A Matter of Interest: Understanding Interestingness of
Math Problems in Humans and Language Models

Shubhra Mishra', Yuka Machino?34, Gabriel Poesia?, Albert Jiang*°, Joy Hsu?,
Adrian Weller*, Challenger Mishra*, David Broman', Joshua B. Tenenbaum?,
Mateja Jamnik* f, Cedegao E. Zhang> ', Katherine M. Collins®*:f
KTH Royal Institute of Technology!, Stanford University?2,
Massachusetts Institute of Technology?®, University of Cambridge*, Mistral AI°
shubhram@kth.se, {cedzhang, katiemc}@mit.edu

Abstract

The evolution of mathematics has been guided in part by interestingness. From
researchers choosing which problems to tackle next, to students deciding which
ones to engage with, people’s choices are often guided by judgments about how
interesting or challenging problems are likely to be. As Al systems, such as LLMs,
increasingly participate in mathematics with people—whether for advanced re-
search or education—it becomes important to understand how well their judgments
align with human ones. Our work examines this alignment through two empiri-
cal studies of human and LLM assessment of mathematical interestingness and
difficulty, spanning a range of mathematical experience. We study two groups:
participants from a crowdsourcing platform and International Math Olympiad
competitors. We show that while many LLMs appear to broadly agree with human
notions of interestingness, they mostly do not capture the distribution observed
in human judgments. Moreover, most LLMs only somewhat align with why
humans find certain math problems interesting, showing weak correlation with
human-selected interestingness rationales. Together, our findings highlight both
the promises and limitations of current LLMs in capturing human interestingness
judgments for mathematical Al thought partnerships.

1 Introduction

Mathematical reasoning involves not just solving problems but judging whether a problem is worth
solving. In recent years, large language models (LLMs) and large reasoning models (LRMs) have
substantially advanced in their ability to solve mathematics problems: they have gone from struggling
to solve grade school mathematics problems to now achieving gold medal-level performance at
the International Mathematical Olympiad (IMO) [2} [11}[14}|19]. While this progress is impressive,
problems are often given to models to solve. Even computer-assisted discoveries like improved bounds
on the CapSet problem (by FunSearch), better matrix multiplication algorithms (by AlphaTensor),
or the improved bound on the kissing number (by AlphaEvolve) have ultimately depended on
human-posed targets or carefully designed heuristics [22} 9] [18]].

It is unclear whether LLMs and LRMs can adequately judge and select which problems are worth
solving at all [4]]. This is important, because problem selection is crucial for many potential
applications of LLMs from education (e.g., proposing interesting problems and examples to students)
to automated mathematical discovery (AMD) [21}[16] (involving posing interesting conjectures to
explore). Answering the question “is this problem worth solving?” entails exploring two dimensions:
whether the problem is interesting enough and whether it is challenging enough. While some prior
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Figure 1: Human interactions with mathematics involve both judging which problems are worth
pursuing, and then solving those problems. LLMs, in their applications today, are asked to solve
problems directly. A gap remains: in settings where LLMs interact with mathematics in a human-
like way, LLMs’ judgments of how interesting problems are and why they are interesting remains
unexplored. In our work, we study two human participant pools, exploring how language models’
assessments of interestigness can be compared to people both in the final assessment of whether the
problem is interesting and in the process by which a reasoner arrives at such a judgement (e.g., what
factors are considered when judging interestingness).

work has explored the notion of interestingness in humans [[12}[7, [1], in this paper, we take the first
step in empirically comparing interestingness and difficulty judgments across humans and LLMs.

Prior work has attempted to model interestingness for AMD systems; however, such systems like
Graffiti [5]], AM [6, [13]], HR [S 6], and GT [8] rely on hundreds of hand-coded heuristics to guide
conjecture generation and theorem proving, limiting scalability. Recent work has introduced comple-
mentary approaches that structure mathematical statements to yield conjectures provable through
domain expertise, but lack heuristics to guide search based on human notions of interestingness
[L6]. The ability for LLMs and LRMs to operate more freely over language text (e.g., informal
natural language problem descriptions) opens up new possibilities for flexible modeling of problem
interestingness. This makes a new top-down approach possible—instead of manually specifying
heuristics, we can directly measure how well LLMs capture human perceptions of interestingness,
and use this to identify and address gaps.

Our work takes a step in this direction, conducting an initial study comparing LLMs and LRMs to
human judgments of mathematics problem interestingness. Specifically, we contribute:

» Two new datasets of people’s interestingness. 111 participants spanned a range of mathe-
matical experience, from adults with high-school and/or college-level math experience to
IMO participants, and judged problems of varied difficulty, resulting in 822 judgments.

* An evaluation of 12 language models (7 LLMs and 5 LRMs) across 5 families and compare
how models’ judgments of problem interestignness—and assessment of what factors ought
to make a problem interesting (or uninteresting)—align with people.

2 Methods

We study human interestigness judgments in two participant pools and two different banks of
problems: (1) crowdsourced participants reasoning about AMC problems, and (2) IMO participants
(engaged in-person at the 2024 competition) reasoning about past IMO problems. Both studies
received ethics approval by our institutional ethics review boards (the former study through MIT, and
the latter through the University of Cambridge).



Crowdsourcing human interestingness judgments We recruit 63 participants from Prolific, a
crowdsourcing platform common in cognitive science [20]. Each participant was assigned to one of 2
conditions, rating 10 problems each. Each participant saw the same control problems and either a
problem’s original version or its variant. Participants were required to think about each problem for
at least 1 minute before rating its interestingness and difficulty on a scale of 0-100, and providing a
1- to 3-sentence rationale for each rating. For analysis, we filter out participants that rate the negative
control math problem (“What is 28 + 13?7”) as having interestingness > 90, which filtered out the 6
outlier participants’ responses.

We curate problems from AMC 8 and AMC 12, high school-level contests given by the Mathematical
Association of America [15]. To systematically probe how dimensions of a problem impact its
perception and to increase problem set diversity, we introduce the notion of a variant: a type of change
that can be applied to a problem to transform it. Examples of variants include increasing/decreasing
the sizes of the numbers in the problem, adding/removing steps, etc. For each contest problem, we
hand-write a new problem based on a variant type. We also create two control problems: a negative
and a positive control, which are later used to filter out any unfaithful participant ratings. This results
in our final dataset for the Prolific study, which contains 18 problems (2 controls and 8 problems with
one variant each). A list of all our problems and variants are provided in Appendix [A3]

IMO data collection We conducted a survey of interestingness judgements made by participants
at the 2024 IMO. Each of the 48 survey participants saw 4 problems. Each participant saw the
same baseline: problem 1 from IMO 2024. The rest of the problems were selected randomly from
IMO shortlists, with each participant survey being unique and including problems from the same
area (Algebra, Combinatorics, Number Theory, and Geometry). The participants were asked if they
wanted to see the solution to the problem before rating its interestingness and difficulty. They were
also asked to select reasons for their interestingness and uninterestingness rating from a multiple
choice list (see Appendix [A4.1), plus an additional free-text box to state their own reasons. Most
problems only received 1 to 2 responses; this is too few to compare human and model judgments at a
per-problem level. As such, for the bulk of this paper, all IMO data comparisons are made over the
interestingness criteria that participants selected.

LLM Experiments We evaluate 12 language models from 5 families. We sample 20 responses
for each model at temperatures 0.3 and 1.0 for most models where temperature sampling is allowed.
Due to computational costs, for reasoning models on our IMO dataset, we sampled 5 responses each.
Additionally, note that GPT-5 and 03 do not allow temperature sampling and were thus only sampled
at their default temperature (1.0).

3 Results

On average, LLM judgments of interestingness and difficulty are correlated with human
judgments. For each LLM, we compute the R? between per-problem mean interestingness in
humans and the model (see Figure E]).The human row/column reveal model-human agreement, while
other row/column combinations report correlations amongst the models. On the Prolific dataset,
model-human R? ranges from about 0.48 to 0.78, with the strongest agreements from the Mistral
family. Split-half human R?—our noise ceiling on explainable variance—is 0.71 (see Appendix.
This indicates that current LLMs (especially those in the Mistral family) are able to approximate
human perceptions of interestingness with surprising fidelity.

LLMs do not generally reflect the distribution of human judgments of interestingness While
LLMs capture some aspects of human interestingness perceptions, their distributions of interest-
ingness ratings usually diverge. We measure distributional similarity between human and LLM
judgments using the Wasserstein Distance (WD) [23]]. We also bootstrap the WD scores to build a
95% confidence interval (CI). The lowest WD is achieved by Mistral 7B (mean WD = 12.4, 95% CI
=[0.3, 16.0]), whose 95% ClI is the only one overlapping with the human split-half baseline (which
has mean WD =9.5,95% CI =[7.8, 11.5]; Table E]) High distributional differences underscore the
importance of careful model selection when aiming to capture the diversity of human judgments.

Elegance played a key role in human interestingness judgments of the IMO problems. For
the IMO survey, each participant rated the interestingness of four problems and selected interesting-
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Figure 2: Agreement in humans’ and LLMs’ judgments about problem interestingness (left) and
difficulty (right) on the Prolific dataset. Each cell shows the squared Pearson correlation (R? scaled
by 100), between the row and column reasoners’ per-problem mean ratings. The left matrix is sorted
in descending order by agreement, while the right matrix follows the order of the left matrix to enable
easier comparison. Darker cells indicate higher agreement (R?). Models were sampled at temperature
1.0; additional analyses, e.g., for temperature 0.3, are included in Appendix [AT.T.T}

ness/uninterestingness rationales for their rating. In Appendix Figure[I6] we include a histogram of
the frequency of different rationales for interestingness/uninterestingness. The three most frequently
marked reasons for interestingness were “the problem statement is simple and elegant," “the solution
does not require any sophisticated techniques/theorems," and “the solution is elegant." We also
include a correlation matrix depicting when people chose multiple reasons for interestingness/uninter-
estingness for the same problem in Appendix Figure[I7]

Most LLMs do not reflect why humans find problems interesting. To assess what factors of
problems models and people find interesting, we next compared the distribution of reasons that humans
and LLMs selected for problem interestingness. Since problems in our IMO survey mostly received
1-2 responses per problem, we don’t focus on problem-level analysis for this. Instead, we focus on
pre-survey questions which participants answered assigning importance to different interestingness
reasons (e.g., “Please indicate how important this factor generally is for a problem to be interesting
to you: The problem statement is simple and elegant.”). The answers were collected on a four point
scale of "not important" to "very important” with an option to mark if the criterion did not make sense
to the participant. We replicate this experiment with all LLMs we examine, sampling 50 responses (to
match the 48 participants from our IMO study). For each interestingness criterion, human participants’
answers collectively spanned the allowed range of importance options. However, despite sampling
each LLM 50 times at temperature 1.0, most LLMs only selected one to two importance scores for
each reason. We include all distributions in Appendix[AT.2] Only Mistral 7B Instruct (Figure [T9)
and Mistral 24B Instruct (Figure 20) reflect the human distributions of interestingness rationales well.
Future work can better understand the drivers for such differences across model families.

LRMs tend to make flash judgments of uninterestingness than of interestingness for simpler
problems. We next examine the resource usage LRMs engaged when reasoning about a problem,
which we measure via the number of reasoning tokens used (i.e., the length of their reasoning chain,
or reasoning “time”). We use this to explore the distinction in reasoning time to assess problems that
LRMs judge as low- vs. high-interest (which is judged by whether a problem’s interestingness score
is below or above the median of interestingness scores from judgments from that LRM). See Figure
Bl for results for our Prolific dataset, with results for the IMO dataset included in Appendix[AT.1.3]
For the Prolific dataset, all four LRMs make fast, “flash” judgments of uninterestingness while
investing longer reasoning chains for problems they judged as interesting. This distinction disappears
at the IMO level (see Appendix Figure [6)), where judgments made under high reasoning time are
no longer correlated with higher interestingness ratings. One possible explanation is that for hard
Olympiad-style problems, resource usage spent on parsing and understanding the problem dominates
the total resource usage spent thinking about the problem, leading to differences in interest making
minimal impact on the length of the total reasoning chain.



Table 1: Wasserstein distances (WD) between human and LLM distributions (temp 1.0) of inter-
estingness judgments on the Prolific dataset. Lower values indicate closer alignment to human
distributions. Human-human split-half baseline indicates the amount of explainable variability in the
human data. We report WD measures for other temperatures and for difficulty judgments in Appendix

Section[AT.1.2]

Model WD 95% CI Model WD 95% CI

Human-Human 9.5 [7.8,11.5] Mixtral 8x7B Instruct 20.2 [17.5, 23.1]
Mistral 7B Instruct 12.4  [9.3,16.0] Llama 4 Maverick 20.7 [18.1,23.7]
Mistral 24B Instruct 15.6 [13.5,18.0] Llama 4 Scout 21.1 [18.6, 23.6]
DeepSeek R1 16.4 [13.1,19.7] GPT-5 21.2 [18.3,24.2]
QwQ 32B 18.1 [15.3,21.0] Qwen 235B Instruct 21.3 [18.5,24.1]
GPT OSS 120B 18.3 [15.9,21.0] o3 21.9 [18.7,25.5]

Qwen 235B Thinking 19.8 [16.4, 23.9]

DeepSeek o Qwen o Qwen

08 08 o
49%

" " 58% @ @

ga _g‘w E‘ g o, Fast judgments

] g g B Medium judgments

5 0a 5 oe s S . Slow judgments

® ® R 3

B 42% B B B 44%
51% 51%

43% ol 42% “erE 35%
9% 11%
00 - . 00 . . ol . . o0 . -
Low-interest High-interest Low-interest High-interest Low-interest High-interest Low-interest High-interest

Figure 3: Judgment speed distributions across LRMs on low- vs. high-interest Prolific problems. A
low-interest problem for a model is one that is given a below median interestingness score by the
model. High-interest problems are those which are given higher than the median interestingness
score. For each subset of problems, we label whether a judgment was slow, medium, or fast, based on
the distribution of reasoning token counts for that model. Slow judgments occupy the bottom quartile
and fast judgments occupy the top one, with medium-speed judgments covering the middle. We see
that LRMs tend to engage in longer reasoning chains for problems that they ultimately label as being
higher interest.

4 Discussion

In this work, we assess how judgments of interestingness compare between humans and LLMs,
over two novel datasets of people’s evaluation about math problems. We find that despite LLMs’
interestingness judgments generally correlating with those of humans, their distributions do not
completely match those of human judgments. However, our study is just a first step. Both the Prolific
and IMO dataset use competition math problems, which are a narrow subset of the problems educators
and mathematicians encounter daily. Additionally, the two surveys’ populations focus on participants
from a crowdsourcing website (who all had a baseline interest in math) and IMO participants,
which overlooks beginners and experts, who might have differing perceptions of interestingness
in mathematics. Lastly, the IMO study contained very few ratings for each problem, making it
challenging to make quantitative or statistically significant conclusions about individual problems.
Instead, for this survey, we focus on broader and more qualitative analyses.

More broadly, our work raises important questions: do we want models to align to the variability of
human responses, which humans those responses should align to, and at what level of mathematical
experience? If models are used in human-facing applications, e.g., as mathematical Al thought
partners [3| [10]], designing curricula for students or advising research mathematicians on problem
selection, then we may want build interestingness measures that meaningfully correlate to human
curriculum and the level of the learner [[17]. If instead models are used to autonomously discover new
mathematics—and decide what mathematics problem to pursue at all—we may set a higher standard
for the interestingness judgments [[12]. Overall, we hope our work motivates and informs future work
in mathematically-capable Al systems that engage with subjective notions of mathematical problem
interestingness. At the same time, we believe these efforts can also inform a better understanding of
what drives humans to find a problem interesting in the first place.
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Al Additional Results

Al.1 Prolific Survey Results

Al1.1.1 Model Correlation

We include the agreement heatmaps for temperature 1.0 in Figure[5] We also include information
about the correlation between bootstrapped LLM and human judgments of interestingness and
difficulty in Tables 2] and [3] respectively. We also include all correlation plots for interestingness
judgments in Figure through We sample at two temperatures and also plot the 95% confidence
interval.

Al1.1.2 Wasserstein Distance Tables

In Tables ] 5 and[6] we report the Wasserstein distances between the LLM and human distributions
for interestingness and difficulty.

Al1.1.3 LRM Judgment Lengths

We examine the resource usage LRMs engaged when reasoning about a problem, which we measure
via the amount of reasoning tokens used (i.e., the length of their reasoning chain). We use this to
explore the distinction in resources used to assess problems that LRMs judge as low- vs. high-interest
(which is judged by whether a problem’s interestingness score is below or above the median of
interestingness scores from judgments from that LRM). For the Prolific dataset, we observe that all 4
LRMs make fast, “flash” judgments of uninterestingness while investing longer reasoning chains for
problems they judged to be interesting (see Figure[6). This distinction disappears at the IMO level,
where judgments made under high resource usage are no longer correlated with higher interestingness
ratings. One possible explanation is that for hard Olympiad-style problems, resource usage spent
on parsing and understanding the problem dominates the total resource usage spent thinking about
the problem, leading to differences in interest making little to no impact on the length of the total
reasoning chain.

Al.1.4 Split-half R? between independent human raters.

To compare the LLM-human R? to the correlation among independent groups of humans, we calculate
the split-half R2, for which we repeatedly and randomly split human interestingness scores for each

Family Model (tag) Mean pairwise 7 R? vs. humans R? vs. humans
(within family) temp 0.3 temp 1.0
temp. 0.3, 1.0
03 (thinking) - 0.72
OpenAl GPT-5 -,0.96 - 0.66
gpt-0ss 0.75 0.75
Llama-4 Maverick 0.73 0.75
Llamad 1) ma4 Scout 0.61,0.65 0.70 0.70
QwQ-32B (thinking) 0.60 0.60
Qwen Qwen3-235B-A22B-Instruct 0.92,0.93 0.82 0.82
Qwen3-235B-A22B-Thinking 0.60 0.62
Mistral-7B-Instruct-v0.1 0.86 0.81
Mistral Mistral-Small-24B-Instruct 0.87, 0.82 0.78 0.81
Mixtral-8x7B-Instruct-v0.1 0.88 0.85
DeepSeek  DeepSeek-R1 (thinking) - 0.63 0.58

Table 2: Correlation between LLM vs. human judgments of interestingness and within each model
family. We include the per-model R? against human ratings on questions from our Prolific dataset.
The “Mean pairwise r”” column reports the mean pairwise Pearson correlation between models within
their own family (computed over per-problem predictions). The "thinking" tag indicates reasoning
models. The correlations for difficulty judgments are provided in Table E}



Family Model (tag) Mean pairwise # RZ vs. humans R? vs. humans

(within family) temp 0.3 temp 1.0
temp. 0.3, 1.0
03 (thinking) - 0.81
OpenAl GPT-5 -,0.98 - 0.79
gpt-0ss 0.80 0.81
Llama-4 Maverick 0.85 0.83
Llamad 1) ma-4 Scout 0.79,0.77 0.84 0.84
QwQ-32B (thinking) 0.73 0.73
Qwen Qwen3-235B-A22B-Instruct 0.93,0.92 0.83 0.85
Qwen3-235B-A22B-Thinking 0.71 0.74
Mistral-7B-Instruct-v0.1 0.52 0.53
Mistral Mistral-Small-24B-Instruct 0.63,0.71 0.84 0.91
Mixtral-8x7B-Instruct-v0.1 0.72 0.74
DeepSeek  DeepSeek-R1 (thinking) - 0.80 0.72

Table 3: Correlation between LLM vs. human judgments of difficulty and within each model family.
We include the per-model R? against human ratings on questions from our Prolific dataset. The
“Mean pairwise r”’ column reports the mean pairwise Pearson correlation between models within
their own family (computed over per-problem predictions). The "thinking" tag indicates reasoning
models.

Table 4: Wasserstein distances (WD) between human and LLM distributions (temp 0.3) of interesting-
ness judgments on the Prolific dataset. Lower values indicate closer alignment to human distributions.
Human-human split-half baseline indicates the amount of explainable variability in the human data.

Model WD 95% CI Model WD 95% CI

Human-Human 95 [7.8,11.5] Mixtral 8x7B Instruct 21.3  [18.9, 23.9]
DeepSeek R1 17.5 [14.7,20.5] Llama 4 Scout 214 [19.0, 23.9]
Mistral 24B Instruct 18.5 [16.2,20.9] GPT-5 21.5 [18.7,24.6]
Mistral 7B Instruct 19.0 [16.5,21.5] Qwen 235B Instruct 22.0 [19.1,24.9]
QwQ 32B 19.3 [16.6,22.3] Llama 4 Maverick 22.0 [19.0, 25.3]
GPT OSS 120B 19.5 [17.0,22.2] Qwen 235B Thinking 20.4 [16.9,24.1]

Table 5: Wasserstein distances (WD) between human and LLM distributions (temp 0.3) of difficulty
judgments on the Prolific dataset. Lower values indicate closer alignment to human distributions.
Human-human split-half baseline indicates the amount of explainable variability in the human data.

Model WD 95% CI Model WD 95% CI

Human-Human 9.2 [7.5,11.0] Mixtral 8x7B Instruct  20.1 [17.5,23.1]
Mistral 24B Instruct 17.3 [15.2,19.8] Mistral 7B Instruct 20.2 [15.9,24.7]
QwQ 32B 17.6  [15.3,20.3] Qwen 235B Instruct 20.5 [17.7,23.6]
Qwen 235B Thinking 18.3 [15.2,22.1] GPT OSS 120B 21.3  [17.7,25.6]
Llama 4 Maverick 19.0 [16.3,21.9] GPT-5 29.1 [24.7,33.3]
Llama 4 Scout 19.2 [17.1,21.4] DeepSeek R1 19.2 [16.8, 21.8]
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Table 6: Wasserstein distances (WD) between human and LLM distributions (temp 1.0) of difficulty
judgments on the Prolific dataset. Lower values indicate closer alignment to human distributions.
Human-human split-half baseline indicates the amount of explainable variability in the human data.

Model WD 95% CI Model WD 95% CI

Human-Human 92 [7.5,11.0] Mixtral 8x7B Instruct 18.2 [15.5, 21.3]
Mistral 24B Instruct 13.3 [11.6,15.0] Llama 4 Scout 18.6 [16.6, 20.6]
Mistral 7B Instruct 16.0 [11.8,20.5] Llama 4 Maverick 19.1 [16.3, 21.7]
QwQ 32B 16.4 [13.8,19.3] Qwen 235B Instruct 20.2 [17.6,22.9]
Qwen 235B Thinking 17.4 [14.5,20.9] GPT OSS 120B 20.7 [17.2,25.0]
DeepSeek R1 18.0 [15.2,21.3] o3 23.7 [20.0, 27.8]

problem into two groups, and calculate the correlation between those two groups. The mean split-half
R? among humans was 0.71, with a 95% confidence interval of [0.53, 0.87].

Al.2 IMO Survey Results

Elegance played a key role in human interestingness judgments of the IMO problems. For
the IMO survey, each participant rated the interestingness of four problems and selected interesting-
ness/uninterestingness rationales for their rating. In Appendix Figure[I6] we include a histogram of
the frequency of different rationales for interestingness/uninterestingness. The three most frequently
marked reasons for interestingness were “the problem statement is simple and elegant," “the solution
does not require any sophisticated techniques/theorems," and “the solution is elegant." We also
include a correlation matrix depicting when people chose multiple reasons for interestingness/uninter-
estingness for the same problem in Appendix Figure

Reasons for interestingness across LLMs. In Figure[I8] we show histograms of human participants
importance ratings for various interestingness criteria. Figures|I9]through [30]includes this for the
LLMs we examine. We sort the grid of LLM ratings by the distributions that are closest to human
distributions first.
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Figure 4: Agent—agent agreement on the Prolific dataset at temperature 0.30. Each cell shows the
squared Pearson correlation (R?) between the row and column agents’ per-problem mean ratings.
Darker cells indicate higher agreement; the diagonal is 1.00 by definition. The Human row/column
gives model-human agreement. Top: interestingness ratings; bottom: difficulty ratings.
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Figure 12: Mixtral-8x7B-Instruct: Human vs LLM ratings
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Figure 15: Deepseek R1: Human vs LLM ratings
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Correlation Matrix of Interestingness Reasons

None of the above apply.
The ideas required to prove this problem are new. -
The ideas required to prove this problem are potentially useful in other problems too. -
The problem allows you to play around with examples and get good intuition. -
The problem seems very different from any problem I’ve seen before. -
The problem statement is natural. -
The problem statement is simple and elegant. -
The result we are asked to prove seems surprising and unexpected. -

The results we are asked to prove is connected to other interesting ideas/areas of maths. -

The solution does not require any
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The solution is elegant. -

There are multiple very different ways to solve the problem. -
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Correlation Matrix of Uninterestingness Reasons

I've seen very similar problems before.
None of the above apply. -

The ideas required to prove this problem are not useful for solving other problems. -
The ideas required to prove this problem are too standard. -

The problem does not allow you to play around with examples and get good intuition -
The problem does not allow you to play around with examples and get good intuition. -
The problem statement is too complicating. -

The problem is ived. -

The result we are asked to prove seem expected hence uninteresting. -
The results that we are asked to prove seems irrelevant to other interesting areas of maths. -

The solution is not elegant. -

The solution requires isti i em:

There is only one way to solve a problem. -

Figure 17: Correlation matrices showing when human participants in our IMO study chose multiple
reasons for interestingness (top) or uninterestingness (bottom) for the same problem.
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Figure 23: Importance ratings from Llama 4 Maverick.
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Figure 24: Importance ratings from Llama 4 Scout.
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Figure 25: Importance ratings from Qwen 235B Instruct.
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Results connected to other
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Figure 26: Importance ratings from Qwen 235B Thinking.
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Figure 27: Importance ratings from QwQ 32B.
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Figure 28: Importance ratings from GPT-5
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Figure 29: Importance ratings from 03.
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Figure 30: Importance ratings from DeepSeek R1.

34



A2 Models

Model Full Name Provider
Ilama_scout meta-llama/Llama-4-Scout-17B-16E-Instruct ~ Meta (TogetherAl)
Ilama_maverick meta-llama/LLlama-4-Maverick-17B-128E- Meta (TogetherAl)
Instruct-FP8
deepseek_rl deepseek-ai/DeepSeek-R1 DeepSeek (TogetherAl)
03 03 OpenAl
gpt_S gpt-5 OpenAl
gpt_oss_120b openai/gpt-oss-120b OpenAl (TogetherAl)
mixtral_8x7b_instruct mistralai/Mixtral-8x7B-Instruct-v0.1 Mistral (TogetherAl)
mistral_7b_instruct mistralai/Mistral-7B-Instruct-v0.1 Mistral (TogetherAl)
mistral_24b_instruct mistralai/Mistral-Small-24B-Instruct-2501 Mistral (TogetherAl)

qwen_235b_instruct
gwen_235b_thinking
qwq_32b

Qwen/Qwen3-235B-A22B-Instruct-2507-tput
Qwen/Qwen3-235B-A22B-Thinking-2507
Qwen/QwQ-32B

Qwen (TogetherAl)
Qwen (TogetherAl)
Qwen (TogetherAl)

Table 7: Models evaluated in this study, their full identifiers, and providers.

A3 Prolific Study

A3.1 Variant types

* Increasing/decreasing numbers: The numerical values in the problem are scaled up or
down while keeping the structure intact.

* Adding/removing steps: The problem is modified to include additional intermediate steps,
or simplified by removing steps.

* Adding ambiguity: The wording is adjusted to introduce multiple plausible interpretations.
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A3.2 List of problems

We list all problems for our Prolific study, their variants, and variant types in Table([]

Original Problem

Variant Problem

Variant

Type

Real numbers x and y satisfy the following
system: 22 4 3% = 25
(x+y+5)(—z+y+5)(x—y+5)(z+y—5) =
100 and = +y = /(m). Determine m.

Positive con-
trol (no vari-
ant)

What is 28 4- 13?

Negative con-
trol (no vari-
ant)

What is the value of 9901 - 101 — 99 - 101017

What is the value of 999001 - 1001 — 999 -
10010017

Increase
value

The number 2024 is written as the sum of not
necessarily distinct two-digit numbers. What is
the least number of two-digit numbers needed
to write this sum?

The number 500 is written as the sum of not
necessarily distinct two-digit numbers. What is
the least number of two-digit numbers needed
to write this sum?

Decrease
value

A data set containing 20 numbers, some of
which are 6, has mean 45. When all the 6s
are removed, the data set has mean 66. How
many 6s were in the original data set?

A data set containing 20 numbers, 7 of which
are 6, has mean 45. When all the 6s are re-
moved, what is the mean of the dataset?

Remove step

Kei draws a 6-by-6 grid. He colors 13 of the
unit squares silver and the remaining squares
gold. Kei then folds the grid in half vertically,
forming pairs of overlapping unit squares. Let
m and M equal the least and greatest possi-
ble number of gold-on-gold pairs, respectively.
What is the value of m + M?

Kei draws a 6-by-6 grid. He colors 13 of the
unit squares silver and the remaining squares
gold. Kei then folds the grid in half vertically,
forming pairs of overlapping unit squares. Let
m equal the least possible number of gold-on-
gold pairs. What is the value of m?

Remove step

In a long line of people arranged left to right,
the 1013th person from the left is also the
1010th person from the right. How many peo-
ple are in the line?

In a long line of people, the 1013th person from
one end is also the 1010th person from the other
end. How many people are in the line?

Add ambigu-
ity

Makayla finds all the possible ways to draw a
path in a 5 X 5 square-shaped grid. Each path
starts at the bottom left of the grid and ends
at the top right, always moving one unit east
or north. She computes the area of the region
between each path and the right side of the grid.
What is the sum of the areas determined by all
possible paths?

Makayla finds all the possible ways to draw a
path in a 2 X 2 square-shaped grid. Each path
starts at the bottom left of the grid and ends
at the top right, always moving one unit east
or north. She computes the area of the region
between each path and the right side of the grid.
What is the sum of the areas determined by all
possible paths?

Decrease
value

Lucius is counting backward by 7s. His first
three numbers are 100, 93, and 86. What is his
10th number?

Lucius is counting backward by 7s. His first
three numbers are 100, 93, and 86. What is his
5th number?

Decrease
value

WXY Z is a rectangle with WX = 4 and
WZ = 8. Point M lies XY, point A lies on
Y Z, and ZW M A is a right angle. The areas
of AWXM and AW AZ are equal. What is
the area of AW M A?

WXY Z is a rectangle with WX = 4 and
WZ = 8. Point M lies XY, point A lies on
Y Z, and ZW M A is aright angle. The areas of
AW XM and AW AZ are equal. What is the
sum of the areas of AWM A and AW AZ?

Add step

Table 8: Prolific study problems and their variants.
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A4 IMO Study

One of our authors physically attended the IMO in 2024 and asked participants to complete a survey
of their mathematics judgments. The survey received prior ethics approval by our institutional ethics
review board.

Ad4.1 List of Interestingness and Uninterestingness Reasons
Interestingness reasons:

* The results we are asked to prove is connected to other interesting ideas/areas of maths.
* The ideas required to prove this problem are new.

 The ideas required to prove this problem are potentially useful in other problems too.
* The solution is elegant.

* The result we are asked to prove seems surprising and unexpected.

* The problem statement is simple and elegant.

* There are multiple very different ways to solve the problem.

* The problem seems very different from any problem I've seen before.

* The problem allows you to play around with examples and get good intuition.

* The solution does not require any sophisticated techniques/theorems.

* The problem statement is natural.

* None of the above apply.

Uninterestingness reasons:

* The results that we are asked to prove seems irrelevant to other interesting areas of maths.
* The ideas required to prove this problem are too standard.

* The ideas required to prove this problem are not useful for solving other problems.

* The solution is not elegant.

* The result we are asked to prove seem expected hence uninteresting.

 The problem statement is too complicating.

* There is only one way to solve a problem.

* I've seen very similar problems before.

 The problem does not allow you to play around with examples and get good intuition.
* The solution requires sophisticated techniques/theorems.

 The problem statement is unnatural/contrived.

* None of the above apply.
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