
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

XBOUND: EXPLORING CAPABILITY BOUNDARIES OF
DEVICE-CONTROL AGENTS AT THE STATE LEVEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in vision-language models have increased interest in Device-
Control Agents (DC agents) for managing graphical user interfaces (GUIs). With
the growing complexity and integration of such agents into various applications,
effective evaluation methods have become crucial. The current evaluation method
for DC agents primarily focuses on the instruction level, providing the current
state (e.g., screenshots) and past execution history to determine actions for target
instructions, helping identify potential execution failures. However, in GUI envi-
ronments, a single state may contain multiple interactive widgets, each linked to
different instructions, presenting an opportunity for diverse actions based on vari-
ous instruction targets. Evaluating the agent’s performance solely at the instruction
level may overlook the broader context of these interactions. To capture a more
comprehensive view of agent performance, we propose a new evaluation method,
XBOUND, to evaluate the accuracy of instruction completion on a per-state basis.
XBOUND provides a state-level evaluation framework, serving as a tool to assess
agents’ capabilities within environmental states. Our evaluation yields several key
insights: UI-TARS stands out as the strongest 7B model, current agents display a
bimodal performance pattern in instruction unification, and sub-7B models remain
limited in state mastery. We further identify GPT-based planning as a critical
bottleneck, and show that grounding data mainly benefits action matching, while
trajectory data is more effective for instruction unification.

1 INTRODUCTION

The recent advancement in vision-language models (VLMs) has spurred increased interest in Device-
Control Agents (DC agents), such as utilizing in-the-wild device control to manage graphical user
interfaces (GUIs) (Achiam et al., 2023; Anil et al., 2023; Zhang & Zhang, 2023; Hong et al., 2024;
Yang et al., 2023). There has been an increasing number of DC agents, making evaluating their
capability important.

With the growing complexity and integration of such agents into various applications, effective
evaluation methods have become crucial. The current evaluation method for DC agents primarily
focuses on the instruction level, providing the current state (e.g., screenshots) and past execution
history to determine actions for target instructions (Chen et al., 2024; Deng et al., 2024; Xie et al.,
2024; Deng et al., 2023). This method intuitively reveals which instructions DC agents might
fail to execute successfully (Rawles et al., 2023; Li et al., 2020; Burns et al., 2022). However, in
GUI environments, a single state may contain multiple interactive widgets, each linked to different
instructions, presenting an opportunity for diverse actions based on various instruction targets.
Evaluating the agent’s performance solely at the instruction level may overlook the broader context
of these interactions.

To capture a more comprehensive view of agent performance, we propose a new evaluation method
based on state-specific instruction accuracy. For each state, we assess the accuracy rate of completing
the instructions associated with it, and use the mean accuracy as an indicator of DC agent performance
for each state. In a given state, strong agent performance indicates effective learning, whereas poor
performance reveals areas where the agent lacks capability and requires improvement. By mapping
these strengths and weaknesses across different states, we can precisely delineate the capability
boundaries of DC agents. Specifically, our evaluation focuses on the following two research questions:
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Add the 'FRSH Pour 
Homme EDP 100 ml' 
product to my wishlist 
for later purchase.

Sort the products by 
'Price: Low to High' to 
find the most affordable 
items in the 'SALMAN 
KHAN OUTFIT' 
category.

Filter the products to 
show only those 
from the 'FRSH' 
brand in the 
'SALMAN KHAN 
OUTFIT' category.

Filter the products to 
show only those 
available for 'Men' 
in the 'SALMAN 
KHAN OUTFIT' 
category.

Clear all filters to reset the filter 
options and start over.

Select a size filter to narrow 
down the product listings by size.

Choose a color filter to refine the 
product listings by color.

Set a price range filter to find 
products within a specific budget.

RQ1 RQ2

Next Screen

Figure 1: The two examples correspond to the two RQs. The left figure represents RQ1, and the right
figure represents RQ2. In RQ1, we explore the interactive widgets in the current state along with their
corresponding instructions and actions. In RQ2, we explore the set of instructions that may require
the same action.

RQ1: Can the agent correctly discriminate and execute multiple distinct instructions mapped to
different UI widgets under the same state?

RQ2: Can the agent unify semantically diverse instructions into the same action when they should
converge on a single widget?

(c) XBOUND(a) Step-wise 
action accuracy

(b) Overall task success rates

State si

State sx

State sj

State sy

State si

State sx

State sy

State sz

State s0 State s1 State s2 State s3

Figure 2: Comparison between
XBOUND and existing evalua-
tion methods.

We use the two examples in Figure 1 to illustrate these two ques-
tions. To address these questions, we introduce an innovative
evaluation method, EXploring the Capabilities BOUNDaries of
Device-Control Agent Capabilities (XBOUND). Additionally, we
propose two scenarios, Multi-Widget Action Matching and Uni-
Widget Instruction Unification, to facilitate state-level analysis.
Compared to previous evaluation methods, XBOUND employs
a novel Exploration Metric that quantifies the extent to which
DC agents master various states. We compute the average ac-
tion accuracy of instructions associated with each state in these
two scenarios. The comparison between XBOUND and existing
evaluation methods is shown in Figure 4.

In this work, we evaluate 11 DC agents using the XBOUND
method in the Mobile Use domain, aiming to assess their capa-
bilities and limitations across two scenarios systematically. Ad-
ditionally, we experimentally validate the role of grounding and
trajectory data in enhancing agent capabilities across two scenarios.
Finally, we summarize four challenging states. This evaluation
yields noteworthy insights summarized below:

• Among models below the 7B parameter scale, UI-TARS stands out as the most competitive
open-source model, achieving superior performance in both Multi-Widget Action Matching
and Uni-Widget Instruction Unification.

• In Uni-Widget Instruction Unification, most current models exhibit a bimodal performance
distribution, where DC agents either demonstrate exceptional proficiency or perform poorly.

• Models with fewer than 7B parameters, such as ShowUI and OS-Atlas-4B, demonstrate
moderate performance and limited state mastery, indicating that terminal deployment of DC
agents remains challenging.
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• In Uni-Widget Instruction Unification, UGround performs particularly poorly. Through
observations across the three tasks, we find that the overall performance is mainly dragged
down by poor planning results from GPT in certain tasks.

• Comparative analysis indicates that grounding data primarily enhances Multi-Widget Action
Matching, whereas trajectory data is more effective for improving Uni-Widget Instruction.

• A comprehensive evaluation of DC intelligence requires not only measuring task completion
rates but also analyzing fine-grained challenging states such as widget disambiguation,
action topology reasoning, and dynamic state understanding.

2 RELATED WORK

2.1 LLM AS DEVICE-CONTROL AGENTS

Recently, there has been considerable exploration in the field of Device-Control Agents, ranging from
box prediction based on HTML and OCR parsing to coordinate prediction based on images (Li & Li,
2022; Li et al., 2024b; Wang et al., 2024a; Zhang et al., 2024b). For example, Yan et al. (2023) utilized
the MM-Navigator method to enhance the localization capabilities of GPT-4V. Zheng et al. (2024)
proposed a novel prompt method, SeeAct, which combines the reasoning abilities of LLMs with more
accurate HTML and OCR parsing to improve GPT-4V’s action prediction. Ma et al. (2024) trained a
segmented reasoning CoCo-Agent to boost action prediction accuracy. Wu et al. (2024) employed
significant engineering effort to collect multi-platform data and train a more powerful Device-Control
Grounding Agent OS-Atlas. Qin et al. (2025) trained UI-TARS on large-scale GUI screenshot data,
enabling context-aware understanding of UI widgets and precise captioning of interfaces. Gou et al.
(2024) introduces a human-like embodiment for DC agents that perceive the environment entirely
visually and directly perform pixel-level operations on the GUI.

2.2 EVALUATION FOR DEVICE-CONTROL AGENTS

To advance the development of DC Agents, researchers have constructed numerous datasets to
evaluate DC agents (Zhou et al., 2023; Xie et al., 2024; Rawles et al., 2024; Lu et al., 2024). Bai et al.
(2021); Deka et al. (2017); Cheng et al. (2024) created datasets focused on understanding UI Icons,
where models are required to identify the location of relevant UI Icons based on queries. As the
development of DC agents progresses, the demands for GUI datasets have shifted, necessitating agents
to perform a series of actions in response to user instructions. For example, Rawles et al. (2023); Sun
et al. (2022) constructed datasets containing episodes in the form of a sequence of screen-action pairs.
Zhang et al. (2024a) supplemented the AITW dataset by adding thought processes. Li et al. (2024a)
constructed a fine-grained AndroidControl dataset by including low-level instructions during episodes.
Wang et al. (2025) introduced a hierarchical benchmark for evaluating GUI automation agents across
six platforms. Zhao et al. (2025) assessed an agent’s capability to autonomously generate shortcuts.
Zheng et al. (2025) introduced a novel benchmark engineered on the principle of Causal Pathways.

However, current evaluation methods primarily focus on the instruction level and may neglect the
broader context of interactions within a given state. To address this limitation, we propose the
XBOUND evaluation method, a state-level framework designed to assess agents’ capabilities within
environmental states.

3 NEW METRIC: EXPLORATION METRIC

In this section, we first define the capability of DC agents to clarify how their performance manifests
across different scenarios. Alongside this definition, we present the Exploration Metric, outlining its
calculation in various scenarios and discussing its significance for evaluating agent capabilities.

3.1 CAPABILITY OF DC AGENTS

From the perspective of state evaluation, the capabilities of DC agents are intrinsically linked to
action matching and instruction unification. Action matching requires agents to correctly map
diverse instructions in the same state to their corresponding UI widgets and execute the intended
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Figure 3: Abstract examples of the two scenarios. Multi-Widget Action Matching: In State i,
executing the corresponding Action under different Tasks requirements can transition to different
States i+1. Uni-Widget Instruction Unification: Executing Action in State i can transition to State
i+1, and from State i+1, different Tasks can lead to different States i+m.

actions, reflecting their ability to discriminate between multiple instruction–action pairs. In contrast,
instruction unification requires agents to interpret semantically diverse instructions that should
converge to the same UI action, reflecting their ability to comprehend instruction-level semantics and
generalize across varied command expressions. Consequently, we categorize the capability of DC
agents into two scenarios: Multi-Widget Action Matching and Uni-Widget Instruction Unification.

Multi-Widget Action Matching: In this scenario, a set of instructions is collected under the
same state, where each instruction corresponds to a distinct UI widget and requires executing its
associated action. This setting evaluates whether the agent can accurately perceive the relevant UI
widgets and correctly match each instruction to the intended action, thus reflecting its capability of
instruction–action discrimination.

Uni-Widget Instruction Unification: In this scenario, a set of diverse instructions is provided under
the same state, but all instructions should converge to the same target action on a single widget. This
setting evaluates whether the agent can understand the semantic equivalence of varied instruction
expressions and unify them into a consistent action, thus reflecting its capability of instruction-level
semantic comprehension.

Figure 3 presents examples of these two scenarios. By dividing these two scenarios, we calculate the
agents’ performance in different states to identify their capability boundaries.

3.2 EXPLORATION METRIC

To evaluate the capabilities of DC agents within these two scenarios, we introduce the XBOUND
evaluation method, which measures agent performance along two dimensions: MWAM and UWIU.
The MWAM dimension aligns with Multi-Widget Action Matching, assessing whether agents can
correctly map instructions to their corresponding UI widgets and generalize these behaviors across
diverse visual contexts. The UWIU dimension corresponds to Uni-Widget Instruction Unification,
evaluating whether agents can consistently execute the same action when faced with semantically
varied instructions, thereby reflecting their robustness in handling diverse task formulations.

XBOUND introduces a novel Exploration Metric for quantifying agent capability within environmen-
tal states. We gather the set of executable instructions within the same state and calculate the average
accuracy of this instruction set as a measure of the agent’s capability in the given state. By evaluating
performance across all states, we derive corresponding values for each state’s agent performance,
ultimately illustrating the agent’s capability boundaries. The formulas for the Exploration Metric(EM)
are as follows:

EMstate =
1

m

m∑
i=1

I(Ai), (1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

EMall =
1

s

s∑
j=1

EMstatej , (2)

where I(·) is the indicator function, which equals 1 if the action Ai is correct and 0 otherwise. The
variable m represents the number of instructions associated with each screenshot, while s denotes the
number of screenshots.

Since current benchmarks cannot directly utilize the XBOUND evaluation technique, it is necessary
to expand the existing dataset to meet our requirements. Owing to community development in recent
years, current benchmarks provide detailed accessibility trees information, which we leverage to
improve the Android Control dataset (Li et al., 2024a). The detailed pipeline is provided in the
Appendix A.3. Finally, we retain 43,759 instructions in the MWAM dimension, while the UWIU
dimension contains 13,460 instructions.

4 EXPERIMENT

The experimental setup is described in Sec. 4.1; overall evaluation results are presented in Sec. 4.2;
task-specific performance is detailed in Sec. 4.3; error analysis is provided in Sec. 4.4; the comparison
between grounding training and trajectory training is discussed in Sec. 4.5; and the summary of
challenging states is included in Sec. 4.6.

4.1 EXPERIMENTAL SETUP

DC agent. We select eleven open-source DC agents with fewer than 7B parameters as evaluation mod-
els, including ShowUI (Lin et al., 2024), SeeClick (Cheng et al., 2024), Qwen2-VL-Instruct (Wang
et al., 2024b), Uground (Gou et al., 2024), OS-Atlas (Wu et al., 2024), Aguvis (Xu et al., 2024),
GUI-Owl (Ye et al., 2025), and UI-TARS (Qin et al., 2025). We adhere to the prompts they utilize
while deliberately excluding execution history from the inputs. Our experiments are conducted on an
A100 GPU with 80GB of memory.

Evaluation Metrics. In line with the criteria set forth by Zhang & Zhang (2023); Wu et al. (2024),
an action is considered correct if its type matches the ground-truth type. Specifically, for CLICK
and LONG PRESS actions, correctness in the UWIU dimension is determined if they occur within a
14% screen distance from the reference gestures. In the MWAM dimension, correctness is assessed
based on whether the actions fall within the bounding box of the ground truth UI icon. For SCROLL
actions, correctness is evaluated by checking if the direction (up, down, left, or right) matches the
reference gesture. For TYPE actions, correctness is assessed using the F1 score; the action is deemed
correct if the score is below a threshold of 0.5, as set in our experiments.

4.2 COMPREHENSIVE EVALUATION

We calculate the results of the Exploration Metric corresponding to each state. To enhance state
analysis, we partition the Exploration Metric into four distinct intervals:

• Learning Stage (EMstate < 30%)
The current state suggests that DC agents are still in the learning and adaptation phase,
indicating unfamiliarity with the environment.

• Improvement Stage (30% ≤ EMstate < 60%)
The current state indicates that DC agents have started to grasp certain operations and are
making progress.

• Proficient Stage (60% ≤ EMstate < 90%)
The current state signifies that DC agents possess a relatively proficient understanding and
can perform most actions.

• Expert Stage (90% ≤ EMstate ≤ 100%)
The current state implies that DC agents have achieved a comprehensive and expert level of
understanding.
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Table 1: The assessment of DC agents’ capabilities spans two dimensions: MWAM and UWIU.
Specifically, the percentage of states is reported for the four stages, i.e., Learning Stage (LS),
Improvement Stage (IS), Proficient Stage (PS), and Expert Stage (ES). The Exploration Metric
(EM) quantifies the overall mastery of states by DC agents, reflecting their accuracy in completing
instructions within each state. In contrast, the Success Rate (SR) measures the step-wise success
rate of DC agents across the dataset, indicating their proficiency in executing individual steps. For
each DC agent, the best-performing Stage results are highlighted in bold, and the second-best are
underlined. For the EM and SR, we bold the best-performing results of the 11 DC agents.

Model
MWAM UWIU

LS IS PS ES EM SR LS IS PS ES EM SR

ShowUI-2B 75.09 19.17 4.17 1.57 18.51 19.70 68.44 9.76 5.77 16.03 25.27 25.54
OS-Atlas-4B-Pro 37.29 34.25 22.51 5.95 41.92 42.82 57.16 19.60 7.25 15.99 31.80 30.24
OS-Atlas-7B-Pro 20.41 27.74 35.48 16.37 57.59 59.50 36.83 12.95 12.90 37.32 53.44 53.22
SeeClick 53.16 24.68 15.97 6.19 32.58 33.72 77.05 10.60 3.42 8.93 17.15 14.93
Qwen2-VL-7B-Ins 26.05 35.00 30.98 7.97 49.30 50.88 58.84 14.85 10.21 16.11 31.52 32.19
Aguvis-7B 19.23 29.16 37.25 14.35 57.39 59.23 37.32 15.91 12.95 33.91 51.29 51.47
UGround-7B 14.20 25.53 38.11 22.16 63.00 63.66 75.95 3.39 1.90 18.81 21.97 20.35
UI-TARS-7B-SFT 10.54 24.40 42.52 22.55 66.96 68.20 39.41 13.98 11.97 34.64 50.53 52.40
UI-TARS-7B-DPO 11.45 24.59 42.20 21.76 66.08 67.57 37.55 14.03 13.13 35.29 52.02 53.41
UI-TARS-1.5-7B 13.54 25.33 40.24 20.89 64.25 65.82 16.66 8.25 10.03 65.05 76.44 79.69
GUI-Owl-7B 14.13 25.97 41.24 18.65 62.97 64.87 32.03 14.33 14.59 39.05 56.96 58.41

DC agents with stronger capabilities should have a higher proportion in the Proficient Stage and
Expert Stage, and a lower proportion in the Learning Stage and Improvement Stage. We present the
four stages and the Exploration Metric of various DC agents across different dimensions in Table 1.

Performance of models with fewer than 7 billion parameters reveals insufficient proficiency.
Analysis of ShowUI and OS-Atlas-4B-Pro indicates that agents with parameter scales smaller than 7
billion still exhibit inadequate performance. Across both MWAM and UWIU dimensions, most state
performances remain within the Learning Stage and Improvement Stage. Specifically, ShowUI-2B is
in the Learning Stage as high as 75.09%, highlighting the challenges of achieving effective terminal
deployment with smaller models.

UI-TARS models demonstrate superior performance among the 7 billion parameter models.
Observations from the table show that the UI-TARS series is the top performer within this parameter
range. Each of the three UI-TARS models achieves at least 64% overall Exploration Metric perfor-
mance in the MWAM dimension, with most state performances in the Proficient Stage and Expert
Stage. In the UWIU dimension, UI-TARS-1.5-7B records the best performance. Given the unknown
specifics of their training data, we speculate that version 1.5 includes more trajectory tasks, enhancing
the model’s comprehension of current action execution concerning future tasks.

UGround exhibits anomalous performance in the UWIU dimension. Analysis indicates that
UGround’s errors largely stem from incorrect planning by GPT, primarily due to erroneous environ-
mental perception. For example, the model may plan to return to the desktop to open an email app
when attempting to forward content within an app. This highlights the necessity of training the model
with relevant planning data.

A bimodal distribution phenomenon observed in the UWIU dimension. In the UWIU dimension,
a bimodal distribution emerges where agents exhibit complete absence or presence of action learning.
This suggests that current DC agents are yet to achieve human-like intelligence and still have
significant developmental strides to make.

4.3 CAPABILITY EVALUATION BASED ON TASK

We select three tasks from the test data and sample 2,000 instructions for each task. Correct
instructions are manually filtered, and highly repetitive instructions are removed. The final statistical
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Table 2: The proportion of states in the four stages for 6 agents across three tasks. The best-performing
Stage results are highlighted in bold, and the second-best are underlined.

Task Model
MWAM UWIU

LS IS PS ES LS IS PS ES

Maps

Aguvis-7B 6.90 24.14 37.93 31.03 40.92 13.64 18.18 27.27
UGround-7B 0 27.59 51.72 20.69 43.75 0 0 56.25

UI-TARS-7B-SFT 0 17.24 37.93 44.83 40.91 0 0 59.09
UI-TARS-7B-DPO 3.45 10.34 37.93 48.28 45.45 0 0 54.55
UI-TARS-1.5-7B 3.45 10.34 34.48 51.72 9.09 9.09 9.09 72.73

GUI-Owl-7B 3.45 6.90 27.59 62.07 27.27 13.64 22.73 36.36

News

Aguvis-7B 4 24 32 40 8 28 4 60
UGround-7B 4 36 28 32 73.68 0 0 26.32

UI-TARS-7B-SFT 0 16 32 52 56 0 0 44
UI-TARS-7B-DPO 4 12 32 52 56 0 0 44
UI-TARS-1.5-7B 4 12 44 40 0 4 8 88

GUI-Owl-7B 0 20 24 56 12 24 8 56

Shopping

Aguvis-7B 4.65 11.63 53.49 30.23 21.88 28.12 3.12 46.88
UGround-7B 11.63 23.26 34.88 30.23 84.62 0 0 15.38

UI-TARS-7B-SFT 2.33 9.3 37.21 51.16 43.75 0 0 56.25
UI-TARS-7B-DPO 2.33 6.98 39.53 51.16 43.75 0 0 56.25
UI-TARS-1.5-7B 2.33 6.98 34.88 55.81 9.38 9.38 0 81.25

GUI-Owl-7B 2.33 9.3 30.23 58.14 25 6.25 12.5 56.25

results are presented in the Appendix A.3. We evaluate the performance of 11 agents on these three
tasks. The proportion of states in each of the four stages for six agents is shown in Table 2; results
for the remaining five agents are presented in Appendix A.4. The EM capability chart is provided in
Figure 4. Analysis of Table 2 reveals the following:

0.2
0.4

0.6
0.8

Maps-W

News-WShopping-W

Maps-D

News-D Shopping-D

The EM of 11 Agents Across Three Tasks
ShowUI-2B
OSAtlas-4B-Pro
OSAtlas-7B-Pro
SeeClick
Qwen2-VL-7B-Ins
Aguvis-7B
Uground-7B
UITARS-7B-SFT
UITARS-7B-DPO
UITARS-1.5-7B
GUI-Owl-7B

Figure 4: The EM of 11 agents across
three tasks.

The UI-TARS and GUI-Owl series currently demonstrate
the best performance in the MWAM dimension (Multi-
Widget Action Matching) for the Maps, News, and Shop-
ping tasks.

UGround performs well on the Maps task but poorly on
News and Shopping. This indicates that employing GPT
as a planning model does not consistently result in poor
performance across all tasks; rather, certain tasks adversely
affect its overall performance.

UGround, UI-TARS-7B-SFT, and UI-TARS-7B-DPO ex-
hibit a pronounced bimodal distribution in the UWIU di-
mension for Maps, News, and Shopping tasks, suggesting
that these models fail to train on certain actions and possess
learning blind spots.

Figure 4 shows that UI-TARS-1.5-7B is the best-performing
agent overall across the three tasks, while Aguvis, UI-TARS-7B-SFT, UI-TARS-7B-DPO, and
GUI-Owl display comparable performance.

4.4 ERROR ANALYSIS

By calculating the Exploration Metric, we can quickly identify states with low accuracy. In further
analyzing these poor performance states, we look closely at the actions undertaken by the agent
and compute their similarity. Typically, the more similar the actions, the closer the similarity value
approaches 1; conversely, the more disparate the actions, the closer the similarity value approaches 0.
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Table 3: The comparison between grounding training and trajectory training. The best-performing
Stage results are highlighted in bold, and the second-best are underlined. For the EM, we bold the
best-performing results.

Model
MWAM UWIU

LS IS PS ES EM LS IS PS ES EM

Qwen2-VL-7B-Ins 26.05 35.00 30.98 7.97 49.30 58.84 14.85 10.21 16.11 31.52
OS-Atlas-7B-Base 16.07 27.40 39.26 17.27 60.61 52.14 17.93 9.22 20.71 36.91
OS-Atlas-7B-Pro 20.41 27.74 35.48 16.37 57.59 36.83 12.95 12.90 37.32 53.44

If the similarity value of erroneous actions nears 1, this indicates systematic errors within these
states. We explain the cause of mistakes through the two scenarios (Section 3.1). (1) Multi-Widget
Action Matching: In this scenario, the agent may execute incorrect actions (such as press back
and press home) due to insufficient understanding of the state, implying that the current state is
unfamiliar to the agent. (2) Uni-Widget Instruction Unification: This may be due to the agent having
learned only the action associated with the current state, without recognizing distinctions between
task instructions, which leads it to execute the same action regardless of the task. This indicates that
the model possesses limited capability to handle diverse instructions in that state.

If the similarity value of erroneous actions is closer to 0, it signifies inadequate learning by the agent
in these states. We explain the cause of mistakes through the two scenarios. (1) Multi-Widget Action
Matching: In this scenario, the current state usually contains UI widgets unlearned by the agent,
leading to incorrect actions, evidencing insufficient action matching capability for the current state.
(2) Uni-Widget Instruction Unification: The agent fails to grasp the relationship between the current
action and future state transitions, resulting in errors in action selection. This indicates inadequate
learning of actions by the agent. More examples are presented in the Appendix A.5.

4.5 GROUNDING TRAINING AND TRAJECTORY TRAINING COMPARISON

In this section, we discuss the impact of grounding training and trajectory training on Mobile Use
Agents. Utilizing the XBOUND evaluation method, we assess three models: Qwen2-7B-VL-Instruct,
OS-Atlas-7B-Base, and OS-Atlas-7B-Pro. OS-Atlas-7B-Base is trained with grounding data based on
Qwen2-7B-VL-Instruct, whereas OS-Atlas-7B-Pro incorporates trajectory data based on OS-Atlas-
7B-Base. The results are presented in Table 3.

Comparing the Base model with the Qwen model reveals that grounding data enhanced the Base
model’s performance in the MWAM dimension, improving its understanding of Multi-Widget
Action Matching. However, significant improvement in the UWIU dimension is not observed until
trajectory data is employed for training, which subsequently enhances performance within Uni-
Widget Instruction Unification. This also demonstrates that grounding data is associated with the
agents’ action-matching abilities, whereas trajectory data is linked to their decision-making abilities.

4.6 CHALLENGING STATES

During the XBOUND evaluation process, we identify several challenging states that require a certain
level of intelligence from DC agents. We categorize these states into the following four demands:

(1) Understanding of UI Icons: Due to limitations in current grounding and trajectory data, many UI
icons are absent from agents’ training, potentially causing agents to fail in learning tasks associated
with certain UI icons. This scenario heavily assesses the agents’ action-matching abilities regarding
UI icons. In Figure 5(a), the agent fails to recognize the image-search icon and repeatedly selects the
text search box instead.

(2) Distinction Between Similar UI Icons: Tasks in domains such as shopping and media often
present multiple visually similar icons on the same page. Agents must correctly align instructions
with the intended target, testing their widget-level discrimination ability. In Figure 5(b), the agent
misinterprets a “like” command and clicks on the wrong post.
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Instruction:
Use the camera to scan a barcode 
of a product to find it on Amazon.
GUI Agent:
actions: CLICK 
<point>[[546,97]]</point>

(a) Inadequate 
Understanding of UI Icons

Instruction:
Favorite the content 'Edge of 
Dawn' to easily find it later.
GUI Agent:
actions:\nCLICK 
<point>[[63,394]]</point>

(b) Insufficient Distinction 
Between Similar UI Icons

Instruction:
Add the selected pizza to the cart 
and review the cart contents
GUI Agent:
actions: CLICK 
<point>[[770,652]]</point>

(c) Failure to Learn Topological 
Relationships Between Actions

Instruction:
Cancel 'Salt' for the shopping list 
and prepare to update the list.
GUI Agent:
actions: CLICK 
<point>[[859,290]]</point>
(d) Incorrect Environmental 

State Awareness:

Figure 5: Four types of challenging states are illustrated through representative examples. A green
pointer indicates the correct action, while a red pointer denotes the incorrect action.

(3) Topological Relationships Between Actions: In specific task scenarios on certain pages, actions
may have topological dependencies where action B must precede action A. This scenario requires
agents to comprehend the topological order of actions and possess a deeper understanding of their
meanings. In Figure 5(c), the instruction is to complete the customization of a pizza directly. However,
the “Choose Your Medium Pizza” option isn’t selected, and “Add” should only be executed after
completing the “Choose Your Medium Pizza” step.

(4) Environmental State Awareness: For some ordering and shopping tasks, product requirements
often need alteration. This scenario demands that agents understand or perceive the environmental
state necessary for task execution correctly. In Figure 5(d), the goal is to remove “Salt” before the
update, but the DC agent fails to notice that “Salt” is already added and proceeds with the update
action instead.

5 LIMITATIONS AND FUTURE WORK

This work presents a novel evaluation method, which we extend with the Android Control dataset
since it does not directly apply to existing data. While LLM assists in filtering, the resulting data
may not fully ensure the accuracy of instructions and actions. Despite this, the XBOUND method
highlights promising directions for future research.

More Complete and Refined Evaluation: The evaluation data in this work have the following
characteristics: offline data and trajectory independence, which make it impossible to build a full
trajectory tree. In future development of evaluation data for Mobile Use, we can organize app-level
trajectory tree data and evaluate DC agents’ capabilities app-wise using the XBOUND method.

New Ideas for Enhancing DC Agents’ Capabilities: Currently, improving DC agents’ performance
primarily focuses on the instruction level, relying on extensive trajectory data collection to enhance
agents’ capabilities. In the future, if augmented instructions cease to be efficient in enhancing agents’
capabilities, we can evaluate agents’ performance across different states and focus on improving
performance in underperforming states to boost their overall capabilities.

6 CONCLUSION

This study delineates the scenarios of DC agents’ capability within states and introduces a novel
evaluation method, XBOUND. XBOUND provides a state-level evaluation framework, serving
as a tool to assess agents’ capabilities within environmental states. From the perspective of state
evaluation, we define two distinct scenarios, evaluate the performance of 11 open-source agents
within the Mobile Use domain, offering new insights at the state level. Our evaluation reveals several
key insights. UI-TARS emerges as the most effective model at the 7B scale. Current agents exhibit a
bimodal performance pattern in instruction unification, while sub-7B models demonstrate limited
state mastery. In addition, we identify GPT-based planning as a critical bottleneck and show that
grounding data primarily improves action matching, whereas trajectory data proves more effective
for instruction unification.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In this work, LLMs serve two primary purposes: one is for polishing the paper, and the other is for
data augmentation.

A.2 TRAJECTORY TREE DATASET

Common GUI trajectory datasets record a series of action sequences that result in screen transi-
tions. However, trajectory trees focus on other possible actions and tasks that may branch out
from a given state. Formally, given the state St at the time step t and various user instructions
I1t , I

2
t , . . . I

M
t , the DC agent G will take corresponding actions under different instructions, such

as A1
t = G(St, I

1
t ), A

2
t = G(St, I

2
t ), . . . , AM

t = G(St, I
M
t ), where M represents the number of

instructions. Each instruction completes a corresponding trajectory sequence E = {(St, At)
T
t=1, I},

where T represents the total steps. These trajectory sequences are constructed into a trajectory tree
dataset T = {(Sm

t , (Im, Am), Sm
t+1)

T
t=1}Mm=1 based on overlapping states.

A.3 DATA EXPANSION METHOD

Using the accessibility trees provided, we commence by annotating each screenshot with accessibility
trees from Android Control to identify clickable and visible UI icons, which are sequentially num-
bered. Red boxes highlight these icons on screenshots, and their numbers ensure clear identification.
Subsequently, GPT-4omini is employed to generate both high-level and low-level instructions. After
acquiring the instructions, we utilize Qwen2.5-VL-72B-Instruct to translate them into corresponding
actions (e.g., click, scroll, type, etc.).

In the MWAM dimension, we focus on collecting single screenshots and request GPT-4omini to
produce task instructions based on the UI icons present on these screenshots. In the UWIU dimension,
we primarily gather screenshot-action-screenshot pairs (St, At, St+1) and ask GPT-4omini to expand
instructions for the UI icons on the subsequent screenshot St+1. We then combine the high-level
instructions I1t+1, I

2
t+1, . . . , I

M
t+1 collected from screenshot St+1 with action At and screenshot St

into the structure {(St, (I
m, At), St+1)}Mm=1. When DC agents strive to execute the expanded

instructions from the subsequent screenshot, they must perform the collected actions on the previous
screenshot.

To ensure data quality, GPT-4omini evaluates whether actions and low-level instructions satisfy the
high-level instructions, resulting in a dataset of successful interactions. Since high-level instructions
are generated per screenshot and do not constitute a complete trajectory, the test dataset is termed a
“pseudo” trajectory tree dataset. Figure 6 visually represents the dataset construction process for these
dimensions.

Our main experiment dataset comprises 1,536 episodes with 43,759 instructions, where the MWAM
dimension includes 43,759 instructions, and the UWIU dimension contains 13,460 instructions. We
have tallied the number of instructions associated with each screenshot and the action distribution,
with detailed information presented in Figure 7 and Figure 8.

Following Li et al. (2024a), we use Qwen2-vl-7B-Instruct to classify the test data based on the app
categories provided. Ultimately, we select the three most prevalent app categories within the test set
for further analysis. The statistical results of the collected instructions are presented in Table 4.

Table 4: Data statistics of the three tasks in both dimensions.
Task Width UWIU

Maps 135 73
News 115 58
Shopping 205 99
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1
2 3 4

5
6

7

8
9
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Screenshots UI

UI Icon: 7 

Low-level instruction

Click the field displaying 
'Aberdeen, Scotland, United 

Kingdom (ABZ)' to change the 
departure airport.

High-level instruction

Change the departure airport 
from Aberdeen (ABZ) to 

Edinburgh (EDI) for the flight 
search to Toronto.

UI

UI Icon: 11 

Low-level instruction

Click the 'Search flights' button to 
initiate the flight search process.

High-level instruction

Search for flights from 
Aberdeen, Scotland (ABZ) to 

Toronto, Ontario (YTO) for one 
traveler in economy class, 

departing on August 10 and 
returning on August 15.

UI

UI Icon: 10 

Low-level instruction

Click the 'Any stops' option to 
specify the stopover preferences 

for the flight search.

High-level instruction

Select 'Non-stop' flights for the 
search from Aberdeen to Toronto 
for 1 traveler in economy class.

Click: 
540, 2232

Screenshots & Actions

High-level instruction 1

High-level instruction 2 

High-level instruction 3 

High-level instruction 4 

High-level instruction m 

…
…

+

Next screenshot Instructions

……

Click: 
540, 2232

High-level instruction 1

High-level instruction 2 

High-level instruction 3 

High-level instruction 4 

High-level instruction m 

…
…

Action & High-level instruction

=

Width

Depth

Figure 6: The data collection construction process involves MWAM and UWIU dimensions. MWAM
Dimension: Screenshots are annotated, and GPT4o-mini is utilized to select UI elements for gen-
erating both low-level and high-level instructions. UWIU Dimension: High-level instructions
corresponding to subsequent screenshots are identified based on transitions between screenshots,
alongside the collection of actions and high-level instructions.

A.4 ANOTHER 5 AGENT CAPABILITY PERFORMANCE

The performance of the remaining five agents on three different tasks is reported in Table 5.

We observe that the 2B model still performs poorly, with ShowUI remaining the weakest across all
three tasks. In contrast, OS-Atlas-4B-Pro has already outperformed SeeClick and is approaching the
performance of Qwen2-VL-7B-Ins.

A.5 SIMILARITY CASE

Figure 9 illustrates an example from the Multi-Widget Action Matching scenario where the similarity
of incorrect actions is 0, while Figure 10 presents a case from the same scenario where the similarity
of incorrect actions is 1. Figure 11 illustrates an example from the Uni-Widget Instruction Unification
scenario where the similarity of incorrect actions is 0, while Figure 12 presents a case from the same
scenario where the similarity of incorrect actions is 1.
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Figure 7: Instructions per screenshot distribu-
tion Figure 8: Action distribution

Table 5: The proportion of states in the four stages for 11 agents across three tasks.

Task Model
Width UWIU

LS IS PS ES LS IS PS ES

Maps

ShowUI-2B 68 24 8 0 70 0 0 30
OS-Atlas-4B-Pro 31.03 27.59 37.93 3.45 54.55 18.18 9.09 18.18
OS-Atlas-7B-Pro 17.24 10.34 24.14 48.28 36.36 13.64 13.64 34.36

SeeClick 44.83 34.48 17.24 3.45 81.25 0 6.25 12.5
Qwen2-VL-7B-Ins 4 44 36 16 57.14 14.29 9.52 19.05

News

ShowUI-2B 64 24 8 4 48 24 4 24
OS-Atlas-4B-Pro 20 20 36 24 48 28 0 24
OS-Atlas-7B-Pro 4 16 32 48 20 20 12 48

SeeClick 24 36 28 12 52.63 10.53 0 36.84
Qwen2-VL-7B-Ins 12 28 48 12 36 20 4 40

Shopping

ShowUI-2B 67.44 30.23 2.33 0 59.38 12.5 0 28.12
OS-Atlas-4B-Pro 25.58 25.58 44.19 4.65 46.88 15.62 12.5 25
OS-Atlas-7B-Pro 2.33 13.95 41.86 41.86 21.88 15.62 12.5 50

SeeClick 28.6 30.23 37.21 13.95 50 19.23 3.85 26.92
Qwen2-VL-7B-Ins 23.26 32.56 39.53 4.65 34.38 25 3.12 37.5

A.6 PROMPT
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Rewind the video 'Easy Origami 
ELEPHANT' to review the previous steps.

Skip to the next video in the playlist after 
'Easy Origami ELEPHANT'.

Cast the video 'Easy Origami ELEPHANT' 
to my living room TV.

Action: Click on the 
backward button at the left 

side of the screen
click(x(x=0.1435, y=0.18292)

Aguvis

Golden 
location:

[277, 386, 
382, 491]

Action: Click on the right arrow 
at the bottom of the screen.

click(x(x=0.9472, y=0.9067)

Aguvis

Click on the settings icon at 
the top right of of the screen.
click(x(x=0.8241, y=0.0844)

Aguvis

Watch the video 'Easy Origami 
ELEPHANT' in fullscreen mode for a better 
viewing experience.

Action: Click on the settings 
icon at the top right corner of 

the screen.
click(x=0.8241, y=0.0842)

Aguvis

Golden 
location:

[922, 585, 
1080, 743]

Golden 
location:

[886, 386, 
991, 491]

Golden 
location:

[565, 141, 
691, 267]

Figure 9: Similarity=0 in the MWAM dimension.

Search for 'chicken soup packets 1kg' by 
clicking on the search bar, typing the new 
query, and then clicking 'Go'.

CLICK 
<point>[[911,885]]</point>

OS-Atlas

Golden
location: 

[959, 143, 
1051, 269]

Choose 'knorr chicken soup packets' from 
the suggestions and click 'Go' to search for 
it.

CLICK 
<point>[[929,885]]</point>

OS-Atlas

Golden
location: 

[128, 925, 
958, 1022]

Figure 10: Similarity=1 in the
MWAM dimension.

Review the workout summaries from the 
previous week to track my fitness progress.

Action: Click on the 7 to view the workout 
summaries of previous week.
click(x=0.8741, y=0.3958)

Aguvis

View the activities scheduled for October 
3rd to analyze my workout performance.

Action: Click on the 3rd of date in the month of 
October
click(x=0.3759, y=0.401)

Aguvis

Golden action: Click on All records.
{"action_type": "click", "x": 924, "y": 687}

Figure 11: Similarity=0 in the UWIU dimen-
sion.

Select 'Maida' for the shopping list and 
prepare to update the list.

actions:\nPRESS_HOME

OS-Atlas

Select 'Instant Dry Yeast' for the shopping 
list and prepare to update the list.

actions:\nPRESS_HOME

OS-Atlas

Golden action: Click on the option to add 
ingredients to the shopping list presented in the 
middle of the screen.
{"action_type": "click", "x": 579, "y": 753}

Figure 12: Similarity=1 in the UWIU dimen-
sion.
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Prompt for constructing the trajectory tree dataset.

You are a mobile expert who excels at interacting with elements on mobile screens to
complete tasks. I have a task for you, and I hope you can use your extensive knowledge
to identify interactive elements on mobile screens. I will provide you with the following
information:
1. The type of action currently being executed, which can be one of five types: CLICK,
SCROLL, TYPE, PRESS BACK, and LONG PRESS. You need to choose an action
that can interact with the current screen.
2. Analysis of the mobile screen, which corresponds to the marked boxes in the images.
Your task is to identify five interactive elements on the current mobile screen. The
output should include four parts:
1. Sub-Instruction: Identify the interactive elements and generate natural language
instructions for interacting with these elements. The instructions should be concise,
clear, and executable, and must include critical details such as filenames, times, or
other content as they appear on the screen. For example: ”Scroll left to open the app
drawer, displaying all installed applications on the device”, ”Click the chat interface,
allowing the user to view and participate in conversation”, ”Type the username ’Agent’,
preparing for the next step in logging into the account”.
2. Analysis: Analyze possible subsequent operations based on the current interface and
action instructions. This analysis should involve step-by-step reasoning, considering
potential changes on the screen and actions that can be taken after these changes. For
example: ”After clicking the plus button, a dropdown menu appears with an option
to create a document. I can select this option to create a new document. First, I need
to name the document, then enter content into the document, and finally save the
document and exit”.
3. High-Level Instruction: Based on the analysis results, envision a high-level task
that can be completed within the current interface. There are two types of High-Level
Instructions: Task-Oriented: Completing a series of operations to achieve a specific
goal. Question-Oriented: Performing a series of operations and deriving an answer to
a specific question. For example: Share my favorite Book ”the Queen’s Gambit” to my
Friend Natalie larson over her gmail address -natalie.larson1998@gmail.com from the
PocketBook app. Ensure that the High-Level Instruction is executable by including all
critical specifics, such as filenames, relevant timings, or required details.
4. UI item: Based on the current page parsed result and action instructions, identify the
corresponding UI item and provide the specific number.
You only need to return a dictionary formatted as follows: { ”Sub-Instruction”: ”xxx”,
”Analysis”: ”xxx”, ”High-Level-Instruction”: ”xxx”, ”UI item”: x }
Current screen analysis:

Figure 13: Prompt for constructing the trajectory tree dataset.
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Prompt for reasoning the correct golden action.

You are a GUI task expert, I will provide you with a low-level instruction, a golden ui
with its corresponding ID.
Low-level instruction:
UI ID:
Please generate the action for the next step.
Candidate Actions:
”action type”: ”click”, ”ui”: ¡ui idx¿
”action type”: ”long press”, ”ui”: ¡ui idx¿
”action type”: ”type”, ”text”: ¡text input¿
”action type”: ”scroll”, ”direction”: ¡up, down, left, or right¿
”action type”: ”navigate home”
”action type”: ”navigate back”
”action type”: ”open app”, ”app name”: ¡app name¿
”action type”: ”wait”
”action type”: ”status”, ”goal status”: ¡”successful”,”infeasible”¿
You need to generate a script in the form: actions: ACTION
Make sure to consider the details in the screenshot and the task requirements to create
an accurate and functional script.”

Figure 14: Prompt for evaluating whether actions correctly execute low-level instructions.

Prompt for reasoning the correct golden action.

You are a mobile expert who excels at interacting with elements on mobile screens to
complete tasks. I have a task for you, and I hope you can use your extensive knowledge
to identify interactive elements on mobile screens. I will provide you with the following
information:
1. A low-level instruction, which we will follow to perform actions on the current
screen.
2. The type of action currently being executed, which can be one of two types: CLICK
or LONG PRESS. You need to determine whether this action can fulfill the current
low-level instruction.
3. The current screen environment, with the position where the action(click and
long press) needs to be executed marked by a red box.
I will provide you with a screenshot, along with the low-level instructions and the
action to be executed. Your task is to determine whether the current action brings us
closer to achieving the low-level instruction. If the current action contributes to the
realization of the low-level instruction, answer ”Yes”; otherwise, answer ”No”.
You only need to return a dictionary formatted as follows: { ”Analysis”: ”xxx”,
”Correct”: Yes/No }

Figure 15: Prompt for evaluating whether actions correctly execute low-level instructions.
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Prompt for evaluating whether low-level instructions solve high-level instructions.

You are a mobile expert who excels at interacting with elements on mobile screens to
complete tasks. I have a task for you, and I hope you can use your extensive knowledge
to identify interactive elements on mobile screens. I will provide you with the following
information:
1. A high-level instruction, which is our ultimate goal to be executed.
2. A low-level instruction, which we will follow to perform actions on the current
screen.
3. The current screen environment, with the position where the action needs to be
executed marked by a red dot.
I will provide you with a screenshot, along with the high-level and low-level instruc-
tions to be executed. Your task is to determine whether the current low-level instruction
brings us closer to achieving the high-level instruction. If the current low-level instruc-
tion contributes to the realization of the high-level instruction, answer ”Yes”; otherwise,
answer ”No”.
You only need to return a dictionary formatted as follows: { ”Analysis”: ”xxx”,
”Correct”: Yes/No }

Figure 16: Prompt for evaluating whether low-level instructions solve high-level instructions.
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Prompt for classifying trajectories into specific app tasks.

You are a GUI agent. I’ll give you a total goal, a screenshot, and some categories of
apps, and I’ll ask you to choose the closest to the general goal among those categories.
## Output Format
You only need to return a dictionary formatted as follows: { ”Analysis”: ”xxx”,
”Categories”: ”xxx” }
## APP Categories
1. Shopping
2. Productivity & Office
3. Other
4. Files
5. Transportation
6. Health & Fitness
7. Recipes
8. Flights
9. Clock & Alarms
10. Reminders
11. Voice recording
12. Education
13. Books
14. Email
15. Calendar
16. Notes & Todos
17. Maps
18. Videos
19. News
20. Meditation
21. Weather
22. Finance
23. Art & crafts
24. Gardening
25. Contacts
26. Drawing
27. Music
28. Real estate
29. Messaging
## Total Goal

Figure 17: Prompt for classifying trajectories into specific app tasks.
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