Under review as a conference paper at ICLR 2026

XBOUND: EXPLORING CAPABILITY BOUNDARIES OF
DEVICE-CONTROL AGENTS AT THE STATE LEVEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in vision-language models have increased interest in Device-
Control Agents (DC agents) for managing graphical user interfaces (GUIs). With
the growing complexity and integration of such agents into various applications,
effective evaluation methods have become crucial. The current evaluation method
for DC agents primarily focuses on the instruction level, providing the current
state (e.g., screenshots) and past execution history to determine actions for target
instructions, helping identify potential execution failures. However, in GUI envi-
ronments, a single state may contain multiple interactive widgets, each linked to
different instructions, presenting an opportunity for diverse actions based on vari-
ous instruction targets. Evaluating the agent’s performance solely at the instruction
level may overlook the broader context of these interactions. To capture a more
comprehensive view of agent performance, we propose a new evaluation method,
XBOUND, to evaluate the accuracy of instruction completion on a per-state basis.
XBOUND provides a state-level evaluation framework, serving as a tool to assess
agents’ capabilities within environmental states. Our evaluation yields several key
insights: UI-TARS stands out as the strongest 7B model, current agents display a
bimodal performance pattern in instruction unification, and sub-7B models remain
limited in state mastery. We further identify GPT-based planning as a critical
bottleneck, and show that grounding data mainly benefits action matching, while
trajectory data is more effective for instruction unification.

1 INTRODUCTION

The recent advancement in vision-language models (VLMs) has spurred increased interest in Device-
Control Agents (DC agents), such as utilizing in-the-wild device control to manage graphical user
interfaces (GUIs) (Achiam et al.| [2023} |Anil et al.| 2023} |Zhang & Zhang] |[2023} Hong et al.| 2024;
Yang et al. |2023). There has been an increasing number of DC agents, making evaluating their
capability important.

With the growing complexity and integration of such agents into various applications, effective
evaluation methods have become crucial. The current evaluation method for DC agents primarily
focuses on the instruction level, providing the current state (e.g., screenshots) and past execution
history to determine actions for target instructions (Chen et al.l 2024; Deng et al., [2024} Xie et al.
2024; Deng et al., 2023). This method intuitively reveals which instructions DC agents might
fail to execute successfully (Rawles et al., 2023} [Li et al.l [2020; Burns et al.} [2022). However, in
GUI environments, a single state may contain multiple interactive widgets, each linked to different
instructions, presenting an opportunity for diverse actions based on various instruction targets.
Evaluating the agent’s performance solely at the instruction level may overlook the broader context
of these interactions.

To capture a more comprehensive view of agent performance, we propose a new evaluation method
based on state-specific instruction accuracy. For each state, we assess the accuracy rate of completing
the instructions associated with it, and use the mean accuracy as an indicator of DC agent performance
for each state. In a given state, strong agent performance indicates effective learning, whereas poor
performance reveals areas where the agent lacks capability and requires improvement. By mapping
these strengths and weaknesses across different states, we can precisely delineate the capability
boundaries of DC agents. Specifically, our evaluation focuses on the following two research questions:

Under review as a conference paper at ICLR 2026

28a Sar0 2370 & A - v
............... aon
ea| Filter the products to aa -

Shd iy -, | show only those
'Price: Low to High' to from the 'FRSH' @ o .,'
find the most affordable | quaane = N brand in the . on 2200 off foryou !
items in the 'SALMAN — sz 'SALMAN KHAN Jontisiorder BB MWNTRAZ00 g
KHAN OUTFIT' OUTFIT' category. b
category. i

Next Screen

Clear all filters to reset the filter
options and start over.
Select a size filter to narrow

Filter the products to down the product listings by size.
show only those * 1

available for 'Men' © © Choose a color filter to refine the
in the 'SALMAN product listings by color.
KHAN OUTFIT' 5 .
category. Set a price range filter to find
- products within a specific budget.
sorr T fuR

Add the 'FRSH Pour
Homme EDP 100 mI'
product to my wishlist
for later purchase.

Figure 1: The two examples correspond to the two RQs. The left figure represents RQ1, and the right
figure represents RQ2. In RQ1, we explore the interactive widgets in the current state along with their
corresponding instructions and actions. In RQ2, we explore the set of instructions that may require
the same action.

RQ1: Can the agent correctly discriminate and execute multiple distinct instructions mapped to
different UI widgets under the same state?

RQ2: Can the agent unify semantically diverse instructions into the same action when they should
converge on a single widget?

We use the two examples in Figure|[T]to illustrate these two ques-
tions. To address these questions, we introduce an innovative
evaluation method, EXploring the Capabilities BOUNDaries of
Device-Control Agent Capabilities (XBOUND). Additionally, we ~ *“¢% 59
propose two scenarios, Multi-Widget Action Matching and Uni-
Widget Instruction Unification, to facilitate state-level analysis.

')

State s,

@9

tate s; State s,

Compared to previous evaluation methods, XBOUND employs * Slat;:; Ste;‘\‘:;: e o
a novel Exploration Metric that quantifies the extent to which action accuracy

DC agents master various states. We compute the average ac-

tion accuracy of instructions associated with each state in these S.me . s.[alesl s,a Y. S.tate g o

two scenarios. The comparison between XBOUND and existing
evaluation methods is shown in Figure 4]

(b) Overall task success rates

In this work, we evaluate 11 DC agents using the XBOUND

method in the Mobile Use domain, aiming to assess their capa- Figure 2: Comparison between
bilities and limitations across two scenarios systematically. Ad- XBOUND and existing evalua-
ditionally, we experimentally validate the role of grounding and ;o methods.

trajectory data in enhancing agent capabilities across two scenarios.

Finally, we summarize four challenging states. This evaluation

yields noteworthy insights summarized below:

* Among models below the 7B parameter scale, UI-TARS stands out as the most competitive
open-source model, achieving superior performance in both Multi-Widget Action Matching
and Uni-Widget Instruction Unification.

* In Uni-Widget Instruction Unification, most current models exhibit a bimodal performance
distribution, where DC agents either demonstrate exceptional proficiency or perform poorly.

* Models with fewer than 7B parameters, such as ShowUI and OS-Atlas-4B, demonstrate
moderate performance and limited state mastery, indicating that terminal deployment of DC
agents remains challenging.

Under review as a conference paper at ICLR 2026

* In Uni-Widget Instruction Unification, UGround performs particularly poorly. Through
observations across the three tasks, we find that the overall performance is mainly dragged
down by poor planning results from GPT in certain tasks.

» Comparative analysis indicates that grounding data primarily enhances Multi-Widget Action
Matching, whereas trajectory data is more effective for improving Uni-Widget Instruction.

* A comprehensive evaluation of DC intelligence requires not only measuring task completion
rates but also analyzing fine-grained challenging states such as widget disambiguation,
action topology reasoning, and dynamic state understanding.

2 RELATED WORK

2.1 LLM AS DEVICE-CONTROL AGENTS

Recently, there has been considerable exploration in the field of Device-Control Agents, ranging from
box prediction based on HTML and OCR parsing to coordinate prediction based on images (L1 & Li,
2022;|L1 et al.||2024b; |Wang et al., 2024a;|Zhang et al.,[2024b)). For example, Yan et al.|(2023)) utilized
the MM-Navigator method to enhance the localization capabilities of GPT-4V.|Zheng et al.| (2024)
proposed a novel prompt method, SeeAct, which combines the reasoning abilities of LLMs with more
accurate HTML and OCR parsing to improve GPT-4V’s action prediction. |Ma et al.|(2024) trained a
segmented reasoning CoCo-Agent to boost action prediction accuracy. Wu et al.[(2024) employed
significant engineering effort to collect multi-platform data and train a more powerful Device-Control
Grounding Agent OS-Atlas. Qin et al.| (2025) trained UI-TARS on large-scale GUI screenshot data,
enabling context-aware understanding of UI widgets and precise captioning of interfaces. |Gou et al.
(2024) introduces a human-like embodiment for DC agents that perceive the environment entirely
visually and directly perform pixel-level operations on the GUI.

2.2 EVALUATION FOR DEVICE-CONTROL AGENTS

To advance the development of DC Agents, researchers have constructed numerous datasets to
evaluate DC agents (Zhou et al.| [2023} Xie et al., 2024} Rawles et al.|[2024; |Lu et al.| 2024). Bai et al.
(2021); |Deka et al.[(2017);|Cheng et al. (2024) created datasets focused on understanding UI Icons,
where models are required to identify the location of relevant UI Icons based on queries. As the
development of DC agents progresses, the demands for GUI datasets have shifted, necessitating agents
to perform a series of actions in response to user instructions. For example, Rawles et al.|(2023)); [Sun
et al.| (2022) constructed datasets containing episodes in the form of a sequence of screen-action pairs.
Zhang et al|(2024a) supplemented the AITW dataset by adding thought processes. [Li et al.| (2024a)
constructed a fine-grained AndroidControl dataset by including low-level instructions during episodes.
Wang et al.| (2025) introduced a hierarchical benchmark for evaluating GUI automation agents across
six platforms. [Zhao et al.|(2025) assessed an agent’s capability to autonomously generate shortcuts.
Zheng et al.|(2025) introduced a novel benchmark engineered on the principle of Causal Pathways.

However, current evaluation methods primarily focus on the instruction level and may neglect the
broader context of interactions within a given state. To address this limitation, we propose the
XBOUND evaluation method, a state-level framework designed to assess agents’ capabilities within
environmental states.

3 NEW METRIC: EXPLORATION METRIC

In this section, we first define the capability of DC agents to clarify how their performance manifests
across different scenarios. Alongside this definition, we present the Exploration Metric, outlining its
calculation in various scenarios and discussing its significance for evaluating agent capabilities.

3.1 CAPABILITY OF DC AGENTS

From the perspective of state evaluation, the capabilities of DC agents are intrinsically linked to
action matching and instruction unification. Action matching requires agents to correctly map
diverse instructions in the same state to their corresponding UI widgets and execute the intended

Under review as a conference paper at ICLR 2026

Multi-Widget Action
Matching

/ Task1
Action 1 d@
Action 2 —“@ Task2

Action 3 @

Task3

Q— Action —’@» --------- >® Task2

Figure 3: Abstract examples of the two scenarios. Multi-Widget Action Matching: In State i,
executing the corresponding Action under different Tasks requirements can transition to different
States i+ 1. Uni-Widget Instruction Unification: Executing Action in State i can transition to State
i+1, and from State i+ 1, different Tasks can lead to different States i+m.

actions, reflecting their ability to discriminate between multiple instruction—action pairs. In contrast,
instruction unification requires agents to interpret semantically diverse instructions that should
converge to the same UI action, reflecting their ability to comprehend instruction-level semantics and
generalize across varied command expressions. Consequently, we categorize the capability of DC
agents into two scenarios: Multi-Widget Action Matching and Uni-Widget Instruction Unification.

Multi-Widget Action Matching: In this scenario, a set of instructions is collected under the
same state, where each instruction corresponds to a distinct UI widget and requires executing its
associated action. This setting evaluates whether the agent can accurately perceive the relevant Ul
widgets and correctly match each instruction to the intended action, thus reflecting its capability of
instruction—action discrimination.

Uni-Widget Instruction Unification: In this scenario, a set of diverse instructions is provided under
the same state, but all instructions should converge to the same target action on a single widget. This
setting evaluates whether the agent can understand the semantic equivalence of varied instruction
expressions and unify them into a consistent action, thus reflecting its capability of instruction-level
semantic comprehension.

Figure [3] presents examples of these two scenarios. By dividing these two scenarios, we calculate the
agents’ performance in different states to identify their capability boundaries.

3.2 EXPLORATION METRIC

To evaluate the capabilities of DC agents within these two scenarios, we introduce the XBOUND
evaluation method, which measures agent performance along two dimensions: MWAM and UWIU.
The MWAM dimension aligns with Multi-Widget Action Matching, assessing whether agents can
correctly map instructions to their corresponding UI widgets and generalize these behaviors across
diverse visual contexts. The UWIU dimension corresponds to Uni-Widget Instruction Unification,
evaluating whether agents can consistently execute the same action when faced with semantically
varied instructions, thereby reflecting their robustness in handling diverse task formulations.

XBOUND introduces a novel Exploration Metric for quantifying agent capability within environmen-
tal states. We gather the set of executable instructions within the same state and calculate the average
accuracy of this instruction set as a measure of the agent’s capability in the given state. By evaluating
performance across all states, we derive corresponding values for each state’s agent performance,
ultimately illustrating the agent’s capability boundaries. The formulas for the Exploration Metric(EM)
are as follows:

1 m
EMatare = — > _1(Ai), ey
=1

4

Under review as a conference paper at ICLR 2026

1 s
EMan = § 1 EMstate; , @
i=

where I(-) is the indicator function, which equals 1 if the action A; is correct and 0 otherwise. The
variable m represents the number of instructions associated with each screenshot, while s denotes the
number of screenshots.

Since current benchmarks cannot directly utilize the XBOUND evaluation technique, it is necessary
to expand the existing dataset to meet our requirements. Owing to community development in recent
years, current benchmarks provide detailed accessibility trees information, which we leverage to
improve the Android Control dataset (Li et al., 2024a). The detailed pipeline is provided in the
Appendix @ Finally, we retain 43,759 instructions in the MWAM dimension, while the UWIU
dimension contains 13,460 instructions.

4 EXPERIMENT

The experimental setup is described in Sec. 4.1} overall evaluation results are presented in Sec. 4.2}
task-specific performance is detailed in Sec. 4.3} error analysis is provided in Sec. .4} the comparison
between grounding training and trajectory training is discussed in Sec. and the summary of
challenging states is included in Sec. 4.6

4.1 EXPERIMENTAL SETUP

DC agent. We select eleven open-source DC agents with fewer than 7B parameters as evaluation mod-
els, including ShowUI (Lin et al.;|2024), SeeClick (Cheng et al., 2024), Qwen2-VL-Instruct (Wang
et al., [2024b), Uground (Gou et al., [2024), OS-Atlas (Wu et al., [2024), Aguvis (Xu et al.| [2024),
GUI-OwI (Ye et al.,2025)), and UI-TARS (Qin et al.} 2025). We adhere to the prompts they utilize
while deliberately excluding execution history from the inputs. Our experiments are conducted on an
A100 GPU with 80GB of memory.

Evaluation Metrics. In line with the criteria set forth by Zhang & Zhang| (2023)); Wu et al.[(2024)),
an action is considered correct if its type matches the ground-truth type. Specifically, for CLICK
and LONG PRESS actions, correctness in the UWIU dimension is determined if they occur within a
14% screen distance from the reference gestures. In the MWAM dimension, correctness is assessed
based on whether the actions fall within the bounding box of the ground truth UI icon. For SCROLL
actions, correctness is evaluated by checking if the direction (up, down, left, or right) matches the
reference gesture. For TYPE actions, correctness is assessed using the F1 score; the action is deemed
correct if the score is below a threshold of 0.5, as set in our experiments.

4.2 COMPREHENSIVE EVALUATION

We calculate the results of the Exploration Metric corresponding to each state. To enhance state
analysis, we partition the Exploration Metric into four distinct intervals:

 Learning Stage (EM;q:e < 30%)
The current state suggests that DC agents are still in the learning and adaptation phase,
indicating unfamiliarity with the environment.

» Improvement Stage (30% < EMtqte < 60%)
The current state indicates that DC agents have started to grasp certain operations and are
making progress.

« Proficient Stage (60% < EM_;q1c < 90%)
The current state signifies that DC agents possess a relatively proficient understanding and
can perform most actions.

» Expert Stage (90% < EMgiate < 100%)

The current state implies that DC agents have achieved a comprehensive and expert level of
understanding.

Under review as a conference paper at ICLR 2026

Table 1: The assessment of DC agents’ capabilities spans two dimensions: MWAM and UWIU.
Specifically, the percentage of states is reported for the four stages, i.e., Learning Stage (LS),
Improvement Stage (IS), Proficient Stage (PS), and Expert Stage (ES). The Exploration Metric
(EM) quantifies the overall mastery of states by DC agents, reflecting their accuracy in completing
instructions within each state. In contrast, the Success Rate (SR) measures the step-wise success
rate of DC agents across the dataset, indicating their proficiency in executing individual steps. For
each DC agent, the best-performing Stage results are highlighted in bold, and the second-best are
underlined. For the EM and SR, we bold the best-performing results of the 11 DC agents.

MWAM UWIU
Model
LS IS PS ES EM SR LS IS PS ES EM SR
ShowUI-2B 75.09 19.17 4.17 1.57 18.51 19.70 68.44 9.76 5.77 16.03 25.27 25.54

OS-Atlas-4B-Pro 37.29 34.25 22.51 5.95 4192 42.82 57.16 19.60 7.25 15.99 31.80 30.24
OS-Atlas-7B-Pro 20.41 27.74 35.48 16.37 57.59 59.50 36.83 12.95 12.90 37.32 53.44 53.22

SeeClick 53.16 24.68 15.97 6.19 32.58 33.72 77.05 10.60 342 893 17.15 14.93
Qwen2-VL-7B-Ins 26.05 35.00 30.98 7.97 49.30 50.88 58.84 14.85 10.21 16.11 31.52 32.19
Aguvis-7B 19.23 29.16 37.25 14.35 57.39 59.23 37.32 1591 12.95 3391 51.29 51.47
UGround-7B 14.20 25.53 38.11 22.16 63.00 63.66 75.95 3.39 190 18.81 21.97 20.35

UI-TARS-7B-SFT 10.54 24.40 42.52 22.55 66.96 68.20 39.41 13.98 11.97 34.64 50.53 52.40
UI-TARS-7B-DPO 11.45 24.59 42.20 21.76 66.08 67.57 37.55 14.03 13.13 35.29 52.02 53.41
UI-TARS-1.5-7B 13.54 25.33 40.24 20.89 64.25 65.82 16.66 8.25 10.03 65.05 76.44 79.69
GUI-Owl-7B 14.13 25.97 41.24 18.65 62.97 64.87 32.03 14.33 14.59 39.05 56.96 58.41

DC agents with stronger capabilities should have a higher proportion in the Proficient Stage and
Expert Stage, and a lower proportion in the Learning Stage and Improvement Stage. We present the
four stages and the Exploration Metric of various DC agents across different dimensions in Table [I]

Performance of models with fewer than 7 billion parameters reveals insufficient proficiency.
Analysis of ShowUI and OS-Atlas-4B-Pro indicates that agents with parameter scales smaller than 7
billion still exhibit inadequate performance. Across both MWAM and UWIU dimensions, most state
performances remain within the Learning Stage and Improvement Stage. Specifically, ShowUI-2B is
in the Learning Stage as high as 75.09%, highlighting the challenges of achieving effective terminal
deployment with smaller models.

UI-TARS models demonstrate superior performance among the 7 billion parameter models.
Observations from the table show that the UI-TARS series is the top performer within this parameter
range. Each of the three UI-TARS models achieves at least 64% overall Exploration Metric perfor-
mance in the MWAM dimension, with most state performances in the Proficient Stage and Expert
Stage. In the UWIU dimension, UI-TARS-1.5-7B records the best performance. Given the unknown
specifics of their training data, we speculate that version 1.5 includes more trajectory tasks, enhancing
the model’s comprehension of current action execution concerning future tasks.

UGround exhibits anomalous performance in the UWIU dimension. Analysis indicates that
UGround’s errors largely stem from incorrect planning by GPT, primarily due to erroneous environ-
mental perception. For example, the model may plan to return to the desktop to open an email app
when attempting to forward content within an app. This highlights the necessity of training the model
with relevant planning data.

A bimodal distribution phenomenon observed in the UWIU dimension. In the UWIU dimension,
a bimodal distribution emerges where agents exhibit complete absence or presence of action learning.
This suggests that current DC agents are yet to achieve human-like intelligence and still have
significant developmental strides to make.

4.3 CAPABILITY EVALUATION BASED ON TASK

We select three tasks from the test data and sample 2,000 instructions for each task. Correct
instructions are manually filtered, and highly repetitive instructions are removed. The final statistical

Under review as a conference paper at ICLR 2026

Table 2: The proportion of states in the four stages for 6 agents across three tasks. The best-performing
Stage results are highlighted in bold, and the second-best are underlined.

Task Model MWAM Uwiu
LS IS PS ES LS IS PS ES
Aguvis-7B 6.90 24.14 3793 31.03 4092 13.64 18.18 27.27
UGround-7B 0 27.59 51.72 20.69 43.75 0 0 56.25
Maps UI-TARS-7B-SFT 0 17.24 3793 44.83 4091 0 0 59.09
UI-TARS-7B-DPO 345 1034 37.93 4828 4545 0 0 54.55
UI-TARS-1.5-7B 345 10.34 3448 51.72 9.09 9.09 9.09 72.73
GUI-Owl-7B 3.45 690 27.59 62.07 27.27 13.64 22.73 36.36
Aguvis-7B 4 24 32 40 8 28 4 60
UGround-7B 4 36 28 32 73.68 0 0 26.32
News UI-TARS-7B-SFT 0 16 32 52 56 0 0 44
UI-TARS-7B-DPO 4 12 32 52 56 0 0 44
UI-TARS-1.5-7B 4 12 44 40 0 4 8 88
GUI-Owl-7B 0 20 24 56 12 24 8 56
Aguvis-7B 465 11.63 5349 30.23 21.88 28.12 3.12 46.88
UGround-7B 11.63 2326 34.88 30.23 84.62 0 0 15.38
Shopping UI-TARS-7B-SFT 2.33 9.3 37.21 51.16 43.75 0 0 56.25
UI-TARS-7B-DPO 2.33 698 39.53 51.16 43.75 0 0 56.25
UI-TARS-1.5-7B 2.33 698 3488 5581 938 9.38 0 81.25
GUI-Owl-7B 2.33 9.3 30.23 58.14 25 6.25 12.5 56.25

results are presented in the Appendix We evaluate the performance of 11 agents on these three
tasks. The proportion of states in each of the four stages for six agents is shown in Table[2} results
for the remaining five agents are presented in Appendix[A.4] The EM capability chart is provided in
Figure[d Analysis of Table [2]reveals the following:

The UI-TARS and GUI-Owl series currently demonstrate
the best performance in the MWAM dimension (Multi- ShoppingW News i Oanies 4310

OsAtlas-78-Pro

Widget Action Matching) for the Maps, News, and Shop-
ping tasks.

UITARS-78-SFT
UITARS-78-DPO
UITARS-1.5-78
GUI-Owl-78

UGround performs well on the Maps task but poorly on
News and Shopping. This indicates that employing GPT
as a planning model does not consistently result in poor
performance across all tasks; rather, certain tasks adversely
affect its overall performance.

UGround, UI-TARS-7B-SFT, and UI-TARS-7B-DPO ex-
hibit a pronounced bimodal distribution in the UWIU di-
mension for Maps, News, and Shopping tasks, suggesting
that these models fail to train on certain actions and possess
learning blind spots.

Figure @] shows that UI-TARS-1.5-7B is the best-performing
agent overall across the three tasks, while Aguvis, UI-TARS-7B-SFT, UI-TARS-7B-DPO, and
GUI-Owl display comparable performance.

Maps-D Maps-W

News-D Shopping-D

Figure 4: The EM of 11 agents across
three tasks.

4.4 ERROR ANALYSIS

By calculating the Exploration Metric, we can quickly identify states with low accuracy. In further
analyzing these poor performance states, we look closely at the actions undertaken by the agent
and compute their similarity. Typically, the more similar the actions, the closer the similarity value
approaches 1; conversely, the more disparate the actions, the closer the similarity value approaches 0.

Under review as a conference paper at ICLR 2026

Table 3: The comparison between grounding training and trajectory training. The best-performing
Stage results are highlighted in bold, and the second-best are underlined. For the EM, we bold the
best-performing results.

MWAM UWIU
LS 1S PS ES EM LS 1S PS ES EM

Qwen2-VL-7B-Ins 26.05 35.00 3098 797 4930 58.84 14.85 1021 16.11 31.52
OS-Atlas-7B-Base 16.07 27.40 39.26 17.27 60.61 52.14 1793 922 20.71 3691
OS-Atlas-7B-Pro 2041 27.74 3548 1637 5759 36.83 1295 1290 37.32 53.44

Model

If the similarity value of erroneous actions nears 1, this indicates systematic errors within these
states. We explain the cause of mistakes through the two scenarios (Section [3.1)). (1) Multi-Widget
Action Matching: In this scenario, the agent may execute incorrect actions (such as press_back
and press_home) due to insufficient understanding of the state, implying that the current state is
unfamiliar to the agent. (2) Uni-Widget Instruction Unification: This may be due to the agent having
learned only the action associated with the current state, without recognizing distinctions between
task instructions, which leads it to execute the same action regardless of the task. This indicates that
the model possesses limited capability to handle diverse instructions in that state.

If the similarity value of erroneous actions is closer to 0, it signifies inadequate learning by the agent
in these states. We explain the cause of mistakes through the two scenarios. (1) Multi-Widget Action
Matching: In this scenario, the current state usually contains UI widgets unlearned by the agent,
leading to incorrect actions, evidencing insufficient action matching capability for the current state.
(2) Uni-Widget Instruction Unification: The agent fails to grasp the relationship between the current
action and future state transitions, resulting in errors in action selection. This indicates inadequate
learning of actions by the agent. More examples are presented in the Appendix [A.5]

4.5 GROUNDING TRAINING AND TRAJECTORY TRAINING COMPARISON

In this section, we discuss the impact of grounding training and trajectory training on Mobile Use
Agents. Utilizing the XBOUND evaluation method, we assess three models: Qwen2-7B-VL-Instruct,
OS-Atlas-7B-Base, and OS-Atlas-7B-Pro. OS-Atlas-7B-Base is trained with grounding data based on
Qwen2-7B-VL-Instruct, whereas OS-Atlas-7B-Pro incorporates trajectory data based on OS-Atlas-
7B-Base. The results are presented in Table [3]

Comparing the Base model with the Qwen model reveals that grounding data enhanced the Base
model’s performance in the MWAM dimension, improving its understanding of Multi-Widget
Action Matching. However, significant improvement in the UWIU dimension is not observed until
trajectory data is employed for training, which subsequently enhances performance within Uni-
Widget Instruction Unification. This also demonstrates that grounding data is associated with the
agents’ action-matching abilities, whereas trajectory data is linked to their decision-making abilities.

4.6 CHALLENGING STATES

During the XBOUND evaluation process, we identify several challenging states that require a certain
level of intelligence from DC agents. We categorize these states into the following four demands:

(1) Understanding of UI Icons: Due to limitations in current grounding and trajectory data, many Ul
icons are absent from agents’ training, potentially causing agents to fail in learning tasks associated
with certain Ul icons. This scenario heavily assesses the agents’ action-matching abilities regarding
Ul icons. In Figure[5|a), the agent fails to recognize the image-search icon and repeatedly selects the
text search box instead.

(2) Distinction Between Similar UI Icons: Tasks in domains such as shopping and media often
present multiple visually similar icons on the same page. Agents must correctly align instructions
with the intended target, testing their widget-level discrimination ability. In Figure [5(b), the agent
misinterprets a “like” command and clicks on the wrong post.

Under review as a conference paper at ICLR 2026

0.ca- v a0 X Addto Shopping st @
-9
@ e -
o
? (b}
« Shoes Insae- Experiece o =
Instruction: Instruction: Instruction: Instruction:
Use the camera to scan a barcode Favorite the content 'Edge of Add the selected pizza to the cart Cancel 'Salt' for the shopping list
of a product to find it on Amazon. Dawn' to easily find it later. and review the cart contents and prepare to update the list.
GUI Agent: GUI Agent: GUI Agent: GUI Agent:
actions: CLICK actions:\nCLICK actions: CLICK actions: CLICK
<point>[[546,97]]</point> <point>[[63,394]]</point> <point>[[770,652]]</point> <point>[[859,290]]</point>
(a) Inadequate (b) Insufficient Distinction (c) Failure to Learn Topological (d) Incorrect Environmental
Understanding of Ul Icons Between Similar Ul Icons Relationships Between Actions State Awareness:

Figure 5: Four types of challenging states are illustrated through representative examples. A green
pointer indicates the correct action, while a red pointer denotes the incorrect action.

(3) Topological Relationships Between Actions: In specific task scenarios on certain pages, actions
may have topological dependencies where action B must precede action A. This scenario requires
agents to comprehend the topological order of actions and possess a deeper understanding of their
meanings. In Figure[5{c), the instruction is to complete the customization of a pizza directly. However,
the “Choose Your Medium Pizza” option isn’t selected, and “Add” should only be executed after
completing the “Choose Your Medium Pizza” step.

(4) Environmental State Awareness: For some ordering and shopping tasks, product requirements
often need alteration. This scenario demands that agents understand or perceive the environmental
state necessary for task execution correctly. In Figure[5[d), the goal is to remove “Salt” before the
update, but the DC agent fails to notice that “Salt” is already added and proceeds with the update
action instead.

5 LIMITATIONS AND FUTURE WORK

This work presents a novel evaluation method, which we extend with the Android Control dataset
since it does not directly apply to existing data. While LLM assists in filtering, the resulting data
may not fully ensure the accuracy of instructions and actions. Despite this, the XBOUND method
highlights promising directions for future research.

More Complete and Refined Evaluation: The evaluation data in this work have the following
characteristics: offline data and trajectory independence, which make it impossible to build a full
trajectory tree. In future development of evaluation data for Mobile Use, we can organize app-level
trajectory tree data and evaluate DC agents’ capabilities app-wise using the XBOUND method.

New Ideas for Enhancing DC Agents’ Capabilities: Currently, improving DC agents’ performance
primarily focuses on the instruction level, relying on extensive trajectory data collection to enhance
agents’ capabilities. In the future, if augmented instructions cease to be efficient in enhancing agents’
capabilities, we can evaluate agents’ performance across different states and focus on improving
performance in underperforming states to boost their overall capabilities.

6 CONCLUSION

This study delineates the scenarios of DC agents’ capability within states and introduces a novel
evaluation method, XBOUND. XBOUND provides a state-level evaluation framework, serving
as a tool to assess agents’ capabilities within environmental states. From the perspective of state
evaluation, we define two distinct scenarios, evaluate the performance of 11 open-source agents
within the Mobile Use domain, offering new insights at the state level. Our evaluation reveals several
key insights. UI-TARS emerges as the most effective model at the 7B scale. Current agents exhibit a
bimodal performance pattern in instruction unification, while sub-7B models demonstrate limited
state mastery. In addition, we identify GPT-based planning as a critical bottleneck and show that
grounding data primarily improves action matching, whereas trajectory data proves more effective
for instruction unification.

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

We confirm that this work adheres to the ethical guidelines set forth by the ICLR 2026 conference.

8 REPRODUCIBILITY STATEMENT

We hereby declare that our work is fully reproducible. Using our data augmentation pipeline, multiple
instructions can be generated. By applying these instructions (or those we provide) to evaluate the 11
DC agents, the same observations can be obtained in both the Multi-Widget Action Matching and
Uni-Widget Instruction Unification scenarios.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen,
et al. Uibert: Learning generic multimodal representations for ui understanding. arXiv preprint
arXiv:2107.13731, 2021.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A Plummer. A
dataset for interactive vision-language navigation with unknown command feasibility. In European
Conference on Computer Vision, pp. 312-328. Springer, 2022.

Jingxuan Chen, Derek Yuen, Bin Xie, Yuhao Yang, Gongwei Chen, Zhihao Wu, Li Yixing, Xurui
Zhou, Weiwen Liu, Shuai Wang, et al. Spa-bench: A comprehensive benchmark for smartphone
agent evaluation. In NeurIPS 2024 Workshop on Open-World Agents, 2024.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design
applications. In Proceedings of the 30th annual ACM symposium on user interface software and
technology, pp. 845-854, 2017.

Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin
Wang, Rui Yan, et al. Mobile-bench: An evaluation benchmark for 1lm-based mobile agents. arXiv
preprint arXiv:2407.00993, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091-28114, 2023.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281-14290, 2024.

Gang Li and Yang Li. Spotlight: Mobile ui understanding using vision-language models with a focus.
arXiv preprint arXiv:2209.14927, 2022.

10

Under review as a conference paper at ICLR 2026

Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. On the effects of data scale on ui control agents. Advances in Neural
Information Processing Systems, 37:92130-92154, 2024a.

Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei.
Appagent v2: Advanced agent for flexible mobile interactions. arXiv preprint arXiv:2408.11824,
2024b.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences. arXiv preprint arXiv:2005.03776, 2020.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Zechen Bai, Weixian Lei, Lijuan Wang,
and Mike Zheng Shou. Showui: One vision-language-action model for generalist gui agent. In
NeurlPS 2024 Workshop on Open-World Agents, volume 1, 2024.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. Coco-agent: A comprehensive cognitive mllm agent
for smartphone gui automation. arXiv preprint arXiv:2402.11941, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708-59728, 2023.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
multi-modal conversational agents on mobile gui. arXiv preprint arXiv:2205.11029, 2022.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. arXiv preprint arXiv:2406.01014, 2024a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024b.

Xuehui Wang, Zhenyu Wu, Jingling Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu,
Qingyun Li, Xuan Dong, Zhe Chen, et al. Mmbench-gui: Hierarchical multi-platform evaluation
framework for gui agents. arXiv preprint arXiv:2507.19478, 2025.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040-52094, 2024.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,

and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024.

11

Under review as a conference paper at ICLR 2026

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Foundamental agents for gui automation.
arXiv preprint arXiv:2508.15144, 2025.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
Tang. Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint arXiv:2403.02713,
2024a.

Shaoqing Zhang, Zhuosheng Zhang, Kehai Chen, Xinbei Ma, Muyun Yang, Tiejun Zhao, and Min
Zhang. Dynamic planning for llm-based graphical user interface automation. arXiv preprint
arXiv:2410.00467, 2024b.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents.
arXiv preprint arXiv:2309.11436, 2023.

Pengxiang Zhao, Guangyi Liu, Yaozhen Liang, Weiqing He, Zhengxi Lu, Yuehao Huang, Yaxuan
Guo, Kexin Zhang, Hao Wang, Liang Liu, et al. Mas-bench: A unified benchmark for shortcut-
augmented hybrid mobile gui agents. arXiv preprint arXiv:2509.06477, 2025.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614,2024.

Zihan Zheng, Tianle Cui, Chuwen Xie, Jiahui Zhang, Jiahui Pan, Lewei He, and Qianglong Chen.
Naturegaia: Pushing the frontiers of gui agents with a challenging benchmark and high-quality
trajectory dataset. arXiv preprint arXiv:2508.01330, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In this work, LLMs serve two primary purposes: one is for polishing the paper, and the other is for
data augmentation.

A.2 TRAJECTORY TREE DATASET

Common GUI trajectory datasets record a series of action sequences that result in screen transi-
tions. However, trajectory trees focus on other possible actions and tasks that may branch out
from a given state. Formally, given the state S; at the time step ¢ and various user instructions
I} 12, ... TM, the DC agent G will take corresponding actions under different instructions, such
as A} = G(S;,I}), A? = G(Si, I?), ..., AM = G(S;, IM), where M represents the number of
instructions. Each instruction completes a corresponding trajectory sequence F = {(S;, A;)L 1, I},
where 7" represents the total steps. These trajectory sequences are constructed into a trajectory tree
dataset 7' = {(S;", (I"™, A™), S%1){_, }M_, based on overlapping states.

A.3 DATA EXPANSION METHOD

Using the accessibility trees provided, we commence by annotating each screenshot with accessibility
trees from Android Control to identify clickable and visible Ul icons, which are sequentially num-
bered. Red boxes highlight these icons on screenshots, and their numbers ensure clear identification.
Subsequently, GPT-4omini is employed to generate both high-level and low-level instructions. After
acquiring the instructions, we utilize Qwen2.5-VL-72B-Instruct to translate them into corresponding
actions (e.g., click, scroll, type, etc.).

In the MWAM dimension, we focus on collecting single screenshots and request GPT-4omini to
produce task instructions based on the Ul icons present on these screenshots. In the UWIU dimension,
we primarily gather screenshot-action-screenshot pairs (S, A, St+1) and ask GPT-4omini to expand
instructions for the Ul icons on the subsequent screenshot S;;. We then combine the high-level

instructions I}, |, I2,+, ..., I}, collected from screenshot Sy with action A, and screenshot Sy
into the structure {(S;, (I™, Ay), Si+1)}M_,. When DC agents strive to execute the expanded

instructions from the subsequent screenshot, they must perform the collected actions on the previous
screenshot.

To ensure data quality, GPT-4omini evaluates whether actions and low-level instructions satisfy the
high-level instructions, resulting in a dataset of successful interactions. Since high-level instructions
are generated per screenshot and do not constitute a complete trajectory, the test dataset is termed a
“pseudo” trajectory tree dataset. Figure[6|visually represents the dataset construction process for these
dimensions.

Our main experiment dataset comprises 1,536 episodes with 43,759 instructions, where the MWAM
dimension includes 43,759 instructions, and the UWIU dimension contains 13,460 instructions. We
have tallied the number of instructions associated with each screenshot and the action distribution,
with detailed information presented in Figure[7|and Figure

Following L1 et al.| (2024a), we use Qwen2-vl-7B-Instruct to classify the test data based on the app
categories provided. Ultimately, we select the three most prevalent app categories within the test set
for further analysis. The statistical results of the collected instructions are presented in Table 4]

Table 4: Data statistics of the three tasks in both dimensions.
Task Width UWIU

Maps 135 73
News 115 58
Shopping 205 99

13

Under review as a conference paper at ICLR 2026

Width

| Screenshots | | Ul

| | Ul

| ur |

Ul Icon: 7

Ul Icon: 11

Ul Icon: 10

| Low-level instruction

| | Low-level instruction

| Low-level instruction |

Click the field displaying
'Aberdeen, Scotland, United
Kingdom (ABZ)' to change the
departure airport.

Click the 'Search flights' button to
initiate the flight search process.

Click the 'Any stops' option to
specify the stopover preferences
for the flight search.

High-level instruction

| | High-level instruction

| High-level instruction

Change the departure airport
from Aberdeen (ABZ) to
Edinburgh (EDI) for the flight
search to Toronto.

Search for flights from
Aberdeen, Scotland (ABZ) to
Toronto, Ontario (YTO) for one
traveler in economy class,
departing on August 10 and

Select 'Non-stop' flights for the
search from Aberdeen to Toronto
for 1 traveler in economy class.

returning on August 15.

| Screenshots & Actions | | Next screenshot Instructions | | Action & High-level instruction |

\ (Click: h
540, 2232
| High-level instruction 1 | | High-level instruction 1|
= | High-level instruction 2| | High-level instruction 2|
Click: [& &7 o > e : : :
540, 2232 * + | High-level instruction 3 | = | High-level instruction 3 |
-- >
SRR N | [High-level instruction4 | [High-level instruction4 |
N) N oase | High-level instruction m_| | High-level instruction m |
I — it
_ L /2N Y,

Figure 6: The data collection construction process involves MWAM and UWIU dimensions. MWAM
Dimension: Screenshots are annotated, and GPT40-mini is utilized to select Ul elements for gen-
erating both low-level and high-level instructions. UWIU Dimension: High-level instructions
corresponding to subsequent screenshots are identified based on transitions between screenshots,
alongside the collection of actions and high-level instructions.

A.4 ANOTHER 5 AGENT CAPABILITY PERFORMANCE

The performance of the remaining five agents on three different tasks is reported in Table[5]

We observe that the 2B model still performs poorly, with ShowUI remaining the weakest across all
three tasks. In contrast, OS-Atlas-4B-Pro has already outperformed SeeClick and is approaching the
performance of Qwen2-VL-7B-Ins.

A.5 SIMILARITY CASE

Figure [Q]illustrates an example from the Multi-Widget Action Matching scenario where the similarity
of incorrect actions is 0, while Figure [T0| presents a case from the same scenario where the similarity
of incorrect actions is 1. Figure[IT]illustrates an example from the Uni-Widget Instruction Unification
scenario where the similarity of incorrect actions is 0, while Figure [I2] presents a case from the same
scenario where the similarity of incorrect actions is 1.

14

Under review as a conference paper at ICLR 2026

Number of screenshots

Number of screenshots

.
w
[=]
=}

1250

1000 -

~
A
=}

g

N

u
o ©
I

1250

1000 -

7501

250 +

Width: The number of instructions distruction

1

3 4 5 6

Number of instructions per screenshot

9

Depth: The number of instructions distruction

1

3 4 5 6

Number of instructions per screenshot

9

Figure 7: Instructions per screenshot distribu-

tion

A.6 PROMPT

click

scroll

type

wait

open_app
navigate_back

Action Type

long_press
navigate_home

click

scroll
input_text
wait

open_app
navigate_back

Action Type

long_press

navigate_home

Width: Action distribution

o

T
10000

T
20000
Number of actions

T
30000

Depth: Action distribution

40000

T
2000

o

T T
4000 6000
Number of actions

T
8000

Figure 8: Action distribution

Table 5: The proportion of states in the four stages for 11 agents across three tasks.

Task

Model

Width

UWIU

LS

IS

PS ES

LS

IS PS

ES

Maps

ShowUI-2B

68

OS-Atlas-4B-Pro 31.03

0OS-Atlas-7B-Pro

SeeClick

Qwen2-VL-7B-Ins

17.24
44.83

4

24
27.59
10.34
34.48

44

8 0
37.93 3.45
24.14 48.28
17.24 345
36 16

70
54.55

0 0

18.18 9.09

30

18.18

36.36
81.25
57.14

13.64

14.29

13.64
0 625
9.52

News

ShowUI-2B
0OS-Atlas-4B-Pro
OS-Atlas-7B-Pro

SeeClick

Qwen2-VL-7B-Ins

64
20
4
24
12

24
20
16
36
28

36
32
28 12
48 12

24
48

48
48
20

52.63
36

24 4
28 0

1053 0

20

20 4

36.84

40

Shopping OS-Atlas-7B-Pro

ShowUI-2B

67.44

OS-Atlas-4B-Pro 25.58

SeeClick

2.33
28.6

Qwen2-VL-7B-Ins 23.26

30.23
25.58
13.95
30.23
32.56

233 0
44.19 4.65
41.86 41.86
37.21 13.95
39.53 4.65

59.38
46.88
21.88
50
34.38

125 0
15.62
15.62
19.23

12.5
12.5
3.85
25

28.12
25

50

26.92
312 375

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
81
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Rewind the video 'Easy Origami
ELEPHANT to review the previous steps.

Action: Click on the Golden
‘backward button at the left location:

creen [277, 386,
382,491]

Cast the video 'Easy Origami ELEPHANT'
to my living room TV.

Golden

Click on the settings icon at losation:

the top right of of the screen.

click(x(x=0.8241, y=0.0844) (3621031

691,267

Aguvis

Golden
ation:

Action: Click on the right arrow
at the bottom of the screen.
click(x(x=0.9472, y=0.9067)

[886. 386,
991,491]

Aguvis

ELEPHANT! in fullscreen mode for a better

‘Watch the video 'Easy Origami
viewing experience.

Action: Click on the settings [
icon at the top right comer of n:
the screen.
click(x=0.8241, y=0.0842)

Aguvis

Figure 9: Similarity=0 in the MWAM dimension.

s) @
4 98 6
. L Review the workout summaries from the
previous week to track my fitness progress. | ' ¢ @
istry o
Action: Click on the 7 to view the workout
L -) ‘summaries of previous week.
- click(x=0.8741, y=0.3958)
& Tom s e Aguvis
Weight
- View the activities scheduled for October
b 3rd to analyze my workout performance.

Action: Click on the 3rd of date in the month of

October
click(x=0.3759, y=0.401)

Aguvis

Figure 11: Similarity=0 in the UWIU dimen-

sion.

16

€| Q chckansoup packe clicking on the search bar, typing the new

& ** (Scarch for 'chicken soup packets 1kg' by
Y e— query, and then clicking 'Go'.

LY ee——

Q. cnchenseuppcits s

Golden
location:

LI —

CLICK
<point={[911,885]]</point>

1959, 143,

@ e souppciets combo s 2

0S-Atlas

AAAAAAAA A Ax

Q. kmorrchckn s pckts 107

PY——

Choose 'knorr chicken soup packets' from
the suggestions and click 'Go' to search for

Golden
location:

Figure 10: Similarity=1 in the
MWAM dimension.

Golden action: Click on the option to add

ingredients to the shopping list presented in the.
middle of the screen.

} At Sogping ot =

Select Maida' for the shopping list and
prepare to update the list.

— @t -

0S-Atlas = o

- -]
8 L]
o]
§ o °
05-Atlas © s

Figure 12: Similarity=1 in the UWIU dimen-
sion.

Under review as a conference paper at ICLR 2026

Prompt for constructing the trajectory tree dataset.

You are a mobile expert who excels at interacting with elements on mobile screens to
complete tasks. I have a task for you, and I hope you can use your extensive knowledge
to identify interactive elements on mobile screens. I will provide you with the following
information:

1. The type of action currently being executed, which can be one of five types: CLICK,
SCROLL, TYPE, PRESS_BACK, and LONG_PRESS. You need to choose an action
that can interact with the current screen.

2. Analysis of the mobile screen, which corresponds to the marked boxes in the images.
Your task is to identify five interactive elements on the current mobile screen. The
output should include four parts:

1. Sub-Instruction: Identify the interactive elements and generate natural language
instructions for interacting with these elements. The instructions should be concise,
clear, and executable, and must include critical details such as filenames, times, or
other content as they appear on the screen. For example: ’Scroll left to open the app
drawer, displaying all installed applications on the device”, Click the chat interface,
allowing the user to view and participate in conversation”, ”Type the username ’Agent’,
preparing for the next step in logging into the account”.

2. Analysis: Analyze possible subsequent operations based on the current interface and
action instructions. This analysis should involve step-by-step reasoning, considering
potential changes on the screen and actions that can be taken after these changes. For
example: ”After clicking the plus button, a dropdown menu appears with an option
to create a document. I can select this option to create a new document. First, I need
to name the document, then enter content into the document, and finally save the
document and exit”.

3. High-Level Instruction: Based on the analysis results, envision a high-level task
that can be completed within the current interface. There are two types of High-Level
Instructions: Task-Oriented: Completing a series of operations to achieve a specific
goal. Question-Oriented: Performing a series of operations and deriving an answer to
a specific question. For example: Share my favorite Book ’the Queen’s Gambit” to my
Friend Natalie larson over her gmail address -natalie.larson1998 @ gmail.com from the
PocketBook app. Ensure that the High-Level Instruction is executable by including all
critical specifics, such as filenames, relevant timings, or required details.

4. Ul item: Based on the current page parsed result and action instructions, identify the
corresponding Ul item and provide the specific number.

You only need to return a dictionary formatted as follows: { "Sub-Instruction”: ”xxx”,
”Analysis”: ”xxx”, "High-Level-Instruction”: ”xxx”, ”Ul item”: x }

Current screen analysis:

Figure 13: Prompt for constructing the trajectory tree dataset.

17

Under review as a conference paper at ICLR 2026

Prompt for reasoning the correct golden action.

You are a GUI task expert, I will provide you with a low-level instruction, a golden ui
with its corresponding ID.

Low-level instruction:

Ul ID:

Please generate the action for the next step.

Candidate Actions:

“action_type”: “click”, "ui”: jui-idxg,

“action_type”: “long_press”, "ui”: jui-idx;,

“action_type”: “type”, “text”: jtext_input;,

“action_type”: “’scroll”, ’direction”: jup, down, left, or right;,

“action_type”: “navigate_home”

“action_type”: “navigate_back”

“action_type”: “open_app”, “app-name”: japp_-name;,

“action_type”: “wait”

“action_type”: “status”, ”goal _status”: j”successful”,’infeasible”;

You need to generate a script in the form: actions: ACTION

Make sure to consider the details in the screenshot and the task requirements to create
an accurate and functional script.”

Figure 14: Prompt for evaluating whether actions correctly execute low-level instructions.

Prompt for reasoning the correct golden action.

You are a mobile expert who excels at interacting with elements on mobile screens to
complete tasks. I have a task for you, and I hope you can use your extensive knowledge
to identify interactive elements on mobile screens. I will provide you with the following
information:

1. A low-level instruction, which we will follow to perform actions on the current
screen.

2. The type of action currently being executed, which can be one of two types: CLICK
or LONG_PRESS. You need to determine whether this action can fulfill the current
low-level instruction.

3. The current screen environment, with the position where the action(click and
long_press) needs to be executed marked by a red box.

I will provide you with a screenshot, along with the low-level instructions and the
action to be executed. Your task is to determine whether the current action brings us
closer to achieving the low-level instruction. If the current action contributes to the
realization of the low-level instruction, answer ”Yes”’; otherwise, answer "No”.

You only need to return a dictionary formatted as follows: { ”Analysis™: "xxx”,
”Correct”: Yes/No }

Figure 15: Prompt for evaluating whether actions correctly execute low-level instructions.

18

Under review as a conference paper at ICLR 2026

Prompt for evaluating whether low-level instructions solve high-level instructions.

You are a mobile expert who excels at interacting with elements on mobile screens to
complete tasks. I have a task for you, and I hope you can use your extensive knowledge
to identify interactive elements on mobile screens. I will provide you with the following
information:

1. A high-level instruction, which is our ultimate goal to be executed.

2. A low-level instruction, which we will follow to perform actions on the current
screen.

3. The current screen environment, with the position where the action needs to be
executed marked by a red dot.

I will provide you with a screenshot, along with the high-level and low-level instruc-
tions to be executed. Your task is to determine whether the current low-level instruction
brings us closer to achieving the high-level instruction. If the current low-level instruc-
tion contributes to the realization of the high-level instruction, answer ’Yes”; otherwise,
answer "No”.

You only need to return a dictionary formatted as follows: { ”Analysis™: ”xxx
”Correct”: Yes/No }

2
)

Figure 16: Prompt for evaluating whether low-level instructions solve high-level instructions.

19

Under review as a conference paper at ICLR 2026

Prompt for classifying trajectories into specific app tasks.

You are a GUI agent. I'll give you a total goal, a screenshot, and some categories of
apps, and I’ll ask you to choose the closest to the general goal among those categories.
Output Format

You only need to return a dictionary formatted as follows: { ”Analysis™”: ”xxx
”Categories”: ”xxx”

APP Categories

. Shopping

. Productivity & Office
. Other

. Files

. Transportation

. Health & Fitness

. Recipes

. Flights

. Clock & Alarms

10. Reminders

11. Voice recording

12. Education

13. Books

14. Email

15. Calendar

16. Notes & Todos

17. Maps

18. Videos

19. News

20. Meditation

21. Weather

22. Finance

23. Art & crafts

24. Gardening

25. Contacts

26. Drawing

27. Music

28. Real estate

29. Messaging

Total Goal

£t}
)

O 00O\ W~ W -

Figure 17: Prompt for classifying trajectories into specific app tasks.

20

	Introduction
	Related Work
	LLM as Device-Control Agents
	Evaluation For Device-Control Agents

	New Metric: Exploration Metric
	Capability of DC agents
	Exploration Metric

	Experiment
	Experimental Setup
	Comprehensive Evaluation
	Capability Evaluation based on Task
	Error Analysis
	Grounding Training and Trajectory Training Comparison
	Challenging States

	Limitations and Future Work
	Conclusion
	Ethics statement
	Reproducibility statement
	Appendix
	The Use of Large Language Models
	Trajectory Tree Dataset
	Data expansion method
	Another 5 Agent Capability Performance
	Similarity Case
	Prompt

