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ABSTRACT

We demonstrate the development and implementation of a series of echo state neu-
ral networks in conjunction with optimal weighted averaging to produce robust,
model-free predictions of highly chaotic time series. We deploy our model on sim-
ulated mass accretion data sets governing the formation of a protostar, accretion
disk and gas envelope. Our methodology extends the parallel series approach of
averaging all reservoir outputs by instead selecting an optimal set of weights for
each realization representative of what we believe constructs the optimal output
signal that best represents the data’s underlying temporal dynamics. The method
is demonstrated by modelling hydrodynamic and stellar evolution simulations that
are representative of highly chaotic systems.

1 INTRODUCTION

Neural networks have the capability to approximate any continuous function and are often referred
to as universal approximators (Csáji, 2001). This has given neural networks tremendous ability to
extract and estimate the underlying dynamical process occurring for a time series. As such, there
has been interest in utilizing neural networks for time series forecasting. Echo state neural networks
(ESN) implement the so called reservoir computing methodology as opposed to the more tradi-
tional multi-layered architecture of traditional neural networks. This reservoir acts as a complex
dynamical system that maintains a given internal state dependent on its history (Pathak et al., 2017;
Lukoševičius and Jaeger, 2009). This concept replicates a form of memory that the network has sim-
ilar to traditional recurrent networks. Deployments of ESNs on benchmark chaotic time series such
as the Mackay-Glass set (Jaeger and Haas, 2004) have demonstrated excellent temporal dynamic
extraction as well as good short term predictions of the Lorenz system (Jaeger and Haas, 2004). Of
course, like any form of prediction based modelling on highly chaotic time series, local errors be-
come amplified for longer term predictions which hinders and limits these prediction time. Given the
recent success in the deployment of ESNs, they do however present some statistical challenges pri-
marily involved with generating the input and reservoir matrices. The reservoir matrix Wr is taken
as a Nr × Nr sparse random matrix aimed at providing rich recurrent connections for the input.
The randomness associated with this introduces a degree of stochastic behaviour that can sometimes
propagate to the network’s output. Although the general trend of the output signal is relatively un-
changed, having even minor differences in any model’s output with all else fixed can be cumbersome
when deployed in practice. Several alternatives have been demonstrated to mitigate such challenges
utilizing ensemble methods and parallel series architectures (Liu et al., 2018; Wu et al., 2018). Here
we propose an extension to the parallel series method. Our approach uses historical data to inde-
pendently train and validate a series of reservoirs and constructs a constraint linear optimization
problem seeking a set of optimal weights aimed at extracting what we believe is a unique, optimal
path that best represents the underlying dynamics of a given time series. The method is structured
in a way to take a weighted average of realizations rather than the standard mean. This weighted
average approach is expected to give preference to better performing realizations and suppress poor
performing ones. We find significant improvement in model performance for certain changes in the
network’s hyperparameters. We deploy our approach on a series highly chaotic time series gov-
erned from hydrodynamical and stellar evolution simulations (Vorobyov et al., 2017). Our model
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demonstrates accurate short term performance, but we additionally quantify long term performance
by studying the time evolving RMSE.
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Figure 1: Standard architecture of a shallow ESN.

2 METHODS

2.1 SHALLOW ESN

The shallow ESN (single reservoir network) is composed of an input, reservoir and output layer as
demonstrated in Figure 1 having weights Wi and Wr being randomly generated, sparse matrices.
For an input time series x(t) = [x1(t), x2(t), · · · , xn(t)]>, each quantity xi(t) is used to construct
an Nr × 1 reservoir state vector vi, initialized to v1 = 0 and updated according to

vi+1 = (1− α)vi + αfa(Wixi(t) + Wrvi + Wb), 1 ≤ i ≤ n (1)

where Nr is the reservoir size and 0 < α < 1 is the leaking rate. We additionally include a bias Wb

and adopt an activation function of the form fa(x) = tanh(x). We define a washout quantity ω < n
as an initially discarded transient and for every i > ω, the internal state X is contructed as

X =

[
1 1 · · · 1

xi(t) xi+1(t) · · · xn(t)
vi vi+1 · · · vn

]
(2)

Furthermore, we compute the output matrix Wo through a readout operation on the set x(t) =
[xω+1(t), xω+2(t), · · · , xn(t)]>:

Wo = fr(x(t),X) (3)

where the readout is taken as a regression either in the form of the Tikhonov regularized regression
(Ridge-Regression) or the Moore-Penrose inverse (Pseudo-Inverse):

fr(x,X) = x∗ (X∗X)
−1 X∗ (Pseudo-Inverse)

fr(x,X) = x∗ (X∗X + λI)−1 X∗ (Ridge-Regression)

where I is the identity matrix and λ > 0 acts as a regularization parameter. Once the output matrix
is computed, the reservoir’s output can be computed as:

y(t) = WoX (4)

Therefore, in order to produce an estimate to the quantity xn+1, we construct the internal state using
xn and use Wo to compute the output using equation 4.
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Figure 2: Mass accretion rate as a function of time for chaotic regime of model 29 per Vorobyov
et al. (2017)

2.2 OWA-ESN

Liu et al. (2018) introduced a parallel series methodology to mitigate some of the statistical chal-
lenges of the shallow ESN. The parallel ESN effectively generates L independent input Wi and
reservoir Wr matrices. The time series is trained and validated on each reservoir to form L output
matrices Wo each of which is used to output a unique signal. Finally, the model’s final output signal
ŷ(t) is taken as the mean of all L realizations:

ŷ(t) =
1

L

∑
j

y(j)(t). (5)

In our extension, we propose to take a weighted average approach that favors better performing
outputs. The OWA-ESN assumes that the final output signal is a linear combination of all signals
from all L reservoirs

ŷ(t; β̂) =
∑
j

β̂jy(j)(t). (6)

for a set of optimal weights β̂j that minimizes the error of the final output. We treat this as an
optimization problem of the form

min
β̂

∥∥∥xF(t)− ŷ(t; β̂)
∥∥∥2

subject to
∑
j β̂j = 1

(7)

on a set of the data used for optimization xF(t). Here, we are minimizing the sum of squared
residuals, but other loss functions can be used as well. Since our approach aims to replicate a
weighted average, we impose that 0 < β̂j < 1. Furthermore, we require that the error be at least
less than or equivalent to the smallest error of any single realization from the series.

error
(

ŷ(t; β̂)
)
≤ error

(
y(j)(t)

)
∀j ∈ (1, L) (8)

The critical assumption with our method is that the set of weights that optimize the data segment
xF(t) will additionally produce the best performing output outside of this regime. Therefore, in order
to implement the OWA-ESN for out of sample predictions, we outline our methodology below:

1. We assume that the data available spans from t0 up to some T . Anything beyond T is
considered out of sample. Split the data into the respective training, validation and free
running segments:
(i) Training segment: t0 < t ≤ tT
(ii) Validation segment: tT < t ≤ tV
(iii) Free running segment: tV < t ≤ T

2. Generate L input and reservoir matrices independently.
3. Train (over the segment t0 < t ≤ tT) and validate (over the segment tT < t ≤ tV) on each

reservoir in the series according to the methodology discussed in subsection 2.1.
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Figure 3: The model’s standardized fluctuating component (top) and standardized deterministic
component (bottom). The time series demonstrates the respective training (grey), validation (red)
and free running (blue) segments.

4. Simulate L independent free running signals from each reservoir up to some t > T that is
outside of the available data.

5. Perform the optimization on the free running segment of the data tV < t ≤ T and compute
the optimal weights β̂j .

6. Compute the weighted sum of all L free running signals using equation equation 6 to pro-
duce a forecast beyond time T .

Here, the term ”free run” is representative of the network computing the quantity yi+1 using its
previous output yi. That is, after the network has been trained and validated, the input quantity at
each time step will be the network’s previous output.

2.3 HYDRODYNAMICS & STELLAR EVOLUTION

We demonstrate the predictive capabilities of our OWA-ESN through its implementation on the time
series obtained by calculating the rate of mass accretion onto a central protostar during the star
formation process. An episodic accretion process has been demonstrated by Vorobyov and Basu
(2006; 2010) by solving the following hydrodynamical equations:

∂Σ

∂t
= −∇p · (Σvp) (9)

∂

∂t
(Σvp) + [∇ · (Σvp ⊗ vp)]p = −∇pP + Σgp + (∇ ·Π)p (10)

∂e

∂t
+∇p · (evp) = −P (∇p · vp)− Ω + Γ + (∇ · v)pp’ : Πpp’ (11)

which correspond to mass, momentum, and energy transport respectively. The equations model a
disk geometry in a cylindrical coordinate system where physical variables are vertically integrated
(z-direction) and have a dependence on the polar coordinates (r, φ) in the disk plane. Here Σ is the
surface mass density, e is the internal energy per surface area, P is the vertically integrated pressure,
vp = vr r̂ + vφφ̂ is the velocity in the plane of the disk and ∇p = r̂∂/∂r + φ̂r−1∂/∂φ is the planar
gradient operator (gradient taken along the plane of the disk). The gravitational acceleration in the
disk plane gp accounts for self gravity of the disk and the gravity of the protostar (Vorobyov and
Basu, 2010). Lastly, Π is the viscous stress tensor, Ω is the radiative cooling

Ω = FcσbT
4
mp

τ

1 + τ2
(12)
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Table 1: Respective performance for each component over the free running segment

Low input scaling
Readout MSE Component
Ridge 0.00069 Ṁ(t) · σ−1
Pseudo 0.00051 Ṁ(t) · σ−1
Ridge 0.00017 Ṁd(t) · σ−1
Pseudo 5.31e−6 Ṁd(t) · σ−1
Ridge 0.00089 Ṁ(t) · σ−1
Pseudo 0.00049 Ṁ(t) · σ−1

High input scaling (% = 1)
Readout MSE Component
Ridge 0.00048 Ṁ(t) · σ−1
Pseudo 0.00024 Ṁ(t) · σ−1
Ridge 1.75e−5 Ṁd(t) · σ−1
Pseudo 4.77e−6 Ṁd(t) · σ−1
Ridge 0.00049 Ṁ(t) · σ−1
Pseudo 0.00025 Ṁ(t) · σ−1

and Γ is the heating function:
Γ = FcσbT

4
irr

τ

1 + τ2
(13)

where σb is the Stefan-Boltzmann constant, Tmp is the midplane temperature of gas, Tirr is the irra-
diation temperature from the protostar and τ is the optical depth (further details found in Vorobyov
and Basu (2010); Vorobyov et al. (2017)). We use accretion data from 7 of the 35 models (labelled
26 to 32) calculated by Vorobyov et al. (2017). Our extensive analysis will only pertain to model 29,
but we present the optimization outputs of all remaining models in the appendix. Furthermore, the
respective mass accretion dynamics are given in Figure 2 (all model dynamics are demonstrated in
Figure 7).

3 RESULTS

3.1 HYPERPARAMETER SEARCH

In order to optimally tune the model’s hyperparameters, we deploy an exhaustive grid search on a
prespecified subset of the hyperparameter space given in table 3 (appendix) where we additionally
survey the random matrices Wi and Wr to be sampled either uniformly, normally or lognormally.
The estimated optimal hyperparameters are given in the appendix noting that the demonstrated MSE
is given in regards to the validation error.

3.2 OPTIMIZATION

In order to demonstrate the OWA-ESN, we place the network into a free running state. The selection
of training, validation and testing segments aimed to capture as much of the chaotic portions of the
model as possible without incorporating too much of the flat lining dynamics exhibited at later
periods. Given that certain models exhibit longer episodic periods than others, the number of data
points in the training and validation sets vary from one model to the next. We present our outputs in
terms of each model’s respective maximum Lyapunov exponent (given in the appendix). We adopt
the methodology discussed in 2.2 where we solve the constrained optimization problem using the
interior-point algorithm. We assume that the data is separable of the form:

Ṁ(t) = Ṁd(t) + Ṁ(t) (14)

where Ṁd(t) and Ṁ(t) are representative of the model’s deterministic and fluctuating components.
In order to extract the fluctuating component, we adopt an elliptic high pass filter having a passband
frequency of 2 kHz and a sampling rate of 50 kHz. Given that the model’s deterministic component
is non-stationary, we induce stationarity through first order differencing. We additionally standardize
the time series to each model’s respective standard deviation. Model 29 had a standard deviation
of σ = 1.3948e−6 and a chaotic regime containing roughly 10,050 data points; to which 5,000
were used for training, 5,000 for validating and 50 to optimize in the free running segment. This
free run segment translates to roughly 1,153 years or 9.2 Lyapunov times. Figure 3 demonstrates
the model’s fluctuating component (top panel) and deterministic component (bottom panel). The
grey portion of the time series is representative of the training segment for t0 < t ≤ tT, the red
portion is representative of the validation segment for tT < t ≤ tV and finally the blue portion is
taken as the free running segment for tV < t ≤ T . The fluctuating and deterministic components
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Figure 4: The OWA-ESN optimized output signal along with the best individual output. The solid
blue line is representative of the free running segment of data used in the optimization, whereas the
dotted dashed line is the remaining segment t > T that is out of sample. OWA-ESN outputs for
the fluctuating and deterministic components (top left & right) respectively and the final OWA-
ESN output (bottom left panel) is found by summing the components Ṁ(t) · σ−1 with Ṁd(t) ·
σ−1. Furthermore, in the bottom right panel, we compare the OWA-ESN output when the data is
decomposed into Ṁd(t) and Ṁ(t) (red line) with the OWA output when we difference the data
directly (green line).
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Table 2: OWA-ESN network hyperparameters
Component Nr ρs % α C̃ λ Readout Sampling
Fluctuating 250 1.0 1.0 0.2 0.01 - Pseudo Normal
Deterministic 250 1.0 0.1 0.2 0.01 - Pseudo Normal

are trained and validated on two network’s separately. Each network is then free run, optimized
and summed together to produce the final output for Ṁ(t). We adopt the optimal hyperparameters
from table 5 given in the appendix with ω = 100 and implement a series of L = 100 reservoirs. The
respective optimized free running signals for Ṁ(t) and Ṁd(t) adopting the optimal hyperparameters
are demonstrated in the left most plots for panels (a) and (b) in Figure 11 respectively. We find that
in certain cases, inducing a highly non-linear response in the network’s reservoir can produce better
performing outputs for the optimization in the free running segment. This in turn generates more
variability in each realization of the reservoir series and can sometimes allow the OWA-ESN to
perform a more efficient optimization. This is done by increasing the respective input scaling to
% = 1 and the outputs are given in the right most plots of panels (a) and (b) in Figure 11. We
do however caution this approach and find that it can sometimes lead to stability issues for long
range outputs. Since high input scalings result in larger variability in the realizations, they can
sometimes diverge from one another rapidly. We sum the individual outputs from Ṁd(t) and Ṁ(t)

to produce the final signal for Ṁ(t). The bottom panel of Figure 11 demonstrates the standardized
final optimization output and we summarize the respective mean squared errors for all outputs in
table 1.

3.3 FORECASTING

Once the network has been optimized and the weights β̂j have been computed, the OWA-ESN can
be used to run the signal beyond the free running segment. This is done by taking the weighted sum
of all realization for t > T using the weights β̂j computed over the free running segment. We run the
out of sample forecast for an additional 9.2 Lyapunov times. The output is given in Figure 4 where
the solid blue line is representive of the free running segment used for the optimization tV < t ≤ T
and the dashed dotted line is for t > T . For comparison, we include the network’s top performing
individual signal (black line). That is, of the 100 individual paths given by the reservoir series,
the top performing output is taken as the one with the lowest MSE in the free run segment. The
hyperparameters used are given in table 2. In Figure 4, the MSE of the OWA signal is 0.00085 and
that of the best individual signal is 0.00114. We can gauge longer term performance by running the
forecast up to a total of 27.6 Lyapunov times. We demonstrate the time evolving MSE with respect
to three changes in the input scaling of the fluctuating component for % = [0.1, 0.3, 1.0] which is
representative of low, moderate and high %−values. The respective MSE at Λt = 27.6 are 0.0068,
0.0074 and 0.0081 respectively for % = [0.1, 0.3, 1.0]. This is shown in Figure 5. In generating these
forecasts, the random reservoir initialization is seeded for reproducibility with an initial seed value
of s0 = 503489 and iterated throughout the series in accordance to the LCG algorithm:

sn+1 = (asn + b) mod c, (15)

for a = 216 + 3, b = 0 and c = 231. Here, the recurrence is run for a total n = 1, 2, · · · , L
where the same sequence is used for the deterministic and fluctuating components. We note that any
recurrence can be used to seed the OWA-ESN so long as each reservoir is seeded with a different
value. We note however, that selecting a seed should be done so prior to any hyperparameter tuning.

4 DISCUSSION & CONCLUSION

Our methodology is shown to quantitatively output high performing signals and demonstrates how
the OWA-ESN can resolve intrinsic underlying temporal features of a highly chaotic time series
system in a model-free fashion. We find that separating out the fluctuations in the data from the
overall trend and summing the individual component outputs greatly improves the network’s overall
performance compared to differencing the time series directly. In the bottom right panel of Figure
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Figure 5: The time evolving MSE for the forecast run outside the free run segment implementing the
OWA-ESN under three scenarios. Each scenario varies the fluctuating component’s input scaling.
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Figure 6: The RMSE demonstrated as a function of the number of reservoirs in the series over the
free running segment used in the optimization. The right panels demonstrate the same respective
RMSE for the individual fluctuating (top) and deterministic (bottom) components.

4 we compare the outputs of the OWA-ESN when the data has been separated into fluctuating and
deterministic components with the outputs achieved from just performing first order differencing.
We achieve an MSE of 0.0138 for the output using a first order difference compared to an MSE
of 0.00085 when the decomposition is applied. Although we used an elliptic filter for the data de-
composition, we achieve comparable results implementing a butterworth filter. Furthermore, our
implementation utilizes a series of 100 reservoirs, but we do see somewhat of an improvement in
model performance with increasing L. Figure 6 demonstrates the RMSE as a function of the number
of reservoirs. Upon visual inspection, we see significant improvement up to and including L = 30
reservoirs with a potential plateau beyond this point. Whether there is truly a plateau or not raises
the question on scaling and whether there is additional improvement at any point beyond L > 500
reservoirs. For large enough L computational efficiency can become significantly compromised, but
given that training and validation at each reservoir are independent, it becomes natural to deploy
the OWA-ESN in parallel. The OWA-ESN aimed to exploit some of the statistical challenges of the
shallow ESN. The random generation of the input and reservoir matrices in shallow ESNs can intro-
duce stochastic nature to the outputs which can be cumbersome in practice. The weighted average
approach aims to suppress some of the lower performing outputs while emphasizing the better per-
forming ones within a given set of constraints. Over the free running segment, the optimized signal
is indeed found to significantly mitigate the randomness in outputs. However, outside of the free run
segment, the sensitivity to the network’s hyperparameters becomes more important. Particularly,
models with high input scaling parameter introduce higher variability in the output. These models
should be seeded for reproducibility and should be done so prior to any hyperparameter tuning. This
will ensure that any given network is optimized relative to it’s given seed. However, we find this be-
came less important when the input scaling is low. Overall, we implemented the OWA-ESN which
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had demonstrated forecasts maintaining relatively high performance and low MSE. In future work,
we can aim to reduce the amount of data to be partitioned by performing the optimization either
during training or during validation. This alternative can potentially achieve similar performance,
but completely removes the need for a free running segment.
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A APPENDIX
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Figure 7: Mass accretion rate from Vorobyov et al. (2017) as a function of time for models 26-32.

Table 3: Hyperparameter search space.

Parameters Search Space
Reservoir Size, Nr (250, 1000) incremented by 250
Spectral Radius, ρs (0.1, 1) incremented by 0.1
Input Scaling, % (0.1, 1) incremented by 0.1
Leaking Rate, α (0.1, 1) incremented by 0.1
Connectivity, C̃ [0.01, 0.05, 0.1]
Regularization, λ [1, 10, 100, 1000]× 10−8

Random Distribution Uniform, Normal, Lognormal

Table 4: Λmax for each model.

Model Number Λmax
26 0.20821945
27 0.2014386
28 0.20973413
29 0.18445392
30 0.16244096
31 0.19877397
32 0.1922906

Table 5: Hyperparameter search output
Model Nr ρs % α C̃ λ Readout Sampling MSE
Model 26 250 1.0 0.5 1.0 0.05 - Pseudo Uniform 0.0078

250 0.9 0.1 0.1 0.01 10−6 Ridge Uniform 0.0028
Model 27 250 1.0 1.0 1.0 0.05 - Pseudo Uniform 0.0111

250 0.7 0.1 0.2 0.01 10−5 Ridge Uniform 0.0019
Model 28 250 1.0 1.0 1.0 0.05 - Pseudo Uniform 0.1693

250 0.2 0.1 0.1 0.05 10−5 Ridge Uniform 0.1527
Model 29 250 1.0 0.1 0.2 0.01 - Pseudo Normal 0.0033

500 0.9 0.2 0.4 0.05 10−7 Ridge Uniform 0.0028
Model 30 250 1.0 1.0 1.0 0.05 - Pseudo Uniform 0.0046

250 1.0 0.1 0.3 0.1 10−5 Ridge Uniform 2.52× 10−4

Model 31 250 0.8 0.1 0.4 0.01 - Pseudo Uniform 0.0072
500 0.9 0.1 0.3 0.05 10−7 Ridge Uniform 0.0068

Model 32 500 0.1 0.1 0.2 0.01 - Pseudo Uniform 3.32× 10−4

250 1.0 0.1 0.4 0.1 10−7 Ridge Uniform 2.67× 10−4
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Figures 8 to 14 demonstrate the OWA-ESN output over the free running segment for all models
demonstrated in Figure 7. We note that there are differences in the training, validation and testing
segments since each model exhibits different chaotic periods that occupy different lengths of time.
However, we still see some strong optimizations for each model. Finally, each model utilized 50
data points for the free run segment adopting the hyperparameters from table 5 still experimenting
with high input scaling.
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Figure 8: The optimized free running signal (red) for model 26 overlaid with the free running seg-
ments (blue) of the (a) standardized fluctuating, (b) standardized deterministic and (bottom) final
component Ṁ(t) given in terms of Λ ≡ Λmax = 0.20821945. Model 26 had a standard deviation
of σ = 2.0231e−5 and utilized 6450 data points where 3200 were used for training and 3200 for
validating.
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Ṁ
(t

)σ
−1

×10−1

Ridge-Regression

2 4 6 8 10

Λt

0.8

0.9

1.0

1.1

×10−1

Ridge-Regression (% = 1)

Figure 9: The optimized free running signal (red) for model 27 overlaid with the free running seg-
ments (blue) of the (a) standardized fluctuating, (b) standardized deterministic and (bottom) final
component Ṁ(t) given in terms of Λ ≡ Λmax = 0.2014386. Model 27 had a standard deviation
of σ = 1.4145e−5 and utilized 10050 data points where 5000 were used for training and 5000 for
validating.
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Figure 10: The optimized free running signal (red) for model 28 overlaid with the free running
segments (blue) of the (a) standardized fluctuating, (b) standardized deterministic and (bottom)
final component Ṁ(t) given in terms of Λ ≡ Λmax = 0.20973413. Model 28 had a standard
deviation of σ = 1.3449e−5 and utilized 4050 data points where 2000 were used for training and
2000 for validating.
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Figure 11: The optimized free running signal (red) for model 29 overlaid with the free running
segments (blue) of the (a) standardized fluctuating, (b) standardized deterministic and (bottom)
final component Ṁ(t) given in terms of Λ ≡ Λmax = 0.184453923. Model 29 had a standard
deviation of σ = 1.3948e−6 and utilized 10050 data points where 5000 were used for training and
5000 for validating.
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Figure 12: The optimized free running running signal (red) for model 30 overlaid with the testing
segments (blue) of the (a) standardized fluctuating, (b) standardized deterministic and (bottom) final
component Ṁ(t) given in terms of Λ ≡ Λmax = 0.16244096. Model 30 had a standard deviation
of σ = 1.0350e−4 and utilized 7850 data points where 3900 were used for training and 3900 for
validating.
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Figure 13: The optimized free running running signal (red) for model 31 overlaid with the testing
segments (blue) of the (a) standardized fluctuating, (b) standardized deterministic and (bottom) final
component Ṁ(t) given in terms of Λ ≡ Λmax = 0.19877397. Model 31 had a standard deviation
of σ = 1.9617e−6 and utilized 9450 data points where 4700 were used for training and 4700 for
validating.
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Figure 14: The optimized free running running signal (red) for model 32 overlaid with the testing
segments (blue) of the (a) standardized fluctuating, (b) standardized deterministic and (bottom) final
component Ṁ(t) given in terms of Λ ≡ Λmax = 0.1922906. Model 32 had a standard deviation
of σ = 2.9740e−5 and utilized 4950 data points where 2450 were used for training and 2450 for
validating.
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