

We avoid predefining event types or schemas, al-1060

lowing models to flexibly adapt to diverse event1061

types. We define seven types for event arguments:1062

Location, Date, Organization, Person, Country, Ob-1063

ject and Other. While event triggers remain type-1064

agnostic to capture open-domain patterns, argu-1065

ment types serve solely as consistency anchors dur-1066

ing boundary verification. The evaluation explic-1067

itly focuses on trigger-argument pair identification,1068

excluding argument type labels from assessment1069

metrics while maintaining rigorous evaluation of1070

argument boundary accuracy and structural associ-1071

ation.1072

Event annotation can be formalized as:1073

Event = {Trigger, [Argument1, Argu −1074

ment2, . . . , Argumentn]}. The Trigger consti-1075

tutes the minimal text span structurally anchoring1076

an event predicate, while an Argument denotes1077

any semantic role-bearing constituent fulfilling1078

the predicate-argument structure linked to its1079

corresponding Trigger.1080

Opinion Annotation: An opinion is an indi-1081

vidual’s emotional attitude or viewpoint towards1082

an event. For opinion annotation, we observe that1083

event-level opinions often could not be captured1084

by simple words or phrases. Thus, we represent1085

opinions at the clause level to better capture1086

the complexity of expressions related to events.1087

The sentiment of an opinion is categorized into1088

positive, negative, and neutral. Opinion anno-1089

tation can be formalized as: Expression =1090

{Trigger,Opinion, Sentiment}, where1091

Opinion is the span expressing a viewpoint1092

represented by one or several consecutive clauses.1093

Sentiment is the sentiment orientation of the1094

Opinion towards an event, which is represented1095

by Trigger.1096

A.2 Annotation Process1097

Span-Level Annotation. The primary task for an-1098

notators is to identify and mark event triggers in the1099

text, event-related arguments (such as involved per- 1100

sons, locations, times, etc.), and opinions and their 1101

sentiments related to the event. Firstly, annotators 1102

precisely locate the event triggers by marking their 1103

start and end positions in the text. Subsequently, all 1104

relevant arguments and their positions are identified 1105

and marked. Additionally, when expressing opin- 1106

ions related to events, annotators mark the clauses 1107

that express these opinions and categorize their 1108

sentiments into three types: positive, negative, or 1109

neutral. 1110

Relation-Level Annotation. In the relation- 1111

level annotation, we treat the event trigger as the 1112

subject of the event, and annotators connect each 1113

event trigger with its associated event arguments. 1114

For each opinion, annotators link it to the event 1115

trigger it pertained to, and the sentiment polarity is 1116

assigned based on the expressed sentiment towards 1117

the event. 1118

B Extended Data Statistics 1119

B.1 Polarity Distribution 1120

We analyze the distribution of sentiment polari- 1121

ties in the trigger-opinion-sentiment triplets within 1122

both the Chinese and English datasets. In the Chi- 1123

nese dataset, the proportions of positive, negative, 1124

and neutral sentiment of triplets are 27.3%, 46.7%, 1125

and 26.0%, respectively. Similarly, the English 1126

dataset shows a distribution of 27.1% positive, 1127

46.9% negative, and 26.0% neutral sentiment of 1128

triplets. The distribution of sentiment polarities 1129

is relatively even, with no evident long-tail distri- 1130

bution. Negative sentiment constitutes the largest 1131

proportion. This may be related to the tendency 1132

of social media users to express negative emotions. 1133

Such a balanced distribution indicates that our data 1134

sampling is reasonable, which helps reduce biases 1135

when models process data across different senti- 1136

ment categories. 1137

B.2 Topic Distribution 1138

Additionally, we segment our dataset into ten dis- 1139

tinct topics, including Society, Sports, Disaster, 1140

Business, Politics, Technology, Finance, Entertain- 1141

ment, Military, and Else. As illustrated in figure 4, 1142

the Society topic comprises the highest proportion 1143

of data, reflecting the natural inclination of social 1144

media users to discuss societal events and under- 1145

scoring the role of social media as a primary plat- 1146

form for public discourse. This topical distribution 1147

characteristic makes the dataset more aligned with 1148
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real-world hot event scenarios, providing a practi-1149

cal context for research.1150

Society 49.0%

Sports

10.9%
Disaster

10.2%

Business6.8%

Politic
s

6.2%

Technology

5.1%

Finance

4.3%

Entertainment

3.5%

Milita
ry

2.3%

Else

1.7%

Figure 4: The distribution of topics in CodEOE.

C Specification on Data Construction1151

C.1 Parallel English Dataset Construction1152

To further the development of joint analysis of1153

events and opinions, we also construct an English1154

version of the dataset based on the Chinese cor-1155

pus. This involved two steps: text translation and1156

annotation projection.1157

Text Translation: We use Google Translate1158

API3 to convert the Chinese text into English. De-1159

spite the good performance of NMT (Neural Ma-1160

chine Translation), some errors still occur during1161

the translation process. A significant reason for1162

these errors is that our corpus, collected from social1163

media, is filled with grammatically non-compliant1164

sentences, which has brought challenges for the1165

NMT system to produce correct and elegant transla-1166

tions. Thus, we meticulously revise the translations1167

to eliminate errors and ensure readability. Figure 51168

lists one of the errors and revision results.1169

Annotation Projection: After attempting to1170

use the awesome-align automatic alignment tool1171

(Dou and Neubig, 2021), we find its performance1172

on aligning named entities unsatisfactory. Conse-1173

quently, we resort to manually re-annotating the1174

alignments, ultimately producing the annotated En-1175

glish corpus.1176

3https://cloud.google.com/translate

Item Text

Source

Translated

具体来看，易方达创业板ETF当日净申购4.79亿份，资
金净流入7.68亿元，助推该ETF规模突破400亿元大关，
达到405亿元。

Specifically, the E Fund ChiNext ET had a net subscription 
of 479 million shares that day, with a net inflow of 768 
million yuan, boosting the scale of the ETF to exceed the 
40 billion yuan mark, reaching 40.5 billion yuan.

Specifically, the E Fund ChiNext ET had a net subscription 
of 479 million shares that day, with a net inflow of 768 
million yuan, boosting the scale of the ETF to exceed the 
40 billion yuan threshold, reaching 40.5 billion yuan.

华夏科创50ETF净申购6.53亿份，资金净流入5.06亿元

Revision

Source

Translated The net subscription of Huaxia Science and Technology 
Innovation 50ETF was 653 million shares, and the net 
inflow of funds was 506 million yuan.

Revision The net subscription of ChinaAMC STAR 50 ETF was 653 
million shares, and the net inflow of funds was 506 million 
yuan.

Figure 5: Two translation revision examples. The first
one is a more appropriate expression. The second one
addresses error correction for proper nouns.

D Model and Experiment Specification 1177

D.1 Grid-Tagging Scheme 1178

The grid-tagging method (Wu et al., 2020; Li et al., 1179

2023) has become increasingly popular in recent 1180

years for end-to-end information extraction models. 1181

we apply the grid-tagging method to our end-to- 1182

end extraction framework and redesign the labeling 1183

scheme to meet our needs. 1184

We divide the labeling scheme into three blocks: 1185

entity span boundary detection, entity pair detec- 1186

tion, and opinion sentiment detection. 1187

Entity span boundary labels: We use tri, arg, 1188

and opi to denote the tagging relations between the 1189

head and tail of event triggers, event arguments, 1190

and opinion terms, respectively. For example, the 1191

arg between ‘February’ and ‘1’ denotes an event 1192

argument of ‘February 1’ in Figure 6. 1193

Entity pair labels: We use h2h and t2t labels, 1194

both of which align the head and tail tokens be- 1195

tween a pair of entities in two types. For example, 1196

the head word of ‘February’ (argument) and ‘is- 1197

sued’ (trigger) is connected with h2h, while the 1198

tail word of ‘1’ (argument) and ‘issued’ (trigger) is 1199

connected with t2t, which is shown in Figure 6. 1200

Opinion sentiment labels: We add a sentiment 1201

polarity label to the head and tail of the two entities 1202

in the trigger-opinion pair, indicating the sentiment 1203

expressed by the opinion towards a particular event. 1204

Sentiment polarity labels include pos, neg and neu. 1205

As shown in Figure 7, we assign a sentiment label 1206

between the heads and tails of triggers and opin- 1207

ions. 1208
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Figure 6: Tagging scheme for pair extraction
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h2h t2t
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Figure 7: Tagging scheme for triplet extraction

D.2 Label Classification1209

After calculating stij , the probability of the relation1210

label type t between tokens wi and wj in Eq. (10),1211

we apply a softmax layer over all elements in each1212

matrix to determine the final relation label t.1213

pentij = Softmax([sϕent

ij ; striij ; s
arg
ij ; sopiij ]),

ppairij = Softmax([sh2hij ; st2tij ]),

psentiij = Softmax([sposij ; snegij ; sneuij ]),

(13)1214

where pentij , ppairij and psentiij are the probabilities1215

of each relation label between token wi and token1216

wj in the entity matrix, pair matrix, and sentiment1217

matrix, respectively. After obtaining all the labels1218

in the grid, we decode the trigger-argument pairs1219

and trigger-opinion-sentiment triplets according to1220

the labeling scheme described in §D.1.1221

D.3 Baselines1222

Since there is currently no model for joint event and1223

opinion extraction, we consider re-implementing1224

two strong baseline models for our CodEOE task,1225

including CRF-Extract-Classify (Cai et al., 2021) 1226

and InstructUIE (Wang et al., 2023). 1227

• CRF-Extract-Classify is a two-stage pipeline 1228

model designed for the ABSA task. It first per- 1229

forms joint extraction of aspects and opinions, 1230

and then classifies the predicted category- 1231

sentiment based on the extracted aspect- 1232

opinion pairs in the second stage. To adapt 1233

to our CodEOE task, we modified the model. 1234

Specifically, we simplified the original aspect- 1235

category-opinion-sentiment quadruplet into a 1236

trigger-argument pair and a trigger-opinion- 1237

sentiment triplet. In the modified model, the 1238

trigger-argument and trigger-opinion are co- 1239

extracted in the first step, and then in the sec- 1240

ond step, the sentiment term is predicted based 1241

on the extracted trigger-opinion. 1242

• InstructUIE is a unified information extrac- 1243

tion framework that utilizes instruction tuning 1244

with large language models (LLMs). This 1245

approach enables the model to uniformly sim- 1246

ulate various information extraction tasks and 1247

capture the interdependencies between tasks. 1248

Here we convert the pair and triplet extraction 1249

into relation extraction form and fine-tune the 1250

model using instructions for the relation ex- 1251

traction task. 1252

D.4 Evaluation Metrics 1253

We utilize both Exact F1 (F1) and Partial F1 (PF1) 1254

as our evaluation metrics. 1255

Exact F1 evaluates the complete congruence be- 1256

tween predictions and ground truth. For spans, a 1257

prediction is considered correct only if it precisely 1258

matches the start and end boundaries of an entity. 1259

For pairs, the prediction must accurately identify 1260

both two spans. For triplets, the prediction must not 1261

only match both spans but also correctly classify 1262

their sentiment polarity. 1263

Partial F1 evaluates partial consistency between 1264

predictions and ground truth. Predictions are de- 1265

fined as tuple p = {p1, p2, . . . , pn}, with n (n ∈ 1266

{1, 2, 3}) denotes span, pair, or triplet structures, 1267

respectively. For instance, a predicted trigger- 1268

argument-sentiment triplet may be represented as 1269

ptriplet = {ptri, popi, psenti}. For each prediction 1270

p and its best-matching ground truth g, the degree 1271

of match is quantified by calculating the length of 1272

the Longest Common Substring (LCS) between 1273

them. A prediction p is considered correct if the 1274
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LCS length for all pi reaches at least a predeter-1275

mined threshold τ (set to 0.5) of the corresponding1276

gi length. For triplets, in addition to span matching,1277

the sentiment polarity psenti of the prediction must1278

also fully align with gsenti.1279

D.5 Extended Experimental Settings1280

We use AdamW algorithm for optimization. The1281

hidden state dimension of Roberta is set to 768.1282

The weight decay value is set to 0.01 and the1283

warmup rate is set to 0.1. Within the Interactive1284

Attention module, the dropout rate for the Multi-1285

Layer Perceptron (MLP) and convolutional layers1286

is set to 0.1. The hidden layer dimensions for the1287

MLPs in Eq. (3) and Eq. (8) are set to 768 and 128,1288

respectively. The tag-wise weight vector ωm is set1289

to [1, 2, 2, 2]. α, β and γ in Eq. (12) are set to1290

1.5, 2.5 and 3.5, respectively. The batch size is set1291

to 2 at multi-document level. The training epochs1292

are set to 30 for both Chinese and English datasets.1293

The train process adopts an early stopping strategy1294

and the patience is set to 10. Experiments are run1295

on one same Tesla A100 GPU.1296

D.6 Case Study1297

We conduct a case study and make a compari-1298

son with two strong baselines, InstructUIE and1299

Llama3-8B-Instruct. As shown in Figure 8, our1300

model consistently outperforms the baselines for1301

trigger-argument and trigger-opinion pair extrac-1302

tion. For the trigger ‘came into effect’, Llama3-1303

8B-Instruct incorrectly merges two independent1304

arguments, ‘U.S. International Trade Commission’1305

and ‘Apple Watch sales ban’, into a single long1306

span. Similarly, for the opinion ‘To tell the truth1307

. . . property development.’, InstructUIE extracts1308

an excessively long span that includes unnecessary1309

contextual information. For sentiment classifica-1310

tion of event-specific opinions, InstructUIE and1311

Llama3-8B-Instruct exhibit varying degrees of mis-1312

interpretation. We attribute this to the complexity1313

of the task, which requires models to not only iden-1314

tify the relations between triggers and opinions but1315

also accurately understand the sentiment towards1316

a specific trigger. This dual challenge of relation1317

identification and sentiment analysis poses signifi-1318

cant difficulties for current models.1319

On December 22, the U.S. International Trade Commission (ITC)'s Apple Watch sales ban officially came into effect. 
The official website of Apple has stopped selling Apple Watch Series 9 and Apple Watch Ultra 2. Apple's official 
website shows that after opening the product page, the "Buy" button on the right has been removed, and a "currently 
unavailable" reminder is printed in the upper left corner of the product.

This ban will undoubtedly have a certain impact on Apple's business. But the key question now is whether this 
incident will trigger similar actions against Apple by other countries, further affecting Apple's global business.

To tell the truth, sometimes I really admire the intensity of infringement enforcement in the United States. It is really 
unaccustomed to infringement, and it is banned when it should be banned. This plays a very important role in patent 
protection and intellectual property development. If patents are trampled on wantonly, who is willing to invest in 
research and development all the time? Just take the good ones and use them directly.

I hope China can also ban the sale of Apple Watches. We have our own smart watches and they are easy enough to use.

Ground Truth
Event Trigger #1:  came into effect
Argument A:  December 22
Argument B:  U. S. International Trade Commission
Argument C:  Apple Watch sales ban 
Opinion A: Positive# To tell the truth, sometimes I really admire the intensity of infringement enforcement in the United 
States. It is really unaccustomed to infringement, and it is banned when it should be banned. This plays a very important role 
in patent protection and intellectual property development.
Opinion B: Neutral# This ban will undoubtedly have a certain impact on Apple's business. But the key question now is 
whether this incident will trigger similar actions against Apple by other countries, further affecting Apple's global business

Predictions：
came into effect
December 22
U. S. International Trade 
Commission
Apple Watch sales ban
Neutral#
To tell the truth, ….      If patents 
are ... use them directly.
Neutral#
This ban will … Apple's global 
business. 

Event Trigger #1:
Argument A:  
Argument B:

Argument C:  
Opinion A:

Opinion B:

came into effect
December 22
U. S. International Trade 
Commission
Apple Watch sales ban
Positive#
To tell the truth, … intellectual 
property development. 
Neutral#
This ban will … Apple's global 
business. 

came into effect
December 22
U.S. International … Apple Watch 
sales ban
Null 
Positive#
To tell the truth, ….      If patents 
are ... and use them directly.
Negative#
This ban will … Apple's global 
business. 

InstructUIE Llama3-8B Ours

News

Comment A

Comment B

Comment C

Figure 8: A test case from the CodEOE dataset focusing
on the event trigger ‘came into effect’.

E Input Prompt for LLMs 1320

Your task is to extract information from
a news document and several comment
texts. You will be provided with multiple
documents. Your goal is to extract event
and opinion information. Find the ‘trigger
word’, which represents the main event or
action; the ‘argument’, which represents the
key entity or time related to the trigger word;
and the ‘opinion’, which represents the
view or description of the event associated
with the trigger word. Understand whether
there is a relationship between these pieces
of information, and then organize the re-
lated information into ‘trigger-argument
pairs’ and ‘trigger-opinion-sentiment pairs’.
Sentiment can be ‘positive’, ‘negative’, or
‘neutral’. The output should be in the
form of relationship pairs, with four types
of relationships: trigger-argument, trigger-
opinion-positive, trigger-opinion-negative,
and trigger-opinion-neutral. The output for-
mat should be "relation1: word1, word2;
relation2: word3, word4".
Document input:
document1: {...},
document2: {...},
...

1321
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