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Abstract

Personalized large language models (LLMs)001
aim to tailor interactions, content, and rec-002
ommendations to individual user preferences.003
While parameter-efficient fine-tuning (PEFT)004
methods excel in performance and generaliza-005
tion, they are costly and limit communal bene-006
fits when used individually. To this end, we in-007
troduce PERSONALIZED PIECES (PER-PCS), a008
framework that allows users to safely share and009
assemble personalized PEFT efficiently with010
collaborative efforts. PER-PCS involves select-011
ing sharers, breaking their PEFT into pieces,012
and training gates for each piece. These pieces013
are added to a pool, from which target users014
can select and assemble personalized PEFT015
using their history data. This approach pre-016
serves privacy and enables fine-grained user017
modeling without excessive storage and com-018
putation demands. Experimental results show019
PER-PCS outperforms non-personalized and020
PEFT retrieval baselines, offering performance021
comparable to OPPU with significantly lower022
resource use across six tasks. Further analy-023
sis highlights PER-PCS’s robustness concern-024
ing sharer count and selection strategy, pieces025
sharing ratio, and scalability in computation026
time and storage space. PER-PCS’s modularity027
promotes safe sharing, making LLM person-028
alization more efficient, effective, and widely029
accessible through collaborative efforts.030

1 Introduction031

Personalization involves mining user’s history data032

to tailor and customize a system’s interaction, con-033

tent, or recommendations to meet the specific034

needs, preferences, and characteristics, of individ-035

ual users (Tan and Jiang, 2023; Chen et al., 2023;036

Kirk et al., 2024). By adapting to each user’s037

unique preferences, personalization enhances the038

user experience and has become increasingly im-039

portant in content recommendation (Li et al.,040

2023b; Wu et al., 2023; Baek et al., 2023), user041
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Figure 1: User personal PEFT parameter sharing frame-
work: Sharers provide parts of their PEFT parameters
(PEFT pieces). Using the target user’s history data, we
recycle the PEFT pieces shared by anchor users and
assemble the target user’s personal PEFT.

simulation (Dejescu et al., 2023; Zhang and Balog, 042

2020), personalized chatbot (Srivastava et al., 2020; 043

Ma et al., 2021), user profiling (Gu et al., 2020; Gao 044

et al., 2023), healthcare (Johnson et al., 2021; Gold- 045

enberg et al., 2021), and education (Alamri et al., 046

2021; Pratama et al., 2023). 047

Large language models (LLMs) are revolution- 048

izing the research landscape with emergent abil- 049

ities not observed in smaller models (Wei et al., 050

2022a; Lu et al., 2023), due to their training on 051

massive textual corpora and billions of parame- 052

ters. These abilities include step-by-step reasoning 053

(Wei et al., 2022b), in-context learning (Min et al., 054

2022), and instruction following (Wei et al., 2021). 055

Despite these capabilities, current LLMs adhere 056

to a "one-size-fits-all" paradigm, being trained on 057

broad, domain-agnostic data, which limits their 058

effectiveness in adapting to individual user prefer- 059

ences (Chen et al., 2023). Consequently, personal- 060

izing LLMs to align with users’ unique needs has 061

become a crucial research focus (Li et al., 2023a). 062

Previous endeavors to personalize LLMs 063

can be categorized into prompt-based and 064

parameter-efficient fine-tuning (PEFT)-based meth- 065

ods. Prompt-based personalization involves design- 066

ing prompt templates to help LLMs understand 067

user preferences, using methods such as vanilla 068
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personalized prompting (Dai et al., 2023), retrieval-069

augmented prompting (Mysore et al., 2023), and070

profile-augmented prompting (Richardson et al.,071

2023). However, prompt-based methods expose072

user data to centralized LLM and can be easily073

distracted by irrelevant user history data, which074

retrieval can hardly avoid (Shi et al., 2023). PEFT-075

based personalization methods focus on storing076

users’ preferences and behavior patterns in per-077

sonal lightweight parameters. OPPU (Tan et al.,078

2024) is the pioneering work that stores users’ pref-079

erences and behavior patterns in personal PEFT pa-080

rameters, showing the superiority of model owner-081

ship and better user behavior pattern generalization082

compared to prompt-based methods. Despite their083

success, the “one-PEFT-per-user" paradigm is com-084

putationally and storage-intensive, especially for085

large user bases. For instance, using OPPU for per-086

sonalized product rating prediction requires about087

20 minutes of training on a single RTX A6000088

GPU and 17 MB of storage per user, scaling lin-089

early with the number of users. Additionally, indi-090

vidually owned PEFTs limit community value, as091

personal models cannot easily share knowledge or092

benefit from collaborative improvements.093

Inspired by the exhaustiveness of human pref-094

erences (Lee et al., 2024), we propose the PER-095

SONALIZED PIECES (PER-PCS) framework, which096

allows users to safely share a small fraction of their097

PEFT parameters and build personalized LLMs ef-098

ficiently through collaborative efforts (Figure 1).099

Specifically, we first select representative users as100

sharers and train their PEFTs with their personal101

history data. We then break down the PEFT pa-102

rameters into pieces, inject a routing gate for each103

piece, and update the gate parameters while keep-104

ing the other parameters frozen with a few steps.105

These pieces are added to a pieces pool along with106

their corresponding gates for selection. In the as-107

sembly stage, PER-PCS feeds the target user’s his-108

tory data and selects PEFT pieces from the pieces109

pool in an auto-regressive way, recycling the PEFT110

modules in the pieces pool. By processing all the111

history data through this pipeline, we determine the112

PEFT piece choices for all layers and obtain the113

target user’s personal PEFT. PER-PCS is training-114

free and only requires the storage of sharer’s index115

and corresponding composition weights, making it116

computation and storage efficient.117

Experimental results show that PER-PCS outper-118

forms non-personalized and PEFT retrieval base-119

lines, delivering performance comparable to OPPU120

but with significantly reduced resource require- 121

ments across six personalization tasks in the LaMP 122

benchmark (Salemi et al., 2023). Further stud- 123

ies highlight PER-PCS’s robustness against sharer 124

count and selection strategy. Even when sharers 125

consent to share only a small portion of their pieces, 126

PER-PCS maintains strong performance, compara- 127

ble to scenarios where all pieces are shared. Time 128

analysis reveals that PER-PCS is 38 times more ef- 129

ficient in storage and 7 times more efficient in com- 130

putation costs compared to OPPU. These findings 131

underscore the potential of personalizing general- 132

purpose LLMs by integrating modular and collabo- 133

rative parametric knowledge from personal PEFT 134

pieces shared by users. 135

In summary, the contribution of PER-PCS is the 136

pioneering framework that enables users to safely 137

share personal PEFTs, facilitating efficient and fine- 138

grained LLM personalization through collaborative 139

efforts. Unlike OPPU, where personal PEFTs ben- 140

efit only the individual user, PER-PCS allows users 141

to share a limited portion of their PEFT parame- 142

ters with others, ensuring user privacy. For target 143

users, PER-PCS maintains model ownership and 144

supports fine-grained user modeling comparable 145

to OPPU, but with significantly reduced storage 146

and computation resources. We envision PER-PCS 147

as an initiative to encourage users to share their 148

personal PEFT pieces, fostering collaboration in 149

personalizing LLMs to create value for others. This 150

approach preserves sharer privacy and reduces the 151

carbon footprint of PEFT-based personalized LLM. 152

2 PERSONALIZED PIECES (PER-PCS) 153

We introduce PER-PCS, a novel framework to em- 154

power LLM personalization with modular and col- 155

laborative PEFT pieces within the community (Fig. 156

2). We first adapt non-personalized base LLMs to 157

the task without incorporating personal preferences 158

(§2.2). We then train personal PEFT and post-hoc 159

gates for sharers and add them to the pool (§2.3). 160

Finally, we assemble the target user’s PEFT using 161

their history and pieces from the pool (§2.5). 162

2.1 Preliminaries 163

Research Problem Formulation. For personal- 164

ized LLM at time t, the model’s output ru for user 165

u is conditioned on both query qu and the user’s 166

behavior history Hu = {hu} that includes all user 167

behaviors occurred before query time t. Assuming 168

users in set U have personal PEFT, while the target 169
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Figure 2: Overview of PER-PCS. First, we train PEFT and gate each piece for sharing. Next, we feed the target
user’s history, utilizing history activation and piece gates to score and select PEFT pieces from the pool. These
selected pieces are then assembled to create a personalized PEFT for the target user.

user û /∈ U does not, our goal is to assemble the170

target user’s PEFT ∆Θû from {∆Θu, u ∈ U}.171

PEFT Pieces. We assume a PEFT method intro-172

duces modules throughout the whole model. For173

example, LoRA (Hu et al., 2021) introduces a low-174

rank update at every linear layer in the model. We175

refer to each of these updates as a “piece”.176

2.2 Base LLM Task Adaption177

Since off-the-shelf LLMs do not inherently un-178

derstand personalization tasks, we follow LaMP179

(Salemi et al., 2023) and Richardson et al. (2023)180

to fine-tune LLMs for fair comparison and task181

comprehension. In adapting the base LLM, we use182

data that excludes target users’ and sharers’ data183

to build an LLM that understands task-related ca-184

pabilities rather than personal preferences. Specif-185

ically, the base LLM parameter Θo is optimized186

w.r.t. loss L = CE[Θo(ϕ(qu,R(qu,Hu,m))), ru],187

where CE denotes the cross entropy loss function,188

R is the retriever, ϕ is the prompt construction func-189

tion, m is the number of retrieval items, and Hu is190

the entire user behavior history. For computational191

efficiency, we adopted LoRA (Hu et al., 2021) for192

parameter-efficient fine-tuning and merged it into193

pretrained weights to obtain the base LLM.194

2.3 Sharer Selection and PEFT Training195

After adapting the base LLMs to the task with-196

out incorporating the target user’s personal prefer-197

ences, we select sharers who consent to share their198

PEFTs with the community and train their personal199

PEFTs. To select representative users, we first get200

embeddings for all candidate users by encoding201

their history with an encoder-only language model,202

DeBERTa-v3-Large (He et al., 2022). The user em- 203

bedding Eu =
∑

hu∈Hu
Enc(hu)/|Hu| by averag- 204

ing all history items hu from user u. We then clus- 205

ter user embeddings with the k-means algorithm 206

(K=50 by default) and select the most active users 207

within the i-th cluster as sharer si (i = 1, ...,K),1 208

si = {argmax
u∈Ci

|Hu|, Ci ∈ k-means(E ,K)}, 209

where Ci denotes the i-th user cluster, E = 210

{Eu, u ∈ U} denotes the embedding set of all 211

sharer candidates. Following OPPU (Tan et al., 212

2024), we then train personal PEFT parameters 213

Θsi for sharer si using sharer’s history data Hsi . 214

We then break the sharers’ PEFT parameters 215

Θsi into pieces. For clarity, we consider the case 216

where users perform personal PEFT using LoRA 217

(Hu et al., 2021). It’s worth noting that PER-PCS is 218

compatible with all PEFT methods that introduce 219

trainable modules throughout the model, such as 220

Adapter (Houlsby et al., 2019), (IA)3 (Liu et al., 221

2022), and prefix tuning (Li and Liang, 2021). We 222

primarily focus on LoRA due to its popularity, 223

widespread use, and superior performance demon- 224

strated by OPPU. LoRA modifies the output of 225

l-th linear layer from zlt = W l
ov

l
t using a low- 226

rank decomposition to zlt = W l
ov

l
t + ∆W lvlt = 227

W l
ov

l
t + BlAlvlt, where vlt ∈ Rn denotes the t-th 228

input activation at layer l, W l
o ∈ Rd×n denotes the 229

base model parameters which remain frozen dur- 230

ing fine-tuning, Al ∈ Rr×n and Bl ∈ Rd×r are 231

trainable parameters. Therefore, a pair of (Bl, Al) 232

is defined as a "piece" and personal PEFT param- 233

eters Θsi for sharer si can break down to pieces 234

1Please see more sharer selection strategies in Section 5.
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set {(Bl
si , A

l
si)}

L
l=1, L denotes the total number of235

layers in a LoRA module.236

2.4 Post-Hoc Sharer Gating Training237

We then add a piece selection gate for each sharer238

PEFT piece to determine which piece should be239

selected in the upcoming assembly step. For each240

sharer PEFT piece, after integrating the gate, a241

linear layer becomes:242

zlt = W l
ov

l
t +Bl

siA
l
siv

l
tσ(g

l⊤
si v

l
t),243

where glsi ∈ Rn is a trainable gate vector for sharer244

si at layer l and initialized to all zeros, σ is the245

sigmoid activation function, W l
o, Bl

si , and Al
si are246

frozen. For sharer si, we optimize {glsi}
L
l=1 using247

sharer history Hsi . We then add the sharers’ PEFT248

pieces and corresponding gates to the pieces pool249

for the upcoming selection and assembly. Gate250

training is limited to around 50 steps, making it251

computationally efficient. The post-hoc nature of252

gate learning also adds flexibility, facilitating easier253

deployment in real-world scenarios.254

2.5 Assemble Target Personal PEFT255

Motivated by the exhaustiveness of human prefer-256

ences (Lee et al., 2024), we assemble PEFT mod-257

ules for target users using the PEFT modules and258

gate vectors from sharers. Using the target user’s259

history Hû as input, we perform auto-regressive260

PEFT piece selection to assemble the target user’s261

PEFT from input to output. For each layer l in262

LoRA, we feed the user history in LLM and com-263

pute the score for the input activation vlt and can-264

didate pieces using cosine similarity, then aggre-265

gate these scores from the token level to obtain the266

piece-level score αl
si for the piece from sharer si:267

αl
si =

e∑
t=b

(gl⊤si v
l
t),268

where glsi and vlt are the normalized gate vector269

and activation. For user history (xû, yû) ∈ Hû270

aligned with the task format, we set begin position271

b = |xû|+ 1 and end position e = |xû|+ |yû|+ 1,272

where | · | denotes sequence length. Otherwise, for273

history xû ∈ Hû, we set b = 1 and e = |xû|+ 1.274

We then select the top-k PEFT pieces at l-th275

layer to select sharer set S l for target user PEFT276

assemble S l = {si, keep top-k ranked by αl
si}.277

Next, we normalize the selected weights with the278

1/
√
n scaling factor to avoid saturation (Vaswani 279

et al., 2017), which can be expressed as 280

wl
s = softmax({αl

s/
√
n, s ∈ S l}), 281

where n denotes the embedding dimension, s de- 282

notes the index of selected pieces. We then ag- 283

gregate the selected PEFT pieces with weight to 284

assemble the target user’s PEFT ∆W l
û at layer l: 285

∆W l
û =

∑
s∈Sl

(wl
sB

l
sA

l
s) 286

where Al
s and Bl

s are PEFT piece parameters from 287

s-th sharer. Using the assembled personal PEFT 288

parameters for target user û, the feed forward func- 289

tion for a linear layer becomes 290

zlt = W l
ov

l
t +∆W l

ûv
l
t. 291

After detailing the assembly process for a single 292

piece in the target user’s PEFT, we extend it to the 293

entire model that contains L layers. Once the piece 294

at l-th layer parameter assembly is complete, the 295

output zlt is used as the input activation for the l+1 296

layer selection. After computing parameter selec- 297

tion for all history items and layers, we average 298

the composed parameters to obtain the final PEFT 299

parameters for the target user ∆Θû = {∆W l
û}Ll=1, 300

which is a set of assembled parameters across all 301

layers sourced from sharers’ piece parameters. 302

Overall, the assembly process does not involve 303

model training or optimization, making it compu- 304

tationally efficient compared to training personal 305

PEFT for each target user from scratch. For stor- 306

age, instead of storing the entire set of matrices in 307

LoRA for each target user, PER-PCS only needs 308

to store the selected PEFT piece index S l and cor- 309

responding weights wl
s across all layer positions, 310

ensuring PER-PCS storage efficient. 311

3 Experiment Settings 312

Datasets We adopt the Large Language Model 313

Personalization (LaMP) benchmark (Salemi et al., 314

2023) for our experiments, which consists of six 315

public language model personalization tasks, in- 316

cluding three text classification tasks (personalized 317

citation identification, movie tagging, and produc- 318

ing rating) and three text generation tasks (person- 319

alized news headline generation, scholarly title gen- 320

eration, and tweet paraphrasing).2 We randomly 321

2Task details can be found in Appendix F. We exclude
the LaMP-6: Email subject generation task since it involves
private data that we cannot access.
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Table 1: Main experiment results on the LaMP benchmark. R-1 and R-L denote ROUGE-1 and ROUGE-L. k refers
to the number of retrieved items, with k=0 indicating no retrieval; k=1 is the default. ↑ means higher values are
better, and ↓ means lower values are better. The best score for each task is in bold, and the second best is underlined.
‘∗’ indicates significant improvement against counterparts without PER-PCS.

Task Metric Non-Personalized RAG PAG PEFT Retrieval PER-PCS (Ours) OPPU

k=0 Random k=1 k=1 Base +RAG +PAG Base +RAG +PAG Base +RAG +PAG

LAMP-1: PERSONALIZED

CITATION IDENTIFICATION

Acc ↑ .536 .576 .584 .656 .480 .576 .656 .592∗ .579 .672∗ .560 .584 .664
F1 ↑ .532 .568 .567 .654 .361 .556 .653 .589∗ .564 .664∗ .553 .567 .658

LAMP-2: PERSONALIZED

MOVIE TAGGING

Acc ↑ .340 .301 .417 .469 .336 .419 .477 .410∗ .452∗ .499∗ .463 .467 .507
F1 ↑ .268 .255 .331 .375 .265 .326 .380 .301∗ .343∗ .383∗ .320 .349 .385

LAMP-3: PERSONALIZED

PRODUCT RATING

MAE ↓ .645 .336 .301 .301 .431 .305 .299 .262∗ .272∗ .262∗ .262 .272 .266
RMSE ↓ 1.277 .662 .639 .618 .897 .622 .608 .558∗ .580∗ .561∗ .558 .580 .561

LAMP-4: PERSONALIZED

NEWS HEADLINE GEN.
R-1 ↑ .175 .179 .201 .204 .189 .193 .197 .193∗ .205∗ .205 .193 .205 .209
R-L ↑ .158 .162 .183 .184 .171 .175 .178 .174∗ .186∗ .186 .173 .185 .190

LAMP-5: PERSONALIZED

SCHOLARLY TITLE GEN.
R-1 ↑ .485 .486 .501 .505 .488 .508 .509 .488 .510∗ .515∗ .490 .509 .512
R-L ↑ .436 .439 .450 .453 .432 .448 .456 .439 .458∗ .460∗ .439 .457 .459

LAMP-7: PERSONALIZED

TWEET PARAPHRASING

R-1 ↑ .516 .514 .552 .565 .522 .552 .559 .528∗ .563∗ .565 .529 .559 .561
R-L ↑ .463 .457 .511 .517 .475 .512 .517 .482∗ .521∗ .519 .480 .515 .519

select 25% of users to train the base model for322

task adaptation. From the remaining users, we ran-323

domly sample 100 to serve as test users for efficient324

and fair comparison with OPPU (Tan et al., 2024).325

The rest of the users are used as sharer candidates326

who consent to share their PEFT parameters.3327

Baselines We compare our proposed PER-PCS328

with the non-personalized baseline, prompt-based329

methods (retrieval-augmented (Salemi et al., 2023)330

and profile-augmented personalization (Richard-331

son et al., 2023)), and PEFT-based personaliza-332

tion methods (PEFT retrieval (Zhao et al., 2024)333

and OPPU (Tan et al., 2024)). Although PEFT334

retrieval has not been applied to personalization335

before, we employ it as a PEFT-level composi-336

tion baseline. compared with PER-PCS, OPPU337

requires significantly more resources, which can be338

seen as the upper bound for sharer personal PEFT339

composition. We provide more baseline details in340

Appendix G. For all baselines and PER-PCS, we341

use Llama-2-7B (Touvron et al., 2023) as the base342

LLM and BM25 (Trotman et al., 2014) for retrieval343

operations to ensure efficient and fair comparisons.344

Evaluation Metrics Following LaMP (Salemi345

et al., 2023), we use accuracy and F1-score for346

personalized text classification tasks (LaMP-1 and347

LaMP-2), and MAE and RMSE for LaMP-3: per-348

sonalized product rating. For personalized text349

generation tasks (LaMP-4, LaMP-5, and LaMP-7),350

we adopt ROUGE-1 and ROUGE-L (Lin, 2004).351

Higher scores indicate better performance for all352

metrics except RMSE and MAE used in LaMP-3.353

3Statistics are presented in Table 4.

4 Results 354

Table 1 shows the performance on the curated test 355

set of six public tasks in the LaMP benchmark. We 356

have observations as follows. 357

Performance with PER-PCS. Models equipped 358

with PER-PCS outperform non-personalized, RAG, 359

and PAG counterparts across all six tasks. In per- 360

sonalized text classification, PER-PCS achieves 361

11.79% and 6.02% relative gains in accuracy and 362

F1-score for movie tagging, and 27.32% and 363

24.92% improvements in MAE and RMSE for 364

product ratings. For personalized text generation, 365

PER-PCS shows 4.25% and 4.28% relative im- 366

provements in ROUGE-1 and ROUGE-L scores 367

for news headline generation. These results demon- 368

strate PER-PCS’s effectiveness in enhancing LLM 369

personalization. 370

PER-PCS vs. PEFT Retrieval. Compared to the 371

PEFT retrieval method, PER-PCS shows clear su- 372

periority. For instance, PER-PCS achieves 8.76% 373

and 22.09% performance gains in accuracy and 374

F1-score for citation identification. Significant im- 375

provements are also seen in movie tagging, prod- 376

uct rating prediction, and news headline genera- 377

tion tasks, highlighting the benefits of fine-grained 378

PEFT piece composition over PEFT-level composi- 379

tion, which may risk user data leakage. 380

PER-PCS vs. OPPU. Compared to OPPU, which 381

trains personal PEFT from scratch and requires 382

more computational and storage resources, PER- 383

PCS achieves comparable or slightly better results. 384

Specifically, PER-PCS achieves 99.28% of OPPU’s 385

performance on average with 7 times less computa- 386

tion and 38 times less storage in personalized text 387
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Figure 3: Model performance with different numbers of
sharers in the product rating task (lower values indicate
better performance). Our piece-level composition PER-
PCS is stable and consistently outperforms the PEFT-
level composition baseline.

classification. In personalized text generation, PER-388

PCS shows comparable or better results in scholarly389

title generation and tweet paraphrasing.390

PER-PCS with Non-Parametric Knowledge.391

Integrating both parametric user knowledge in per-392

sonal PEFT and non-parametric in retrieval and393

user profile leads to notable performance gain. Av-394

eraging all tasks, RAG and PAG bring 1.67% and395

12.4% performance gain in text classification tasks,396

as well as 6.11% and 6.35% enhancement in text397

generation tasks.398

Note that introducing RAG and PAG means399

users would expose their historical data or pro-400

files to a centralized LLM, raising concerns about401

how user data are stored, used, and protected, and402

potentially affecting model ownership. For users403

prioritizing privacy and ownership, pure PER-PCS404

without retrieval avoids revealing user data to cen-405

tralized LLM, and our experiments show it sig-406

nificantly outperforms non-personalized baselines.407

Conversely, those seeking optimal performance and408

consent to reveal data to centralized LLMs should409

opt for PER-PCS+RAG/PAG.410

5 Analysis411

Robustness against Sharer Count In real-world412

deployment, the number of users who consent to413

share their personal PEFT can vary, and compu-414

tational resources may constrain the number of415

sharers, making the sharer count a crucial factor in416

PER-PCS. In this experiment, we alter the number417

of sharers in two representative tasks from the text418

classification and generation categories to test the419

model’s robustness. As shown in Figure 3, PER-420

PCS exhibits relatively stable performance despite421

changes in the number of sharers and achieves the422

Accuracy F1-Score
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Figure 4: Performance of PER-PCS on movie tagging
and news headline generation tasks with different sharer
selection strategies. We find PER-PCS is robust to the
choice of sharers.
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Figure 5: The PER-PCS performance with different
PEFT parameter sharing ratios. PER-PCS maintains
stable performance with a small sharing ratio, while non-
parametric user knowledge via RAG enhances stability
and performance.

best performance with just 30 sharers in the per- 423

sonalized product rating prediction task, demon- 424

strating its strong efficiency. Compared with the 425

PEFT-level composition baseline (PEFT Retrieval), 426

PER-PCS consistently shows better performance, 427

highlighting the effectiveness of fine-grained piece- 428

level composition in user modeling. 429

On Sharer Selection Strategy In the main re- 430

sults, we present findings based on selecting sharers 431

by clustering user history embeddings. However, 432

users can have diverse distributions, and those who 433

consent to share PEFT parameters may be biased 434

in their distribution. Therefore, we tested PER-PCS 435

with different sharer selection strategies to demon- 436

strate its robustness against sharer selection. Specif- 437

ically, we tested three strategies by restricting the 438

sharer number to 50 users: "Most Active," which 439

selects the 50 most active users; "Profile Cluster," 440

which uses a DeBERTa-v3-Large encoder to obtain 441

user embeddings for k-means clustering; and "His- 442

tory Cluster," the default setting, which averages 443

user history embeddings to obtain user embeddings 444

for clustering. As shown in Figure 4, all sharer 445

selection strategies lead to better performance than 446

the non-personalized baseline. Furthermore, PER- 447
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PEFT
Retrieval

PEFT
Retrieval

Figure 6: Case study on a specific user’s PEFT assembled from sharers and corresponding piece weights in PER-PCS,
compared with the PEFT retrieval choice. Unlike PEFT-level retrieval, PER-PCS models user history data in a more
fine-grained manner while ensuring the privacy of sharers.

PCS’s performance remains stable across different448

sharer selection strategies, demonstrating its robust-449

ness. We hypothesize that fine-grained piece-level450

parameter composition can decompose complex451

user preferences from diverse dimensions, facilitat-452

ing robustness against different sharer distributions.453

Shared Pieces Ratio Study We designed PER-454

PCS to enable sharers to share a small portion of455

their PEFT parameters, preserving user privacy456

while maintaining strong performance. In this ex-457

periment, we varied the PEFT parameter sharing458

ratio and assessed its impact on model performance.459

Shown in Figure 5, using two representative tasks460

from text classification and generation, we found461

that PER-PCS is highly robust to the sharing ra-462

tio, achieving comparable performance with just463

20% of the sharers’ PEFT parameters compared464

to full parameter sharing. Additionally, with non-465

parametric user knowledge from RAG, PER-PCS466

demonstrates greater stability and performance.467

These results show that PER-PCS effectively bal-468

ances privacy preservation and model performance.469

Case Study To better understand the mechanism470

of piece-level composition in PER-PCS, we con-471

ducted a case study on piece selection and corre-472

sponding composition weights in product rating473

prediction and news headline generation, represent-474

ing text classification and generation categories,475

respectively. As illustrated in Figure 6, we observe476

that in both text classification and generation tasks,477

the selected pieces are diverse. Additionally, the478

weight distribution in generation tasks is more uni-479

form, likely due to the intrinsic complexity of per-480

sonality in text generation tasks. Compared with481

PEFT-level retrieval, we find that PER-PCS almost482

never selects the same PEFT chosen by retrieval,483

yet it outperforms PEFT retrieval by 19.11% and484

4.15% in product rating prediction and news head-485
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Figure 7: Comparison of storage and time complexity
between our PER-PCS and OPPU, demonstrating that
PER-PCS requires significantly less time to assemble
personal PEFTs and less storage space to save them.

line generation tasks, respectively. We speculate 486

that this is due to PER-PCS’s ability to effectively 487

decompose and combine sharer PEFT pieces in a 488

fine-grained manner, leveraging multiple sharers’ 489

parameters to enhance generalization. 490

Time and Space Complexity Analysis Scalabil- 491

ity and efficiency are crucial for large-scale deploy- 492

ment of personalization methods. We compared 493

PER-PCS and OPPU in terms of storage and as- 494

sembly time. For storage efficiency, we used the 495

product rating prediction task, observing require- 496

ments as the user count increased. For time effi- 497

ciency, we examined a single user in the movie 498

tagging task by varying the number of user history 499

items. As shown in Figure 7, PER-PCS is signif- 500

icantly more efficient than OPPU in both storage 501

and time. With increasing numbers of users and 502

history items, PER-PCS’s efficiency advantage be- 503

comes even more pronounced, being approximately 504

38 times more efficient in storage and 7 times more 505

efficient in time. Moreover, as the number of users 506

and history items grows, the efficiency advantage 507

of PER-PCS becomes even more pronounced, being 508

approximately 38 times more efficient in storage 509

and 7 times more efficient in time. 510
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6 Related Work511

6.1 Personalization of LLMs512

Existing LLM personalization methods can be cate-513

gorized into prompt-based and Parameter Efficient514

Fine-tuning (PEFT)-based methods.515

Prompt-based personalization method focuses516

on designing prompts that incorporate user-517

generated content and behavior to help LLMs518

understand user preferences, which can be fur-519

ther categorized into vanilla personalized prompt-520

ing, retrieval-augmented personalized prompting,521

and profile-augmented personalized prompting.522

Vanilla personalized prompting leverages LLMs’523

in-context learning and few-shot learning abilities524

by encoding either complete or randomly sampled525

user history behaviors as contextual examples (Dai526

et al., 2023; Wang et al., 2023; Kang et al., 2023).527

To manage the rapidly growing user behavior and528

LLMs’ limited context window, researchers have529

proposed retrieval-augmented methods for person-530

alized LLMs (Salemi et al., 2023), and enhance the531

calibration (Mysore et al., 2023) and optimize re-532

trieval (Salemi et al., 2024). Moving beyond simple533

retrieval, some researchers have proposed profile-534

augmented personalization prompting, summariz-535

ing natural language user preferences and behavior536

patterns to augment user queries (Richardson et al.,537

2023), and constructing hierarchy personalized re-538

trieval databases (Sun et al., 2024).539

PEFT-based personalization methods store user540

preferences and behavior patterns in parameters.541

OPPU (Tan et al., 2024) equips each user with a per-542

sonal PEFT module, storing preferences in PEFT543

parameters and offering better generalization of544

user behavior patterns compared to prompt-based545

methods. Another line of work focuses on design-546

ing personalized alignment methods via parameter547

merging (Jang et al., 2023a), personalized RLHF548

(Li et al., 2024; Park et al., 2024), personalized549

reward models (Cheng et al., 2023), and black-box550

LLM personalization (Zhuang et al., 2024).551

6.2 Model Parameter Composition552

Existing work has shown that performing weighted553

linear interpolation of model parameters leads to554

the composition of each model ability (Li et al.,555

2022; Tam et al., 2023). This approach recycles556

efforts and computational resources used to create557

specialized models. These methods can be divided558

into model-, PEFT-, and piece-level compositions.559

Model-level composition methods treat the en-560

tire model parameter as the minimum composi- 561

tion unit (Wortsman et al., 2022; Choshen et al., 562

2022; Ramé et al., 2023; Jin et al., 2022). Ilharco 563

et al. (2022) propose the task vector, which sub- 564

tracts the weights of a fine-tuned model from the 565

pre-trained weights and conducts task vector arith- 566

metic to enable generalization across tasks and do- 567

mains. PEFT offers lightweight alternatives for 568

fine-tuning LLMs by updating small, plug-in pa- 569

rameters while keeping the pre-trained weights 570

frozen to save computational resources (He et al., 571

2021). In PEFT-level composition, the entire PEFT 572

module is treated as the minimum unit. By com- 573

posing PEFT parameters, models can achieve task 574

and domain generalization (Shah et al., 2023; Gou 575

et al., 2023; Zhang et al., 2023). LoRAHub (Huang 576

et al., 2023) uses a black-box optimizer to integrate 577

specialized LoRAs, facilitating generalization to 578

unseen tasks. Another line of work focuses on re- 579

trieving PEFT (Jang et al., 2023b). LoRARetriever 580

(Zhao et al., 2024) retrieves and composes multiple 581

LoRAs based on the given input. In piece-level 582

composition, the minimum composition unit is a 583

plug-in sub-component of PEFT within a specific 584

layer. For instance, in LoRA, each low-rank update 585

at a linear layer constitutes a "piece." Muqeeth et al. 586

(2024) focuses on task generalization and proposes 587

recycling PEFT pieces by employing per-token and 588

per-piece composition under zero-shot settings. 589

In this work, we propose PER-PCS, a personal 590

PEFT sharing framework that takes advantage of 591

piece-wise parameter composition, enabling users 592

to share partial parameters. This approach ensures 593

the sharer’s privacy while maintaining model own- 594

ership, fine-grained user modeling, and strong effi- 595

ciency for personalized LLM democratization. 596

7 Conclusion 597

We proposed PER-PCS, a novel framework that en- 598

ables users to share their personal PEFTs, creating 599

community value while preserving privacy. For tar- 600

get users, PER-PCS maintained model ownership, 601

efficiency, and fine-grained personalization by em- 602

ploying piece-level composition based on user his- 603

tory data. Extensive experiments showed that PER- 604

PCS outperforms non-personalized and PEFT re- 605

trieval methods, and performs close to OPPU with 606

significantly lower computational and storage re- 607

sources. We envisioned PER-PCS as a community- 608

driven effort to advance personalized LLM, making 609

it more modular, effective, and widely accessible. 610

8



8 Limitations611

We identify two key limitations in PER-PCS. First,612

constrained by the dataset, our focus is primarily613

on one specific task per user rather than examining614

user behaviors across multiple tasks and domains.615

For instance, in the movie tagging task, users are616

solely engaged in that specific activity, without617

the inclusion of behaviors from other domains or618

platforms. Despite this, the PER-PCS framework619

is inherently adaptable to any text sequence gen-620

eration task and is compatible with diverse user621

instructions across various tasks and domains. Per-622

sonalizing LLM across a broader range of tasks623

and domains is left as future work. Second, de-624

spite our proposed PER-PCS is compatible with625

all PEFT methods that introduce trainable modules626

throughout the model, such as Adapter (Houlsby627

et al., 2019), (IA)3 (Liu et al., 2022), and prefix628

tuning (Li and Liang, 2021), we primarily focus on629

LoRA in this work. This is due to LoRA’s popu-630

larity, widespread use, and superior performance631

demonstrated by OPPU (Tan et al., 2024), while632

we expect to expand our experiment and analysis633

to more PEFT methods in future work.634

9 Ethical Considerations635

Data Bias Personalizing LLMs relies heavily on636

personal data input into the system. If this data637

is biased or unrepresentative, the model’s outputs638

could perpetuate these biases, leading to unfair or639

prejudiced responses. It is crucial to monitor and640

mitigate such biases in personal data and person-641

alized models to ensure fair, unbiased, and safe642

responses from personalized LLMs. In PER-PCS,643

where users build personal PEFTs through collabo-644

rative efforts, bias in user data could spread within645

the community, amplifying negative effects. Fu-646

ture work could focus on preventing harmful biases647

in user data at both the personal and community648

levels.649

Accessibility While advancing personalized650

LLMs aims to enhance user interactions with AI651

systems, their complexity and resource-intensive652

nature can pose accessibility challenges. Smaller653

entities or individual researchers with limited com-654

putational power and budgetary constraints may655

struggle to engage with advanced personalized656

LLMs, potentially widening the gap in AI research657

and application. Efforts should be made to make658

these technologies more accessible to a broader659

audience to ensure equitable advancement in AI 660

research. 661
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Table 2: Performance of PER-PCS across different ab-
lated versions: Top-p refers to setting a cumulative prob-
ability threshold p and aggregating all pieces that first
reach this threshold. Topk-Sampling denotes sampling
one piece from the top k pieces with normalized scores
as probabilities.

Ablation Settings LaMP-2 LaMP-4

Acc F1 R-1 R-L

full model 0.410 0.301 0.193 0.174
w/o attention 0.340 0.266 0.176 0.158
replace Topk-Agg. w/ Topp-Agg. 0.390 0.288 0.169 0.153
replace Topk-Agg. w/ Topk-Sampling 0.383 0.297 0.172 0.155

A Ablation Study993

As PER-PCS outperforms various baselines in per-994

sonalization tasks, we investigate the impact of995

each design choice in PER-PCS to verify their effec-996

tiveness. More specifically, we perform ablation on997

the assembling process in both attention aggrega-998

tion and piece selection steps. As is shown in Table999

2, the full PER-PCS outperforms all ablated models,1000

proving our design choice’s effectiveness. More-1001

over, the weighted aggregation of PEFT pieces has1002

a significant impact on performance and is essen-1003

tial for model generalization for target users. We1004

also find that TopP and TopK sampling strategies1005

for pieces strategy would involve randomness and1006

noises and eventually hurt the model performance.1007

B Computation Resources Details1008

All experiments are implemented on a server with 31009

NVIDIA A6000 GPU and Intel(R) Xeon(R) Silver1010

4210R CPU @ 2.40GHz with 20 CPU cores.1011

C Hyperparameters1012

The hyperparameters of PER-PCS are presented in1013

Table 3 to facilitate further research.1014

D Modeling Users with Different Active1015

Levels1016

Users can exhibit different levels of activity, re-1017

sulting in varying lengths of user history items for1018

user modeling and personalization. To investigate1019

the impact of user activity levels, quantified by1020

the number of historical behavior items, on model1021

performance, we randomly sampled 10 users from1022

each range of activity levels. As shown in Figure1023

8, we observe that (i) PER-PCS generally shows1024

stronger relative performance when user behavior1025

items are fewer than 20, likely due to the collabo-1026

rative signals captured during the assembling pro-1027
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Figure 8: Model performance on personalized movie
tagging and news headline generation for users with
different numbers of history items.

cess that help the model understand user prefer- 1028

ences. (ii) PER-PCS generally performs similarly 1029

to OPPU, which requires training and maintaining 1030

personal PEFT from scratch and significantly more 1031

resources, and (iii) both OPPU and PER-PCS out- 1032

perform the non-personalized baseline at almost all 1033

activity levels. Overall, these results demonstrate 1034

the strong performance and robustness of PER-PCS 1035

across all user activity levels. 1036

E Scientific Artifacts 1037

PER-PCS is built with the help of many existing 1038

scientific artifacts, including PyTorch (Paszke et al., 1039

2019), Numpy (Harris et al., 2020), huggingface, 1040

and transformers (Wolf et al., 2020). We will make 1041

the PER-PCS implementation publicly available to 1042

facilitate further research. 1043

F Task Details 1044

We present the task details as follows to help read- 1045

ers gain a better understanding of the task format. 1046

• Personalized Citation Identification is a binary 1047

text classification task. Specifically, given user u 1048

writes a paper x, the task aims to make the model 1049

determine which of the two candidate papers u 1050

will cite in paper x based on the user’s history 1051

data, which contains the publications of user u. 1052

• Personalized News Categorization is a 15-way 1053

text classification task to classify news articles 1054

written by a user u. Formally, given a news ar- 1055

ticle x written by user u, the language model is 1056

required to predict its category from the set of 1057

categories based on the user’s history data, which 1058

contains the user’s past article and corresponding 1059

category. 1060
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Table 3: Hyperparameter settings of PER-PCS across six tasks on LaMP data.

Task Sharer PEFT Sharer Gate PER-PCS Assemble

batch size epoch lr batch size step lr top-k batch size

LAMP-1: PERSONALIZED

CITATION IDENTIFICATION
16 1 1e-5 6 100 1e-5 1 16

LAMP-2: PERSONALIZED

MOVIE TAGGING
6 3 2e-5 6 100 2e-5 3 16

LAMP-3: PERSONALIZED

PRODUCT RATING
2 2 1e-5 4 100 1e-5 1 6

LAMP-4: PERSONALIZED

NEWS HEADLINE GEN.
10 3 2e-5 6 50 2e-5 1 16

LAMP-5: PERSONALIZED

SCHOLARLY TITLE GEN.
3 2 2e-5 6 50 2e-5 1 10

LAMP-7: PERSONALIZED

TWEET PARAPHRASING
16 2 1e-5 6 50 2e-5 2 16

• Personalized Movie Tagging is a 15-way text1061

classification task to make tag assignments1062

aligned with the user’s history tagging prefer-1063

ence. Specifically, given a movie description x,1064

the model needs to predict one of the tags for the1065

movie x based on the user’s historical movie-tag1066

pairs.1067

• Personalized Product Rating is a 5-way text1068

classification task and can also be understood as1069

a regression task. Given the user u’s historical re-1070

view and rating pairs and the input review x, the1071

model needs to predict the rating corresponding1072

to x selected from 1 to 5 in integer.1073

• Personalized News Headline Generation is a1074

text generation task to test the model’s ability1075

to capture the stylistic patterns in personal data.1076

Given a query x that requests to generate a news1077

headline for an article, as well as the user profile1078

that contains the author’s historical article-title1079

pairs, the model is required to generate a news1080

headline specifically for the given user.1081

• Personalized Scholarly Title Generation is a1082

text generation task to test personalized text gen-1083

eration tasks in different domains. In this task,1084

we require language models to generate titles for1085

an input article x, given a user profile of historical1086

article-title pairs for an author.1087

• Personalized Tweet Paraphrasing is also a text1088

generation task that tests the model’s capabili-1089

ties in capturing the stylistic patterns of authors.1090

Given a user input text x and the user profile of1091

historical tweets, the model is required to para-1092

phrase x into y that follows the given user’s tweet1093

pattern.1094

Table 4: Dataset statistics: We report average sequence
length in terms of number of tokens. #Q is the number
of queries, Lin and Lout are the average length of input
and output sequence respectively, and #History is the
number of user history items. To save space, task names
can be found in Table 1.

Task in
LaMP

Sharer Candidates Target Users

#Q #History Lin Lout #Q #History Lin Lout

1 5,334 88.5 51.4 1.0 125 147.2 50.8 1.0
2 2,385 12.3 92.5 1.7 2,228 37.3 92.3 2.0
3 15,034 202.5 132.1 1.0 614 360.6 160.9 1.0
4 7,568 31.3 30.1 10.1 3,949 155.9 26.5 10.7
5 10,821 94.3 162.7 9.7 608 144.0 158.9 9.7
7 9,978 15.7 299.6 16.9 114 77.2 30.3 17.0

G Baseline Details 1095

• Non-Personalized baseline: We present two 1096

approaches under the non-personalized setting: 1097

non-retrieval and random history. Non-retrieval 1098

method (k=0) refers to only feeding the user’s 1099

query without revealing the user’s behavior his- 1100

tory to the LLMs. Random history baseline 1101

means augmenting the user’s query with random 1102

history behavior from all user history corpus. 1103

• Retreival-Augmented Personalization (RAG): 1104

We follow the retrieval-augmented personaliza- 1105

tion method presented in LaMP (Salemi et al., 1106

2023), where the user’s query is augmented with 1107

top k retrieved items from the corresponding 1108

user’s history corpus. We take k=1 by default 1109

in this work. 1110

• Profile-Augmented Personalization (PAG): 1111

This method is taken from Richardson et al. 1112

(2023), in which the user’s input sequence would 1113

concatenate the user’s profile summarizing the 1114

user’s preference and behavior patterns. In our 1115

experiments, we generate user profiles using the 1116

Mistral-7B (Jiang et al., 2023) model. More- 1117
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over, the profile-augmented method could be1118

combined with the retrieval augmentation. In1119

this case, we take the number of retrieval items1120

k=1 following the setting of Richardson et al.1121

(2023).1122

• PEFT Retrieval: Similar to Jang et al. (2023b);1123

Zhao et al. (2024), when a target user comes,1124

we compute the cosine similarity between em-1125

beddings of target users and sharers and find the1126

top-k similar users and conduct weighted aggre-1127

gation to obtain target user’s PEFT. The PEFT1128

retrieval method has not been applied to LLM1129

personalization before and we select it as a PEFT-1130

level composition baseline to compare with our1131

proposed fine-grained piece-level composition1132

method.1133

• OPPU: This method was proposed by Tan et al.1134

(2024), which trains a PEFT for each user from1135

scratch and can be integrated with prompt-based1136

personalization methods. Compared to our PER-1137

PCS, OPPU requests significantly more compu-1138

tation and storage.1139

H Dataset Statistics1140

The dataset statistics are presented in Table 4.1141

I Prompt Details1142

We present the prompt used in our experiments1143

in this section, where the text in {BRACES} can1144

be replaced with content specific to different users1145

and queries. Prompts for user profile generation are1146

presented in Table 5, prompts for personalization1147

tasks are presented in Table 61148
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Table 5: Prompt for user profile generation.

Task Prompt

LAMP-1: PERSONALIZED CITATION IDENTIFI-
CATION

Write a summary, in English, of the research interests and topics of a researcher
who has published the following papers. Only generate the summary, no other text.
User History: {USER HISTORY} Answer:

LAMP-2: PERSONALIZED MOVIE TAGGING Look at the following past movies this user has watched and determine the most
popular tag they labeled. Answer in the following form: most popular tag: <tag>.
User History: {USER HISTORY} Answer:

LAMP-3: PERSONALIZED PRODUCT RATING Based on this userś past reviews, what are the most common scores they give
for positive and negative reviews? Answer in the following form: most common
positive score: <most common positive score>, most common negative score: <most
common negative score>. User History: {USER HISTORY} Answer:

LAMP-4: PERSONALIZED NEWS HEADLINE

GENERATION

Given this authorś previous articles, try to describe a template for their headlines.
I want to be able to accurately predict the headline gives one of their articles. Be
specific about their style and wording, dont́ tell me anything generic. User History:
{USER HISTORY} Answer:

LAMP-5: PERSONALIZED SCHOLARLY TITLE

GENERATION

Given this authorś previous publications, try to describe a template for their titles. I
want to be able to accurately predict the title of one of the papers from the abstract.
Only generate the template description, nothing else. User History: {USER HISTORY}
Answer:

LAMP-7: PERSONALIZED TWEET PARAPHRAS-
ING

Given this personś previous tweets, try to describe a template for their tweets. I want
to take a generic sentence and rephrase it to sound like one of their tweets, with the
same style/punctuation/capitalization/wording/tone/etc. as them. Only give me the
template description, nothing else. User History: {USER HISTORY} Answer:
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Table 6: Prompt for personalization tasks.

Task Prompt

LAMP-1: PERSONALIZED CITATION IDENTIFI-
CATION

### User Profile:
{USER PROFILE}
### User History:
{USER HISTORY}
### User Instruction:
Identify the most relevant reference for the listed publication by the researcher.
Select the reference paper that is most closely related to the researcherś work. Please
respond with only the number that corresponds to the reference.
Paper Title: {QUERY PAPER TITLE} Reference: [1] - {OPTION1} [2] - {OPTION2}
Answer:

LAMP-2: PERSONALIZED MOVIE TAGGING ### User Profile:
{USER PROFILE}
### User History:
{USER HISTORY}
### User Instruction:
Which tag does this movie relate to among the following tags? Just answer with
the tag name without further explanation. tags: [sci-fi, based on a book, comedy,
action, twist ending, dystopia, dark comedy, classic, psychology, fantasy, romance,
thought-provoking, social commentary, violence, true story]
Description: {QUERY MOVIE DESCRIPTION} Tag:

LAMP-3: PERSONALIZED PRODUCT RATING ### User Profile:
{USER PROFILE}
### User History:
{USER HISTORY}
### User Instruction:
What is the score of the following review on a scale of 1 to 5? just answer with 1, 2,
3, 4, or 5 without further explanation.
Review: {QUERY REVIEW} Score:

LAMP-4: PERSONALIZED NEWS HEADLINE

GENERATION

### User Profile:
{USER PROFILE}
### User History:
{USER HISTORY}
### User Instruction:
Generate a headline for the following article.
Article: {QUERY ARTICLE} Headline:

LAMP-5: PERSONALIZED SCHOLARLY TITLE

GENERATION

### User Profile:
{USER PROFILE}
### User History:
{USER HISTORY}
### User Instruction:
Generate a title for the following abstract of a paper.
Abstract: {QUERY ABSTRACT} Title:

LAMP-7: PERSONALIZED TWEET PARAPHRAS-
ING

### User Profile:
{USER PROFILE}
### User History:
{USER HISTORY}
### User Instruction:
Paraphrase the following text into tweet without any explanation before or after it.
Text: {QUERY TEXT} Tweet:
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