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Abstract

Event extraction (EE) and opinion or senti-
ment analysis have been extensively studied
within recent decades, but their joint research
remains an under-explored area. To bridge the
gap in event-level opinion and sentiment anal-
ysis, we introduce the Cross-Document Event-
Opinion Extraction (CodEOE) task, which
aims to capture complex event-opinion in-
teractions and jointly extract event triggers,
event arguments, opinions and sentiment po-
larities towards events from multiple docu-
ments. The CodEOE task requires a model
extracting trigger-argument pairs and trigger-
opinion-sentiment triplets by understanding
cross-document contexts. We manually con-
struct a high-quality bilingual CodEOE dataset
in both Chinese and English with 6,000+
trigger-argument pairs and 4,000+ trigger-
opinion-sentiment triplets. We develop an end-
to-end model based on the grid-tagging method
to benchmark the task, which can effectively
perform cross-document context understanding
and achieve pair and triplet prediction. The re-
sults of our model surpass those of two strong
baselines and are comparable to large language
models. We hope that this new benchmark will
advance research on event-level opinion and
sentiment analysis. Our data and code are avail-
able here for peer review.

1 Introduction

Extracting structured information from unstruc-
tured text is a fundamental challenge in natural
language processing (NLP). Event extraction (EE)
(Doddington et al., 2004), a pivotal task in this
domain, aims to transform unstructured text into
trigger-argument structures. Simultaneously, the
need for machines to understand human opinions
and sentiments has driven extensive research in
sentiment analysis (McDonald et al., 2007; Cam-
bria et al., 2017). Aspect-based sentiment analysis
(ABSA), a prominent subfield, focuses on detecting

On December 22, the U.S. International Trade Commission (ITC)'s Apple Watch sales ban officially came
into effect. The official website of Apple has stopped selling Apple Watch Series 9 and Apple Watch Ultra 2.
Apple's official website shows that after opening the product page, the "Buy" button on the right has been
removed, and a "currently unavailable” reminder is printed in the upper left comner of the product.
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Figure 1: An example of the cross-document event-
opinion extraction (CodEOE) task. (a) illustrates a news
document along with multiple user comments. Event
triggers and arguments as well as related opinions are
highlighted in red, purple and blue. (b) presents the
extracted event triggers, their corresponding arguments
and types, as well as event-specific opinion expressions
and sentiment polarities across all documents.

fine-grained sentiment orientations toward specific
targets.

Existing EE research primarily focuses on
sentence-level and document-level tasks. For
sentence-level event extraction (SEE), the
ACE2005 dataset (Doddington et al., 2004) has
been widely used, establishing EE as a mainstream
task and inspiring numerous studies (Chen et al.,
2015; Liu et al., 2018; Wadden et al., 2019; Wang
et al., 2022). To overcome sentence boundary
limitations, document-level event extraction (DEE)
has further advanced this field. Datasets like
RAMS (Ebner et al., 2020) and WIKIEVENTS
(Li et al.,, 2021) catalyze a wave of research,
including span-based (Liu et al., 2017; Zhang
et al., 2020; Liu et al., 2023) and generation-based
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(Li et al., 2021; Wei et al.,, 2021) approaches.
Gao et al. (2024) proposes the Cross-Document
Event Extraction (CDEE) task, extending EE
to the cross-document level. However, these
studies predominantly emphasize isolated event
information, overlooking the equally valuable
exploration of opinions and sentiments expressed
about events, particularly in social media contexts.

Similarly, ABSA originates with aspect-based
sentiment analysis (Tang et al., 2016; Fan et al.,
2018; Li et al., 2019). Opinion terms and category
elements are later incorporated, leading to triplet
and quadruple extraction of ABSA (Chen et al.,
2022; Li et al., 2024; Cai et al., 2021; Zhang et al.,
2021; Fei et al., 2022; Li et al., 2023). However,
these works mainly focus on sentiment analysis of
specific aspects, limiting their application to do-
mains like restaurants, laptops, and mobile phones.
In contrast, events convey richer information than
noun-based aspects and are prevalent on social me-
dia. Compared to ABSA, event-level opinion and
sentiment analysis have broader applications.

In this paper, we address the gap in event-level
opinion and sentiment analysis by proposing the
task of Cross-Document Event-Opinion Extrac-
tion (CodEOE). The objective of CodEOE task is
to detect event trigger-argument pairs and event
trigger-opinion-sentiment triplets from a given
news article and multiple associated comment doc-
uments. As illustrated in Figure 1, multiple so-
cial media users provide comments on a hot news.
The task aims to extract eight trigger-argument
pairs, such as (‘came into effect’, ‘December 22”)
and (‘stopped selling’, ‘Apple’), and two trigger-
opinion-sentiment triplets, such as (‘came into ef-
fect’, ‘I thought ... updated normally!’, ‘Negative’).

This design is motivated by two considera-
tions: 1) Event arguments associated with a trigger
are typically numerous and unordered. Directly
constructing trigger-argument-opinion-sentiment
quadruples would exacerbate data sparsity. 2)
The relations between arguments and opinions for
an event are relatively loose, making their direct
coupling in a quadruple less suitable. Our event-
centered design ensures that the extracted opinions
and sentiments are grounded in specific events.

To support this task, we manually annotate a
novel CodEOE dataset. We collecte approximately
30,000 trending news items from Chinese social
media, each item with a news article and several
associated comment documents. Two experienced
annotators follow an iteratively refined guideline to

label key elements, including event triggers, argu-
ments, opinions, and sentiment polarities, ensuring
systematic and consistent annotations. After rigor-
ous data selection, the dataset comprises 865 news
articles and 6,236 associated comments. To en-
hance multilingual benchmarks for event-opinion
analysis, we translate the Chinese corpus into En-
glish and re-annotate it. The dataset statistics show
that each news article involves approximately seven
comment documents, three events, and five opin-
ions on different events.

To benchmark the CodEOE task, we propose an
end-to-end framework, which integrates an inter-
active attention module and cross-document rela-
tive distance encoding. We employ a grid-filling
method (Wu et al., 2020) for pair and triplet de-
coding and adopt a multi-task learning strategy
with weighted loss functions. Experimental results
demonstrate that our model achieves comparable
performance to two large language models (LLMs),
providing a strong baseline for future research.

To sum up, this work contributes in threefold:

* We extend opinion and sentiment analysis
to the event level by introducing the cross-
document event-opinion extraction (CodEOE)
task, which includes trigger-argument pair and
trigger-opinion-sentiment triplet extraction.

* We construct a high-quality bilingual
CodEOE dataset in both Chinese and English,
addressing the research gap in event-level
opinion and sentiment analysis.

* We propose an end-to-end framework to
benchmark this task. Our method achieves
comparable performance to large language
models on the CodEOE task, effectively han-
dling multi-document contexts and recogniz-
ing intricate event-opinion relations.

2 Related Work

2.1 Event Extraction

Event extraction can be categorized into sentence-
level, document-level, and cross-document level.
For sentence-level event extraction (SEE), Auto-
matic Content Extraction (ACE2005) (Dodding-
ton et al., 2004) has facilitated numerous break-
through studies (Lu et al., 2021; Liu et al., 2018;
Xu et al., 2023; Wadden et al., 2019; Wang et al.,
2022). Later, Deng et al. (2022) proposed the Ti-
tle2Event dataset, applying open event extraction
(OpenEE) to news headlines for the first time.



The latest attention has been placed on
document-level event extraction (DEE). Ebner et al.
(2020) introduced the Roles Across Multiple Sen-
tences (RAMS) dataset. Li et al. (2021) proposed
a new document-level event extraction benchmark
dataset, WIKIEVENTS. The mainstream meth-
ods for DEE typically include span-based methods
(Liu et al., 2017; Zhang et al., 2020; Yang et al.,
2023; Liu et al., 2023) and generation-based meth-
ods (Li et al., 2021; Du et al., 2021; Wei et al.,
2021). Recently, prompt-based (Ma et al., 2022;
Nguyen et al., 2023; Liu et al., 2024; He et al.,
2023; Zeng et al., 2022) and QA-based methods
(Liu et al., 2020; Li et al., 2020; Du and Cardie,
2020; Lu et al., 2023; Hong and Liu, 2024) have
also been employed to guide models in event extrac-
tion. Moreover, Gao et al. (2024) introduced the
Cross-Document Event Extraction (CDEE) task.

2.2 Opinion Mining and Sentiment Analysis

Opinion mining and sentiment analysis (SA) are
pivotal research topics in the NLP community, par-
ticularly the ABSA task. The original ABSA task
aimed at classifying the sentiment polarity of given
aspects (Tang et al., 2016; Fan et al., 2018; Li et al.,
2019). Subsequently, researchers proposed vari-
ous composite ABSA-related tasks, such as aspect-
opinion pair extraction (Zhao et al., 2020; Wu et al.,
2021), aspect sentiment triplet extraction (Peng
etal., 2020; Chen et al., 2021, 2022; Li et al., 2024),
and structured opinion mining (Shi et al., 2022; Wu
et al., 2022). To further refine ABSA tasks, aspect-
category-opinion-sentiment quadruple extraction
(Caietal.,2021; Zhang et al., 2021; Fei et al., 2022)
and comparative opinion quintuple extraction (Liu
et al., 2021) have also garnered considerable at-
tention. Recently, Li et al. (2023) introduced the
dialogue-level aspect-based sentiment quadruple
extraction task. Furthermore, some works focus
on event-based sentiment analysis without opin-
ion terms (Zhou et al., 2013; Jagdale et al., 2016;
Petrescu et al., 2019; Zhang et al., 2022).

3 Data Construction

To further analyze the relations between events and
opinions, we construct a new dataset sourced from
Weibo hot searches. This dataset is designed to
jointly analyze the triggers and arguments of events,
as well as the opinion clauses in news articles or
comments.

3.1 Data Collection and Preprocessing

To facilitate event-oriented opinion analysis, we
construct a new dataset to promote the task of joint
extraction of events and opinions. The original
data is collected from Weibo!, China’s largest so-
cial media platform. Considering the timeliness,
importance, and social impact of news events, we
select posts and comments related to major news
events from Weibo’s trending topics, totaling about
30,000 hot search data entries. Each entry includes
a news article and several related comments, rang-
ing from December 2023 to July 2024. Initially,
we exclude news that does not contain real-world
event information, such as discussions on event top-
ics, government reports, and personal statements.
Comments containing commercial advertisements,
spam content, personal attacks, or other discourse
unrelated to the core event theme are filtered out
to ensure the relevance of textual analysis. Subse-
quently, we normalize the expressions in the news
and comments, identifying abusive or inappropriate
remarks through manual inspection. We limit the
maximum number of comments per news article to
20 to achieve better controllable modeling. After
rigorous data cleaning, we obtain a final dataset
comprising 865 news articles and their 6,236 re-
lated comments.

3.2 Annotation Framework

We summarize some crucial parts of the annotation
standards, mainly divided into event annotation and
opinion annotation. The details about the annota-
tion standard are shown in Appendix §A.1.

The annotation process is carried out by two ex-
perienced graduate students, who are familiarized
with the specific requirements and complexities
of the event extraction task through specialized
training. The annotation work follows a set of
detailed guidelines” that has been iteratively opti-
mized, clearly defining key elements such as event
triggers, event arguments, opinions, and sentiment
polarities to ensure systematic and consistent anno-
tations.

The annotators strictly adhere to these guidelines
during the annotation process, precisely identifying
and categorizing event and opinion information in
the text. Additionally, to ensure the quality of the
annotations, we implement strict quality control
measures, including but not limited to double an-
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Table 1: Data statistics of CodEOE. ‘Com.” refers to
comment. ‘Tri.’, ‘Arg.” and ‘Opi.” refer to event trigger,
event argument and opinion terms, respectively. ‘Tri-
Arg’ refers to trigger-argument pairs. ‘Tri-Opi-Senti’
refers to trigger-opinion-sentiment triplets.

Documents Items Pairs & Triplets
News Com.  Tri. Arg.  Opi. Tri-Arg Tri-Opi-Senti
train 690 5,011 2011 4,721 3,654 5,167 3,654
ZH valid 88 612 241 565 444 623 444
(test 87 613 248 635 44l 705 al
total 865 6,236 2,500 5,921 4,539 6,495 4,539
train 681 4,870 1,990 4,672 3,562 5,139 3,562
EN valid 87 594 234 563 429 625 429
(et 87 608 253 633 448 704 8
total 855 6,072 2477 5868 4,439 6,468 4,439

notations and random checks, as well as regular
annotation review meetings. The annotation pro-
cess is divided into span-level and relation-level
steps, which is shown in Appendix §A.2.

To ensure annotation quality at both span and
relational levels, we adopt a two-stage evaluation.
For span consistency, the Cohen’s Kappa score
reaches 0.95 through exact span boundary align-
ment. We also calculate the Cohen’s Kappa score
across all pairs and triplets, which is 0.83, indicat-
ing a high level of consistency in our annotated
corpus. For instances with inconsistent annota-
tions, we determine the final annotation results
through detailed consistency check meetings con-
ducted by a third expert with extensive experience.
Furthermore, We construct an English version of
the dataset. The details are shown in Appendix §C.

3.3 Data Analysis

We randomly divide the corpus into train/valid/test
sets by the number of news articles, in the ratio of
8:1:1. As shown in Table 1, the Chinese version
of the dataset contains 865 news articles, 6,236
comments, 6,495 trigger-argument pairs, and 4,539
trigger-opinion-sentiment triplets. The English ver-
sion of the dataset includes 855 news articles, 6,072
comments, 6,468 trigger-argument pairs, and 4,439
trigger-opinion-sentiment triplets.

To comprehensively assess the characteristics of
our dataset, we conduct a detailed statistical anal-
ysis. As shown in Table 2, in the Chinese dataset,
each cross-document instance (consisting of a news
article and its related comments) contains an aver-
age of 2.89 event triggers, 6.84 event arguments,
and 5.25 opinions. Correspondingly, the English
dataset instances contain an average of 2.9 event
triggers, 6.86 event arguments, and 5.19 opinions.
These statistics highlight the multi-event and multi-

Table 2: Statistics related to triggers, arguments, opin-
ions and their lengths. All lengths refer to the numbers
of words. ‘Com.” represents comment. ‘per ins.” rep-
resents each instance with one news and several com-
ments.

ZH EN
Train / Valid / Test Train / Valid / Test
News min len. 17/33/18 13/26/16
News max len. 494 /409 / 453 398 /351/344

News avg len.  159.39/166.17/154.42 131.08/136.59 / 129.98
Com. max len. 506 /446 /444 37113237377
Com. avg len. 51.92/54.12/52.55 43.53/46.63/42.14
Tri. avg len. 2.76/2.62/2.62 1.61/1.5/1.59
Tri. per ins. 291/2.7472.85 2.92/2.69/291
Arg. avg len. 4.65/4.7/4.66 3.26/3.21/3.23
Arg. per ins. 6.84/642/7.3 6.86/6.47/7.28
Opi. avg len. 32.24/32.05/32.24 28.20/28.05/28.15
Opi. per ins. 5.29/5.03/5.07 5.27/4.92/5.15

opinion nature of our dataset, posing challenges
for the development and evaluation of complex in-
formation extraction models. More data statistics
about polarity and topic distribution are shown in
Appendix §B.

4 Methodology

We present an end-to-end model to accomplish the
CodEOE task based on the grid-tagging method.
Figure 2 shows an overview of the overall architec-
ture of our end-to-end CodEOE framework.

4.1 Problem Definition

Given a news text N and a set of comments
C = {ci1,c9,...,cr}, we define a document set
D = {N,C} as input, where the number of the
document set in D is k + 1. Let 7" denote the
set of event triggers, A the set of event arguments,
O the set of opinions, and P the set of sentiment
polarities. An event trigger ¢; (t; € T') or event
argument a; (a; € A) consists of one word or mul-
tiple consecutive words within a sentence, while an
opinion o; (0; € O) includes one or more consecu-
tive clauses. The sentiment of an opinion is denoted
by p; (p; € P), where P = {POS, NEU, NEG},
with POS, NEU, and N EG representing the pos-
itive, neutral and negative sentiments expressed
by opinion o; towards the event trigger ¢;, respec-
tively. The goal of the CodEOE task is to extract
trigger-argument pairs TAP = {(t;, ai)}gfm
and trigger-opinion-sentiment triplets TOST =
{(ts, oi,pi)}g?STl, where |TAP| and |TOST)|
denote the number of trigger-argument pairs and
trigger-opinion-sentiment triplets, respectively.
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Figure 2: The overall framework of our CodEOE model. The base encoder first learns the base contextual
representations of multiple input documents. The interactive attention module then captures task-specific features
for span and pair. We further integrate rotary position embeddings (RoPE) to better understand cross-document
relations. Finally, the system decodes all pairs and triplets based on grid-tagging labels.

4.2 Base Encoding

We utilize a pre-trained language model (PLM),
such as BERT (Devlin et al., 2019), to encode the
document set D. Since the length of D may sig-
nificantly exceed the maximum length that BERT
can handle, we encode each document d; (d; € D)
individually using separate PLMs. Specifically, we
represent document d; (d; = V) as the news text,
and d; (dj € C) as the related comments. To
prevent cross-document span extraction, we use
[CLS] and [SEP] tokens to separate each document
d; = {wy,ws,...,wy}, nis the length of docu-
ment d;, and w; represents the j-th token of d;.

d,/L =< [CLS],’IUl,’U)Q, ceey Why,y [SEP] >7 (1)
H; =PLM(d;) = hys, hi, ..., Ry, Rgep,  (2)

where h,, is the contextual embedding of w,,.

4.3 Interactive Attention Module

The CodEOE task extracts TAP and TOST
through two steps: Entity Span Recognition (ESP)
and Pair Recognition (PR), conceptualized as joint
entity-relation extraction leveraging independent
and shared feature spaces (Yan et al., 2021).
Firstly, we employ two independent MLPs to
initialize the task-specific representations for ESP
and PR. It is noteworthy that our Interactive At-
tention Module consists of L identical layers. The
first layer uses initialized text embeddings, while
the initial features of other layers come from the
feature representations of the previous layer. We
denote F, P, S as the entity feature, pair feature
and shared feature, respectively. For simplicity, we

define F' € {E, P}.

Hyp (F) = MLP(H), =1
® N MLP(C(Z—I) (F))v else

where H(j)(F) € RM>*®model represents the task-
specific representation in the [-th layer. H is the
representation of the multi-document sequence ob-
tained by concatenating token representations of
each document (H; in Eq. (2)). (q—1)(F') rep-
resents the updated task-specific representations
from the previous layer, which are defined in Eq.
(6). M is the token-level length of D. d,,04e; is the
dimension of the encoded hidden layer. [ indicates
the depth of the interactive attention module, and
L represents the number of layers of the interactive
attention module. [ € {1,2,...,L}.

We combine the task-specific representations of
the two subtasks, and then obtain a shared feature
map through a 3 x 3 convolutional layer.

Conv ([H((E; P)]), =1
H(S) = {ConvE{Hzl;EE;Pi];)H@1)(5))]), else
€
where H;)(S) € RM*Mxdshare g the shared
feature map representation between H ;) (E) and
H;)(P). dshare is the dimension of the shared
representation.

The shared features H(;(S) are then used to
calculate the interactive attention scores between
tasks. We use feedforward neural networks (FFNs)
and softmax activation function to calculate the
interactive attention score.

a(E) = Softmax(FFNs(H ;) (S5))),

a(P) = Softmax(FFNs(I{(l)(S))T)7 )



where a(E) € RM*M and o(P) € RM*M rep-
resent the Entity-to-Pair attention, and the Pair-to-
Entity attention, respectively.

We then use matrix multiplication to integrate
the interactive attention into the task-specific repre-
sentations and incorporate the attention interaction
information back into the initial representations of
the two subtasks through residual connections:

Coy(E) = Hy)(E) + a(E) @ Hy (P),

6
G (P) = Hyy(P) + a(P) & Hiy(£),
where ® represents matrix multiplication.

After multiple layers of the interactive attention
module, the task-specific representations ¢z (F)
and {(1,)(P) exchange useful information, promot-
ing feature enhancement between the two subtasks.

4.4 Cross-Document Relative Distance

Limited by PLMs, we can only encode each doc-
ument in the document set D individually, which
may impair cross-document context understanding.
To compensate for this, we integrate Rotary Posi-
tion Embedding (RoPE) (Su et al., 2021) into the
task-specific feature representations, which dynam-
ically encodes the global relative distance across
multiple documents.

Firstly, we perform Max-Pooling over the shared
features across two tasks and concatenate the task-
specific features with the shared features.

H'(S) = Max-Pooling(H 1, (S5)),

! / (7)
H'(F) = [y (F); H'(S)];

We then employ a tag-wise MLP layer to obtain the

final task-specific feature representations.

g:(F) = MLP' (h;(F)), (®)

where t € {tri,...,h2h,...,pos, ..., dent} rep-
resents our predefined special tags, shown in Ap-
pendix §D.1. ¢ene denotes the non-type label in the
entity matrix. hl,(F) € H'(F).
Finally, we apply rotary position embeddings to
the task-specific feature representations.
u;(F) = R(0,1)g;(F), ©)
where R(6,17) is a positioning matrix parameter-
ized by 6 and the absolute index i of g!.

4.5 Pair Decoding

We calculate the unary score between any token
pair based on the label ¢ through each tag-wise
representation u!:

T, ¢
7,) uj7

s = (u (10)

Where s;?j is the probability of the relation label
type ¢ between tokens w; and w;. We then apply a
softmax layer over all elements in each matrix to
determine the final relation label t. More details
about grid-tagging scheme and pair decoding are
shown in Appendix §D.1 and §D.2.

4.6 Multi-Task Learning

We employ the entity matrix, pair matrix, and sen-
timent matrix for task modeling, which are consid-
ered as three subtasks, thus the training objective
of the model is to minimize the cross-entropy loss
of each subtask:

B N N

L= 300w qlogn), (D)

b=1 i=1 j=1

where m € {ent, pair, senti} represents a sub-
task, B is the total number of training data in-
stances, IV is the sum of the lengths of all document
tokens in an instance’s document set D. g7 is the
ground truth label, and pj’ is the predicted label.
Due to the label imbalance, we adopt a tag-wise
weighting vector w™ to alleviate this issue. The
final loss is the weighted sum of the losses from
the three subtasks.

L=aley + ﬁﬁpair + '}/ﬁsenti- (12)

S Experiments

5.1 Settings

We conduct experiments on our CodEOE dataset
with the model proposed in Section 4. We fo-
cus on two main aspects of model performance:
1) span match, which concerns the boundaries of
event triggers, event arguments, and opinion spans;
and 2) pair & triplet extraction, which involves
the detection of span pairs or triplets, including
trigger-argument, trigger-opinion pairs, and trigger-
opinion-sentiment triplets. We utilize both Exact
F1 (F1) and Partial F1 (PF1) as our evaluation
metrics. The details of our evaluation metrics are
shown in Appendix §D.4.

For Chinese and English datasets, we utilize
Chinese-Roberta-wwm-base (Cui et al., 2021) and



Table 3: Main Results on the CodEOE task. “T/A/O’ represent Event Trigger/Event Argument/Opinion, respectively.

Span (F1) Pair (F1) Triplet (F1) Span (PF1) Pair (PF1) Triplet (PF1)

T A (0] T-A T-0 T-O-S T A (0] T-A T-O T-O-S
CRF-Extract-Classify ~ 58.17 65.85 42.82 21.73 20.02 17.35 7322 7854 6197 4359 36.04 31.27
InstructUIE 5444 5752 4585 37.09 2293 17.60 7298 7322 7125 56.84 46.82 34.50

ZH ~ Llama3-Chinese-8B~ ~ 60.83 ~ 6420  52.62 4522 27.73 ~ 23.14 ~ 7352 7687 7642 6024 4716 = 3930
Qwen2.5-7B-Instruct ~ 59.24  63.99 54.75 4299 30.21 23.15 7228 7550 76.70 60.99 49.51 40.93

“Ours 7 6747 70.05 5366 50.82 31.76 =~ 25.81 7425 8022 7699 6147 51.84 3928
CRF-Extract-Classify  60.36 64.14 4598 2291 1842 14.74 68.24 71.21 58.66 32.19 30.05 26.44
InstructUIE 56.98 59.07 46.65 4254 23.62 17.76 65.66 65.69 7280 47.82 39.08 29.89

EN = Llama3-8B-Instruct ~ 58.30  60.42 5839  40.00 3041 ~ 23.79 ~ 68.09 7120 69.83 52357 4199 =~ 3301
Qwen2.5-7B-Instruct ~ 57.21 61.22 5725 41.87 30.48 24.01 64.30 69.75 6642 5123 41.58 33.91

“Ours 7 66.00 6650 5338 49.52 3085 = 2378 73.60 77.06 74.07 5753 4399 = 3262

Roberta-base (Liu et al., 2019) as our base en-
coders, respectively. The learning rate is set to
le-5 for the Chinese dataset and 2e-5 for the En-
glish dataset. The testing results are obtained from
models fine-tuned on the the validation set. All
experiments are conducted using five different ran-
dom seeds, and the reported scores represent the
average of five runs. Other experimental settings
are shown in Appendix §D.5.

5.2 Baselines

Since there is currently no model for joint event and
opinion extraction, we consider re-implementing
two strong baseline models for our CodEOE task,
including CRF-Extract-Classify (Cai et al., 2021)
and InstructUIE (Wang et al., 2023). Our experi-
mental details about baselines are shown in D.3.
CRF-Extract-Classify takes the same PLMs as
used in our model. InstructUIE uses mT5-base
(Xue et al., 2021). Moreover, we conduct addi-
tional experiments with LLMs. We use Llama3-8B-
Instruct (Al@Meta, 2024) and Llama3-Chinese-
8B (Cui et al., 2023) to fine-tune on the English
and Chinese datasets, respectively, using LLaMA-
Factory (Zheng et al., 2024). We use Qwen2.5-7B-
Instruct (Yang et al., 2024) to fine-tune on both
datasets within the same framework. The input
prompt template is shown in Appendix §E.
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Table 3 compares the performance of various mod-
els on the CodEOE task. Compared to base-
line models, our proposed method achieves near-
optimal results across all metrics, particularly ex-
celling in pair and triplet extraction tasks.

Firstly, our method achieves nearly the highest
exact F1 scores across the board for span categories.
Specifically, in the Chinese dataset, it surpasses
Llama3-Chinese-8B, the next best performer, by
margins of 6.64, 5.85, and 1.04 points for triggers

Main Results

Table 4: Ablation Results (F1). ‘w/o All’: removing all
three components (IA, RoPE and Wei.(w™)).

ZH EN

TTA  TO0 TOS TA TO TO-S

Ours 50.82 31.76 25.81 49.52 30.85 23.78
w/o IA 4534 2742 24.02 43.15 2683 21.14
w/o RoPE 44.01 28.79 25.09 45.81 27.22 22.62
w/o Wei.(w™) 4697 2829 2435 48.07 2891 21.32
w/oIA & RoPE  39.69 26.77 2247 4215 27.07 2201
w/o All 39.05 26.13 21.56 37.44 26.85 20.94

(T), arguments (A), and opinions (O), respectively.
Notably, Qwen2.5-7B-Instruct shows competitive
performance, particularly in opinion span detection
with the highest F1 score of 54.75.

Secondly, our model shows its strength in more
complex scenarios involving pair and triplet ex-
traction. For example, in the Chinese dataset, our
model leads Llama3-Chinese-8B by 5.60, 4.03,
and 2.67 points in exact F1 scores for T-A, T-O,
and T-O-S, respectively. Qwen2.5-7B-Instruct also
demonstrates strong performance, particularly in
the English dataset, achieving the highest F1 score
for T-O-S.

Finally, while our model excels in PF1 scores,
Qwen2.5-7B-Instruct demonstrates excellent per-
formance in PF1 scores for T-O-S in both Chinese
(40.93) and English (33.91) datasets. This result
highlights the ability of LLMs to match ambiguous
boundaries and recognize emotions, leading to su-
perior performance in partial matching evaluations.

5.4 Ablation Study

We conduct ablation experiments on the CodEOE
task. We progressively remove key components, in-
cluding the Interactive Attention module (IA), Ro-
tary Position Embeddings (RoPE), the weighting
strategy (w""), and combinations of these compo-
nents. Results in Table 4 provide valuable insights
into the effectiveness of each component.
Removing the Interactive Attention module (w/o



Table 5: The impact of interactive attention module
depths on the CodEOE dataset

ZH EN
Layers
T-A TO0 TO0S TA TO TO-S
L=1 4883 2898 2452 4844 2837 21.64
L=2 51.08 30.03 2500 49.52 30.85 23.78
L=3 50.82 31.76 25.81 4847 29.10 2249
L=4 5037 29.41 2389 46.73 2944 21.26

IA) causes substantial degradation across tasks
(e.g., 4.34 F1 drop for T-O in Chinese), validating
its critical role in modeling trigger-opinion depen-
dencies. Eliminating Rotary Position Embeddings
(RoPE) significantly impairs pair extraction (6.81
F1 decline for Chinese T-A), confirming its effec-
tiveness in capturing cross-document positional re-
lations. After removing the task-weighting strategy
(w/o Wei.(w™)) reduces T-A performance by 3.85
F1 in Chinese dataset, indicating its necessity for
balanced multi-task learning.

Component combinations reveal synergistic ef-
fects: concurrent removal of IA and RoPE causes
catastrophic performance collapse (11.13 F1 drop
for Chinese T-A), while removing all components
yields the lowest scores. These results collectively
establish the complementary nature of the inter-
document interaction of IA, the positional aware-
ness of RoPE, and adaptive task weighting in ad-
dressing challenges of the CodEOE task.

5.5 Further Analysis

Impact of the Interactive Attention Module
Depths. As shown in Table 5, we conduct a further
analysis on the number of layers in the Interactive
Attention (IA) module. The results show that the
model achieves the best performance with 3 layers
on the Chinese dataset, while 2 layers yield the
best results on the English dataset. This difference
can be attributed to the distinct grammatical and
syntactic characteristics of Chinese and English.
Chinese sentences are more flexible in structure,
with semantic relations often implicit in the context,
requiring deeper interactive modeling to capture
the complex relations between triggers and their
associated elements. When the number of layers
increases to 4, the model performance on both the
Chinese and English datasets decreases, which can
be attributed to noise accumulation or overfitting.

Analysis on the Number of Event Triggers. Ta-
ble 2 highlights that instances containing multi-
ple events are a key characteristic of the CodEOE

I00ursl 0 Llama3-8B 0 InstructUIE

(a) Trigger-Argument Pair Extraction (EN) (b) Trigger-Opinion Pair Extraction (EN)
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Figure 3: Results of pair extraction on instances con-
taining different number of event triggers for English
and Chinese Datasets.

dataset. To further investigate model performance
under different numbers of events, we evaluate our
model and two strong baselines (InstructUIE and
Llama3-8B) on trigger-argument pair extraction
and trigger-opinion pair extraction tasks, as shown
in Figure 3. The results demonstrate that our model
shows significant advantages in single-trigger sce-
narios, achieving much higher F1 scores than the
other two models. However, as the number of trig-
gers increases, the performance of all models de-
clines, particularly in multi-trigger scenarios (3
triggers or more). This indicates that multi-trigger
scenarios bring greater challenges for models to
understand cross-document contexts. Additionally,
in multi-trigger scenarios, Llama-3-8B slightly out-
performs our model in trigger-opinion pair extrac-
tion, reflecting the strong understanding capability
of large language models when handling long texts.

We also conduct a case study and make a com-
parison with two strong baselines, which is shown
in Appendix §D.6.

6 Conclusion

In this paper, we introduce a novel task of Cross-
Document Event-Opinion Extraction (CodEOE),
bridging the gap in the understanding of event-
level opinions and sentiments. We manually con-
struct a high-quality, bilingual dataset, provid-
ing a significant resource for research into cross-
document semantic understanding. We bench-
mark the CodEOE task using an end-to-end model,
which demonstrates robust capability in capturing
cross-document contextual interactions. Experi-
mental results reveal the challenges of the task,
such as the diversity of opinion expressions and the
complex relations between opinions and events.



Limitations

Our work has the following potential limitations.
Firstly, our CodEOE dataset is collected from the
social media platform, Weibo, which predomi-
nantly emphasize public events with immediate
dissemination value. This could relatively limit
coverage of events in specialized platforms such as
News platforms and financial websites. Secondly,
we only annotate the CodEOE dataset in two lan-
guages. We plan to extend multilingual support to
enhance cultural and linguistic coverage.

Ethics Statement

This research utilizes data exclusively sourced from
the publicly accessible platform, Weibo, ensuring
no inclusion of personally identifiable information.
We implement rigorous measures including diverse
sampling strategies and manual verification pro-
cesses to enhance data representativeness and relia-
bility. The methodologies and dataset construction
details are transparently documented to enable re-
producibility, with the full dataset to be publicly
released to support academic inquiry. We adhere to
ethical standards in research and ensure compliance
with institutional and national guidelines.
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A Annotation Details

A.1 Annotation Standard

Event Annotation: Given the diversity of hot news
event types on social media, manual design of spe-
cific event schema is costly and time-consuming,
and predefined event types often fail to capture
the diversity of events originating from social me-
dia news. Similar to open event extraction (Deng
et al., 2022), an event is defined as an action or
a state of change which occurs in the real world.
We avoid predefining event types or schemas, al-
lowing models to flexibly adapt to diverse event
types. We define seven types for event arguments:
Location, Date, Organization, Person, Country, Ob-
ject and Other. While event triggers remain type-
agnostic to capture open-domain patterns, argu-
ment types serve solely as consistency anchors dur-
ing boundary verification. The evaluation explic-
itly focuses on trigger-argument pair identification,
excluding argument type labels from assessment
metrics while maintaining rigorous evaluation of
argument boundary accuracy and structural associ-
ation.

Event annotation can be formalized as:
Event {Trigger, [Argument,, Argu —
menta, ..., Argument,]}. The Trigger consti-
tutes the minimal text span structurally anchoring
an event predicate, while an Argument denotes
any semantic role-bearing constituent fulfilling
the predicate-argument structure linked to its
corresponding T'rigger.

Opinion Annotation: An opinion is an indi-
vidual’s emotional attitude or viewpoint towards
an event. For opinion annotation, we observe that
event-level opinions often could not be captured
by simple words or phrases. Thus, we represent
opinions at the clause level to better capture
the complexity of expressions related to events.
The sentiment of an opinion is categorized into
positive, negative, and neutral. Opinion anno-
tation can be formalized as: Fxpression
{Trigger, Opinion, Sentiment}, where
Opinion is the span expressing a viewpoint
represented by one or several consecutive clauses.
Sentiment is the sentiment orientation of the
Opinion towards an event, which is represented
by T'rigger.

A.2 Annotation Process

Span-Level Annotation. The primary task for an-
notators is to identify and mark event triggers in the
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text, event-related arguments (such as involved per-
sons, locations, times, etc.), and opinions and their
sentiments related to the event. Firstly, annotators
precisely locate the event triggers by marking their
start and end positions in the text. Subsequently, all
relevant arguments and their positions are identified
and marked. Additionally, when expressing opin-
ions related to events, annotators mark the clauses
that express these opinions and categorize their
sentiments into three types: positive, negative, or
neutral.

Relation-Level Annotation. In the relation-
level annotation, we treat the event trigger as the
subject of the event, and annotators connect each
event trigger with its associated event arguments.
For each opinion, annotators link it to the event
trigger it pertained to, and the sentiment polarity is
assigned based on the expressed sentiment towards
the event.

B Extended Data Statistics

B.1 Polarity Distribution

We analyze the distribution of sentiment polari-
ties in the trigger-opinion-sentiment triplets within
both the Chinese and English datasets. In the Chi-
nese dataset, the proportions of positive, negative,
and neutral sentiment of triplets are 27.3%, 46.7%,
and 26.0%, respectively. Similarly, the English
dataset shows a distribution of 27.1% positive,
46.9% negative, and 26.0% neutral sentiment of
triplets. The distribution of sentiment polarities
is relatively even, with no evident long-tail distri-
bution. Negative sentiment constitutes the largest
proportion. This may be related to the tendency
of social media users to express negative emotions.
Such a balanced distribution indicates that our data
sampling is reasonable, which helps reduce biases
when models process data across different senti-
ment categories.

B.2 Topic Distribution

Additionally, we segment our dataset into ten dis-
tinct topics, including Society, Sports, Disaster,
Business, Politics, Technology, Finance, Entertain-
ment, Military, and Else. As illustrated in figure 4,
the Society topic comprises the highest proportion
of data, reflecting the natural inclination of social
media users to discuss societal events and under-
scoring the role of social media as a primary plat-
form for public discourse. This topical distribution
characteristic makes the dataset more aligned with



real-world hot event scenarios, providing a practi-
cal context for research.
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Figure 4: The distribution of topics in CodEOE.

C Specification on Data Construction

C.1 Parallel English Dataset Construction

To further the development of joint analysis of
events and opinions, we also construct an English
version of the dataset based on the Chinese cor-
pus. This involved two steps: text translation and
annotation projection.

Text Translation: We use Google Translate
APT to convert the Chinese text into English. De-
spite the good performance of NMT (Neural Ma-
chine Translation), some errors still occur during
the translation process. A significant reason for
these errors is that our corpus, collected from social
media, is filled with grammatically non-compliant
sentences, which has brought challenges for the
NMT system to produce correct and elegant transla-
tions. Thus, we meticulously revise the translations
to eliminate errors and ensure readability. Figure 5
lists one of the errors and revision results.

Annotation Projection: After attempting to
use the awesome-align automatic alignment tool
(Dou and Neubig, 2021), we find its performance
on aligning named entities unsatisfactory. Conse-
quently, we resort to manually re-annotating the
alignments, ultimately producing the annotated En-
glish corpus.

3https://cloud.google.com/translate
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Item Text

AR A, HHkelRARETFY B4 P W4 79108y, #
B4 RNT. 6810, By HEZETFHLEL % 4840012 T K %,
ik £]4051C o

Specifically, the E Fund ChiNext ET had a net subscription
of 479 million shares that day, with a net inflow of 768
million yuan, boosting the scale of the ETF to exceed the
40 billion yuan mark, reaching 40.5 billion yuan.

Source

Translated

Specifically, the E Fund ChiNext ET had a net subscription
of 479 million shares that day, with a net inflow of 768
million yuan, boosting the scale of the ETF to exceed the
40 billion yuan threshold, reaching 40.5 billion yuan.

Revision

Source 1 7 AH4I50ETF 4 & 196. 531247,

The net subscription of Huaxia Science and Technology
Innovation SOETF was 653 million shares, and the net
inflow of funds was 506 million yuan.

The net subscription of ChinaAMC STAR 50 ETF was 653
million shares, and the net inflow of funds was 506 million
yuan.

K4 RN, 061 7T

Translated

Revision

Figure 5: Two translation revision examples. The first
one is a more appropriate expression. The second one
addresses error correction for proper nouns.

D Model and Experiment Specification

D.1 Grid-Tagging Scheme

The grid-tagging method (Wu et al., 2020; Li et al.,
2023) has become increasingly popular in recent
years for end-to-end information extraction models.
we apply the grid-tagging method to our end-to-
end extraction framework and redesign the labeling
scheme to meet our needs.

We divide the labeling scheme into three blocks:
entity span boundary detection, entity pair detec-
tion, and opinion sentiment detection.

Entity span boundary labels: We use t7i, arg,
and op: to denote the tagging relations between the
head and tail of event triggers, event arguments,
and opinion terms, respectively. For example, the
arg between ‘February’ and ‘I’ denotes an event
argument of ‘February I’ in Figure 6.

Entity pair labels: We use h2h and t2¢ labels,
both of which align the head and tail tokens be-
tween a pair of entities in two types. For example,
the head word of ‘February’ (argument) and ‘is-
sued’ (trigger) is connected with h2h, while the
tail word of ‘I’ (argument) and ‘issued’ (trigger) is
connected with £2¢, which is shown in Figure 6.

Opinion sentiment labels: We add a sentiment
polarity label to the head and tail of the two entities
in the trigger-opinion pair, indicating the sentiment
expressed by the opinion towards a particular event.
Sentiment polarity labels include pos, neg and neu.
As shown in Figure 7, we assign a sentiment label
between the heads and tails of triggers and opin-
ions.


https://cloud.google.com/translate

On
February arg
1
issued h2h 12t tri

Pair (issued , February 1)
Trigger Argument

Figure 6: Tagging scheme for pair extraction
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Triplet (issued, [also ... pay ... Tax , neutral )
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Sentiment

Figure 7: Tagging scheme for triplet extraction

D.2 Label Classification

After calculating s’ ;» the probability of the relation
label type ¢ between tokens w; and w; in Eq. (10),
we apply a softmax layer over all elements in each
matrix to determine the final relation label ¢.

pijt = Softmax([s;@e"t; st s % s)),
pfj'.m = Softmax ([s}"; s/3']), (13)
i = Softmax([s£°; 1% ),

where p¢r™t, pf ;m and pf;”“are the probabilities
of each relation label between token w; and token
w;in the entity matrix, pair matrix, and sentiment
matrix, respectively. After obtaining all the labels
in the grid, we decode the trigger-argument pairs
and trigger-opinion-sentiment triplets according to

the labeling scheme described in §D.1.

D.3 Baselines

Since there is currently no model for joint event and
opinion extraction, we consider re-implementing
two strong baseline models for our CodEOE task,

including CRF-Extract-Classify (Cai et al., 2021)
and InstructUIE (Wang et al., 2023).

* CRF-Extract-Classify is a two-stage pipeline
model designed for the ABSA task. It first per-
forms joint extraction of aspects and opinions,
and then classifies the predicted category-
sentiment based on the extracted aspect-
opinion pairs in the second stage. To adapt
to our CodEOE task, we modified the model.
Specifically, we simplified the original aspect-
category-opinion-sentiment quadruplet into a
trigger-argument pair and a trigger-opinion-
sentiment triplet. In the modified model, the
trigger-argument and trigger-opinion are co-
extracted in the first step, and then in the sec-
ond step, the sentiment term is predicted based
on the extracted trigger-opinion.

InstructUIE is a unified information extrac-
tion framework that utilizes instruction tuning
with large language models (LLMs). This
approach enables the model to uniformly sim-
ulate various information extraction tasks and
capture the interdependencies between tasks.
Here we convert the pair and triplet extraction
into relation extraction form and fine-tune the
model using instructions for the relation ex-
traction task.

D.4 Evaluation Metrics

We utilize both Exact F1 (F1) and Partial F1 (PF1)
as our evaluation metrics.

Exact F1 evaluates the complete congruence be-
tween predictions and ground truth. For spans, a
prediction is considered correct only if it precisely
matches the start and end boundaries of an entity.
For pairs, the prediction must accurately identify
both two spans. For triplets, the prediction must not
only match both spans but also correctly classify
their sentiment polarity.

Partial F1 evaluates partial consistency between
predictions and ground truth. Predictions are de-
fined as tuple p = {p1,p2,...,pn}, withn (n €
{1,2,3}) denotes span, pair, or triplet structures,
respectively. For instance, a predicted trigger-
argument-sentiment triplet may be represented as
DPtriplet = {ptri;popiapsenti}- For each prediCtion
p and its best-matching ground truth g, the degree
of match is quantified by calculating the length of
the Longest Common Substring (LCS) between
them. A prediction p is considered correct if the
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LCS length for all p; reaches at least a predeter-
mined threshold 7 (set to 0.5) of the corresponding
g; length. For triplets, in addition to span matching,
the sentiment polarity pgen; of the prediction must
also fully align with gsent;.

D.5 Extended Experimental Settings

We use AdamW algorithm for optimization. The
hidden state dimension of Roberta is set to 768.
The weight decay value is set to 0.01 and the
warmup rate is set to 0.1. Within the Interactive
Attention module, the dropout rate for the Multi-
Layer Perceptron (MLP) and convolutional layers
is set to 0.1. The hidden layer dimensions for the
MLPs in Eq. (3) and Eq. (8) are set to 768 and 128,
respectively. The tag-wise weight vector w™ is set
to [1, 2, 2, 2]. a, B and y in Eq. (12) are set to
1.5, 2.5 and 3.5, respectively. The batch size is set
to 2 at multi-document level. The training epochs
are set to 30 for both Chinese and English datasets.
The train process adopts an early stopping strategy
and the patience is set to 10. Experiments are run
on one same Tesla A100 GPU.

D.6 Case Study

We conduct a case study and make a compari-
son with two strong baselines, InstructUIE and
Llama3-8B-Instruct. As shown in Figure 8, our
model consistently outperforms the baselines for
trigger-argument and trigger-opinion pair extrac-
tion. For the trigger ‘came into effect’, Llama3-
8B-Instruct incorrectly merges two independent
arguments, ‘U.S. International Trade Commission’
and ‘Apple Watch sales ban’, into a single long
span. Similarly, for the opinion ‘7o tell the truth
... property development.’, InstructUIE extracts
an excessively long span that includes unnecessary
contextual information. For sentiment classifica-
tion of event-specific opinions, InstructUIE and
Llama3-8B-Instruct exhibit varying degrees of mis-
interpretation. We attribute this to the complexity
of the task, which requires models to not only iden-
tify the relations between triggers and opinions but
also accurately understand the sentiment towards
a specific trigger. This dual challenge of relation
identification and sentiment analysis poses signifi-
cant difficulties for current models.
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News
On December 22, the U.S. International Trade Commission (ITC)'s Apple Watch sales ban officially came into effect.
The official website of Apple has stopped selling Apple Watch Series 9 and Apple Watch Ultra 2. Apple's official
website shows that after opening the product page, the "Buy" button on the right has been removed, and a "currently
unavailable" reminder is printed in the upper left comer of the product.

Comment A

This ban will undoubtedly have a
incident will trigger similar action

impact on Apple's business. But the key question now is whether this
sainst Apple by other countries, further affecting Apple's global business.

Comment B

To tell the truth, sometimes I really admire the intensity of infringement enforcement in the United States. It is really
unaccustomed to in nent, and it is banned when it should be banned. This plays a very important role in patent
protection and intellectual property development. If patents are trampled on wantonly, who is willing to invest in
research and development all the time? Just take the good ones and use them directly.

Comment C
I hope China can also ban the sale of Apple Watches. We have our own smart watches and they are easy enough to use.
Ground Truth

Event Trigger #1: came into effect

Argument A: December 22

Argument B: U. S. International Trade Commission

Argument C: Apple Wach sales ban

Opinion A: Positive# To tell the truth, sometimes I really admire the intensity of infringement enforcement in the United
States. It is really unaccustomed to infringement, and it is banned when it should be banned. This plays a very important role
in patent protection and intellectual property development

Opinion B: Neutral# This ban will undoubtedly have a certain impact on Apple's business. But the key question now is
whether this incident will trigger similar actions against Apple by other countries, further affecting Apple's global business

Predictions : InstructUIE Llama3-8B Ours
Event Trigger #1: | came into effect came into effect came into effect
Argument A: December 22 v December 22 December 22
Argument B: U. S. International Trade U.S. International .. Apple Watch | U. S. International Trade
Commission " sales ban Commission v/
Argument C: Apple Watch sales ban Null X Apple Watch sales ban v/
Opinion A: Neutral# X Positive# Positive#
To tell the truth, ...~ If patents | To tell the truth, « Ifpatents | To tell the truth, ... intellectual
are ... use them directly. X are ... and use them directly. X property development. v
Opinion B: Neutral# Negative# X Neutral#
This ban will ... Apple's global | This ban will ... Apple's global This ban will ... Apple's global
business. v business. v’ business. v

Figure 8: A test case from the CodEOE dataset focusing
on the event trigger ‘came into effect’.

E Input Prompt for LLMs

Your task is to extract information from
a news document and several comment
texts. You will be provided with multiple
documents. Your goal is to extract event
and opinion information. Find the ‘trigger
word’, which represents the main event or
action; the ‘argument’, which represents the
key entity or time related to the trigger word;
and the ‘opinion’, which represents the
view or description of the event associated
with the trigger word. Understand whether
there is a relationship between these pieces
of information, and then organize the re-
lated information into ‘trigger-argument
pairs’ and ‘trigger-opinion-sentiment pairs’.
Sentiment can be ‘positive’, ‘negative’, or
‘neutral’. The output should be in the
form of relationship pairs, with four types
of relationships: trigger-argument, trigger-
opinion-positive, trigger-opinion-negative,
and trigger-opinion-neutral. The output for-
mat should be "relationl: wordl, word2;
relation2: word3, word4".

Document input:

documentl: {...},

document?2: {...},
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