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Abstract

In this paper we present regret minimization algorithms for the contextual multi-
armed bandit (CMAB) problem in the presence of delayed feedback, a scenario
where loss observations arrive with delays chosen by an adversary. We study
two fundamental frameworks in terms of the function classes used to derive regret
bounds for CMAB. Firstly, for a finite policy class Π, we establish an optimal regret
bound of O(

√
KT log |Π|+

√
D log |Π|), where K is the number of actions, T

is the number of rounds, and D is the sum of delays. Secondly, assuming a finite
contextual loss function class F and access to an online least-square regression
oracle O over F , we achieve a regret bound of Õ(

√
KT (RT (O) + log(δ−1)) +

ηD + dmax) that holds with probability at least 1− δ, where dmax is the maximal
delay,RT (O) is an upper bound on the oracle’s regret and η is a stability parameter
associated with the oracle.

1 Introduction

Multi-Armed Bandit (MAB) is one of the most fundamental and well-studied online learning settings
(see, e.g., [23, 31]). MAB describes a sequential decision-making problem where in each round
the learner chooses an action out of a finite set A containing K actions and suffers a loss for that
choice. The learner’s goal is to minimize the cumulative loss incurred throughout an interaction
of T rounds. In this model, action selection strategies are referred to as a policies, and the learner
ultimately aims to minimize regret, that is, the learner’s cumulative loss is compared to that of the
best action selection rule, i.e., the optimal policy.

MAB can describe various real-life online scenarios such as advertising, gaming, and healthcare.
Notwithstanding, in many modern applications, there are exterior factors that affect the loss incurred
by any choice of action. One such application is online advertising, where the reaction of a user to
a presented advertisement (i.e., clicking or ignoring) is heavily dependent on the user’s needs (e.g.,
if they would like to buy a new car), hobbies, and personal preferences. All of the previous can be
encoded in the user’s browsing history and cookies. Thus, the user’s cookies can refer to the external
factors that affect the user’s implied loss. These examples (and many others) motivate the model
of Contextual Multi-Armed Bandits (CMAB), where the external information is referred to as the
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context that determines the loss of each action. The context is revealed to the learner at the start of
each round of the game. The context space, denoted by X , is generally thought of as huge or even
infinite. In the adversarial CMAB model ([6, 11]), the context in each round is chosen by a (possibly
adaptive) adversary.

CMAB has been vastly studied, under various assumptions and different frameworks, which we
will review later. Returning to the online advertising example, in such an application, delayed
feedback is practically unavoidable. Consider the scenario where a sequence of users enters the
application one by one. The algorithm then needs to present them with advertisements, even though
the feedback of previous users has not arrived yet. As the application takes time to process each
user’s feedback, the feedback will arrive one by one, in a First-In-First-Out (FIFO) fashion, with an
inherent and unavoidable delay. Such real-life applications motivate the setting of MAB with delayed
feedback, which has also gained considerable attention in recent years, either when the environment
is adversarial [7, 8, 15, 32, 38] or stochastic [14, 20, 34].

In this paper, we consider the problem of Adversarial CMAB with Delayed Feedback under the two
main frameworks studied in CMAB literature: (1) Policy class learning (see e.g., [5, 6, 10]), where
the learner has access to a finite class Π ⊆ AX of deterministic mappings from contexts to actions.
The learner’s goal is then to compete against the best policy in the class. (2) Function approximation
(see, e.g., [4, 11, 13, 30]) where the learner has access to a loss function class F ⊆ [0, 1]X×A where
each function defines a mapping from context and action to a loss value in [0, 1]. The learner accesses
the function class via a regression oracle, which is assumed to be efficient. In this setting the learner
competes against the best contextual policy π⋆ : X → A on the true loss function f⋆ ∈ F . In this
setting, in addition to the standard least squares regret assumption required from the oracle, our
approach will require a stability assumption that will be discussed later in the paper. Our goal is to
derive regret minimization algorithms in both frameworks. Our main results are stated below.

Summary of our contributions. In this paper, we present delay-adapted algorithms in both CMAB
frameworks and analyze the regret of the proposed methods. In more detail, our main results are
summarized as follows:

• In the policy class learning framework, we present a delay-adapted version of the well-known
EXP4 algorithm (Algorithm 1) with biased loss estimators that are specialized to the CMAB setting.
For this approach we prove (see Theorem 1) that our algorithm has an expected regret bound of
O
(√

KT log |Π|+
√
D log |Π|

)
, where K is the number of actions, T is the number of rounds,

and D is the sum of delays, and has been shown in [8] to be optimal up to logarithmic factors.

• In the function approximation setting, we assume access to a finite contextual loss function class
F , which is accessed via an online least-square regression oracle O over F . In this framework,
we present a delay-adapted version of function approximation methods for CMAB, as specified in
our algorithm DA-FA (Algorithm 2). This algorithm is a delay-adapted version of the algorithm
OMG-CMDP! [26] that is specialized for CMAB (rather than contextual MDP). For this algorithm
we prove (in Theorem 6) a regret bound of Õ(

√
KT (RT (O) + log(δ−1)) + ηD + dmax) that

holds with probability at least 1− δ, where dmax is the maximal delay,RT (O) is an upper bound
on the oracle’s regret and η is a stability parameter associated with the oracle. To our knowledge,
our work is the first to consider delayed feedback in adversarial CMAB in the fully general function
approximation framework.

1.1 Additional related work

Contextual MAB. Contextual MAB has been vastly studied over the years, under various assump-
tions. Previous literature has two main lines of work. The first is policy class learning, starting from
the well-known EXP4 algorithm for adversarial CMAB [6], to [5, 10] that study computationally
efficient stochastic CMAB and obtain an optimal regret bound of Õ(

√
TK log(|Π|)).

The second line of work is the realizable function approximation setting, which has also been studied
for stochastic CMAB, starting from Langford and Zhang [22] to [3, 30, 35] for which an optimal
regret bound of Õ(

√
TK log(|F|)) has been shown, where F ⊆ [0, 1]X×A is a finite contextual

reward/loss function class, accessed via an offline regression oracle. The adversarial variant of CMAB
has also gained much attention recently, in the following significant line of works [11, 12, 13, 37],
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where an online regression is being used to access the function class F , with an optimal regret bound
of Õ(

√
KTRT (O)), whereRT (O) is the oracle’s regret.

Regret guarantees for linear CMAB first studied by [2] and the SOTA algorithms are those of [1, 9].
Contextual MDPs (which are an extension of MAB, that has multiple states and dyanmics) have been
studied under the function approximation framework [24, 25], with [26] being the most relevant to
our setting as it studies adversarial CMDP, and inspired our algorithm and analysis for the function
approximation setting.

Online Learning with Delayed Bandit Feedback. Delayed feedback has been an area of consider-
able interest in various online MAB problems in the past few years, with the first work on adversarial
MAB with a constant delay d by [8]. Subsequent results for adversarial MAB with arbitrary delays
have been established by [7, 32], with [32] being the first work to introduce a technique known as
skipping, which allows for obtaining nontrivial regret bounds even if the delay sequence contains a
relatively small number of excessive delays. [38] proposed the first algorithm for adversarial MAB
with arbitrary delays that is made fully adaptive and does not require any prior knowledge on the
delays. MAB with delayed feedback has also been studied from a best-of-both-worlds perspective
[28, 29] in which the suggested algorithms obtain desirable regret bounds when losses are either
stochastic or adversarial.

The study of delayed feedback in MAB has also been extended in several works to more general
learning settings. Such settings include linear bandits [18, 34], generalized linear bandits [17], com-
binatorial semi-bandits [33] and bandit convex optimization [27]. Another prevalent generalization
of MAB, in which delayed feedback has been studied, is RL, specifically tabular MDPs [19, 21, 33],
with the work of [19] who first suggested the use of biased delay-adapted loss estimators which
inspired our loss estimators used in Algorithm 1.

In CMAB, delayed feedback is far less explored, with the work of [36] who consider stochastic
delays and contexts in generalized linear contextual bandits, which is a special case of the general
function approximation setting studied in this paper.

2 Problem Setup

We consider the problem of adversarial contextual MAB (CMAB) with delayed bandit feedback.

Contextual MAB. Formally, CMAB is defined by a tuple (X ,A, ℓ) where X is the context space,
which is assumed to be large or even infinite, and A is a finite action space. ℓ : X × A → [0, 1]
forms an expected loss function, meaning, for (x, a) ∈ X × A, ℓ(x, a) = E[L(x, a) | x, a] where
L(x, a) ∈ [0, 1] is sampled from an unknown distribution, related to the context x and the action
a. Note that in CMAB, in contrast to MAB, each context is associated with a potentially different
best action a⋆x, as the loss function is context-dependent. In the adversarial CMAB setup, the
learner is faced with a sequential decision-making game which is played for T rounds where she
is tasked with repeatedly choosing actions from a finite set A of actions (or arms). We also denote
A = {1, 2, . . . ,K}. The context in each round is chosen by a (possibly adaptive) adversary. Thus,
the interaction protocol is as follows. In each round t = 1, 2, . . . , T , nature reveals a context xt ∈ X ,
to the learner. The learner chooses an action at and suffers loss L(xt, at). A policy π defines a
mapping from context to a distribution over actions, i.e., π : X → ∆(A). The learner’s cumulative
performance is ultimately compared to that of the best (deterministic) policy π⋆ : X → A.

Delayed feedback. The learner observes delayed bandit feedback, where the sequence of de-
lays can be arbitrary. Formally, delays are determined by an arbitrary sequence of numbers
d1, . . . , dT ∈ {0, 1, . . . , T}. In each round t, after choosing an action at, the learner observes
the pairs (s, L(xs, as)) for all rounds s ≤ t with s + ds = t; crucially, only the loss values are
delayed, whereas the contexts xt are each observed at the start of round t. We consider a setting
where the sequence of delays (dt)Tt=1 as well as the contexts (xt)

T
t=1 are generated by an adversary.

In this paper we denote by D the sum of delays, that is D =
∑d

t=1 dt, the the maximal delay is
denoted by dmax = maxt∈[T ] dt.
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Learning objective. We consider the objective of minimizing regret, which is the difference
between the cumulative loss of the learner and that of the best-fixed policy π⋆, i.e.,

RT :=

T∑
t=1

ℓ(xt, at)− ℓ(xt, π
⋆(xt)).

We consider two different learning settings, that affect the benchmark we compete against, i.e.,
affects the definition of π⋆. The first setting we consider is Policy Class Learning. In this setting,
we assume access to a finite policy class Π ⊆ AX . Then, the benchmark π⋆ is the best policy
among the class, i.e., π⋆ ∈ argminπ∈Π

∑T
t=1 ℓ(xt, π(xt)). The second setting we consider is Online

function approximation. In this setting, we assume access to a realizable contextual loss class
F ⊆ X × A → [0, 1], where realizability means that there exists a function f⋆ ∈ F such that for
all (x, a) ∈ X × A it holds that f⋆(x, a) = ℓ(x, a). Then, the learner’s goal is to compete against
π⋆(x) = argmina∈A f⋆(x, a), for all x ∈ X .

3 Policy Class Learning

In this section, we study a formulation of the CMAB problem which considers a finite but structureless
policy class Π ⊆ AX , indexed by Π = {π1, . . . , πN} where we denote |Π| = N . We remark that in
this formulation, the loss vectors (L(xt, ·))Tt=1 may also be generated by an adversary.

3.1 Algorithm: EXP4 with Delay-Adapted Loss Estimators

In the following, we present a variant of the well-studied EXP4 algorithm [6], formally described in
Algorithm 1, which incorporates delay-robust loss estimators specialized to the CMAB setting. On a
high-level, the algorithm performs multiplicative weight updates over the N -dimensional simplex
∆N , while using all of the feedback that arrives in each round t to construct loss estimators, denoted
by ĉt ∈ RN

+ . Our loss estimators are inspired by those suggested by [19], and are reminiscent of the
standard importance-weighted loss estimators, with an additional term in the denominator which
induces an under-estimation bias. More specifically, the standard (unbiased) importance-weighted
loss estimators are defined by

c̃t,i =
L(xt, at)I[πi(xt) = at]

Qt,at

∀i ∈ [N ], (1)

where Qt,a =
∑N

i=1 pt,iI[πi(xt) = a] is the distribution over actions induced by pt ∈ ∆N and the
context xt. For our approach and analysis, it is crucial to introduce biased versions of the above
estimators, defined as

ĉt,i =
L(xt, at)I[πi(xt) = at]

max
{
Qt,at

, Q̃t+dt
t,at

} ∀i ∈ [N ], (2)

where Q̃t+dt
t,a =

∑N
i=1 pt+dt,iI[πi(xt) = a] is the distribution over actions induced by the distribution

pt+dt
and the context xt. Interestingly, these estimators exhibit a coupling between the context xt,

which arrives at a given round t, and the sampling distribution pt+dt
from a future round, and can

be thought of as a mechanism that incentivizes actions whose sampling probability has increased
between rounds t and t+ dt, with respect to the context xt. The main result for Algorithm 1 is given
in the following theorem.

Theorem 1. Algorithm 1 attains an expected regret bound of

E[RT ] ≤
logN

η
+ ηKT + 2ηD,

where the expectation is over the algorithm’s stochasticity. For η =
√

logN
KT+D we obtain

E[RT ] ≤ O
(√

KT logN +
√
D logN

)
.

We remark that Algorithm 1 requires an upper bound on the sum of delays D, however, it can be
made adaptive by utilizing a “doubling” mechanism, see Section 5 for more detail. In what follows,
we highlight the main steps and technical challenges of the analysis towards proving Theorem 1. The
full proof can be found in Appendix A.1.
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Algorithm 1 EXP4 with Delay-Adapted Loss Estimators (EXP4-DALE)
1: inputs:

• Finite policy class Π ⊆ X → A with |Π| = N ,
• Upper bound on the sum of delays, D.
• Step size η > 0.

2: Initialize p1 ∈ ∆N as the uniform distribution over Π.
3: for round t = 1, . . . , T do
4: Receive context xt ∈ X .
5: Sample π ∼ pt and play at = π(xt).
6: Observe feedback (s, L(xs, as)) for all s ≤ t with s+ ds = t and construct loss estimators

ĉs,i =
L(xs, as)I[πi(xs) = as]

max
{
Qs,as

, Q̃t
s,as

} ∀i ∈ [N ],

where we define Qs,a =
∑N

i=1 ps,iI[πi(xs) = a] and Q̃t
s,a =

∑N
i=1 pt,iI[πi(xs) = a].

7: Update

pt+1,i ∝ pt,i exp

(
−η

∑
s:s+ds=t

ĉs,i

)
. (3)

3.2 Analysis Overview and Technical Challenges

The main technical novelty of our approach is expressed in the use of delay-adapted loss estimators
inspired by the work of [19]. While the natural delay-adapted version of EXP4 with the standard
importance-weighted loss estimators may lead to an optimal regret bound, the standard analysis
would result in a regret bound containing terms of the form Qt+dt,a/Qt,a which, in order to be
able to bound appropriately, would require further involved analysis of the multiplicative stability of
the algorithm. Our approach, however, alleviates the need to analyze the algorithm’s multiplicative
stability while instead incurring an additive bias term of the form

∑
t

∑
a|Qt,a − Q̃t+dt

t,a |, which we
bound in Lemma 13 in Appendix A.1 by an overall drift term which already appears in the regret
bound due to the presence of delays.

With that in mind, we begin by decomposing the regret of Algorithm 1 as follows:

RT =

T∑
t=1

ct · (pt − p⋆)

=

T∑
t=1

pt · (ct − ĉt)︸ ︷︷ ︸
Bias1

+

T∑
t=1

p⋆ · (ĉt − ct)︸ ︷︷ ︸
Bias2

+

T∑
t=1

(pt − pt+dt) · ĉt︸ ︷︷ ︸
Drift

+

T∑
t=1

(pt+dt − p⋆) · ĉt︸ ︷︷ ︸
OMD

, (4)

where ct,i = L(xt, πi(xt)) denotes the true loss of πi on the context xt. First, we note that the Bias2
term is negative in expectation, since the delay-adapted loss estimators ĉt are upper bounded by the
standard unbiased estimators c̃t. The OMD term can be bounded by standard OMD analysis as

T∑
t=1

(pt+dt
− p⋆) · ĉt ≤

logN

η
+

η

2
E

[
T∑

t=1

N∑
i=1

pt+dt,iĉ
2
t,i

]
.

Next, we bound both the Bias1 and Drift terms, the first of which arises from the bias in our
delay-adapted loss estimators, and the second is affected by the discrepancy between the iterates
pt+dt

and pt. Both of these terms can be bounded in expectation by a quantity which is governed by
the stability of Algorithm 1 and the sequence of delays, namely

∑T
t=1 E∥pt+dt

− pt∥1. Thus, we
obtain the following expected regret bound:
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E[RT ] ≤
logN

η
+

η

2
E

[
T∑

t=1

N∑
i=1

pt+dt,iĉ
2
t,i

]
+ 2E

[
T∑

t=1

∥pt+dt − pt∥1

]
. (5)

Given this result, Theorem 1 follows by bounding the first two terms (arising from the OMD term)
by ηKT , and the third term by η(D + T ). Intuitively, the drift term can be controlled by using the
fact that Algorithm 1 is an instantiation of mirror descent with a negative-entropy regularization,
which is strongly convex with respect to the L1 norm. This ensures that the algorithm’s updates will
be stable in the sense that

E∥pt+1 − pt∥1 ≤ ηmt,

where mt is the number of observations that arrive on round t. Thus, we can bound the third term in
Eq. (5) by η

∑T
t=1(# of observations that arrive between rounds t and t+ dt), which is shown to be

bounded by η(D + T ). Then, using the specific form of our loss estimators given in Eq. (2), we can
bound the second term in Eq. (5) by ηKT by making use of the specific form of the loss estimators
given in Eq. (2), which gives us the desired bound in Theorem 1.

4 Online Function Approximation

In this section, we provide regret guarantees for CMAB with delayed feedback under the framework
of online function approximation [11, 13]. In this setting, the learner has access to a class of loss
functions F ⊆ X × A → [0, 1], where each function f ∈ F maps context x ∈ X and an action
a ∈ A to loss ℓ ∈ [0, 1]. We use F to approximate the context-dependent expected loss of any action
a ∈ A for any context x ∈ X . We access F using an online least-squares regression (OLSR) oracle
that will operate under the following standard realizability assumption.

Assumption 2. There exists a function f⋆ ∈ F such that for all (x, a) ∈ X ×A, f⋆(x, a) = ℓ(x, a).

We assume access to a classical, non-delayed, online regression oracle with respect to the square
loss function hsq(ŷ, y) = (ŷ − y)

2. The oracle, which we denote by OF
sq , is given as input at each

round t the past observations (xs, as, Ls(xs, as))
t−1
s=1 and outputs a function f̂t ∈ F . A general

formulation of the online oracle model is discussed in [11]. We make use of the following standard
online least-squares regret assumption of the oracle which is also considered in [11].

Assumption 3 (Least-Squares Oracle Regret). The oracle OF
sq guarantees that for every sequence

{(xt, at, Lt)}Tt=1, regret is bounded as

T∑
t=1

(f̂t(xt, at)− Lt)
2 − inf

f∈F

T∑
t=1

(f(xt, at)− Lt)
2 ≤ RT (OF

sq).

The oracle also satisfies the following concentration guarantee, as implied by Lemma 2 in [11].

Lemma 4 (Concentration of non-delayed OLSR oracle). Under Assumption 2 and Assumption 3,
for any δ ∈ (0, 1), the following holds with probability at least 1− δ.

T∑
t=1

Eat∼pt

[(
f̂t(xt, at)− ℓ(xt, at)

)2]
≤ 2RT (OF

sq) + 16 log(2/δ).

Assumption 2 and Assumption 3 (or variants of it for other loss functions) are necessary to derive
regret bounds for adversarial CMAB and appear in previous literature, e.g., [11, 12]. However, a
general implementation of online least-square regression oracle for a general function class might
be unstable. In more detail, let {f̂1, f̂2, . . . , f̂T } denote the sequence of functions outputted by the
(non-delayed) oracle on the observation sequence {(xt, at, Lt)}Tt=1. Then, ∥f̂i(x, ·)− f̂i+1(x, ·)∥∞
might be of high magnitude, for any x ∈ X and i ∈ [T ]. In the standard adversarial CMAB setting,
this is a non-issue as that difference is absorbed by the oracle’s regret on the sequence of examples.
However, when considering delayed feedback, stability becomes crucial. The reason is that the

6



oracle’s updates now depend on the arrival time of new loss observations. Hence, it is possible that the
oracle is not updated for a considerably long time, but then, at some given time step, receives many
examples at once, and will be fed with all of these examples. Thus, without being able to control the
stability of the oracle, and due to the setting being adversarial, we might experience uncontrollable
changes in the loss approximations and incur linear regret for unfavorable delay sequences. Hence,
we impose the following natural stability assumption, stated below.

Assumption 5 (η-stability). Let f̂1, f̂2, . . . , f̂T denote the function sequence outputted by the non-
delayed oracle OF

sq on the observation sequence {(xt, at, Lt)}Tt=1. We assume that for all t ∈ [T ]

and x ∈ X , it holds that ∥f̂t(x, ·)− f̂t−1(x, ·)∥∞ ≤ η for η > 0. We denote the η-stable oracle for
the function class F by OF,η

sq .

We note that our online regression oracle is essentially an online optimization algorithm. This makes
our stability assumption even more understandable because stability is an important property of many
online optimization algorithms, and is in some cases essential in order to derive regret guarantees.
Such algorithmic frameworks include, for instance, FTRL and OMD (see, e.g., [16]). See also
Section 5 for further discussion on the topic.

4.1 Algorithm: Delay-Adapted Function Approximation for CMAB

In the following, we present algorithm DA-FA (Algorithm 2) for regret minimization in CMAB
with delayed feedback under the function approximation framework described above. The algorithm
is a delay-adapted version of algorithm OMG-CMDP! [26] applied to adversarial CMAB and its
analysis for the delay-independent terms is similar. Algorithm 2 essentially uses the most up-to-date
approximation of the loss until delayed observations arrive. When they arrive, the algorithm feeds
them to the oracle one by one, ignores the midway approximations, and uses only the newest loss
approximation. More specific details are given below.

In each round t = 1, 2, . . . , T the algorithm operates as follows. Let α(t) < t denote the number
of observations that arrived at round t. Denote these observations by {(sti, L(xsti

, asti))}
α(t)
i=1 , where

st1 ≤ . . . ≤ stα(t) denote the time steps of the non-delayed related context and action associated with
these delayed loss observation. It then holds that sti + dsti = t for all i ∈ [α(t)]. Note that we assume
that the delayed observations arrive in FIFO order, meaning, the delayed observation from round n
always arrives before (or in parallel to) that of round n+ 1 for all n ∈ [T ]. Then, for i = 1, . . . , α(t),
we feed the oracle with the example (xsti

, asti , L(xsti
, asti)) and observe the predicted function f̂t−dst

i

.

Let τ t = t − dst
α(t)

= stα(t) denote the index of the last observed delayed loss. After processing
all the data that arrived, the current context xt is revealed and the algorithm uses the last predicted
function f̂τt to solve the regularized convex optimization problem specified in Eq. (6), and plays an
action sampled from the resulted distribution.

The following theorem states the performance of our algorithm.

Theorem 6. For any δ ∈ (0, 1) let γ =

√
T |A|

2RT (OF,η
sq )+16 log(4/δ)

. Then, with probability at least

1− δ, the following regret bound holds,

RT ≤ Õ

(√
T |A|

(
RT (OF,η

sq ) + log(δ−1)
)
+ ηD + dmax

)
.

Computational efficiency. Note that the optimization problem given in Eq. (6) is convex and can
be solved efficiently to an arbitrary precision, and thus Algorithm 2 is clearly efficient, assuming an
efficient oracle implementation.

4.2 Analysis

In this subsection, we analyze algorithm DA-FA (Algorithm 2), proving Theorem 6.

Our main technical challenge is reflected in the regret analysis. As in all previous literature regarding
delayed feedback, the main challenge is to derive a bound where the sum of delays D is separated
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Algorithm 2 Delay-Adapted Function Approximation for CMAB (DA-FA)
1: inputs:

• Function class F for loss approximation
• Learning rate parameter γ.
• η-stable OLSR oracle OF,η

sq .
2: for round t = 1, . . . , T do
3: observe α(t) < t losses {(sti, L(xsti

, asti))}
α(t)
i=1 where ∀i ∈ [α(t)], sti + dsti = t and

st1 ≤ . . . ≤ stα(t).
4: for i = 1, 2, . . . , α(t) do
5: update OF,η

sq with the example ((xsti
, asti), L(xsti

, asti)).
6: observe the oracle’s output f̂t−dst

i

← OF,η
sq .

7: let τ t := t− dst
α(t)

= stα(t) denote index of the last observed loss.

8: use f̂τt as the current loss approximation.
9: observe context xt ∈ X .

10: solve

pt = argmin
p∈∆A

∑
a∈A

p(a) · f̂τt(xt, a)−
1

γ

∑
a∈A

log(p(a)). (6)

11: play the action at sampled from pt(·)

from the number of actions. Usually, this separation is obtained by a delicate choice of loss estimators.
In our case, the loss estimator choice is done by the oracle, hence not transparent to the algorithm.
Our way to create the desired separation is by the decomposition of the regret described in Eq. (7). Let
{f̂1, f̂2, . . . , f̂T } denote the functions predicted by the OLSR oracle on the non-delayed observation
sequence {(x1, a1, L(x1, a1)), (x2, a2, L(x2, a2)), . . . , (xT , aT , L(xT , aT ))}. That is, for all i ∈
[T − 1], f̂i+1 = OF,η

sq (·; (x1, a1, L(x1, a1)), . . . , (xi, ai, L(xi, ai))). In the following analysis, for
convenience, we denote the optimal (randomized) policy by p⋆(·|x) for all x ∈ X . Then, the regret is
given byRT =

∑T
t=1(pt(·)− p⋆(· | xt)) · ℓ(xt, ·) and decomposed as follows.

RT =

dmax∑
t=1

(pt(·)− p⋆(· | xt)) · ℓ(xt, ·)︸ ︷︷ ︸
(a)

+

T∑
t=dmax+1

(pt(·)− p⋆(· | xt)) · f̂τt(xt, ·)︸ ︷︷ ︸
(b)

+

T∑
t=dmax+1

pt(·) ·
(
ℓ(xt, ·)− f̂t(xt, ·)

)
︸ ︷︷ ︸

(c)

+

T∑
t=dmax+1

p⋆(· | xt) ·
(
f̂t(xt, ·)− ℓ(xt, ·)

)
︸ ︷︷ ︸

(d)

+

T∑
t=dmax+1

(pt − p⋆(· | xt)) ·
(
f̂t(xt, ·)− f̂τt(xt, ·)

)
︸ ︷︷ ︸

(e)

.

(7)

In the above decomposition, term (a) is bounded trivially by dmax. Term (b) is the regret with respect
to the approximated delayed loss. Term (c) is the approximation error with respect to the policy
induced by pt(·), when considering the non-delayed approximated loss. This term will be bounded
by the oracle regret. Term (d) is the approximation error with respect to the optimal p⋆(·|·) when
considering the non-delayed approximated loss. Lastly, term (e) is the regret caused by the delay
drift in approximation. This term will be shown to be bounded by ηD, independently of the number
of actions.

We bound each term individually in the following lemmas, and then combine the results to con-
clude Theorem 6. We start by term (a) that is bounded trivially by dmax, since the losses are in [0, 1].

8



We then proceed to bound term (b), whose bound follows from first-order optimality conditions for
convex optimization.

Lemma 7 (Term (b) bound). It holds true that

T∑
t=dmax+1

(pt(·)− p⋆(·|xt)) · f̂τt(xt, ·) ≤
T |A|
γ
−

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
.

Term (c) is bounded using AM-GM inequality, and applying the non-delayed oracle concentration
bound stated in Lemma 4. We obtain the following.

Lemma 8 (Term (c) bound). With probability at least 1− δ/2,

T∑
t=dmax+1

pt(·) ·
(
ℓ(xt, ·)− f̂t(xt, ·)

)
≤ T |A|

γ
+ γ
(
2RT (OF,η

sq ) + 16 log(4/δ)
)
.

Term (d) is bounded using AM-GM inequality to change the measure from p⋆(·|xt) to pt(·), to then
apply the non-delayed oracle concentration bound. We obtained the following.

Lemma 9 (Term (d) bound). With probability at least 1− δ/2 it holds that

T∑
t=dmax+1

p⋆(·|xt) ·
(
f̂t(xt, ·)− ℓ(xt, ·)

)
≤

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
+ γ
(
2RT (OF,η

sq ) + 16 log(4/δ)
)
.

The proofs of Lemmas Lemmas 7 to 9 are inspired by those of [26], and included for completeness
in Appendix A.2.

Lastly, we bound term (e). We apply Hölder’s inequality and η-stability (Assumption 5) to obtain the
following result. The full proof of the lemma can also be found in Appendix A.2.

Lemma 10 (Term (e) bound). Under Assumption 5 the following holds true.

T∑
t=dmax+1

(pt(·)− p⋆(· | xt)) ·
(
f̂t(xt, ·)− f̂τt(xt, ·)

)
≤ 2ηD.

We now have what we need to prove Theorem 6.

Proof of Theorem 6. Putting the results of Lemmas 7 to 10 all together, with probability at least
1− δ the regret of Algorithm 2 is bounded as follows.

RT ≤ dmax + 2
T |A|
γ

+ 2γ
(
2RT (OF,η

sq ) + 16 log(4/δ)
)
+ 2ηD.

Choosing γ =

√
T |A|

2RT (OF,η
sq )+16 log(4/δ)

yields the desired bound. ■

5 Conclusions and Discussion

In this paper we present regret minimization algorithms for adversarial CMAB with delayed feedback,
where both the contexts and delays are chosen by a (possibly adaptive) adversary. We consider the
problem under the two mainstream frameworks for CMAB learning: (1) policy class learning and (2)
online function approximation.

For (1) we present the algorithm EXP4-DALE (Algorithm 1) and prove that it obtains a regret
bound of O

(√
KT log|Π|+

√
D log|Π|

)
which is known to be optimal, up to logarithmic factors,

in terms of the sum of delays D. We remark that while our approach is not designed to handle delay
sequences with overly excessive delays, we strongly believe that it is possible to employ skipping
techniques similar to those of [38] in order to obtain more refined bounds in terms of the delay
sequence. Additionally, while Algorithm 1 requires knowledge of T and D in order to tune the

9



learning rate, using a doubling approach similar to the one suggested by [21], the same bound can be
obtained without knowledge of T or D.

For (2) we present the algorithm DA-FA (Algorithm 2) and analyze its regret under a natural stability
assumption related to the online regression oracle in use, which affects our bound. By the applicability
of this model, studying minimal and natural assumptions regarding the oracle in use that enables
achieving sublinear regret guarantees is a truly interesting question we leave for future research. We
will remark, however, that for online oracles such as the least-squares regression oracles employed
throughout the adversarial CMAB literature, assuming that they satisfy certain stability properties
seems fairly natural. The reason is that a plethora of online learning algorithms (with an online oracle
being one such algorithm) are based on either FTRL or OMD updates, which inherently make use of
a step size η which governs the algorithm’s stability. While we make no assumption on the specific
algorithmic structure of the given online oracle for our setting, a practical implementation of such an
oracle would most likely involve FTRL / OMD style updates which would also induce stability.
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A Proofs

A.1 Proofs for Section 3

Throughout this section, we use the notation Et[·] to denote an expectation conditioned on the entire
history up to round t.

Theorem 11. Algorithm 1 attains the following expected regret bound:

E[RT ] ≤
logN

η
+

η

2
E

[
T∑

t=1

N∑
i=1

pt+dt,iĉ
2
t,i

]
+ 2E

[
T∑

t=1

∥pt+dt
− pt∥1

]
.

Proof. The regret may be decomposed as follows:

RT =

T∑
t=1

ct · (pt − p⋆)

=

T∑
t=1

pt · (ct − ĉt)︸ ︷︷ ︸
Bias1

+

T∑
t=1

p⋆ · (ĉt − ct)︸ ︷︷ ︸
Bias2

+

T∑
t=1

(pt − pt+dt
) · ĉt︸ ︷︷ ︸

Drift

+

T∑
t=1

(pt+dt
− p⋆) · ĉt︸ ︷︷ ︸

OMD

, (8)

where ct,i = L(xt, πi(xt)) for i ∈ [N ]. The OMD term can be bounded by referring to Lemma 9 of
[32] which asserts that

T∑
t=1

(pt+dt − p⋆) · ĉt ≤
logN

η
+

η

2

T∑
t=1

|Π|∑
i=1

pt+dt,iĉ
2
t,i. (9)

while noting that this lemma does not require a specific form of loss estimators, only that they are
nonnegative, as is the case for our delay-adapted estimators defined in Eq. (2). We also note that the
Bias2 term is non-positive in expectation, since the delay-adapted estimators satisfy Et[ĉt,i] ≤ ct,i
for i ∈ [N ]. Thus, to conclude the proof we are left with bounding the Drift and Bias1 terms,
whose bounds are given in Lemma 12 and Lemma 13 that follow. ■

Proof of Theorem 1. First, we show that

E

[∑
t

∑
i

pt+dt,iĉ
2
t,i

]
≤ KT.

Indeed, using the definition of the delay-adapted loss estimators ĉt, it holds that

E

[∑
t

∑
i

pt+dt,iĉ
2
t,i

]
= E

∑
t

∑
i

pt+dt,i

L(xt, at)I[πi(xt) = at]

max
{
Qt,at

, Q̃t+dt
t,at

}
2


≤ E

[∑
t

1

Q̃t+dt
t,at

∑
i

pt+dt,iI[πi(xt) = at]

Qt,at

]

= E

[∑
t

1

Qt,at

]
= E

[∑
t

∑
a

Qt,a

Qt,a

]
= KT.

Thus, using Theorem 11 together with Lemma 14 gives the bound claimed in Theorem 1. ■

Lemma 12 (Bounding the Drift term). The Drift term given in Eq. (8) is bounded in expectation
as follows:

E

[
T∑

t=1

(pt − pt+dt
) · ĉt

]
≤ E

[
T∑

t=1

∥pt − pt+dt
∥1

]
.
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Proof. First, we note that the delay-adapted loss estimators ĉt are upper-bounded by the standard,
conditionally unbiased importance-weighted estimators c̃t defined in Eq. (1). Therefore, we can
bound the Drift term as follows:

E

[
T∑

t=1

(pt − pt+dt) · ĉt

]
≤ E

[
T∑

t=1

N∑
i=1

|pt,i − pt+dt,i|ĉt,i

]

≤ E

[
T∑

t=1

N∑
i=1

|pt,i − pt+dt,i|c̃t,i

]

= E

[
T∑

t=1

N∑
i=1

|pt,i − pt+dt,i| · ct,i

]

≤ E

[
T∑

t=1

∥pt − pt+dt∥1

]
,

where the last step follows from Hölder’s inequality and the fact that ∥ct∥∞ ≤ 1. ■

Lemma 13. The Bias1 term given in Eq. (8) is bounded in expectation as follows:

E

[∑
t

pt · (ct − ĉt)

]
≤ E

[
T∑

t=1

∥pt − pt+dt∥1

]
.

Proof. We note losses and loss estimators can be indexed by actions rather than policies and use the
the notation ct,a = L(xt, a) and ĉt,a =

ct,aI[at=a]
Mt,a

where Mt,a = max
{
Qt,a, Q̃

t+dt
t,a

}
. Therefore,

using the fact that Et[ĉt,a] = ct,a
Qt,a

Mt,a
, the Bias1 term can be bounded as follows:

E

[
T∑

t=1

pt · (ct − ĉt)

]
= E

[
T∑

t=1

K∑
a=1

Qt,a(L(xt, a)− ĉt,a)

]

= E

[
T∑

t=1

K∑
a=1

Qt,aL(xt, a)

(
1− Qt,a

Mt,a

)]

≤ E

[
T∑

t=1

K∑
a=1

Qt,a

Mt,a
(Mt,a −Qt,a)

]

≤ E

[
T∑

t=1

K∑
k=1

(
max

{
Qt,a, Q̃

t+dt
t,a

}
−Qt,a

)]

≤ E

[
T∑

t=1

K∑
a=1

∣∣∣Q̃t+dt
t,a −Qt,a

∣∣∣].
Now, by the definition of Qt,a, Q̃

t+dt
t,a and the triangle inequality, we have

E

[
T∑

t=1

K∑
a=1

∣∣∣Q̃t+dt
t,a −Qt,a

∣∣∣] ≤ E

 T∑
t=1

K∑
a=1

∑
i:πi(xt)=a

|pt+dt,i − pt,i|

 = E

[
T∑

t=1

∥pt − pt+dt∥1

]
,

concluding the proof. ■

Lemma 14 (Distribution drift). The following holds for the iterates {pt}Tt=1 of Algorithm 1:

E

[
T∑

t=1

∥pt+dt
− pt∥1

]
≤ η(D + T ).

Proof of Lemma 14. Define

Ft(p) = p ·
∑

s:s+ds<t

ĉs +
1

η
R(p),
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where R(p) =
∑N

i=1 pi log pi, so that pt = argminp∈∆Π
Ft(p). Note that R(·) is 1-strongly convex

with respect to ∥·∥1, and therefore Ft(·) are 1/η-strongly convex. Thus, using first-order optimality
conditions for pt and pt+1, we have:

Ft(pt+1) ≥ Ft(pt) +∇Ft(pt) · (pt+1 − pt) +
1

2η
∥pt+1 − pt∥21 ≥ Ft(pt) +

1

2η
∥pt+1 − pt∥21,

Ft+1(pt) ≥ Ft+1(pt+1) +∇Ft+1(pt+1) · (pt − pt+1) +
1

2η
∥pt+1 − pt∥21 ≥ Ft+1(pt+1) +

1

2η
∥pt+1 − pt∥21.

Summing the two inequalities, we obtain

1

η
∥pt+1 − pt∥21 ≤ Ft+1(pt)− Ft(pt) + Ft(pt+1)− Ft+1(pt+1)

=

( ∑
s:s+ds=t

ĉs

)
· (pt − pt+1)

≤
∑
i

( ∑
s:s+ds=t

ĉs,i

)
|pt,i − pt+1,i|

≤
∑
i

( ∑
s:s+ds=t

c̃s,i

)
|pt,i − pt+1,i|,

where c̃s,i are the standard (unbiased) importance-weighted loss estimators. Taking expectations
while using E[(·)2] ≥ (E[·])2 and Hölder’s inequality, we obtain

1

η
(E∥pt+1 − pt∥1)

2 ≤ 1

η
E
[
∥pt+1 − pt∥21

]
≤ E

[∑
i

( ∑
s:s+ds=t

cs,i

)
· |pt+1,i − pt,i|

]
≤ mtE∥pt+1 − pt∥1,

where mt = |{s : s+ ds = t}| is the number of observations that arrive on round t. Dividing through
by the right-hand side of the inequality above, we obtain

E∥pt+1 − pt∥1 ≤ ηmt,

and using the triangle inequality we have

E∥pt+dt
− pt∥1 ≤

dt∑
s=1

E∥pt+s − pt+s−1∥1 ≤ η

dt∑
s=1

mt+s−1 = ηMt,dt
,

where Mt,dt
is the number of observations that arrive between rounds t and d+dt−1. Using Lemma

C.7 in [19], we conclude the proof via

E

(
T∑

t=1

∥pt+dt − pt∥1

)
≤ η

T∑
t=1

Mt,dt ≤ η(D + T ).

■
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A.2 Proofs for Section 4.2

In this subsection, we provide the proofs of the lemmas required to derive regret guarantees for
algorithm DA-FA (Algorithm 2), proving Theorem 6.

Recall the following regret decomposition,

RT =

dmax∑
t=1

(pt(·)− p⋆(· | xt)) · ℓ(xt, ·) +
T∑

t=dmax+1

(pt(·)− p⋆(· | xt)) · f̂τt(xt, ·)

+

T∑
t=dmax+1

pt(·) ·
(
ℓ(xt, ·)− f̂t(xt, ·)

)
+

T∑
t=dmax+1

p⋆(· | xt) ·
(
f̂t(xt, ·)− ℓ(xt, ·)

)

+

T∑
t=dmax+1

(pt(·)− p⋆(· | xt)) ·
(
f̂t(xt, ·)− f̂τt(xt, ·)

)
.

We bound each term individually in the following lemmas and claims, and then we combine all the
bounds to derive Theorem 6.

Claim 15. It holds that
dmax∑
t=1

(pt(·)− p⋆(· | xt)) · ℓ(xt, ·) ≤ dmax.

Proof. Followed by the fact that for ℓ is bounded in [0, 1]. ■

Lemma 16 (Restatement of Lemma 7). It holds that
T∑

t=dmax+1

(pt(·)− p⋆(·|xt)) · f̂τt(xt, ·) ≤
T |A|
γ
−

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
.

Proof. For t ∈ {dmax+1, dmax+2, . . . , T}, let Rt(p) denote the objective of the convex minimization
problem in Eq. (6), i.e,

Rt(p) =
∑
a∈A

p(a) · f̂τt(xt, a)−
1

γ

∑
a∈A

log(p(a)).

Hence,

(∇Rt(p))a = f̂τt(xt, a)−
1

γp(a)
.

Since p⋆(·|xt) is a feasible solution and pt is the optimal solution, by first-order optimality conditions
we have ∑

a∈A
p⋆(a|xt)

(
f̂τt(xt, a)−

1

γpt(a)

)
−
∑
a∈A

pt(a)

(
f̂τt(xt, a)−

1

γpt(a)

)
≥ 0,

Thus, ∑
a∈A

(p⋆(a|xt)− pt(a))f̂τt(xt, a) ≥
∑
a∈A

p⋆(a|xt)

γpt(a)
− |A|

γ
.

Which implies that ∑
a∈A

(pt(a)− p⋆(a|xt))f̂τt(xt, a) ≤
|A|
γ
−
∑
a∈A

p⋆(a|xt)

γpt(a)
.

We conclude that
T∑

t=dmax+1

(pt − p⋆(·|xt)) · f̂τt(xt, ·) ≤
T |A|
γ
−

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
.

■
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Lemma 17 (Restatement of Lemma 8). With probability at least 1− δ/2 it holds that

T∑
t=dmax+1

pt(·) ·
(
ℓ(xt, ·)− f̂t(xt, ·)

)
≤ T |A|

γ
+ γ
(
2RT (OF,η

sq ) + 16 log(4/δ)
)
.

Proof. For this term, we apply the oracle regret bound for the non-delayed function approximation.
By Lemma 4 the following holds with probability at least 1− δ/2.

T∑
t=dmax+1

pt(·) ·
(
ℓ(xt, ·)− f̂t(xt, ·)

)
≤

T∑
t=dmax+1

∑
a∈A

pt(a)
(
ℓ(xt, a)− f̂t(xt, a)

)
=

T∑
t=dmax+1

∑
a∈A

√
γ

γ
pt(a)

(
ℓ(xt, a)− f̂t(xt, a)

)
≤

T∑
t=dmax+1

∑
a∈A

pt(a)

γ
+ γ

T∑
t=dmax+1

∑
a∈A

pt(a)
(
ℓ(xt, a)− f̂t(xt, a)

)2
= (AM-GM)

(T − dmax)|A|
γ

+ γ

T∑
t=dmax+1

Eat∼pt

[(
f̂t(xt, at)− ℓ(xt, at)

)2]
≤

(T − dmax)|A|
γ

+ γ

T∑
t=1

Eat∼pt

[(
f̂t(xt, at)− ℓ(xt, at)

)2]
≤

T |A|
γ

+ γ
(
2RT (OF,η

sq ) + 16 log(4/δ)
)
. (W.p. 1− δ/2)

■

Lemma 18 (Restatement of Lemma 9). With probability at least 1− δ/2 it holds that

T∑
t=dmax+1

p⋆(·|xt) ·
(
f̂t(xt, ·)− ℓ(xt, ·)

)
≤

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)

+γ
(
2RT (OF,η

sq ) + 16 log(4/δ)
)
.

Proof. For this term, we would like to use a change-of-measure technique using AM-GM to be able
to apply the oracel’s regret bound for the non-delayed function approximation. Again, by Lemma 4
the following holds with probability at least 1− δ/2.

T∑
t=dmax+1

p⋆(·|xt) ·
(
f̂t(xt, ·)− ℓ(xt, ·)

)
≤

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt) ·
(
f̂t(xt, a)− ℓ(xt, a)

)
=

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

√
γpt(a)

γpt(a)
·
(
f̂t(xt, a)− ℓ(xt, a)

)
≤

T∑
t=dmax+1

∑
a∈A

p2⋆(a|xt)

γpt(a)
+ γ

T∑
t=dmax+1

∑
a∈A

pt(a)
(
f̂t(xt, a)− ℓ(xt, a)

)2
≤ (AM-GM)

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
+ γ

T∑
t=dmax+1

Eat∼pt

[(
f̂t(xt, at)− ℓ(xt, at)

)2]
≤

17



T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
+ γ

T∑
t=1

Eat∼pt

[(
f̂t(xt, at)− ℓ(xt, at)

)2]
≤

T∑
t=dmax+1

∑
a∈A

p⋆(a|xt)

γpt(a)
+ γ
(
2RT (OF,η

sq ) + 16 log(4/δ)
)
. (W.p. at least 1− δ/2)

■

We now move to proving our final lemma.

Lemma 19 (Restatement of Lemma 10). Under Assumption 5 it holds true that

T∑
t=dmax+1

(pt − p⋆(· | xt)) ·
(
f̂t(xt, ·)− f̂τt(xt, ·)

)
≤ 2ηD.

Proof. We denote f̂0 := f̂1. Then we use Assumption 5 and Hölder’s inequality to obtain

T∑
t=dmax+1

(pt − p⋆(· | xt)) ·
(
f̂t(xt, ·)− f̂τt(xt, ·)

)
≤

T∑
t=dmax+1

∥pt − p⋆(· | xt)∥1 · ∥f̂t(xt, ·)− f̂τt(xt, ·)∥∞ ≤

2

T∑
t=dmax+1

dst
α(t)∑
i=1

∥f̂t−i(xt, ·)− f̂t−(i−1)(xt, ·)∥∞ ≤ (τ t = t− dst
α(t)

)

2

T∑
t=dmax+1

dst
α(t)

η ≤

2ηD.

■

Finally, we came to prove Theorem 6.

Theorem 20 (Restatement of Theorem 6). For any δ ∈ (0, 1) let γ =

√
T |A|

2RT (OF,η
sq )+16 log(4/δ)

.

Then, with probability at least 1− δ, the following regret bound holds.

RT ≤ Õ

(√
T |A|

(
RT (OF,η

sq ) + log(δ−1)
)
+ ηD + dmax

)
.

Proof of Theorem 6. Putting the results of Claim 15 and Lemmas 7 to 10 all together, with probability
at 1− δ the regret is bounded as follows.

RT ≤ dmax + 2
T |A|
γ

+ 2γ
(
2RT (OF,η

sq ) + 16 log(4/δ)
)
+ 2ηD.

Choosing γ =

√
T |A|

2RT (OF,η
sq )+16 log(4/δ)

yields the desired bound. ■
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