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ABSTRACT

Language model (LM) watermarking techniques inject a statistical signal into
LM-generated content by substituting the random sampling process with pseudo-
random sampling, using watermark keys as the random seed. Among these statisti-
cal watermarking approaches, distortion-free watermarks are particularly crucial
because they embed watermarks into LM-generated content without compromising
generation quality. However, one notable limitation of pseudo-random sampling
compared to true-random sampling is that, under the same watermark keys (i.e.,
key collision), the results of pseudo-random sampling exhibit correlations. This
limitation could potentially undermine the distortion-free property. Our studies
reveal that key collisions are inevitable due to the limited availability of water-
mark keys, and existing distortion-free watermarks exhibit a significant distribution
bias toward the original LM distribution in the presence of key collisions. More-
over, we go beyond the key collision condition and prove that achieving a perfect
distortion-free watermark is impossible. To study the trade-off between watermark
strength and its distribution bias, we introduce a new family of distortion-free
watermarks—beta-watermark. Experimental results support that the beta-watermark
can effectively reduce the distribution bias under key collisions.

1 INTRODUCTION

In an era where artificial intelligence surpasses human capabilities in generating text, the authenticity
and origin of such Al-generated content have become paramount concerns. Language model water-
marking (Aaronson, 2022; |Kirchenbauer et al., | 2023; (Christ et al., 2023} [Kuditipudi et al., 2023; Hu
et al.,[2023)) provides a promising solution for distinguishing between human and machine-generated
text. This technique secretly embeds a statistical signal into the generated text using a pseudo-random
generator seeded with watermark keys. The embedded signal is then detected through a statistical
hypothesis test, ensuring the traceability and verification of the text’s origin.

Distortion-free watermarks (Aaronson, [2022; (Christ et al., |2023; Kuditipudi et al., 2023} |Hu et al.,
2023) represent one of the most compelling techniques in language model watermarking. These
watermarks are particularly valuable because they provably preserve the output distribution of the
original language model. Specifically, the expected watermarked distribution with respect to the
watermark keys remains identical to the original language model distribution, thus offering significant
practical application potential.

However, the pseudo-random nature of the watermark generator may lead to correlations between
generated content when the watermark keys are identical (i.e., key collision). In extreme cases,
such as when the prompt remains the same, key collisions can result in identical generated content,
significantly limiting its application scenarios. For instance, when using GPT-4 to generate content,
if the initial output is unsatisfactory, a request to regenerate would typically yield a different result.
However, under a distortion-free watermarking scheme, the output may remain unchanged due to the
consistent application of the same watermark key. This limitation highlights a critical challenge in
the practical deployment of such watermarking techniques.

In our research, we comprehensively analyze the existing distortion-free watermarks and demonstrate,
through both theoretical and empirical evidence, that no distortion-free watermark can fully preserve
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the original LM distribution under key collisions. Specifically, we categorize the level of distortion-
free capability into three types: a) Step-wise distortion-free—the watermark preserves the LM
distribution at a single token generation step; b) Weakly distortion-free—the watermark preserves
the LM distribution for a one-time sentence generation; c) Strongly distortion-free—the watermark
preserves the LM distribution across multiple sentence generations. Our findings indicate that all
existing distortion-free watermarks are weakly distortion-free but not strongly distortion-free due to
key collisions. Under the key collisions, In particular, we theoretically prove that there does not exist
any detectable strongly distortion-free watermark. We also show that key collisions are inevitable
given the limited number of watermark keys available in current schemes.

To mitigate the distribution bias caused by key collisions, we introduce the beta-watermark and
develop a model-agnostic detector that can identify watermarks without requiring access to prompts
or language models. Additionally, we design empirical metrics to measure the distribution bias
resulting from key collisions. Through rigorous testing on widely-studied language models, including
BART-large model (Liu et al.,2020) and LLaMA-2 (Touvron et al.,|2023)), our beta-watermark has
demonstrated effectiveness in significantly reducing the distribution bias induced by key collisions.

Our main contributions are summarized as follows:

* We identify three levels of distortion-free capabilities in watermarks—Step-wise, Weakly,
and Strongly Distortion-free—revealing that existing watermarks are not strongly distortion-
free and cannot preserve the original language model distribution under multiple generations
due to the inevitability of key collisions.

* Under watermark key collisions, we theoretically demonstrate a trade-off between watermark
strength and its distribution bias to the original LM distribution—a smaller distribution bias
results in weaker watermark strength. Based on our discussion on the distribution bias, we
proposed a black-box distortion-free watermark detection approach, which can effectively
check if an LM is watermarked given the original LM. Furthermore, we go beyond the key
collision assumption and prove that strongly distortion-free watermarks does not exist.

* We introduce beta-watermark, a new family of weakly distortion-free watermarks that
can provably reduce the distribution bias by trading the watermarking strength. Through
experiments on popular language models like BART-large and LLaMA-2, we demonstrate
our theoretical findings that existing watermarks are not strongly distortion-free and beta-
watermark can effectively reduce the distribution bias.

2 RELATED WORK

Statistical watermarks. [Kirchenbauer et al.| (2023)) enhanced the statistical watermark framework
originally introduced by |Aaronson|(2022)), demonstrating the effectiveness of statistical watermarking
through extensive experiments on large language models. They splited the LM tokens into red
and green list, then promoted the use of green tokens by adding a fixed parameter § to their logits.
Zhao et al.|(2023)) proposed the unigram watermark, which enhances the robustness of the statistical
watermark by using one-gram hashing to produce watermark keys. [Liu et al.| (2023b) also improved
the robustness of statistical watermarking by leveraging the semantics of generated content as
watermark keys. Additionally, Liu et al.|(2023a) proposed an unforgeable watermark scheme that
employs neural networks to modify token distributions instead of using traditional watermark keys.
However, these approaches may lead to significant changes in the distribution of generated text,
potentially compromising content quality.

Distortion-free watermarks. To preserve the original output distribution in watermarked content,
researchers have explored alternative strategies to modify the token distribution. |Aaronson| (2022)
introduced the first distortion-free watermarking strategy, which utilized Gumbel-reparametrization
to alter token distribution and the prefix n-gram content as the watermark keys. |Christ et al.| (2023)
and [Kuditipudi et al.| (2023)) adopted the inverse-sampling and Gumbel-reparametrization to modify
the watermarked token distributions, where the watermark keys are based on the token position or a
fixed key list respectively. Notice Christ et al.|(2023)’s method encounters resilience challenges under
modifications and lacks empirical evidence regarding its detectability. Meanwhile, Kuditipudi et al.
(2023))’s detection process involves hundreds of resampling steps from the secret key distribution,
proving inefficient for processing lengthy texts. [Hu et al.| (2023) employed inverse-sampling and
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permute-reweight methods for watermarking. But their detector is not model-agnostic, which requires
access to the language model API and prompts. Wu et al.| (2023) improved the permute-reweight
methods and designed a model-agnostic detector. A detailed related work section is in Appendix

3 PRELIMINARY

Notations. Denote by V := {t1,...,tx} the vocabulary (or token) set of a language model, and
by N = |V| its size. Let V represent the set of all conceivable string sequences, including those
of zero length. A language model generates a token sequence based on a predetermined prompt.
For a single step in this process, the probability of generating the next token z,,1 € V, given the
current context from z; to x,,, is represented as Pys(xy,+1 | 21, 22, . . ., Ty). For brevity, we adopt
the condensed notation: Pys(Zpn41:n+m | €1.n)> Where Ty i1.ntm = (Tnii,- .., Tnim). Note that
the prompt is deliberately omitted in this representation. Inherent to its design, the language model
operates in an autoregressive mode. This implies that the combined probability of generating several
tokens, specifically from @, 11 t0 Zy,4,, takes the form Pr(nt1:mtm | 1) = [[1ng Prr(Tni |
wl:n-‘ri—l)~

Watermarking problem definition. A language model (LM) service provider aims to watermark the
generated content such that all other users can verify if the content is generated by the LM without
needing access to the LM or the original prompt. A watermark framework primarily consists of two
components: a watermark generator and a watermark detector. The watermark generator embeds a
watermark into the text through a Pseudo-random Distribution Adjustment rule (PDA-rule), which is
seeded by watermark keys. The watermark detector, on the other hand, detects the presence of the
watermark within the content using a statistical hypothesis test.

Definition 3.1 (PDA-rule). Let P represent the space of token distributions and let K denote the
space of watermark keys. A Pseudo-random Distribution Adjustment rule (PDA-rule), defined as
F P x K — P, adjusts the token distribution based on a given watermark key.

Watermark generator. During the watermark generation process, the service provider modifies
the original language model distribution Py using a watermark key k € K and a PDA-rule. Here,
the watermark key acts as a random seed to modify the distribution, after which the next token is
sampled from this modified distribution. A watermark key usually consists of a secret key sk and a
context key (e.g., n-gram (Aaronson, [2022) or token position (Christ et al., 2023)). Let F := {F :
P x K — P} denote the set of PDA-rules. Specifically, let Py, denote the distribution of the LM
after watermarking, and k the watermark key, Py (t | 1.n,—1) := F(Prp (- | 1.n-1), k) (t),Vt €V,
where Py (- | @1.,—1) is the LM token distribution for sampling the n-th token. When sampling the
next token x,,, the language model samples from Py (- | @1.,,—1) instead of Pp;(- | 1.,—1). This
mechanism allows the service provider to inject a statistical signal into the generated content.

The PDA-rule is the core of the watermark generator. A PDA-rule is considered distortion-free if and
only if it preserves the token distribution during watermark generation. To the best of our knowledge,
there are three types of distortion-free PDA-rules: inverse-sampling (Christ et al., 2023} |Kuditipudi
et al., 2023} Hu et al.}[2023), Gumbel-reparametrization (Aaronson 2022; Kuditipudi et al.| [2023} [Fu
et al.| 2024)), and permute-reweight (Hu et al.| 2023). A detailed introduction to these methods can be
found in Sectiond.1] The formal definition of a distortion-free PDA-rule is presented below.

Definition 3.2 (Distortion-free PDA-rule). A PDA-rule F, is a distortion-free PDA-rule, if and
only if for an arbitrary LM Py, Va1, € V, and Vi < n, it holds that Py (x;|@1.-1) =
Ep, [F(Pp(-@1:i-1) ki) (2]

Watermark Detector. During the process of watermark detection, the user will have access only
to the watermark key and the PDA-rule F'. The detector employs a hypothesis testing approach
to identify the presence of the watermark signal. The hypothesis test is defined as: Hy : The
content is generated without the presence of watermarks, and Hy : The content is generated with
the presence of watermarks. For the purposes of the statistical test, a score function s(x, k, F') :
V x K x F — R is employed. Under Hy, the score function is a random variable Sf;, where
Pr(Su, = s(t,k, F)lk, F) = > ok py=s(e.,m) P (t'), vt € V, while under Hy, the random
variable Sp, becomes Pr(Sp, = s(t, k, )|k, F') = 3 x py=s(t,x,7) P (t'). Thus, we can use
the discrepancy between Sp, and Sy, to detect the watermark content. Given an observation (text
sequence) &1.,, we define the test statistic S(x1.,) = Zz;l s(z;, k, F) as the measure for the test.
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The decision to reject the null hypothesis is based on the difference between S (1., ) and the expected
value Ep, [S(x1.0)].

Watermark Key. For each generating step, we will use a watermark key to seed the PDA-rule. There
are generally three key sampling methods:

* (n-gram hashing) Aaronson| (2022)), (Christ et al.|(2023)) and |Hu et al.|(2023)) use a fixed
secret key sk, and the prefix n-gram s (e.g., s = X;_,,.;—1 for generating z;) to form the
watermark keys, i.e., K = {(sko, s) | s € V,,}, where V), represents the set of all n-grams
with token set V. A history list is kept during one generation to ensure the watermark keys
are unique. If the length of previously generated tokens is less than n, all preceding tokens
are used as s.

* (position hashing) Christ et al.|(2023) uses a fixed secret key sk, and the token position
are used as watermark keys, i.e., K = {(sko,?) | ¢ € N}.

* (fixed key set) Kuditipudi et al.| (2023) uses a fixed secret key sk, generates a set of
watermark keys, K = {ki, ..., k, }. During token generation at step 4, a random integer
7 is sampled, and k(; ) mod n, 1S used as the seed for the PDA-rule. If the token length
exceeds ng, we will sample from the original LM distribution instead.

Definition 3.3 (Key collision). Key collision refers to scenarios where the same watermark keys are
used to seed the PDA-rule.

All three watermark key sampling methods mentioned previously have a limited number of keys
given the fixed secret key skg. The maximum key volume is |V | for n-gram hashing, [, for position
hashing, and ng for the fixed key set. Here, [y represents the maximum token length for the language
model, typically ranging from 10% to 10°. Therefore, if we only have one secret key, key collisions
will occur when the number of queries and the generated tokens exceeds the key volume.

4 CURSE OF KEY COLLISION ON DISTORTION-FREE WATERMARKS

We start with showing key collision is inevitable. In the previous section, we show that given a fixed
secret key sKo, the watermark key space is finite. Consequently, key collisions will occur with a
sufficient number of queries to the language model. One might naturally question whether using an
infinite number of secret keys (e.g., a unique key for each generation) could expand the watermark key
space to infinity, thereby reducing the likelihood of collisions. However, this approach is impractical
because it would substantially reduce detection efficiency. When analyzing a watermarked sequence,
the detection algorithm would need to be applied to all possible secret keys, even though only one key
corresponds to the watermark. Thus, the watermark information becomes obscured by the numerous
other keys. All missing proofs can be found in Appendix [D]

Lemma 4.1 (Detection efficiency with multiple secret keys). Denote by S(-|sK) the test statistic.
Under the null hypothesis Hy, given a random text x1.,, we have Pr(S(x1.,|8Ko) — Eg, [S] >
t|Ho) = po(t), i.e., po(t) is the false positive rate of threshold t under single secret key detection.
Given M different secret keys, if we use the maximum of the score as the test statistic, we have

Pr (m[%w(mlﬂski) ~ Eg,[S) > t|Ho) —1—(1-p()™, VteR.
1€

Corollary 4.2. Under the existing watermark key sampling schemes, key collision is inevitable.

Lemma@] states that, given the same threshold ¢, the false positive rate increases with the number of
secret keys. Especially, when M — oo, the false positive rate will tend to 1, which indicates every
sentence will be detected as watermarked. Thus, the number of secret keys should be finite, and key
collision is inevitable.

We then provide the definition of the three levels of distortion-free capabilities in watermarks:
1) distortion-free within a single token generation, 2) distortion-free in one entire generation, 3)
distortion-free across multiple generations.

Definition 4.3 (Step-wise distortion-free watermark). If a watermark framework adopts a distortion-
free PDA-rule, then it is a step-wise distortion-free watermark.
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Definition 4.4 (Weakly distortion-free watermark). A step-wise distortion-free watermark Pyy is
weakly distortion-free, if Vn € N V1., € V, we have Py (1.,) = Eg,., [Pw (1.0 |k1:0)]-

Definition 4.5 (Strongly distortion-free watermark). A step-wise distortion-free watermark Py, is
strongly distortion-free if for arbitrary number of generation Ny and Va:&?l € V,i € [Ny), it holds

that T Par(@(0) = By v [T P (@400 K100,))

In the next theorem, we show the sufficient conditions for achieving a weakly/strongly distortion-free
watermark.

Theorem 4.6. A watermark framework is a weakly/strongly distortion-free watermark if a) it adopts
a distortion-free PDA-rule and b) there is no key collision during watermark generation.

Corollary 4.7. A watermark that consists of a distortion-free PDA-rule with n-gram hashing, position
hashing or fixed key set is a weakly distortion-free watermark.

The proof of this corollary is straightforward because all these watermark key samplers guarantee the
uniqueness of each watermark key in a single generation. However, across multiple generations, key
collisions become inevitable as the number of generated tokens can surpass the volume of available
keys. In the rest of this section, we will explain how key collisions can impact the generation quality
and lead to a biased watermarked distribution compared to the original language model distribution.

4.1 EXISTING DISTORTION-FREE PDA-RULES

To analyze the influence of key collision on the distortion-free watermarks, we begin with introducing
the existing PDA-rules. We also provide a detailed illustration of the existing PDA-rules in Figure|I]

Gumbel-reparametrization. In the Gumbel-reparametrization rule, when sampling x; with the water-
mark key k;, we first sample Gumbel pseudo-random variables g1 (k;), ..., gn (k;) ~ Gumbel(0, 1)
with the watermark key k;. These N independent Gumbel random variables are added to the
log-probability of tokens log Pys(t1|®1.i—-1), ..., log Pasr(tn|®1..—1). The token that achieves the
maximum value is then selected as the next token x;. This process can be formulated through
the following equation: For(Ppr(-|®1.i-1), ki) = 6t,,.., where m* = argmax,,cn)(gm (ki) +
log Pps(tm|®1.4—1)) and 4 is the Dirac function.

Inverse-sampling. In the inverse-sampling rule, when sampling z; with the watermark key k;,
we first organize the LM token probability Pys(t1|®1.5-1), ..., Par(tn|@®1.4—1) within the interval
[0, 1]. Then we will sample a pseudo-random variable r(k;) € U(0, 1), where U (0, 1) is the uniform
distribution on [0, 1]. The next token is selected based on the location of r(k;) within the cumulative
probability intervals on [0, 1]. This process can be formulated through the following equation:

Frs(Pu(-|x1:-1), ki) = 6¢,,.ev, where r(k;) € [Z?ﬁfl PM(tj|iE1:¢71)7Z?l:*1 P (tjleii-1)]
and ¢ is the Dirac function.

Permute-reweight. In the permute-reweight rule, when sampling x; with the watermark key k;,
we first generate a pseudo-random token permutation 7(-|k;) : V' — [N], which is a bijection
between token set V and [N]. The token permutations are uniformly distributed with the watermark
keys. The LM token probabilities are then rearranged within the interval [0, 1] according to the
permutation 7(-|k;). The token probability within [0, 1/2] will be scaled to 0, and the rest half will
be scaled to 1. Subsequently, x; is randomly sampled following this adjusted distribution. We can
formulate the permute-reweight rule through the following formula: Fpgr(Pas(-|®1.4-1), ki) (t) =
max{23 Ly (e <ol P2 (E11i-1) = 1,0 =max{2 0y i <riepion 1 Pt (El21:i1) =
1,0}.

Pseudo- vs True- Randomness. Based on the above discussion, it is clear that token sampling
using Gumbel-reparametrization or inverse-sampling relies entirely on pseudo-randomness, as the
watermark distribution for these methods is deterministic given the watermark key. Consequently, for
the same token distribution, key collisions result in identical token generation. For instance, when
generating multiple responses with the same prompt, the first token will always be identical. In
contrast, token sampling with the permute-reweight rule does not fully depend on pseudo-randomness.
The permute-reweight PDA-rule only scales the first half of the distribution to zero, preserving the
rest of the token probabilities. True-random sampling is then applied to the remaining tokens.
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Table 1: Summarization of existing distortion-free watermarks.

‘ ‘ ‘Aaronson |(2022) Christ et al.|(2023) Kuditipudi et al.|(2023) Hu et al.|(2023)
Lo . Inverse-sampling, Inverse-sampling,
‘Watermark generator ‘ PDA-rule ‘ Gumbel-reparametrization  Inverse-sampling Gumbel-reparametrization ~ Permute-reweight
| Watermark key sampler | n-gram hashing position hashing fixed key set n-gram hashing
Model-agnostic v v v X
‘Watermark detector
‘ Robust ‘ 4 X v v
Step-wise distortion-free v v v v
Level of distortion-free | Weakly distortion-free v v v v
Strongly distortion-free X X X X
Inverse-sampling, key = k Gumbel-reparametrization, key = k Permute-reweight, key = &
r (ko) f % ]
Before [ 1 [ 6 [ ] u | Is [ 6 [ [nlolnl o] s ] s [ |
After | 5 | [ 1y, : [ & |
r(ky) ~ U(0,1) m* = arg max(g,,(ky) + log P(t,)). g,, ~ Gumbel(0,1) Assume w.l.o.g. 7(t; | ko) = i
Next token: only #; Next token: only ,,« Next token: only 7, ¢

Figure 1: Pseudo-randomness in a token sampling step for watermarked LMs. “Before” refers the
original LM token distribution and “After” refers the watermarked token distribution. Given a fixed
watermark key, both inverse-sampling and Gumbel reparametrization methods become deterministic.
In contrast, the permute-reweight method retains elements of randomness.

4.2 DISTRIBUTION BIAS OF DISTORTION-FREE WATERMARKS UNDER KEY COLLISIONS

In this subsection, we explore the distribution bias introduced by the watermark. Given that the distri-
bution overlap between two distributions P, P, € P is represented by >, ., min{ P (), P»(t)}, we
use 1 — 3, ., min{Pi(t), P»(t)}, i.e., the total variation, to measure the distribution bias between
P; and P». Under the key collisions, the bias introduced by a PDA-rule F on a token distribution
PePisl—3 ., min{P(t), F(P|k)(t)}. Thus, we introduce the expected total variation as a
metric for measuring distribution bias.

Definition 4.8 (Expected total variation). Given a token distributions P € P and a PDA-rule F', the
expected total variation between them is given by D(P, I) := 1 —=E[>_, ., min{ P(t), F(P|k)(t)}].

Trade-off between watermark strength and distribution bias under key collisions. Interestingly,
the expected total variation also reflects the watermark’s strength. In statistical watermarking, where
the goal is to embed a statistical signal into generated content, a larger total variation enhances
the strength of this signal and improve the detection efficiency. However, under key collisions,
it is desirable for the expected total variation to be minimized to better preserve the original LM
distribution. Therefore, a trade-off exists between watermark strength and distribution bias under key
collisions.

We compute the expected distribution bias of the existing distortion-free PDA-rules: Gumbel-
reparametrization Figp, inverse-sampling Fg, and permute-reweight Fpg.

Theorem 4.9. Given an arbitrary token distribution P € P, we have

]D)(P7 FGR) = ]D)(P, FIS) =1- Z P(t)Q,
teV

and
0.5(1 — ma‘,;(P(t)) < D(P,Fpr) < 0.5 — max{rtnzg(P(t) —0.5,0}.
€

te

Moreover, D(P, Fpr) < D(P, Fis) = D(P, FgRr).

From this theorem, we find that the permute-reweight watermark exhibits a smaller distribution
bias compared to the Gumbel-reparametrization and inverse-sampling watermarks. This finding
aligns with our analysis in Section[d.1] where we assert that Gumbel-reparametrization and inverse-
sampling become deterministic with a fixed watermark key, while permute-reweight maintains an
element of randomness, resulting in a smaller distribution bias. In the next theorem, we will show
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that under key collisions, a watermark with a PDA-rule F is strongly distortion-free if and only if
D(P, F) = 0,VP € P, which indicates that no signal can be embedded into the generated content.

Theorem 4.10. Under key collisions, a watermark with a distortion-free PDA-rule F is strongly
distortion-free if and only if VP € P, D(P, F') = 0.

By integrating Theorem with Theorem[4.9] we find that FgR, Frg, and Fpp are unable to yield
a strongly distortion-free watermark when key collisions occur. Thus, all existing distortion-free
watermarks (Aaronson) 2022; (Christ et al., 2023} | Kuditipudi et al. 2023} |Hu et al., 2023)) are not
strongly distortion-free. Following the above discussion, we summarize the characteristics of existing
distortion-free watermarks in Table

Corollary 4.11. Under key collisions, a strongly distortion-free watermark does not exist.

If VP € P,D(P, F) = 0, the watermarked LM shows no distribution bias towards the original LM
under the watermark key, i.e., Vk € K, F(P|k) = P. In this case, no watermark is added to the
generated content. As key collision is inevitable, we can conclude that with the current watermark
key sampling approaches, a strongly distortion-free watermark does not exist.

4.3 A BLACK-BOX DISTORTION-FREE WATERMARK DETECTION APPROACH

As all watermarking approaches present distribution bias towards the original LM under key collisions,
we can naturally design a watermark detection approach for the distortion-free watermarks based on
the performance difference between the watermarked and the original LMs.

We define a new metric A, which measures the performance gap between the watermarked model and
the original LM. For n random prompts p1, ..., p, with m responses for each ¢}, ..., gi, denoted
by Met an arbitrary performance metric (e.g., perplexity), Py the original LM, Pr the test LM, we
define AMet(Pr, Pr) = + 321, | Y200 Met(g)* (Par))— >~ Met(g}" (Pr))|. Our watermark
detection statistic is given by DetWmk(Pys, Pr) := AMet(Pys, Pr) — AMet(Pys, Pysr), where
Py is identically distributed with Py,

Theorem 4.12. If Pr is identically distributed with Py, and Vg,

Met(g)| < A, we have V't > 0,

m2nit?

PI‘(|D€[ka(P]w,PT)| > t) < exp(fm)

ey

With this concentration bound, we can efficiently detect whether a language model has been wa-
termarked by examining the performance gap between the test model and the original model.
Theorem provides a statistical guarantee that if the test model Pr is identically distributed
with the original model P,; (i.e., unwatermarked), the probability that our detection statistic
DetWmk( Py, Pr) exceeds a threshold ¢ diminishes exponentially with the number of prompts
n and responses m. Specifically, the bound ensures that false positives are highly unlikely when
the performance metric is bounded by A. This allows us to confidently and efficiently identify
watermarked language models by detecting significant deviations in performance metrics.

4.4 BEYOND KEY COLLISION - STRONGLY DISTORTION-FREE WATERMARK DOES NOT EXIST

We extend our analysis on strongly distortion-free watermarks and prove that a detectable, strongly
distortion-free watermark does not exist. From the above analysis we know that the independence of
PDA-rule is a necessary condition for strongly distortion-free watermark, and the independence of
PDA-rule stems from the independence of hashed watermark keys h(k). Thus, we can divide the
proof into two parts: 1) A strongly distortion-free watermark must use independent hashed watermark
keys, denoted as h(k), where h is the hash function employed by the PDA-rule. 2) A watermark
using a distortion-free and independent PDA-rule is undetectable by arbitrary detector. Combining 1)
and 2) we have the following theorem:

Theorem 4.13. A detectable strongly distortion-free watermark does not exist.
Theorem .13 establishes a fundamental limitation in the design of watermarking schemes by stating

that a detectable, strongly distortion-free watermark cannot exist. This theorem also highlights the
trade-off in watermarking systems between distribution bias and watermark strength (see Sec.4.2)). If
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a watermark is designed to be unbiased to the original data distribution (strongly distortion-free), it
cannot be reliably detected using standard detection methods. Conversely, introducing detectability
requires some form of alteration or pattern that can be recognized, which compromises the strongly
distortion-free property.

5 REDUCING DISTRIBUTION BIAS VIA BETA-WATERMARK

In this section, we introduce a new family of

watermarks, beta-watermark, which trades water- Beta-reweight, key = k,

mark strength for low distribution bias. The beta- 0 0s 1
watermark is based on a distortion-free beta PDA- _ .| == - 1

rule and n-gram hashing. Additionally, we present Before [ 1, IQJ[V%J[I“L[ 5 [ % |
a model-agnostic detection method for it. In Ap- e

pendix [A] Alg. [[and ] we show the algorithms of the ~ After [1[0]5]nl; fs | o |
generator and detector of beta-watermark. 0 7 i

Assume w.l.o.g. 7(t;| ky) =i
The beta PDA-rule is a variation of the permute-
reweight PDA-rule (another example is DiPmark (Wu
et al.} 2023)) that introduces greater true randomness
during sampling. Similar to permute-reweight water-
mark, When sampling z; with the watermark key k;,
we first generate a pseudo-random token permutation 7(-|k;) : V' — [N]. Then we arrange the LM
token probability within the interval [0, 1] following the permutation 7(-|k;). The first half of token
probability (token probability within [0, 1/2]) will be scaled to 3, and the rest half probability will
be scaled to 1 — 3 (See Figure [2| for a detailed illustration). The next token is randomly sampled
from the new distribution. Notice, when 5 = 0, the permute-reweight PDA-rule is applied and when
B = 0.5, the original LM distribution is used.

Definition 5.1 (Beta PDA-rule). Beta PDA-rule Fg is defined by: Fg(Pu(-|@1.-1), ki)(t)
(1 = B)Fpr(Pu(|@ri-1), ki) (t) + Blmax{23 y - p)>reky) Put'|Tri1) — 1,04 —
max{2 Zt/yﬂ(t/lki)zﬂ'(t'ki)'i‘l Py (t'|®1.5-1) — 1,0}]. Notice, the range of 3 is from 0 to 0.5.
Theorem 5.2. Beta PDA-rule is a distortion-free PDA-rule, i.e., VX1, € V,Vi < n,
Py(il@rio1) = Ei, [F(Py (@ 1:i-1), ki) (@)

Corollary 5.3. Beta-watermark is a weakly distortion-free watermark.

Next token: 1, ...,

Figure 2: Illustration of Beta PDA-rule.

The proof is straightforward, as the beta-watermark consists of a distortion-free PDA-rule and the
n-gram hashing. In the subsequent theorem, we theoretically demonstrate that the beta PDA-rule
introduces a smaller distribution bias compared to the permute-reweight watermark.

Theorem 5.4. Given an arbitrary token distribution P € P, D(P, F3) < D(P, Fpr) — (1 —
maxev P(t)). Besides, if $1 < B2, D(P, Fg,) > D(P, Fg,).

As the detector of the permute-reweight watermark (Hu et al., |2023)) is dependent on the logits
from the original LM, we design a new model-agnostic detection algorithm for the beta-watermark.
As shown in Figure 2] beta-reweighting tends to enhance the token probability towards the end of
the permutation. During detection, given an input token, we can determine its position within the
permutation using (x| k). Thus, a higher score should be assigned to larger values of 7(x|k). We use
a sigmoid function: sigmoid(C(m(x|k)/|V| — 0.5)), where C'is a scaling parameter, to appropriately
scale the scores.

Definition 5.5 (Model-agnostic beta-reweight detection). We use score function s(x,k,F) =
sigmoid(C(m(x|k)/|V| — 0.5)) to conduct detection. Given a random observation x.,,, under
the null hypothesis, we have Pr(S(z1.,) — Ep, [S(21.0)] > tv/n|Hp) < exp(—2t2).

6 EXPERIMENTS

Our experimental section consists of two parts. In the first part, we compare the weakly and strongly
distortion-free nature of the beta watermark with that of existing watermarks, and validate the
trade-off between the watermark strength and distribution bias. In the second part, we evaluate
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Figure 3: Performance of different watermarks under one-time generation. Top: Violin plot of Text
Summarization Perplexity. Bottom: Violin plot of Machine Translation BLEU. We can see the
weakly distortion-free watermarks preserve the generation quality.

Table 2: Performance of different watermarks under multi-time generations. We randomly selected
1000 prompts and generated 100 responses for each. The baseline is the A metrics between two
no-watermarked models.

Text Summarization Machine Translation
A BERT Score | A ROUGE-1| A Perplexity | | ABERT Score| A BLEU |
Baseline | 0.0062 0.0070 0.3028 | 0.0180 0.7716
Beta-Reweight (8 = 0) 0.0090 0.0093 0.3753 0.0267 1.2373
Beta-Reweight (8 = 0.05) 0.0084 0.0085 0.3549 0.0248 1.1806
Beta-Reweight (6 = 0.1) 0.0079 0.0081 0.3453 0.0230 1.0316
Beta-Reweight (6 = 0.2) 0.0070 0.0077 0.3368 0.0203 0.9475
Beta-Reweight (6 = 0.3) 0.0066 0.0073 0.3144 0.0195 0.8638
Inverse-sampling 0.0446 0.0494 1.7846 0.1316 5.5354
Gumbel-reparametrization 0.0428 0.0488 1.8892 0.1341 5.6438
Soft(é = 1.0) 0.0091 0.0099 0.5473 0.0428 1.4660
Soft(d = 1.5) 0.0128 0.0136 1.1237 0.0808 2.5310
Soft(§ = 2.0) 0.0195 0.0194 2.0817 0.1274 3.7758

the detection efficiency of the beta watermark against existing watermarks. In the third part, we
assess the robustness of the beta watermark when subjected to random paraphrasing attacks. We
focus on three seq2seq tasks in our experiments: machine translation, text summarization and text
generation. Detailed experimental settings are provided in Appendix |E]and additional experimental
results, including the detectability and the robustness of beta-watermark, are in Appendix [F|

6.1 WEAKLY AND STRONGLY DISTORTION-FREENESS

In this section, we conduct experiments to validate our theoretical analysis. We evaluate the
weakly and strongly distortion-free properties of existing watermark strategies as defined in Def-
initions [4.4] and 4.5 We validate the weakly distortion-free property by assessing the qual-
ity of the watermarked text generated once for each prompt. For the strongly distortion-free
property, we examine the quality of the watermarked text for 1000 prompts, where for each
prompt we have 100 generations. We define a new metric A, which measures the performance
gap between the Watermarked model and the original LM. For n prompts p1, ..., p, with m re-
sponses for each g7, ..., gki, denoted by Met an arbitrary performance metric (e.g., perplexity),
AMet = L 371 1| ZJ 1 Met(g%" (No watermark)) — S i1 Met(g?* (Watermarked))|

Weakly Distortion-Free. The results are presented in Figure[3] This figure shows that compared to the
model without watermarks, all weakly distortion-free watermarks exhibit no significant performance
bias in text summarization and text generation tasks. However, for the Soft-watermark (Kirchenbauer
et al.,[2023), a significant performance bias is observable as  increases.

Strongly Distortion-Free. The results are displayed in Table [2| From this table, it is evident
that compared to the baseline, which is the A metrics between two non-watermarked models, all
weakly distortion-free watermarks demonstrate performance bias across all tasks. In contrast, the
Beta-watermark exhibits less bias compared to other weakly distortion-free watermarks. Additionally,
as [ increases, the distribution bias is further reduced, consistent with our theoretical analysis.
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Figure 4: Trade-off between distribution bias and watermark strength under key collision. The TPR is
measured under 1% (Left), 0.1% (Right) FPR. We can see A Perplexity (distribution bias) increase
with the TPR.

Table 3: p-value of our black-box distortion-free watermark detection algorithm on text summarization
and machine translation tasks. TS: Text Summarization; MT: Machine Translation; IS: Inverse-
sampling; GR: Gumble-reparametrization; PR: Permute-reweight. The definition of DetWmk is
shown in Sec. £3]

\ | IS GR PR Beta watermark (3)
| | 0.05 01 02 03
TS DetWmk | 1 4818 1 5864 0.0725 0.0521 0.0425 0.0340 0.0116
p-value 0.0125 0.1041 0.2219 0.3816 0.8939
MT DetWmk | 4. 7638 4, 8722 0.4597 0.4090 0.2600 0.1795 0.0992
p-value 1.6594e-05 1.6450e-04 0.0295 0.1867 0.5989

Trade-off between watermark strength and distribution bias. We use the beta-watermark to
empirically verify the trade-off between watermark strength and distribution bias. As shown in
Figure[d] with increasing values of 3, the distribution bias decreases, but there is also a corresponding
decrease in the true positive rate of watermark detection. This indicates that reducing the distribution
bias of the watermark compromises its detectability.

6.2 BLACK-BOX DISTORTION-FREE WATERMARK DETECTION

In this section, we present experimental results to validate our proposed black-box distortion-free
watermark detection method (Theorem [4.12)). We evaluate the performance on text summarization
and machine translation tasks using perplexity and BLEU as the metrics, respectively. To ensure
these metrics are bounded, we clip the perplexity to the interval [0,10] and the BLEU score to the
interval [0,20]. We report the p-value calculated according to Eq. (T)).

From TableE], we observe that, under a 5% false positive rate (FPR), our detection method successfully
identifies inverse-sampling, Gumbel-reparametrization, and permute-reweight watermarks for both
text summarization and machine translation tasks. However, the beta-watermark is able to significantly
reduce the detection accuracy.

7 CONCLUSION

In conclusion, this work identifies three levels of distortion-free capabilities in watermarks—Step-
wise, Weakly, and Strongly Distortion-free—and demonstrates that existing watermarks are not
strongly distortion-free due to key collisions, which disrupt the original language model distribution
across multiple generations. We theoretically establish a trade-off between watermark strength
and distribution bias, and introduce a black-box detection approach for identifying watermarked
models. Additionally, we prove that strongly distortion-free watermarks are theoretically unattainable.
As a practical solution, we propose beta-watermark, a new weakly distortion-free watermark that
effectively reduces distribution bias at the cost of watermarking strength. Future research direction
includes 1) exploring further details of the trade-off between the distribution bias and the watermarking
strengh and 2) developing more efficient watermark detection methods for weakly distortion-free
watermarks.
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A ALGORITHMS OF BETA-WATERMARK

Algorithm 1 Beta-watermark generator

1: Input: secret key Sk, parameter 3, prompt & _,,.o, generate length n € N, texture key history
hist, n-gram parameter a, and permutation generation function h.

2: fort=1,...,ndo

3 Calculate the LM distribution for generating the i-th token Py (- | @ —m.i—1)-

4: Generate a watermark key k; = (SK, ©;_g4,i—1)-

5: if k; € hist then

6: Sample the next token x; using original LM distribution Py (- | €_pp.i—1)-

7

8

else
: Generate the permutation of token set 7 (+|k;).
9: Calculate watermarked distribution Py (+|€_p.i—1) = Fa(Pur (- | Tomeiz1), ki)
10: Sample the next token x; using distribution Py (+|Z_n.i—1)-

11: return xi.,.

Algorithm 2 Beta-watermark detector

1: Input: text x1.,, secret key sk, volume of the token set NV, score function s, n-gram parameter
a, threshold z.

2: Initialize the score function: S = 0.

3: fori=2,...,ndo

4: Generate the watermark key k; = (SK, ©;_q,i—1)-

5 Generate the permutation of token set 7 (+|k;).

6 Update the score function via S = S + s(w(z;|k;), ki, Fig).

7

: return S > zy/n.

B RELATED WORK

Statistical watermarks. [Kirchenbauer et al.| (2023)) enhanced the statistical watermark framework
originally introduced by |Aaronson|(2022), demonstrating the effectiveness of statistical watermarking
through extensive experiments on large language models. They splited the LM tokens into red
and green list, then promoted the use of green tokens by adding a fixed parameter § to their logits.
Zhao et al.| (2023) proposed the unigram watermark, which enhances the robustness of the statistical
watermark by using one-gram hashing to produce watermark keys. |Liu et al.|(2023b)) also improved
the robustness of statistical watermarking by leveraging the semantics of generated content as
watermark keys. Additionally, Liu et al.|(2023a) proposed an unforgeable watermark scheme that
employs neural networks to modify token distributions instead of using traditional watermark keys.
However, these approaches may lead to significant changes in the distribution of generated text,
potentially compromising content quality.

Distortion-free watermarks. To preserve the original output distribution in watermarked content,
researchers have explored alternative strategies to modify the token distribution. |Aaronson| (2022)
introduced the first distortion-free watermarking strategy, which utilized Gumbel-reparametrization
to alter token distribution and the prefix n-gram content as the watermark keys. (Christ et al.| (2023)
and [Kuditipudi et al.|(2023)) adopted the inverse-sampling and Gumbel-reparametrization to modify
the watermarked token distributions, where the watermark keys is based on the token position or a
fixed key list respectively. Notice |Christ et al.|(2023)’s method encounters resilience challenges under
modifications and lacks empirical evidence regarding its detectability. Meanwhile, Kuditipudi et al.
(2023)’s detection process involves hundreds of resampling steps from the secret key distribution,
proving inefficient for processing lengthy texts. [Hu et al.| (2023) employed inverse-sampling and
permute-reweight methods for watermarking. But their detector is not model-agnostic, which requires
access to the language model API and prompts, which compromises its operational efficiency.

Post-hoc Detectors. Post-hoc detection serves as a significant alternative to watermarking, focusing
on the retrospective analysis of machine-generated text. This can be achieved by leveraging inherent
features of language models or by enhancing pre-existing expansive models to function as detectors,

13
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as detailed by (Zellers et al.,[2019)). Specific implementation nuances, such as sampling methods,
can be uncovered through reverse engineering the generated text, a process described by (Tay.
et al.| 2020). Additionally, there are post-hoc detectors designed for modern large language models
(Mitchell et al., 2023} [Tian, 2023}, Kirchner et al.| 2023), specifically trained for binary detection
tasks. However, there is a growing consensus that these detection methods are becoming less effective
as language models evolve. As observed by |Gambini et al.| (2022), detection mechanisms effective
against GPT-2 have struggled with GPT-3. Moreover, text rephrasing models like those in (Krishna
et al.,|2023) are bypassing prevalent post-hoc detectors such as GPTZero (Tian, [2023)), DetectGPT
(Mitchell et al.| [2023)), and OpenAlI’s proprietary detector (Kirchner et al., [2023)). Additionally,
Chakraborty et al|(2023)) notes that as Al-generated content becomes increasingly indistinguishable
from human-produced text, the demand on post-hoc detectors to analyze longer text segments will
likely increase.

Steganography. Steganography involves embedding hidden messages in media such as natural
language or images, ensuring only intended recipients can detect the message while it remains
concealed from others (Hopper et al., 2002)). When applied to watermarking, the goal is to maintain
stealth. However, established steganography techniques may not meet this goal without certain
entropy-related assumptions. In scenarios where language model prompts can be adversarially
chosen, the need for stealth remains. This discrepancy arises due to the different levels of access that
watermarking and steganography have to the model’s output distribution. In steganography, there
is only oracle access to this distribution, whereas our watermarking approach provides a detailed
view of the token’s probability distribution. Hence, while steganography either depends on entropy
assumptions (Hopper et al., | 2002) or risks security with low entropy channels (Dedic et al., [ 2009),
our watermark remains stealthy regardless of the text’s entropy. This is achieved by leveraging full
distribution access and using it as a foundation for embedding watermarks. [Kaptchuk et al.| (2021)
discusses encoding with similar access but presupposes equal decoding access, which is impractical
for watermarking as the detection algorithm typically lacks the initiating prompt, thus remaining
unaware of the distribution.

C DISCUSSION

In this section, we provide detailed discussion of two ~undetectable” scheme (Christ et al., 2023}
Christ & Gunn, |[2024). We claim neither of them can achieve strongly distortion-free.

For the undetectable scheme proposed by |Christ & Gunn|(2024), it is important to note that strongly
distortion-free watermarks require the independence of F'(Pys(x; | £1.,-1), k;) at every generation
step 4. Existing distortion-free watermarks achieve this by using distinct watermark keys k; and a hash
function to ensure independence, which requires the ‘key collision” not occuring. In contrast, |Christ
& Gunn|(2024) achieves the independence of F(Pys(z; | £1..—1), k;) by developing a key sampling
method (termed PRC), which aims for i.i.d. sampling of watermark keys with true randomness, i.e.,
replacing the pseudorandomness in the PDA-rule with true randomness by randomly sampling the
watermark keys. However, despite these efforts, their method still does not achieve strongly distortion-
free watermarks, as PRC methods are only close to, but cannot fully achieve, i.i.d. sampling of true
randomness (see Lemma 9 in their paper). Therefore, their method can still not achieve strongly
distortion-free watermarks.

The undetectable watermark (Christ et al.| [2023)) is another example of trading detectability for
reducing the distribution bias. In |Christ et al.|(2023)), watermarked tokens are produced only if the
hash window has an entropy larger than a given threshold ), i.e., they skip watermarking the first
several tokens to accumulate enough true randomness. However, there is also a trade-off between
the watermark strength and the distribution bias under their scheme. This trade-off is controlled by
the entropy threshold A\. When X increases, the number of watermarked tokens decreases, and it will
become more difficult to detect the watermark, but the key collision is less likely to occur, and the
distribution bias decreases.

For example, if we use Hoeffding’s concentration bound as the p-value estimator, i.e., P(S,, —

E[S,] > 5) < exp(—?%), when the generated sequence length does not change, the p-value
upper bound exponentially increases with the number of non-watermarked tokens (because s =
GQuwatermarked _ PG 1 s linearly related to the number of watermarked tokens) Thus, although the
order of hash windows is 2*, the detectability could be the order O(e~*) (assuming X is linearly
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related to the number of watermarked tokens), which show a trade-off between the distortion bias and
the watermark detectability.

Besides, the key sampling methods Alg. 3 and 5 of |Christ et al.|(2023)) are also not resilient to even
single text modification. The watermark key space of undetectable watermark is (sk, texture key,
position key) (see line 12 of Alg.3, line 7 of Alg.5 and the discussion at the second last paragraph of
Section 4.2). The texture key is similar to the definition of n-gram. Since they also use position keys
in their watermark key, a single deletion will remove the watermark.

Notice, the texture key in |Christ et al.| (2023)) is similar but not equal to the n-gram hashing. In Alg.3,
they use the same texture key during one generation. From my perspective, the texture keys in|Christ
et al.[(2023) are more likely to serve as increasing the diversity of the secret key sk to reduce the
distribution-bias in “multiple generation with the same prompt”. The diversity of watermark keys in
one generation is ensured by the position key.

D MISSING PROOFS

D.1 PROOF OF THEOREM [4.1]

Proof.
Pr (max(5($1:n|ski) — EHU[ < t|H0> HPT wl:n|3ki) — EHU [S] < t|H0)
i€[M]

(2)
= H (1 — Pr(S(x1.n|ski) — Eg, [S] > t|Ho))

1—po(t)™.
Thus,

Pr (max (S(21.|5K;) — Eg, [S]) > t|H0> =1-Pr (max (S(21.0|5kK;) — Ep, [9]) < t|H0>
1€[M] 1€[M]

=1—(1—po(t)™.
3)

D.2 PROOF OF THEOREM [4.6]

Proof. We first show the weakly distortion-free case: firstly, if key collision does not occur, we have

n

Eg,.,, [Pw (T1:n|k1:0)] = Eg,., H F(Pyr(zi|®1:i-1), ki)
i=1

“
Eki [F(PM(l'ikvl:i—l)v kl)]

|

1

3

The above equality stems from the independence property of the PDA-rule F/(Pys(x;|®1.i-1), k;).
Christ et al.| (2023)) and |Hu et al.| (2023) show that if there is no repeating keys in k1.,,, the indepen-
dence property can be satisfied with hash functions.

Since F is a distortion-free PDA-rule, we have Ey, [F'(Pas(zi|®1:i-1), ki)] = Pan(i]®1.5-1). Thus,

Eklm[PW(wlznlkln HEk PM x7,|w12 1) HPJV[ xz‘wlz 1) PM(wln) (5)

=1

15
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Analogously, for the strongly distortion-free case, if key collision does not occur, we will have distinct
kﬁl By the independence property of the PDA-rule, we have

No
By o) HPW K] = [TE.o [P (@), k2]

NO n
—HH]Ekquv GV L)
1=17=1
No n
_HHEW (Par (2§72 ), 6] (6)
i=1j=1
N() n

=TT TIPual 2l y)

i=14=1

No
=1 Pu(=i))
=1

D.3 PROOF OF THEOREM [4.9]

Proof. Part 1. We start from proving D(P, Fgr) = D(P, Fis) = 1 — >, P(t)?. Since both
Fgr and Fjg are distortion-free PDA-rule, P(t) = Ei[Far(P|k)(t )] E,[Frs(P|k)(t)]. Since
Fer(P|k) and Frs(P|k) are Dirac distribution, when Fgr(P|k)(t) > 0, Far(P|k)(t) = 1, and
Ex[For(PIk) () = EkuFGR(p\k)(t»o} Pr(Far(PIk)(t) > 0), Vi € V. Thus,

\_/

Ex[Y_ min{P(t), For(PIk)(t)}] = Y Ex[P(1)Lrgn(pik)>o]
teV teV
= ZEk ()1 rgn(piE)(t)>0]
tev @
= ZEk )L Egr (k) (t)>0] Pr(Fer(Plk)(t) > 0)
tev
=Y P(t)’
tev
Analogously, Ex [}, o, min{P(t), F1s(P|k)(t)}] = >_,c\ P(t)*. Therefore, we have
D(P, Fgr) =D(P, Fs) =1- > P(t)*. ®)
tev

Part 2. Next, we show 0.5(1 — max;cy P(t)) < D(P, Fpr) < 0.5 — max{max;cy P(t) — 0.5, 0}.
Given a permutation on the token list, assume w.l.0.g. the permutation is of order {¢1, ...,tx},in Fpgr
we will arrange the token probabilities on the interval [0, 1] following the permutation order. Denote
by i¢ the index of the token such that 0.5 lies in its probability region, then the token probabilities
of {tiy+1,...tn } will be doubled, while the token probabilities of {¢1, ...t;,—1 } will be scaled to 0.
Thus, under this permutation,

> min{P(t), Fpr(Pk)(t Z P(t;) + min{P(t;,), 2, }
tev i=i9+1

where &;, is the probability mass of ¢;, that is in the interval [0.5, 1], max{P(¢;,) — 0.5,0} < &, <
min{0.5, P(t;,)}. Next, we consider the reverse permutation {ty, ..., ¢1 }, following the similar
discussion, we have

7,01

> min{P(t), Fpr(PIk")(t }fZP )+ min{P(ti,), 2(P(ti,) = i)}

teV

16
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where k" refers the key that lead to the reserved permutation. Thus,

> min{P(t), Fpr(Plk)(t)} + Y min{P(t), Fpr(P|k")(t)}

tev tev 9
=1+ min{P(t;,), 26, } + min{ P(t:,), 2(Plti,) — )} — Pltiy).

Next, we show P(t;,) > min{P(t;,),2&,} + min{P(t;,),2(P(ti,) — &)} — P(ti,) >
max{maxzcy P(t) — 0.5,0}. The left hand side inequality is trivial, as min{P(t;,), 2&;,} +

For the right hand side inequality, given min{ A, 22} + min{ A, 24 — 2z} = A+ min{2A — 2z, 2z},
we have

min{P(tio)’ 2&0} + min{P(tio)’ 2(P(tio) - fio)} - P(tio) = Qmin{P(tio) - fioagio}' (10)

Since 0 < max{P(t;,) — 0.5,0} < &, < min{0.5, P(¢;,)} < P(t;,), the minimum value of
min{ P (t;,) — &y, &io § When &;, take either max{P(t;,) — 0.5,0} or min{0.5, P(¢;,)}, thus

mln{P(tm) — gimgio} Z maX{P(tZ—O) - 05, 0} (11)
If P(t;,) — 0.5 > 0, it is obvious that max;cy P(t) = P(¢;,). So
min{P(ti,) = &, &io } 2 max{max P(t) - 0.5,0}. (12)

Combining it with Equation[9} we have

> min{P(t), Fpr(Plk)(t)} + Y min{P(t), Fpr(P|k")(t)}

tev tev
—1 + min{P(t,), 260 } + min{ P(tiy), 2(P(tiy) — &io)} — P(tio)- (13)
<1+ P(t;,) <1+ rtneegcp(t),

and

> min{P(t), Fpr(Plk)(1)} + > min{P(t), Fpr(P[k")(t)}
teVv teVv

=1+ min{P(t;,), 26, } + min{ P(t,), 2(P(t;,) — &)} — Plts,)- 14
>1+42 max{rtneagc P(t) — 0.5,0}.

Since the permutation over V' is uniformly seeded with the watermark keys,

D(P, Fpr) =1 —Ex[Y_ min{P(t), Fpr(P|k)(t)}]
tev

15)
1 . : r (
=1- 5MZ min{P(t), Fpr(Plk)(t)} + Y min{P(t), Fpr(P|k")(t)}].
tev tev
Combining it with Equation [I3]and Equation T4} we have
0.5(1 — rtnea‘icp(t)) <D(P,Fpr) <0.5— max{rtnez%;(P(t) —0.5,0}. (16)

Part 3. Finally, we show D(P, Fpr) < D(P, Fis) = D(P, Fgr). We only need to prove 0.5 —
max{maxcy P(t) —0.5,0} <1 -3, P(t)*. We have two steps for Part 3.

Lemma D.1. Given 0 < 21,29 <719 <71, 1 + 22 =11 < 1, we have 23 + 3 < r¢ + (r1 —10)%

Proof. 27 + 23 = 23 + (r1 — 21)% = 223 — 2zy71 + 13 = 2(2x1 — r1/2)% + 7% /2 < min,, 2(x1 —
2,279 _ .2 2

r1/2)* +ri/2 =1+ (r1 —10)°.

Thus, by inductive we have 1 — 37, P(t)* > 1 — | py ) (maxiey P(1))? — (1 -

Lmj max;cy P(t))2. Now we continue the proof of the main theorem.

17
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Step 1. When max;cy P(t) > 0.5,

_ >1— 2 (1 _ 2
1 ;/P 1= (max P(1))* — (1 - max P())

= 2max P(t) — 2 P(1))?
max P(t) — 2(max P(t))
= 0.5 — 2(max P(t) — 0.5)* a7
teV
>0.5— — 0.
> 0.5 (r&a‘icP(t) 0.5)
=05— P(t) —0.5,0}.
0.5 max{rtré&%} (t) — 0.5,0}

Step 2. When maxcy P(t) < 0.5,

1
1— P(t 11— | ———= PO -(1—- | —— P(t))?
;, (t)? > LmaXtEV P ﬂ({}g} )" = ( Lmaxtev P(t)J max P(t))
1 1 1
=2|———— P(t) — 2 P(t))?
Lmauxtev P(t)J eV ®) maxicy P(t) maxecy P(t)J )(Itne%;{ ®)°
(18)
denote by € = —tprs — | oo Py ) wehave 0 < e < 1and
1 1 1
1-S P2 =2(—— Pit) - ((——— — A P(t))?
teZV ®) (maxtev P(t) 2 eV ®) ((maxtev P(t) o+ (maxtev P(t) 2 )(Itne%;( ®)
=2 —2emax P(t) — <max P(t) — emax P(t)? + 1 — 2emax P(t) + €2 max P(t)2>
tev tev teV tev tev
—1_ 2 2
=1 rtnezg(P(t) +(e—e¢ )rtnezg(P(t)
>1—max P(t) > 0.5 = 0.5 — max{max P(¢) — 0.5,0}.
teV tev
(19)
By Step 1 and Step 2, we have D(P, Fpr) < D(P, Frs) = D(P, Fgr). O

D.4 PROOF OF THEOREM [4.10]

Proof. Consider the scenario of generating multiple responses with the same-prompt single-token-
generation task. According to Definition[4.5|under the strongly distortion-free condition, one must

have VPy; € P,VNy € Ny, vt € V, T, Paur(t9) = By pevon [T11%) F(Pag| D) (D).
Under key collisions, there exists at least two k(‘) k() are the same. Then we have VP € P,dNy >
2,V € V, TN, Pas(t®) = Bi [T F(PM|I€)(t( )]. We will show that this hold if and only if

D( Py, F)=0.

Part 1. Tt is obviously that D(Pyy, F) = 0 can lead to YNy € N, ,vt@) e V, [T, P (t@)) =
Ex[[12°, F(Par|k)(¢®)]. This is because if ]D)(PM,F) =0, Py (t9) = F(Py|k) (™) almost
surely and thus Ek[H¢:1 F(Py|k) ()] = ]Ek[H L P (t9)] = Hf\i’l Py (™).

Part 2. Now we will show that if 3N, > 2,Vt®) € V, [T, Pas(t@) = EL [T, F(Pask) (D)),
then D(P]\/[, F) =0.

As 0 g arbitrary selected, we can choose () = ..,= t(No) — t, then we have PM(t)NU =
Ex[F(Pyr|k)(t)N°]. By Jensen’s inequality, when Ny > 2,

Par ()™ = Ex[F(Parlk) ()] > (Ex[F(Parlk) (D™ = Par(H)™.
The equality is achieved if and only if F(Py|k)(t) = Ei[F(Pa;l|k)(t)] = Pas(t). Thus, Vt €
V,Vk € K, F(P|k)(t) = Pa(t), which leads to

D(PM,F) =1- Ek[z mm{PM(t),F(PM|k)(t)}] =1- PM(t) = 0.
teV teV

18
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D.5 PROOF OF THEOREM[4.12]

Proof. Firstly, let’s consider - | >oiey Met(gf (Par)) — >07%, Met(g%" (Pr))|, each Met(g}* (Pr))
and Met(g}* (Par)) are independent distributed. With Hoeffdlng s 1nequahty we have

—|ZMet “(Pu)) ZMet (Pr))| >t)<e 2

Denote by DetWmk;(Pa, Pr) = |37, Met(g)' (Pu)) — Y75, Met(¢5 (Pr))| —
| 20y Met(g* (Par)) — X272, Met(g)? (PM/))|. Slnce if DetWmk;(Pys, Pr) > t, we must
have --| >~ Met(g}" (Par)) — 2% Met(g}*(Pr))| > t, which yields

Pr(Dethki(PM PT) > t) < Pr(i\ iMet(gpl (PM ZMet i (PT) | > t Tti.
7 oM ’ j=1
(20)
Analogously, we have Pr(DetWmk;(Pys, Pr) < —t) < 6772%2 Thus, DetWmk;(Pys, Pr) is
sub-Gaussian distributed and it is easy to observe that E[DetWmk;(Pys, Pr)] = 0. Since

DetWmk;(Pys, Pr),i = 1,...,n is independently distributed, applying Hoeffding’s inequality again,
we have

mn2t>

Pr(DetWmk(Pyy, Pr) > t) < exp(— - ),
242377, ||DetWmk; (P, Pr)l|3,
where || X ||, = inf{c > 0: E[eX /<] < 2},
Now we need to calculate |DetWmk;(Pay, PT)pr?. We start from calculating

E[ePetWmki (Par.Pr)*/¢*]  Since [DetWmk;(Py, Pr)] < A and the probability density func-
tion of DetWmk; ( Py, Pr) is symmetric with respect to 0, we have

A
) 22 2/ 2
E[eDethk,(PM,PT) /e ] - / e’ /e df Deleki(Pl\/IypT)(‘T)
—A

A
22/c? A 2z 22/c2

=€/ Foeowmk: (Par,Pr) (%) 4 — 2¢ / Fpewmk, (P, Pr) (2)dw

A

A

2

=/ / —fe'”z/cz(l — Pr(DetWmk;(Pys, Pr) > x))dx
_aAC

A
2
_ A / =2 "/ Pr(DetWmk,(Py, Pr) > a)dx
AC
A2 /2 0 2z
— A%e +/ —e e’ /e Pr(DetWmk; (P, Pr) > x)dz
_AC

A

2

+/ —fem2/c2 Pr(DetWmk;( Py, Pr) > x)dx
0 c

2z
— A%/ _/ T 2/02(1 — Pr(DetWmk; (Pys, Pr) < —z))da
0 2

2
+/ Cx ¢”’/?* Pr(DetWmk; (Pys, Pr) > x)da
0

A2 /02 A 2 2,2 2.’E
=eA/e —/ —e” /e dw+2/ ew' /e Pr(DetWmk, (Pys, Pr) > z)dx
o € 0 ¢

A
2
=1+ 2/ gezz/ﬁ Pr(Dethki(PM, PT) > x)dl‘
0
(21)
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mt2
Since when = > 0, Pr(DetWmk;(Pys, Pr) > x) < e 247, we have

A
2
E[eDetwmk'i(PM’PT)Q/CQ] =1+ 2/ —gjer/Cz Pr(DetWmk; (P, Pr) > x)dx
0 C

A mt2
<1 Hette (22)
O C
= 1 + m022 (1 - eAz/CQ_m/Q)
242
Taking ¢ = /%’ E[eDethki(PJ\/I,PT)z/CQ} < 1+ (1 _ e—m/S) < 9. Thus,
|IDetWmk; (Pyr, Pr)||3, < 4° and
mn2t? m2nt?
Pr(DetWmk(Py;, Pr) > t) < — o < ~— o1 )
r(DetWmk(Pys, Pr) ) < exp( 242 Zi:l HDetwmki(PM,PT)||i2) exp( 1944 )

O

D.6 PROOF OF THEOREM [4.13]

Proof. Combining Lemma [D.2]and Lemma [D.3] yields the result.

Lemma D.2. A strongly distortion-free watermark must use independent hashed watermark keys

h(k).

Proof. The proof of this lemma is similar to the proof of Theorem[#.10} We prove by contradiction, if
we don’t have independent hashed watermark keys i (k), then given two randomly sampled key h (k1)
and h(ks), Pr(h(ks) = A, h(k1) = B) # Pr(h(k;) = A) Pr(h(k2) = B). Consider the scenario
of generating multiple responses with the same-prompt one-token-generation task. According
to Definition under the strongly distortion-free condition, one must have VP, € P,VNy €

Ny, vt@ eV, H'f\i)l Py (tW) = Ep o) ..,h(k(No>)[H£V:O1 F(Pp (k@) (D).

5o

We show that if 3N > 2, vt € V,  TI%, Puy(t®) -
Eh(k(l)),...,h(k(No))[Hi\fzol F(PM|h(k(i)))(t(i))]’ then D(Pyy, F) = 0.

As t@) is arbitrary selected, we can choose M = ..,= t(No) — ¢ then we have PM(t)NU =
Eh(k<1>)7.__7h(k<NO>)[Hfiol F(Pp|h(k™))(t)]. Assume w.l.o.g. Ng > 2,

Pay(8)? = Bpy ) i) [F(Par[(EM)) (8) F (Par [h (k) (8],
=Py (t)* = > > F(Py|A)(t)F(Py|B)(t) Pr(h(kV) = A, h(k®) = B),
A B
=3 F(PulA)()F (P |B)(t) Pr(h(k™M) = A) Pr(h(k®)) = B)
A B
=YY F(PulA)()F (Par|B)(8) Pr(h(kM) = A, h(k?) = B),
A B

=357 PPy A O F(Pu | B)O)[Pr(h(kY) = 4) Pr(h(k®) = B) — Pr(h(kV) = A, h(k®) = B)].
A B
(23)

Since JA, B, such that Pr(h(k()) = A) Pr(h(k?) = B) # Pr(h(k™) = A, h(k?)) = B), there
exists a Py, such that

S S F(PulA)(OF (Py | B)OPr(h(kD) = A) Pr(h(k®) = B) - Pr(h(kV) = A, h(k) = B)],
A B

+ 37 S F(Pul YO F(Pu| BYOPr(h(ED) = A) Pr(h(k)) = B) - Pr(h(kV) = A, h(k®) = B)|_ #0.
A B

(24)
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In this case, Pay (£)2—Ej, 1.0y n(re) [F (Par|h(EM)) () F (Pay|h(k2)))(£)] # 0, thus the watermark
is not strongly distortion-free. O

Lemma D.3. A watermark using a distortion-free and independent PDA-rule is undetectable by any
arbitrary detector.

Proof. Recall that the watermarking detection algorithm utilize the statistical difference between the
watermarked LM and the original LM to check the existence of the watermark, i.e., the detection
is based on E[Pys(z1.,)|DetCon] # E[[]}, F(Par|h(k®))(¢t?))|DetCon], where DetCon is the
detecting condition which is used in watermark generator. Now we show if the PDA-rule is inde-
pendent from each other, the DetCon will be independent of the PDA-rule. This can be shown by
contradiction.

If DetCon is not independent of the PDA-rules, during the generation process, the PDA-rules will
be mutually dependent because they all share dependency on the DetCon, which contradicts to the
independence of PDA-rule. Thus, we have

HF P h (kD)) () |DetCon] = HIE (Par (k@) (t))|DetCon] = E[Py (1., )|DetCon.

i=1
Thus, the watermark is undetectable by the detector. O
O
D.7 PROOF OF THEOREM[3.2]
Proof. We need to show PM<t‘$1;i,1) = Eki [FB(PAI('|:B1;1‘,1),k‘i)(t)]. As
Fpr(Pa(-|®1:i-1), ki)(t) is a distortion-free PDA-rule, we know [E;[(1 —
B)Fpr(Pr(-|®14-1), ki) (t)] = (1 — B) Pas(t|@1.5—1). Thus, we need to show
Eki max{? Z PM(tl|£L'1n',1) - 1, 0} - max{2 Z PM(t/|ZB1;i,1) - 1,0}
v (ki) 27 (t|k;) (ki) > (¢|kq)+1
= Py(t|@1.i-1)
(25)

Since the permutation is uniformly distributed, denoted by II the set of all permutations on V' and Py
the uniformly distribution on II, we have

Eki max{2 Z PA{(t/|£B1;i,1) — 1,0} — max{2 Z PM(t'\wlzi,1) — 170}
t (ki) >m(t| ki) t/ (ki) >m(t|ki)+1
=E,p, |max{2 Z Py (t'|21.i-1) — 1,0} — max{2 Z Py (t'|z1.i-1) — 1,0}
L ¢ (8 ki) 27 (¢ ki) thm(t k) > (k) +1
(26)

As Py is the uniformly distribution on II, for each 7 € II, we consider its reverse permutation 7":

ETK‘NPH max{2 Z PM(t,|$1;i,1) - 1,0} - max{2 Z P]y[(t/‘(ltlzifl) - ].7 0}
i (8 [s) 2 (e i) (8 ki) 2 (e i)+ 1 |
1
:iEﬂ-erH max{2 Z PM(t/|iEl;i,1) - ]., 0} - max{2 Z PM(t/|$1;i,1) - 1,0}
t/,m (| ki) 2 (t]kq) t,m (! [ki) 2m (tki)+1
+ max{2 > Pr(t'|x1:-1) — 1,0} — max{2 > Pr(t'|x1,-1) — 1,0}
(¢ ki) 27 (t|ki) t,m (ki) 27T (ki) +1
27)
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Notice, if (t') < 7(¢), then in the reversed permutation 7", we have 7" (¢') > 7" (¢) and vice versa.
Thus,

max{2 > Pr(t'|x1:-1) — 1,0} — max{2 > Pr(t'|x1:-1) — 1,0}
7w (¢ ks ) > () ki) v (8 |k ) > (] ki ) +1
= max{2 > Prr(t'|@1:-1) — 1,0} — max{2 > Py (t'|x1:-1) — 1,0}
v (t ki) <m(tlki) (b ki) <m(t|ki)—1
=max{1 — 2 > Pr(t'|€1.5-1),0} — max{1 — 2 > P (t'|€1.5-1),0}.
(¢ ki) >7(t]ki)+1 (¢ ki) > 7 (t]ki)—1
(28)

By max{z,0} — max{—xz,0} = = we have

ETK‘NPH max{2 Z P]y[(t’|$1:i,1) - 1,0} - max{2 Z P]yj(t/‘(ltlzifl) - ].7 0}
t 7 (ki) > (¢ ki) t, 7 ( k) > (¢ ki) +1
1
=5Enpy |max{2 > Py (t'|21.4-1) — 1,0} — max{2 > Py (t21:4-1) — 1,0}
v (t ki) 27 (t]ki) (ki) > (t|ki)+1
+ max{2 > Pr(t'|x1:-1) — 1,0} — max{2 > Pr('|x1,-1) — 1,0}
t e (k) > (¢ ki) ¢ () > (i) +1
1
=5Enpy |max{2 > Prr(t'|x1:5-1) — 1,0} — max{2 > Pr(t'|x1:-1) — 1,0}
tw(t ki) >7(t ki) (¢ ki) >7 (b ki) +1
+ max{1 — 2 > Prr(t'|21:-1),0} — max{1 — 2 > Pr(t'|x1:-1),0}
(¢ ki) 27 (t]ki)+1 (ki) 2w (tlki)—1
1
:§EW~PH [2 Z PM(tl|$1;i,1) -1 (2 Z PM(tl|$1;i,1) — 1)]
(¢ ki) > (t|kq) (¢ | ki) > (tlkq)+1
1

:ﬁEWNPn 2Py (t|1.4-1)]

=P (t|T1:4-1).
(29)

D.8 PROOF OF THEOREM [3.4]

Proof. Part 1. We first show VP € P, D(P, F3) < D(P, Fpr) — (1 — maxicy P(t)). According
to the Part 2 of Proof we know that given a permutation {¢1,...,tx} and let ¢;, is the token
whose probability mass expands across 1/2,

N
> min{P(t), Fpr(Plk)(t)} = > P(t;) + min{P(t;,), 2, },
tev i=io+1

where &, is the probability mass of ¢, that is in the interval [0.5, 1] (notice ¢;, is the same for both
permuta-reweight and beta PDA-rule as they use the same permutation), max{P(t;,) — 0.5,0} <
&, <min{0.5, P(t;,)}. And

> min{P(t), Fpr(PIk")(t)} = i P(ti) + min{P(ti,), 2(P(ti,) = i)}
teV =1

where k" refers the key that lead to the reserved permutation.
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Now we consider F3. From the similar analysis, we have

> min{P(t), Fs(P|k)(t)} = Z P(t +25ZP )+min{ P(t;, ), 2(1—8)&i, +28(P(ti,)—&ir) },

teVv i=i9+1

and
10—1
Zmln{P F/3 P|kr }_ Z P +26 Z +m1n{P( ) (l_ﬁ)(P(tzo)_gzo)J’_Qﬁglo}
teV i=ip+1
As

min{P(ti,), 2(1 — B)&i, + 28(P(ti,) — o)} + min{P (), 2(1 — B)(P(tiy) — &io) + 2880 }
= P(ti,) + min{2(1 — B)(P(tiy) — &io) + 2B, 2(1 — B)&io + 2B(P(tiy) — &io)}

= P(ti,) + 26, + min{2(1 — B)(P(t;,) — 2&,), 28(P(ti,) — 2&i,) }

> P(ti,) + 2&, + min{0, 2(P(t;,) — 2&,)}

= min{P(t;,), 2(P(ti,) — &)} + min{P(t;,), 28, },

(30)
we have
> min{P(t), Fs(Plk)(t)} + > _ min{P(t), Fs(P|k")(t)}
teVv teV
=1-P(to) +28(1 — P(to)) + min{P(t;,), 2(1 — 8)&, + 2B8(P(ti,) — &io)}
+ min{P(t;,), 2(1 — B)(P(ti,) — &o) + 2880} 31

> " min{P(t), Fpr(Plk)(t)} + > min{P(t), Fpr(P|k")(t)} + 28 — 28P(t;,)

teV teV
> " min{P(t), Fpr(Plk)(t)} + > min{P(t), Fpr(P|k")(t)} + 28 — 23 max P(t).
teV teV
Thus,
D(P, Fg) = 1 — B4 [y min{P(t), F5(P|k)()}]
teV
=1- %Ek[z min{ P(t), Fs(P|k)(£)} + > min{P(t), Fs(P|k")(1)}]

tev teV

<1- 1B [tezv win{P(t), Fpp(Pk)(1)} + tezvmm{m), Fpr(PI)(1)} +26 — 26 max P(0)

=D(P, Fpr) = 5(1 — max P(t)).

(32)

Part 2. We then show VP € P, if 81 < B, then D(P, Fg,) > D(P, Fj3,). Consider D(P, Fg, ) —
D(P, Fa,), we have

D(PaFlﬁ) _D(P Fﬁz)

=Ex[>_min{P(t), Fs,(P|k)(t)}] — Bx[Y_ min{P(t), Fs, (P|k)(t)}]
teVv teVv
%Ek > min{P(¢), Fg, (Plk)(£)} + > min{P(t), F, (P|k")(¢)} (33)
teV tev

_ Zmin{P , Fa, (Plk)(t)} — me{P ,Fg, (PIE™)(t)}

teV teV

From the similar analysis as Part 1 we have for Fjg, ,

> min{P(t), Fg, (P|k)(t)} = Z P(t +2512P )Amin{ P(ts, ), 2(1=B1)&, +281 (P(tig)—&io ) 4

teVv 1=19+1
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and
io—1
> min{P(t), Fg, (P|k")(t }_ZP )+261 Z P(t;)4+min{ P(t;,), 2(1—B1) (P (ts,)—Eiy ) +2B1Ei, }-
tev i=i9+1
For Fjg,, we have
N 7.0 1

> min{P(t), Fy, (Plk) (1)} = > P +2ﬁzZP )+min{P(ti, ), 2(1—52)&i, +262(P(ti,) =&iy) }

teV i=19+1

and
io—1
ZHIID{P FBQ PlkT }_ Z P +2B2 Z P +m1n{P( Zo) (1_52)(P(ti0)_gio)+2ﬁ2§io}'
teVv i=ig+1
When 3 > b1,

min{ P(t;,), 2(1 — B2)&i, + 2B2(P(ti,) — &ip)} + min{P(tm) 2(1 = B2)(P(tiy) — &io) +262&i }
= P(ti,) + min{2(1 — B2)(P(tiy) — &io) + 26828, 2(1 — B2)&iy + 2B2(P(ti,) — &ig) }

)

= P(tlo) + 2510 + mln{Z(l - 62)(P(t10) - 26%)’ 2ﬁ2( ( 10) 2510)}

> P(ti,) + 28, + min{2(1 — 1) (P(ti,) — 28,), 281 (P(ti,) — 28i)}

= min{P(t;,), 2(1 = B1)&, + 281 (P(tiy) — &io)} + min{P(t4,), 2(1 = 1) (P(ti) — &io) + 2618, }-

(34)

Thus,

S wmin{P(t), Fy, (PO} + 3 min{ (1), F, (PIK)(0)}

teV teVv

=1— P(to) + 2B82(1 — P(to)) + min{P(t;,), 2(1 — B2)&i, + 2B2(P(tiy) — &io)}
+min{P(t;,), 2(1 = B2)(P(tiy) — &io) + 2828, }

> > min{P(t), Fp, (PIR)(1)} + Y min{ P(¢), Fs, (PIk") (1)} + 2(82 — A1) (L — P(ti,))

teV teVv
> 3 min{ P(0), B, (PIR)(©)} + 3 min{ P(2), Fa, (PIF)(0)} +2(5 — B1)(1 — max P(0).
tev tev 35)
Combining with Equation [33|we have:
]D(PvFﬁl) - ]D)(P FﬁQ)
=Ex[Y _ min{P(t), Fs,(P|k)(t)}] — Ex[Y_ min{P(t), Fs, (P|k)(t)}]
tev teVv
—5Be | S min{P(0). Fau (PO} + 3 min P(0). Fau (PIF")(0) 56
tev tev
— > min{P(¢), F5, (P|k)(1)} = Y min{P(¢), Fs, (P|k")(t)}
teV teV
>(B2 = B1)(1 = Hggip( )) > 0.
Therefore, D(P, Fg,) > D(P, Fga,). O

D.9 PROOF OF DEFINITION[3.3]

Proof. We prove the concentration bound in Definition Pr(S(x1.n) — Ep,[S(x1.0)] >
ty/n|Hy) < exp(—2t2). Since the range of the sigmoid function is in [0, 1], by Hoeffding’s in-
equality, for each random score s(x;), we have
- 1 o Cont?

s(wi) = Ea [~ > s(wi)] > t|Hg) < e 2" (37)

i=1 =1

Pr(
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Replace ¢ by ﬁ we have

n n

Pr( " s(ai) — B, [Y s(ai)] > tv/n|Ho) < e (38)

i=1 i=1

E DETAILED EXPERIMENT SETUP

E.1 EXPERIMENT SETUP

We evaluate the distortion-free performance of various watermark models within two seq2seq
applications: text summarization and text generation. The experiments leverage the Huggingface
library (Wolf et al., 2019), a popular framework for model development and sharing in the NLP
community. All tests are conducted on 8 NVIDIA A6000 GPUs, each with 48GB of memory.

We focus on three seq2seq tasks in our experiments: machine translation, text summarization and
text generation. For the machine translation task, we focus on English-to-Romanian translation. We
employ the Multilingual BART (MBart) model (Liu et al.,[2020) on the WMT’ 14 En-Ro corpus. For
text summarization, we employ the BART-large model (Liu et al., 2020) using the CNN-DM corpus
dataset (Hermann et al.,2015). For text generation, we follow the settings described by (Kirchenbauer
et al., [2023)), using the LLaMA-2 model (7b, chat) (Touvron et al., 2023)) with a random subset
of the C4 dataset (Raffel et al., [2020). All experiments are conducted with n-gram watermark key
sampling (n = 5). Additionally, we include the Soft watermark (Kirchenbauer et al.,2023) in our
comparison, although it does not achieve step-wise distortion-free performance. Notably, when
B = 0, the Beta-watermark becomes identical to the permute-reweight watermark (Hu et al., [2023).

Machine Translation. For the machine translation task, we utilize the WMT’ 14 English (En) to
Romanian (Ro) dataset, comprising 1,999 examples in the test set. We employ the Multilingual Bart
(MBart) model (Liu et al.| |2020) along with its official tokenizer.

Text Summarization. For text summarization, we utilize the test set from the CNN-DM corpus
(Hermann et al.||2015), which contains 11,490 examples. We employ the BART-large model, which
has 400 million parameters, and the LLaMA-2 model with 7 billion parameters.

Text Generation. In text generation, we adhere to the experimental setup described in Kirchenbauer
et al.| (2023)). We use a random subset of the C4 dataset for generation prompts. Our model selection
includes the LLaMA-2, which has 7 billion parameters.

Watermark Setup. Our experiments primarily compare the beta-watermark with three other
distortion-free watermarks: inversa-sampling, Gumbel-reparametrization, and permute-reweight.
Additionally, we include the Soft watermark (Kirchenbauer et al., 2023)) in our comparison. For
beta-watermark, we explore various 3 values from the set {0,0.05,0.1,0.2,0.3}. For the Soft wa-
termark (Kirchenbauer et al., 2023)), we investigate green list bias ¢ values from {0.5,1.0, 1.5, 2.0}
with a fixed green list separator v = 0.5. For n-gram key sampling, we consider the most recent 5
tokens as the texture key. For example, when generating x4 in response to (z1, x2, 23 ), the texture
key includes (x1,x2,x3), given only three tokens are available. Texture key history resets before
generating each batch. For cipher generation, we use SHA-256 as the hash function and a 1024-bit
random bitstrings as the secret key sk, the watermark key is given by k = (sk,x;_5,-1). The
permutation 7 is sampled using hash(k) as the random seed. We also compare beta-watermark
with inverse-sampling watermark Kuditipudi et al.[(2023)) and permute-reweight watermark Hu et al.
(2023); [Wu et al.| (2023)), following the settings in their open-sourced codeEH

Evaluation Metrics for Text Quality. In this part, we detail the metrics used to evaluate text quality:
* ROUGE Score. For the summarization task, we employ the ROUGE score (Lin, [2004]),

which measures the overlap of n-grams between the generated summaries and the reference
texts to evaluate how effectively the summary captures the essential content.

"nttps://github.com/jthickstun/watermark
https://github.com/xiaoniu-578fa6bf£964d005/UnbiasedWatermark
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Table 4: Performance of different watermarks under one-time generation. For each prompt, only one
response is generated.

Text Summarization Machine Translation
BERT Scoref ROUGE-171 Perplexityl BERT Scoref BLEU 1
No Watermark 0.3174+0.0885 0.3772+0.0962  6.4155+3.3009 | 0.2683+0.1967 10.8705+10.1914
Beta-Reweight (\beta=0) 0.3162+0.0871 0.3758+0.0961 6.3810+£3.2753 | 0.2669+0.1966  10.6208+9.5880
Beta-Reweight (\beta=0.05) | 0.3171+0.0877 0.3760+0.0952 6.3986+3.2142 | 0.2683+0.1907 10.6511+10.1191
Beta-Reweight (\beta=0.1) 0.3169+0.0873  0.3762+0.0965 6.4250+3.2944 | 0.2687+0.1962 10.9058+10.5317
Beta-Reweight (\beta=0.2) 0.3184+0.0883  0.3771+0.0966 6.3889+3.2144 | 0.2641+0.1947 10.9852+10.7563
Beta-Reweight (\beta=0.3) 0.3167+0.0869 0.3764+0.0954 6.3972+3.2855 | 0.2668+0.1907  10.7865+9.8656
Inverse-sampling 0.3182+0.0876  0.3772+0.0964  6.3377+3.1274 | 0.2894+0.1869 11.6892+10.5368
Gumbel-reparametrization 0.3171+0.0868 0.3763+0.0961 6.3538+3.2221 | 0.3065+0.1875 11.8670+10.6599
Soft(0=0.5) 0.3152+0.0862  0.3746+0.0949  6.4894+3.2453 | 0.2541+0.1950 10.3546+9.7336
Soft(6=1.0) 0.3125+0.0856  0.3724+0.0937 6.8647+3.4364 | 0.2241+0.1922 9.5412+9.0065
Soft(6=1.5) 0.3067+0.0825 0.3673+0.0917  7.4633+3.5928 | 0.1876+0.1891 8.5556+8.5925
Soft(6=2.0) 0.2996+0.0805 0.3605+0.0899  8.4847+4.1598 | 0.1380+0.1750 6.9994+6.7528

* BLEU score. For the machine translation task, we rely on the BLEU score (Papineni
et al.,[2002), emphasizing the lexical similarity between machine-generated translations and
human reference translations.

* BERTScore. BERTScore[Zhang et al.[(2019) calculates the similarity between two sentences
by summing the cosine similarities of their token embeddings. We utilize BERTScore-F1,
BERTScore-Precision, and BERTScore-Recall for assessing both text summarization and
machine translation tasks.

 Perplexity. Perplexity, a concept from information theory, measures how well a probability
model or distribution predicts a sample. It is used to compare the performance of probability
models, where a lower perplexity indicates a more predictive model. We apply perplexity to
evaluate both text summarization and text generation tasks.

Evaluation Metrics for Detecting Efficiency of Watermarks. In this section, we present the metrics
used to evaluate the detectability of watermarks:

* Type I and II Errors. We employ the true positive rate (TPR), false positive rate (FPR),
true negative rate (TNR), and false negative rate (FNR) to assess watermark detection across
a mix of watermarked and non-watermarked sentences. The FPR measures the Type I error,
which occurs when the null hypothesis is incorrectly rejected when it is actually true. The
FNR measures the Type II error, where there is a failure to reject a false null hypothesis.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we introduce the additional experiments conducted in our paper.

Weakly Distortion-Free. The full results are presented in Table 4] This figure shows that compared
to the model without watermarks, all weakly distortion-free watermarks exhibit no significant
performance bias in text summarization and text generation tasks. However, for the Soft-watermark,
a significant performance bias is observable as § increases. Besides, we also include a comprehensive
results for the combination of all PDA-rules and all three kinds of key sampling methods under text
generation tasks. The results are presented in Table[5] We also don’t observe the distribution bias
under the A metrics.

Strongly Distortion-Free. The full results are displayed in Table[6] where we include all PDA-rule
and key sampling method into comparison. From this table, it is evident that compared to the no
watermark model, all weakly distortion-free watermarks demonstrate performance bias across all
tasks. In contrast, the Beta-watermark exhibits less bias compared to other weakly distortion-free
watermarks. Additionally, as  increases, the distribution bias is further reduced, consistent with our
theoretical analysis.
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Table 5: Performance of different watermarks under one-time generation for text generation tasks.
For each prompt, only one response is generated

PDA-rule Watermark key | bertscore.precision  bertscore.recall bertscore.f1 pp! rougel rouge2 rougeL
fixed key set 0.3062+0.0954 0.3279+0.1019  0.3170£0.0880  6.4090+3.2113  0.3764£0.0960  0.1324+0.0808  0.2377+0.0793
[-reweight(3=0) n-gram hashing 0.3048+0.0949 0.3276£0.1010  0.3162+0.0871  6.3810+3.2753  0.3758+0.0961  0.1314+0.0798  0.2372+0.0785
position hashing 0.3050+0.0951 0.3271£0.1010  0.3160+0.0874  6.4285+3.2815  0.3759+0.0952  0.1315+0.0798  0.2374£0.0791
fixed key set 0.3061+0.0953 0.3289+0.1026  0.3174+0.0884  6.3903+3.3533  0.3764+0.0964  0.1327+0.0806  0.2385+0.0801
B-reweight(3=0.05) n-gram hashing 0.3058+0.0944 0.3286+0.1021  0.3171+0.0877 0.3760+0.0952  0.1320+0.0797  0.2375+0.0785
position hashing 0.3058+0.0951 0.3283+0.1021  0.3170+0.0876 0.3763+0.0959  0.1326+0.0797  0.2385+0.0789
fixed key set 0.3055+0.0948 0.3279£0.1014  0.3166+0.0873  6.4143£3.3500 0.3765+£0.0956  0.1324+0.0795  0.2380+0.0785
[-reweight(3=0.1) n-gram hashing 0.3054+0.0950 0.3285+0.1015  0.3169+0.0873  6.42504£3.2944  0.3762+0.0965 0.1327+0.0801  0.2377+0.0785
position hashing 0.3060+0.0954 0.3285+0.1008  0.3172+0.0875  6.4214+3.2642  0.3762+0.0952  0.1322+0.0785  0.2382+0.0780
fixed key set 0.3068+0.0952 0.3296+0.1020  0.3181+0.0878  6.4131£3.3820  0.3778+0.0960  0.1337+0.0806 0.2395+0.0799
[-reweight(3=0.2) n-gram hashing 0.3068+0.0958 0.3302+0.1026  0.3184+0.0883  6.3889+3.2144  0.3771£0.0966  0.1334+0.0811  0.2392+0.0794
position hashing 0.3057+0.0949 0.3283£0.1025  0.3169+0.0880  6.3685£3.2764 0.3765+£0.0963  0.1323+0.0800 0.2383+0.0794
fixed key set 0.3053+0.0955 0.3280+0.1018  0.3166+0.0878  6.3878+3.1945  0.3763+0.0954  0.1319+0.0799  0.2376+0.0788
B-reweight(5=0.3) n-gram hashing 0.3052+0.0949 0.3284+0.1006  0.3167+0.0869 0.3764+0.0954  0.1325+0.0799  0.2379+0.0784
position hashing 0.3066+0.0952 0.3288+0.1018  0.3176+0.0876  6.3845£3.2077 0.3771£0.0963  0.1327+0.0798  0.2385+0.0787
fixed key set 0.3011%0.0953 0.3277£0.1016  0.3143+0.0875  6.6430+3.5498  0.3746+0.0959  0.1309£0.0797  0.2361+0.0793
Gumbel-reparametrization  n-gram hashing 0.30600.0942 0.3284+0.1011  0.3171+0.0868  6.3538+3.2221  0.3763+0.0961  0.1321+0.0797  0.2376+0.0788
position hashing 0.3047+0.0958 0.3267+0.1019  0.3156+0.0881  6.4877£3.4127  0.3755+£0.0957 0.1317+0.0800  0.2380+0.0790
fixed key set 0.3063+0.0942 0.3297+0.1014  0.3179+0.0870  6.1846+3.1150  0.3777+0.0960  0.1334+0.0802  0.2391+0.0793
Inverse-sampling n-gram hashing 0.3064+0.0953 0.3302+0.1018  0.3182+0.0876 +3.1274  0.377240.0964  0.1328+0.0809  0.2390+0.0799
position hashing 0.3075+0.0962 0.3326£0.1022  0.3199+0.0881  6.2007+3.0213  0.3796+0.0960  0.1344+0.0813  0.2404:+0.0802
No Watermark NA | 0.3058+0.0959 0.3293£0.1026  0.3174+0.0885  6.4155£3.3009  0.3772+0.0962  0.1328+0.0806 0.2388+0.0799
Soft(0=0.5) n-gram hashing 0.3013+0.0941 0.3294+0.1005  0.3152+0.0862  6.4894+3.2453  0.3746+0.0949  0.1310+0.0781  0.2362+0.0776
Soft(0=1.0) n-gram hashing 0.2956+0.0928 0.3296+0.0999  0.3125+0.0856  6.8647+3.4364  0.3724+0.0937  0.1279+0.0769  0.2328+0.0764
Soft(d=1.5) n-gram hashing 0.2858+0.0906 0.3280£0.0968  0.3067+0.0825  7.4633£3.5928  0.3673£0.0917  0.1229+0.0731  0.2271+0.0724
Soft(6=2.0) n-gram hashing 0.27510.0879 0.3246+0.0953  0.2996+0.0805  8.4847+4.1598  0.3605+0.0899  0.1158+0.0698  0.2207+0.0695
PDA-rules ‘Watermark key ‘Abenscore.precision A bertscore.recall A bertscore.f1 A ppl A rougel A rouge2 A rougeL
fixed key set 0.0694+0.0564 0.0674£0.0577  0.0625£0.0520  2.724242.8964  0.0700+0.0549  0.0585£0.0517  0.0606+0.0519
B-reweight(5=0) n-gram hashing 0.07000.0561 0.0672+0.0567  0.0626+0.0513  2.7165+2.9231  0.0703+0.0560  0.0582+0.0517  0.0605+0.0519
position hashing 0.07010.0565 0.0679+0.0575 0.0630+0.0518  2.7533+2.9858  0.0698+0.0554  0.0584+0.0521 0.0611+0.0533
fixed key set 0.0701+0.0570 0.0678+0.0569  0.0630+£0.0519  2.7436+3.0276  0.0709+0.0550  0.0588+0.0521  0.0617+0.0527
B-reweight(5=0.05) n-gram hashing 0.07000.0567 0.0679+0.0573  0.0631£0.0519  2.74194+2.9226  0.0701+0.0554  0.0583+0.0517  0.0606+0.0522
position hashing 0.0703+0.0566 0.0685+0.0577  0.0631£0.0521  2.7540+2.9807  0.0713+0.0560  0.0590£0.0524  0.061620.0522
fixed key set 0.0695+0.0566 0.0674+0.0573  0.0623+0.0520  2.7563+3.0299  0.0693+0.0557  0.0580+0.0520  0.0608+0.0526
[-reweight(5=0.1) n-gram hashing 0.0696+0.0563 0.0676+0.0567  0.0626+0.0515  2.7640+2.9893  0.0701+0.0558  0.0579£0.0516  0.0605+0.0520
position hashing 0.0703+0.0566 0.06760.0571 0.0630£0.0518  2.7559+2.9446  0.0698+0.0555  0.0583+0.0513  0.0610+0.0515
fixed key set 0.0695+0.0560 0.0673+0.0570 0.0625+0.0512  2.7507+3.0184  0.0706+0.0553  0.0589+0.0524  0.0610+0.0525
[-reweight(5=0.2) n-gram hashing 0.0698+0.0566 0.0679+0.0571 0.0629+0.0517  2.7376+2.9355  0.0699+0.0558  0.0589+0.0525 0.0607+0.0518
position hashing 0.0699+0.0563 0.0688+0.0587  0.0632+0.0526  2.7001£2.9368  0.0697+0.0563  0.0584+0.0529  0.0608+0.0532
fixed key set 0.0706+0.0568 0.0680+0.0575 0.0631+0.0520  2.7242+2.9031 0.0701+0.0562  0.0581+0.0519  0.0608+0.0528
B-reweight(3=0.3) n-gram hashing 0.0705+0.0564 0.0679+0.0570 0.0633+0.0515  2.7466+2.9944  0.0701+0.0552  0.0585+0.0514  0.0609+0.0527
position hashing 0.0696+0.0559 0.0673+0.0565 0.0622+0.0510  2.7271£2.9034  0.0693+0.0552  0.0576+0.0507  0.0602+0.0513
fixed key set 0.07000.0572 0.0679+0.0578  0.0629£0.0524  2.8303+3.0803  0.0706+0.0561  0.0579£0.0523  0.061620.0530
Gumbel-reparametrization  n-gram hashing 0.0694+0.0561 0.0678+0.0574  0.0625+0.0517  2.7221+2.9595 0.0708+0.0555 0.0588+0.0520 0.0607+0.0524
position hashing 0.0702+0.0573 0.0682+0.0585 0.0630+0.0530  2.7680+3.0449  0.0702+0.0563  0.0593+0.0529  0.0615+0.0539
fixed key set 0.0692+0.0555 0.0661£0.0564  0.0618+0.0508 2.6649+2.8626  0.0695+0.0556  0.0580£0.0516  0.0608+0.0520
Inverse-sampling n-gram hashing 0.0697+0.0565 0.0674£0.0567  0.0625£0.0516  2.7131£2.8903  0.0705+0.0557  0.0581£0.0521  0.0603+0.0523
position hashing 0.0704+0.0559 0.0677£0.0579  0.0628+0.0517  2.6266+2.8591  0.0698+0.0559  0.0583£0.0519  0.0612+0.0526
Baseline NA | 0.0701x0.0560 0.0674+0.0570  0.0628+0.0513  2.7535+2.9630  0.0707+0.0558  0.0583+0.0522  0.0613+0.0527
Soft(d=0.5) n-gram hashing 0.07000.0569 0.0677£0.0576  0.0627+0.0519  2.7403+2.9348  0.0700£0.0553  0.0581£0.0507  0.0606+0.0521
Soft(d=1.0) n-gram hashing 0.0692+0.0558 0.0666+0.0562 0.0616+0.0505  2.8607+3.0746  0.0688+0.0543  0.0569+0.0501  0.0595+0.0511
Soft(d=1.5) n-gram hashing 0.0704+0.0564 0.0661+0.0557  0.0613+0.0508  3.0427+3.1473  0.0688+0.0550  0.0566+0.0505 0.0593+0.0516
Soft(0=2.0) n-gram hashing 0.0736+0.0587 0.0669+0.0560  0.0635+0.0517  3.6349+3.6255  0.0699+0.0552  0.0576+0.0509  0.0601+0.0517
1.0
0.8 1
2
& 0.6
g
3 Beta-Reweight(beta=0)
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Figure 5: ROC curve of TPR vs FPR.
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Table 6: Performance of different watermarks under multi-time generations. We randomly selected
1000 prompts and generated 100 responses for each. We use F1 scores of BERTScore and scale
BERTScore and ROUGE-1 with a factor of 100.

PDA-rule Watermark key | A bertscore.precision A bertscore.recall A bertscore.fl A ppl A rougel A rouge2 A rougeL
fixed key set 0.0070+0.0056 0.0066+0.0056 0.0062+0.0051  0.3123+0.2698  0.0071+0.0056  0.0062+0.0052  0.0062+0.0052
B-reweight(5=0) n-gram hashing | 0.0095+0.0082 0.0097+0.0084 0.0090+0.0077  0.3753+0.3448  0.0093+0.0078  0.0091+0.0087  0.0100+£0.0093
position hashing | 0.0092+0.0077 0.0095+0.0085 0.0086+0.0077  0.3711+0.3339  0.0091+0.0075  0.0088+0.0086  0.0099+0.0093
fixed key set 0.0074+0.0060 0.0070+0.0060 0.0066+0.0055  0.3084+0.2880  0.0073+0.0060 0.0061+0.0055  0.0063+0.0056
B-reweight(3=0.05) n-gram hashing | 0.0091+0.0074 0.0092+0.0076 0.0084+0.0071  0.3549+0.3200  0.0085+0.0070  0.0084+0.0079  0.0092+0.0082
position hashing | 0.0087+0.0070 0.0089+0.0078 0.0083+0.0068  0.3488+0.3192  0.0084+0.0067  0.0081+0.0073  0.0089+0.0083
fixed key set 0.0066+0.0052 0.0066+0.0054 0.0060+0.0047  0.3061+0.2696  0.0069+0.0055  0.0059+0.0052  0.0061+0.0051
B-reweight(8=0.1) n-gram hashing | 0.0084+0.0071 0.0086+0.0070 0.0079+0.0065  0.3453+0.3214  0.0081+0.0068  0.0079+0.0073  0.0086+0.0078
position hashing | 0.0085+0.0069 0.0088+0.0073 0.0082+0.0066  0.3393+0.3195  0.0085+0.0066  0.0077+0.0069  0.0084+0.0074
fixed key set 0.0072+0.0057 0.0069+0.0059 0.0065+0.0053  0.2960+0.2724  0.0073+0.0060  0.0062+0.0054  0.0062+0.0054
B-reweight(5=0.2) n-gram hashing | 0.0076+0.0060 0.0078+0.0063 0.0070+0.0057  0.3368+0.3231  0.0077+0.0061  0.0071+0.0064  0.0076+0.0066
position hashing | 0.0078+0.0064 0.0077+0.0063 0.0072+0.0059  0.3229+0.2906  0.0076+0.0062  0.0070+0.0065  0.0077+0.0067
fixed key set 0.0066+0.0054 0.0066+0.0055 0.0060+0.0048  0.3078+0.2786  0.0069+0.0056  0.0059+0.0052  0.0060£0.0051
B-reweight(3=0.3) n-gram hashing | 0.0071+0.0056 0.0073+0.0058 0.0066+0.0052  0.3144+0.3015  0.0073+0.0060  0.0066+0.0056  0.0069+0.0058
position hashing | 0.0073+0.0059 0.0070+0.0060 0.0066+0.0054  0.3057+0.2991  0.0072+0.0059  0.0066+0.0057  0.0067+0.0058
fixed key set 0.0080+0.0063 0.0074+0.0059 0.0070£0.0057  0.3744+0.3205  0.0079+0.0064  0.0067+0.0060  0.0069+0.0057
Gumbel-reparametrization  n-gram hashing | 0.0480+0.0402 0.0461+0.0396 0.0428+0.0360  1.8892+1.8931  0.0488+0.0400 0.0409+0.0352  0.0427+0.0362
position hashing | 0.0494+0.0399 0.0485+0.0403 0.0442+0.0373  1.993542.4110  0.0512+0.0413  0.0423+0.0374  0.0442+0.0388
fixed key set 0.0069+0.0056 0.0071£0.0061 0.0064+0.0054  0.3320+0.3066  0.0075+0.0061  0.0062+0.0057  0.0065+0.0052
Inverse-sampling n-gram hashing | 0.0486+0.0388 0.0481+0.0402 0.0439+0.0367  1.9380+2.0342  0.0499+0.0384  0.0403+0.0346  0.0428+0.0363
position hashing | 0.0503+0.0426 0.0469+0.0424 0.0448+0.0380  1.909542.2396  0.0491+0.0398  0.0422+0.0391  0.0441£0.0396
Baseline NA | 0.0068+0.0058 0.0067+0.0054 0.0062+0.0052  0.3028+0.2668  0.0070+0.0056  0.0060+0.0053  0.0060+0.0053
Soft(6=0.5) n-gram hashing | 0.0078+0.0063 0.0069+0.0057 0.0064+0.0053  0.3331+0.2965  0.0076+0.0061  0.0065+0.0056  0.0065+0.0056
Soft(6=1.0) n-gram hashing | 0.0127+0.0096 0.0086+0.0074 0.0091+0.0077  0.5473+0.4023  0.0099+0.0083  0.0090+0.0080  0.0090+0.0078
Soft(6=1.5) n-gram hashing | 0.0200+0.0129 0.0106+0.0093 0.0128+0.0104  1.1237+0.5868 0.0136+0.0110 0.0123+0.0110  0.0127+0.0107
Soft(6=2.0) n-gram hashing | 0.0312+0.0175 0.0133+0.0125 0.0195+0.0146  2.0817+0.8216  0.0194+0.0149  0.0182+0.0156  0.0188+0.0149

Table 7: AUC score of different watermarks under varying attack strength e on text generation task.
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Figure 6: Trade-off between distribution bias and watermark strength under key collision. The TPR
is measured under 10% (Top Left), 5% (Top Right), 1% (Bottom Left), 0.1% (Bottom Right) FPR.
We can see A Perplexity (distribution bias) increase with the TPR.
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Table 8: Empirical error rates for watermark detection on text generation. Each row is averaged over
around 2000 watermarked examples.

z=1.073 z=1.224 z=1.517 z=1.859
TNRtT TPRT | TNRT TPRt | TNRT TPRY | TNRT TPR?
0=0.5 90.00 46.05 | 95.00 38.78 | 99.00 24.41 | 99.90 13.04
Soft-watermark 0=1 90.00 8837 | 95.00 85.02 | 99.00 76.80 | 99.90 68.42
0=15 90.00 97.15 | 95.00 96.65 | 99.00 94.64 | 99.90 90.90
0=2 90.00 99.45 | 95.00 99.39 | 99.00 99.06 | 99.90 97.90
B=0 90.00 97.75 | 95.00 97.17 | 99.00 94.69 | 99.90 90.25
B8 =0.05| 90.00 96.82 | 95.00 96.19 | 99.00 92.67 | 99.90 86.26
Beta-watermark | 8 = 0.1 90.00 9576 | 95.00 94.19 | 99.00 89.13 | 99.90 79.90
=02 90.00 86.53 | 95.00 82.49 | 99.00 71.14 | 99.90 58.55
B8 =03 90.00 64.59 | 95.00 56.88 | 99.00 40.67 | 99.90 25.38
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Figure 7: Left. Trade-off between distribution bias and watermark strength under key collision. The
TPR is measured under 1% FPR. We can see A Perplexity (distribution bias) increase with the TPR.
Right. AUC score of different watermarks under varying attack strength € on text generation task.

F.1 ABLATION STUDY

Detect efficiency. We compare the detection efficiency of beta-watermark with Soft-watermark on
text generation tasks. We set the detecting scaling parameter (Definition[5.3) C' = 10. We choose
the threshold z = 1.073,1.224,1.517,1.859, which corresponds to the 10%, 5%, 1% and 0.1%
FPR. From Table[§] we see that the detect efficiency of beta watermark is comparable with the Soft-
watermark (Kirchenbauer et al.,[2023)). We also see that when [ increases, the detection efficiency
decreases, this is because a larger ( introduces a smaller distribution bias into the watermarked
distribution, thus reducing the watermark strength.

We use the beta-watermark to illustrate the trade-off between watermark strength and distribution
bias. As shown in Figure@ with increasing values of /3, the distribution bias decreases, but there is
also a corresponding decrease in the true positive rate of watermark detection. This indicates that
reducing the distribution bias of the watermark compromises its detectability.

In Figure 5] we see that the ROC of beta watermark is comparable with the Soft-watermark (Kirchen]
bauer et al.| 2023). We also see that when 3 increases, the detect efficiency decreases, this is because
a larger (8 introduces a smaller distribution bias into the watermarked distribution, thus reducing the
watermark strength.

Robustness. We assessed the robustness of the beta-watermark against random text modifications
and GPT-paraphrasing attacks (Kirchenbauer et al.,|2023), where we modified 5%, 10%, 20%, and
30% (i.e., e = 0.05,0.1,0.2,0.3) of the tokens. The results, as detailed in Figure [F-T] (right), and
Table[9] and[12]indicate that the beta-watermark maintains its robustness with moderate text
modifications.
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Table 9: Detectability and robustness of Soft watermark with beta-watermark under TPR @ FPR=0.1%
on random token modification
Random paraphrase FPR=0.1% | =0 e=0.05 e=0.1 =02 =03

Beta-watermark £=0 92.10 8842 8647 7121 49.89
£=0.05 91.78 87.94 8420 64.80 41.23
£=0.1 84.73  82.12 7241 5278 29.66
£=0.2 70.51 6452 5288 3348 15.74
£=0.3 38.15 2810 18.62 9.71 3.27
Soft 0=0.5 13.59 9.45 5.41 2.53 1.38
0=1.0 69.32  61.03 51.62 33.14 15.68
0=1.5 92.52  88.78 84.47 69.16 44.33
0=2.0 98.35 97.58 9637 90.65 73.60

Table 10: Detectability and robustness of Soft watermark with beta-watermark under TPR @
FPR=0.01% on random token modification
Random paraphrase ~FPR=0.01% | =0 €e=0.05 e=0.1 =02 =03

Beta-watermark 8=0 88.42 84.2 79.44  62.12 37.23
£=0.05 86.40 8235 7544 52.08 2281
£8=0.1 7175 7176 63.03 4198 17.99
£=0.2 5643 4922 3758 1996 7.10
£=0.3 2438  16.70 8.80 3.39 0.79
Soft 0=0.5 6.80 4.03 1.96 0.81 0.35
0=1.0 57.78  50.06  38.63 1971  6.27
0=1.5 88.21 83.56  78.00 56.92 29.59
0=2.0 9736 9582 93.07 84.82 63.36

Table 11: Detectability and robustness of Soft watermark with beta-watermark under TPR @
FPR=0.001% on random token modification
Random paraphrase ~ FPR=0.001% | =0 €=0.05 €=0.1 =02 =03

Beta-watermark £=0 84.84 79.44 7240 50.65 27.71
5=0.05 81.91 75.00 67.43 4331 17.65
£=0.1 71.21 63.79 5529 29.99 12.10
£=0.2 47.12  40.13 2960 11.86 2.88
£5=0.3 12.98 9.14 4.85 1.92 0.79
Soft 0=0.5 3.23 2.30 1.27 0.35 0.35
0=1.0 47.82 3796 29.11 10.86 2.80
0=1.5 8277 7766 71.09 4751 19.05
0=2.0 96.15 93.62 90.54 7822 50.83

Table 12: Detectability and robustness of Soft watermark with beta-watermark under TPR @
FPR=0.1% on GPT-4 paraphrase attack

GPT-4 paraphrase ~ FPR=0.1% | =0 e=0.05 e=0.1 =02 =03

Beta-reweight 8=0 92.10 90.62 9286 88.24 70.59
£=0.05 91.78 89.34 91.55 85.78 75.65
B8=0.1 84.73  83.03 79.35 72.00 53.44
£=0.2 70.51 6521 62775 5498 48.48
£=0.3 38.15 3214 3132 2947 1735
Soft 0=0.5 1359 1198 11.69 13.08 741
0=1.0 69.32 6583 6437 6136 55.12
0=1.5 9252 91.14 9246 89.38 76.70
0=2.0 9835 9779 9858 9593 95.00
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