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ABSTRACT

Whilst adversarial training has been proven the most effective defending method
against adversarial attacks for deep neural networks, it suffers from overfitting on
unseen adversarial data and thus may not guarantee robust generalisation. It is
possibly due to the fact that the conventional adversarial training methods gener-
ate adversarial perturbations usually in a supervised way, so that the adversarial
samples are highly biased towards the decision boundary, resulting in an inho-
mogeneous data distribution. To mitigate this limitation, we propose a novel ad-
versarial training method from a perturbation diversity perspective. Specifically,
we generate perturbed samples not only adversarially but also diversely, so as to
certificate significant robustness improvement through a homogeneous data distri-
bution. We provide both theoretical and empirical analysis which establishes solid
foundation to well support the proposed method. To verify our methods’ effective-
ness, we conduct extensive experiments over different datasets (e.g., CIFAR-10,
CIFAR-100, SVHN) with different adversarial attacks (e.g., PGD, CW). Experi-
mental results show that our method outperforms other state-of-the-arts (e.g., PGD
and Feature Scattering) in robust generalisation performance. (Source codes are
available in the supplementary material.)

1 INTRODUCTION

Whilst Deep Neural Networks (DNNs) have attained breakthroughs in recent decades, the robustness
issue of these models has arisen as one major concern in many applications. Typically, DNNs appear
vulnerable and/or easily obtain unexpected outputs on adversarial examples which are perturbated
by crafted imperceptible noise (LeCun et al., 2015; He et al., 2016; Gers et al., 1999). Adversarial
examples have been shown ubiquitous in a variety of tasks such as image classification (Goodfellow
et al., 2014), segmentation (Fischer et al., 2017), speech recognition (Carlini & Wagner, 2018),
and text classification (Yang et al., 2020a). The model robustness has emerged as one of the most
challenge tasks and has drawn enormous attention recently.

To defend against adversarial examples, great efforts have been made, such as denoise-based meth-
ods (Lamb et al., 2018; Liao et al., 2018; Yang et al., 2019), detecting-based methods (Metzen et al.,
2017; Feinman et al., 2017; Xu et al., 2017; Pang et al., 2017), and adversarial training (Kannan
et al., 2018; You et al., 2019; Wang & Zhang, 2019; Zhang & Wang, 2019). In the arms race be-
tween attacks and defences, adversarial training has been shown as the most promising techniques,
for which the models are trained with adversarial samples rather than clean data (Goodfellow et al.,
2014; Madry et al., 2017). The adversarial training is a min-max game between the adversarial
perturbations and classifier. Namely, the imperceptible adversarial perturbations are crafted to max-
imise the probability of mis-classification, while the classifier is trained to minimise the loss due to
such perturbed data.

Such a robust optimisation approach has been proven effective, significantly improving the model
robustness. However, the generated perturbations by most of adversarial training methods such as
FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2017) are restrictively and typically biased
towards the decision boundary. This monotonic orientation can cause the close samples to move into
the same area, resulting in redundant-density areas where the excessive of adjacent data blocks the
optimisation of the decisive boundary and leads to a non-smooth decisive boundary. On the other
hand, the centralised data also contribute to the corresponding low-density areas where rare data
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could support to develop an optimal decisive boundary which would be easily broken during the
later training process. These over-concentrated data result in an inhomogeneous data distribution
and thus hinder the training of the model.

To illustrate this point, we present a toy example in Fig. 1, which shows the gradient direction of
different methods (top-line), adversarial examples generated from corresponding methods (middle-
line), and the decision boundary trained with corresponding adversarial examples (bottom-line). As
clearly observed, the adversarial samples generated by PGD, one of the most successful adversarial
attacks, are highly biased to the decision boundary and mostly concentrated in the crest and trough of
the decision boundary. Under the support of such data distribution, the decision boundary originally
located in the crest and trough will be severely distorted and overfitted, while decision boundary
previously located at other locations will also be severely distorted in the subsequent training due to
lack of data. Unfortunately, this phenomenon is not specific to supervised methods such as PGD,
but is also present in other unsupervised methods that consider the inter-samples relation such as
Feature Scattering (FS) (Zhang & Wang, 2019).

(a) Original Data

test

(b) PGD

test

(c) PGD+PD

test

(d) FS

test

(e) FS+PD

Figure 1: Illustrative example of the gradient direction (Top), adversarial samples (middle) and
trained decision boundary (Bottom) of different adversarial perturbation schemes. (a) Original data
without perturbation; perturbed data using (b) PGD, a supervised adversarial attack method; (c)
PGD with the proposed perturbation diversity (d) Feature Scattering, and (e) Feature Scattering with
the proposed perturbation diversity.

To address the above limitation, we propose to improve adversarial robustness from a new per-
spective by promoting the diversity among the generated perturbations, called Perturbation Diver-
sity (PD). Technically, we first develop a new method of perturbation generation in the adversarial
setting, which is significantly different from the previous attempts in both the supervised and un-
supervised setting. Namely, previous work has defined that the adversarial perturbations have their
own fixed objectives, either to maximise the loss function or to maximise the difference in data dis-
tribution. However, these objectives somehow have their own bias which leaves biased perturbed
samples and is inappropriate for an optimal training procedure. Instead, we define the novel adver-
sarial samples that are not only adversarial enough, but also have to be as diverse as possible, as
implemented by the proposed adversarial perturbation that should be orthogonal to the each other as
much as possible while moving towards the original objectives.

On the empirical front, first, we illustrate in Fig. 1 that our proposed adversarial examples can boost
the previous baseline such as PGD-AT and FS, which fills the data space as homogeneously as
possible. After training with such boosted adversarial examples, the model can preserve more infor-
mation of the original distribution and learn a better decision boundary than the existing adversarial
training methods. From the figure, we can see that both the AT and the FS alter the original decision
boundary significantly. Moreover, it can be observed that the adversarial training with PGD corrupts
the data manifold completely. On the other hand, FS appears able to retain partially the data man-
ifold information since it considers the inter-sample relationship locally. In contrast, our proposed
method considers to maximise perturbation diversity which potentially retains the global informa-
tion of data manifold after the data are adversarially perturbed, and thus obtains a nearly optimal
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decision boundary. This may explain why our proposed perturbation diversity could outperform the
other approaches.

Importantly, on the theoretical part, we have proved that the robust generalisation gap of adversarial
training can be upper bounded by a standard generalisation gap and a term related to the proposed
perturbation diversity. Namely, maximising perturbation diversity tends to reduce a smaller robust
generalisation gap, which establishes the theoretical foundation for the proposed method.

We test our method on three different datasets: CIFAR-10, CIFAR-100, and SVHN with the most
commonly used PGD, CW and FGSM attacks. Our method can be applied to any baseline. Without
sacrificing the accuracy of the original samples, it outperforms the state-of-the-art baselines by a
large margin. For example, PGD+PD improves over PGD-AT (Madry et al., 2017; Rice et al., 2020)
by 30.3% and 27.92% on SVHN for PGD20 and CW20 attacks.

2 BACKGROUND AND RELATED WORK

Among many other adversarial defence techniques, adversarial training has been proven as the most
efficient one to improve the model robustness (Goodfellow et al., 2014; Madry et al., 2017). Owing
to its persistence to increasingly powerful adversarial attacks, it has been drawing more and more
attention in the past years, e.g., (Zhang et al., 2021; Wang & Zhang, 2019; Zhang & Wang, 2019;
Zhang et al., 2020; Mao et al., 2019; Shafahi et al., 2019; Zhang et al., 2019a; Zhu et al., 2019;
Wong et al., 2020). By directly generating adversarial perturbations of the inputs, the philosophy of
adversarial training is to learn robust DNN models that could be tenable even under some adversarial
attacks. In this section, we give a brief introduction to adversarial training and robust generalisation.

2.1 CONVENTIONAL ADVERSARIAL TRAINING

In the conventional adversarial training, the main idea is to train the model with the adversarial
perturbations which could possibly lead to a worst situation, e.g., a wrong prediction. With the
model parameters θ ∈ Rm of the DNN, let L(·) be the loss function. Then, adversarial training can
be formulated as a minimax optimisation problem as follows:

min
θ

{E(x,y)∼D[ max
x′∈Sx

L(x′,y; θ)]}, (1)

where x ∈ Rd and y ∈ N denote the clean data samples and the corresponding labels, respec-
tively, drawn from a data distribution D; x′ ∈ Rd is the adversarially perturbed copy of x with
the perturbation constrained in a feasible region Sx , {z : z ∈ B(x, ε) ∩ [−1.0, 1.0]d}; and
B(z, ε) , {z : ‖x− z‖∞ ≤ ε} specifies the `∞-norm ball at the centre x with radius ε.

The above minimax optimisation problem is known to be difficult to solve directly. A feasible
solution is the alternating optimisation (e.g., Madry et al. (2017)), which iteratively updates between
the outer minimisation via SGD training and the inner maximisation via adversarial attacks (e.g.,
PGD, FGSM).

The conventional adversarial training aims to obtain a robust model by identifying the potential
attacks and eliminating the effect of the perturbation during the training process. Nevertheless, as
the data distribution is not considered in these methods, the adversarial perturbations generated from
the conventional adversarial training ignore the global data structure information and therefore are
highly biased, which inevitably degrades the robust generalisation performance.

2.2 ADVERSARIAL TRAINING WITH INTER-SAMPLES RELATION

Recent methods (Sinha et al., 2017; Miyato et al., 2017; Zhang & Wang, 2019) argue that the per-
turbations generated in the supervised way are restrictive and produced individually within the lo-
cal region, in which way the adversarial examples may corrupt the underlying data structure. To
exploit the data manifold, recent works have started to consider the inter-sample relationship dur-
ing adversarial perturbation generation. Of particular relevance is the adversarial training method
named Feature Scattering (FS) (Zhang & Wang, 2019), which is deemed as one of the most promis-
ing methods in the literature. The most appealing factor of FS is that the inter-sample relation-
ships of the inputs are considered when generating adversarial examples. Specifically, it perturbs
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the local neighborhood structure through the maximisation of the optimal transport (OT) distance

c(xi,x
′
j) = 1 − fθ(xi)

>fθ(x
′
j)

‖fθ(xi)‖2‖fθ(x′
j)‖2

between natural examples and perturbed examples. Therefore,
FS not only considers the worst-case samples, but also other weakly perturbed samples that are
critical to the robustness of the model.

Different from FS measuring two distributions with one fixed metric, Adversarial Training with La-
tent Distribution (Qian et al., 2021) utilises a learnable discriminator to distinguish the distribution of
natural examples and perturbed examples. This method generates adversarial examples to maximise
the divergence between the latent distributions of clean data and their adversarial counterparts.

These adversarial examples aim to make their latent feature as far away from their clean counterparts
as possible. Due to the unsupervised way of generating perturbations, the correlation between the
perturbations and the decision boundary is relatively low, which makes the potential label leaking
problem somewhat avoided (Zhang & Wang, 2019).

However, although these methods consider the data structure when generating adversarial perturba-
tion, the perturbations still have a strong bias, which could be observed in Fig. 1 and the toy example
in (Qian et al., 2021). As discussed previously in Section 1, such bias would hinder the optimisation
of the models and make models less robust.

2.3 ROBUST GENERALISATION

Analogously to standard generalisation with respect to unseen clean data, robust generalisation mea-
sures the performance of robust models on unseen adversarial data. It has been reported in (Schmidt
et al., 2018; Zhai et al., 2019) that learning a model with good robust generalisation is particularly
difficult because of the significantly higher (adversarial) data complexity. This attracted a new line
of research on the interplay between robustness and generalisation. For instance, by decomposing
the robust error due to adversarial examples into the natural classification error and the boundary er-
ror, Zhang et al. (2019b) proposed to make the trade-off between the robustness and the accuracy via
adversarial training. It is in sharp contrast to Yang et al. (2020b), which argued that both accuracy
and robustness are achievable if the local Lipschitzness can be maintained to some extent.

In addition to the bounding techniques of robust generalisation, another thread of this research aims
to devise new regularisation techniques to promote robust generalisation for adversarial training.
Of particular relevance is the work in Yin et al. (2019), which demonstrated that `1 norm of weight
matrices affects the robust generalisation performance, and the work in Wu et al. (2020), which made
both weight and input sample perturbations to enhance both generalisation and robustness. Pang
et al. (2019a) proposed the Max-Mahalanobis center (MMC) loss to explicitly induce dense feature
regions in order to benefit robustness. More recently, Roth et al. (2020) established a link between
adversarial training and the operator norm regularisation, and Rice et al. (2020) demonstrated that the
conventional PGD-AT (Madry et al., 2017) suffered from the adversarial overfitting and improved
the PGD-AT by early-stop simply. Such overfitting phenomenon can also be found in many other
methods.

3 MAIN METHODOLOGY

As discussed in the previous sections, conventional adversarial training methods generate adversarial
examples for training by focusing on maximising the loss (typically the cross-entropy), which makes
the direction of perturbations purely monotonous and biased to the decision boundary. Therefore,
these methods lead to adversarial data which are over-centralised and generate redundant-density
and low-density areas as shown in Fig. 1(b). In redundant-density areas, excessive data play the
same role for the training, causing models to be overfitted and locally non-smooth. However, in low-
density areas, the model could not obtain enough data to support training, which makes the decision
boundary in such areas hard to generalise. Obviously, this is less desirable as it might neglect
other directions that are crucial for learning robust models (Ilyas et al., 2019; Etmann et al., 2019).
While several recent methods consider the inter-sample relationships during generating adversarial
perturbations, which somewhat increases the diversity of the sample and alleviates the monotonous
perturbation, they are still biased and lead to undesirable low-density areas as shown in Fig. 1(d).
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In this section, we first introduce the training strategies for adversarial training with perturbation
diversity. Then we provide empirical and theoretical analysis on the solutions of our proposed
method.

Figure 2: Illustration of perturbation diversity. Left: Directions of conventional adversarial exam-
ples. Right: Directions of adversarial examples with Perturbation Diversity. When the perturbations
are orthogonal to each other, their diversity can be guaranteed, hence promoting a more smooth ro-
bust decision boundary. Details can be seen in Fig. 1 and Section 3.1.

3.1 ADVERSARIAL TRAINING WITH PERTURBATION DIVERSITY

Motivated by the determinant point process (DPP) theory (Kulesza & Taskar, 2012; Pang et al.,
2019b), we first define the perturbation diversity for n samples within a batch as:

PD = det(ZTZ), (2)

where Z = (z1, . . . ,zn) ∈ Rd×n is the perturbations of X = (x1, . . . ,xn) ∈ Rd×n which are
sampled from the training set consisting ofN samples. To avoid trivial solution, we require the batch
size n ≤ d which can be typically satisfied in practice. Each perturbation of xi is within a feasible
region being the `∞-ball at center xi with radius ε as defined in Eq. (1) where i = 1, 2, . . . , n.

The DPP (Kulesza & Taskar, 2012) method assigns higher probability to sets of items that are di-
verse in its own original purpose. As shown in Fig. 2, we make a simple demonstration illustrating
how the perturbation diversity can be attained. Conventional adversarial examples (left in Fig. 2)
are highly biased to the decision boundary, which makes the closer samples have similar pertur-
bation directions. However, the proposed Perturbation Diversity (right in Fig. 2) aims to generate
perturbations as orthogonal as possible to each other (whilst maximising the loss). In this way, as
theoretically justified shortly, we can encourage diverse perturbations, i.e., the resulting adversarial
examples can maintain diverse directions so as to avoid inhomogeneous perturbation distributions
(see Fig. 1 (c) and (e)).

According to the definition of volume with respect to matrix determinant (Sain, 2007), we have:

det(ZTZ) = Vol2({zi}i∈[n]), (3)

where [n] = {1, 2...n} and Vol(·) is the volume of the polyhedron spanned by the vectors of the
input. With such concept of volume, we could interpret the perturbation diversity in a geometrical
way. Note that each vector zi ∈ Rd is obtained under Lp-norm normalization due to the definition
of adversarial perturbation. With normalized {zi} such that ||zi||p = ε, the perturbation diversity
PD achieves its maximal value εn if and only if {zi}i∈[n] are mutually orthogonal.

Therefore, to promote perturbation diversity, we propose the adversarial training with perturbation
diversity as the regularisation as follows:

min
θ

1

N

N∑
i=1

Lθ(xadvi ,yi, θ), s.t. xadvi = arg max
x′
i∈Sx

(L′(x′i,yi, θ) + log(PD)), (4)

where xadvi is the generated adversarial example, x′i is the intermediate adversarial input during the
iterative perturbation, Lθ is the final objective for training the model parameterized by θ. L′ is the
objective for generating perturbations, which can be treated as any other adversarial training method.
In PGD-AT (Madry et al., 2017), L′ is the cross-entropy loss which is the same as Lθ; in FS (Zhang
& Wang, 2019), L′ is the optimal transport distance. Our proposed perturbation diversity acts as a
regularisation when generating the perturbations, making it readily used in most existing adversarial
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Figure 3: (a) to (d): TSNE manifold of the training and test data. All test data are attacked by PGD,
the training data are attacked by a) PGD, b) PGD+PD, c) FS, and d) FS+PD. (e): Training time
consumed at per epoch vs. Batch size.

training methods. Again, when we conduct adversarial training, PD is calculated in a batch fashion
(with the size 60 or 120 in this paper as discussed in the appendix).

In the back-propagation procedure, the proposed PD requires the separate computation of two matrix
operations det(PD) and PD−1. In particular, both operations have computational complexity of
O(n3) (Kulesza & Taskar, 2012), which may incur the curse of dimensionality if n is very large.
However, empirically speaking, models trained with large batch size n would not be better than
those trained with a small batch size. This property enables our method to scale to most modern
machine learning tasks. On the other hand, as experimentally shown in Fig. 3(e), compared to
the excessive and iterative gradient computation in adversarial training, the proposed PD seems to
require less computation, which makes our method also compatible with other defense methods,
e.g., adversarial training (Madry et al., 2017; Zhang & Wang, 2019), and thus our method could be
a plug-and-play component to further improve model robustness with perturbation diversity.

3.2 EMPIRICAL ANALYSIS

In this subsection, we visualise the TSNE embedding of the output features to show that the test
adversarial features are away from training data features of the same class in conventional adversarial
training methods, meaning that they usually overfit the training data and suffer from poor robust
generalisation. However, with the proposed PD, this feature shift could be largely alleviated as
shown in Fig. 3. In this figure, all the test data are attacked by PGD, while the training data are PGD
attacked, PGD+PD attacked, FS attacked, and FS+DP attacked from Fig. 3(a) to 3(d) respectively.

Concretely, we present the T-SNE embedding of training data attacked by PGD as well as test data
in Fig. 3(a) where for each class, the training data feature distribution is far away from the test
counterpart. In other words, even for the same class, the test adversarial data feature distribution ap-
pears very different from the training one. Therefore, the classifier learned with training data would
perform unsatisfactorily on test data and leads to poor robust generalisation. Differently, as seen in
Fig. 3(b), as certificated by PD, the test adversarial data features stay close to the training adversarial
features of the same class. Apparently, the classes are more clustered than the conventional PGD-AT.
Consequently, the classifier learned with the PD can perform well on test adversarial examples.

Moreover, with the baseline FS, we also plot the T-SNE embedding of adversarial samples for both
the training and test data in Fig. 3(c) and 3(d) where the training data are FS attacked and FS+PD
attacked respectively, and the test data are both PGD attacked. Comparing Fig. 3(c) and 3(d), one
can note that due to the good generalisation ability of FS, the clusters are more clear than PGD-AT.
However, since the FS attack is different from PGD, test data feature distribution are quite different
from training ones. In contrast, with the proposed PD, the test data feature distribution in Fig. 3(d)
again stays closer to the training one when we compare it to FS training (especially on the dark red
and blue classes). Moreover, FS+PD shows a better clustering property than the conventional FS.

3.3 THEORETICAL ANALYSIS

With the empirical analysis at hand, we now proceed to analyse the theoretical aspects of the pro-
posed method with focus on the robust generalisation bound.

Before proceeding further, we first introduce the concepts of standard and robust generalisation
errors. The (standard) generalisation error is defined as the difference between the expected loss
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over data distribution (x,y) ∼ (S,Y) and the empirical loss over the training data (xd,yd) ∈
(Sd,Yd) (Xu & Mannor, 2012; Neyshabur et al., 2017). By letting Sd,Yd be the training data
and the corresponding labels, respectively, and S,Y be the underlying data and label distributions,
respectively, we have

GE , |l(fθ(S),Y)− l̂(fθ(Sd),Yd)| ,where (5)

l(fθ(S),Y) , E(x,y)∼(S,Y)[l(fθ(x),y)]

l̂(fθ(Sd),Yd) ,
1

|Sd|
∑

(xd,yd)∈Sd

l(fθ(xd),yd).

Further, the robust generalisation error can be defined in a similar way, with the only difference
that the clean samples are replaced by the adversarial data samples and distribution (Schmidt et al.,
2018; Zhai et al., 2019; Wu et al., 2020) , i.e.,

RGE , |l(fθ(Sadv),Y)− l̂(fθ(Sadvd ),Yd)| (6)

where Sadvd and Sadv are similarly defined as the set of adversarial examples for the training data
and its underlying distribution, respectively. Equipped with these definitions, we now are ready to
bound the robust generalisation errors as shown in Theorem 3.1.

Theorem 3.1 Given the training dataset Sd = {xi}Ni=1 with N samples independently drawn from
the distribution S with K subsets {Cj}Kj=1 where we assume that adversarial perturbations of each
subset share the similar direction, and the set of adversarial perturbations of training set is {εi}Ni=1,
if the loss function l(·) of DNN fθ is k-Lipschitz, then for any δ > 0, with the probability at least
1− δ, we have

RGE ≤ GE+
k

N

K∑
j=1

∑
i∈Nj

‖Wij(εi − ε̂j)‖22 +M

√
2K ln 2 + 2 ln 1

δ

N
where (7)

ε̂j = E[zadv − z|z ∈ Cj ] (8)

where z is the data sampled from Cj with the corresponding adversarial example zadv , Ni denotes
the set of index of training data which belongs to Ci, Wij is the transformation matrix, and M is
the upper bound of loss of the whole data manifold S. We also assume that the diversity of {ε̂j}Kj=1

is greater than {εi}Ni=1.

The proof of Theorem 3.1 is delegated to Appendix. Theorem 3.1 says that, the robust generalisation
error (RGE) can be upper bounded by the sum of standard generalisation error (GE), a term of the
perturbation variance (the second term), and a constant part (the last term). Specifically, the pertur-
bation variance term is leveraged to measure the difference between the adversarial perturbations of
training set and whole unknown underlying data. It can be noted that the gap between the robust and
standard generalisation is mainly caused by the perturbation variance term. In the perturbation vari-
ance term, if the diversity of {εi}Ni=1 is small, all the perturbations of training data {εi}Ni=1 tend to
share quite similar directions and hence would fall into a very small number of of subsets {Cj}Kj=1
(according to the subset definition); this consequently leads to a large value of perturbation variance
and poor robust generalisation bound.

Intuitively, the adversarial perturbations of the whole underlying data usually have a greater diver-
sity than the training set, thus there are a considerable portion of unseen adversarial perturbations
beyond the training process and it is hard for the adversarially trained model to generalise well on
such unseen perturbations. To tackle such the problem, we try to promote the diversity of adver-
sarial perturbations during the training process such that the resulting space spanned by training
adversarial perturbations could be uniform or homogeneous. As such, the adversarial trained model
can generalise well on unseen perturbations.

It should be noted that directly minimising the second term of Eq. (7) is not possible as the adversar-
ial perturbations of the underlying data are unknown. Though in this paper, we manage to enlarge
the perturbation diversity as a simple yet effective regularisation in the training set so as to reduce
the robust generalisation gap and achieve encouraging results, it keeps interesting if a better way can
be sought to further promote the robust generalisation. We will leave this as one open problem.
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Figure 4: Attack Budget (ε) vs. Robust Accuracy on the three baseline. Top Line: CIFAR-10;
Middle Line: CIFAR-100; Bottom Line: SVHN.

4 EXPERIMENTS

In this part, we perform extensive experiments to evaluate our proposed PD on several baselines,
including PGD-AT, TRADES and FS in defending against various adversarial attacks.

4.1 EXPERIMENTAL SETTING

To verify the effectiveness of our proposed method, we compare the robustness performance with
the state-of-the-art adversarial training methods on CIFAR-10, CIFAR-100, and SVHN against
white/black box adversarial attacks. For the three benchmark methods, i.e. FS, AT, and TRADES,
we adopt WideResNet-28-10 as the basic model structure, following the settings in (Zhang & Wang,
2019; Madry et al., 2017). Specifically, on all three datasets CIFAR-10, CIFAR-100, and SVHN,
we train the models using SGD with momentum 0.9, weight decay 5 × 10−4, and initial learning
rate 0.1. The learning rate decays at epoch 60 and 90 with the rate 0.1. The attack iteration number
during the training period follows the baselines, such as 7 for PGD-AT and TRADES, 1 for FS, and
the attack step size is 2/255 for PGD and TRADES, 8/255 for FS. The attack budget ε is set to
8/255 for all the methods, following the practice of man previous methods (Zhang & Wang, 2019;
Madry et al., 2017). In both training and test, all attacks are computed with l∞ norm. For saving
space, the detailed experimental settings are listed in Appendix. The source codes are included in
the supplementary material.

4.2 ROBUSTNESS TO ADVERSARIAL ATTACKS

Improvement over Different Baselines: To clearly see how the proposed PD can improve vari-
ous models, we compare the three baselines (including AT (Madry et al., 2017; Rice et al., 2020),
Feature Scattering adversarial training (FS) (Zhang & Wang, 2019), and TRADES (Zhang et al.,
2019b)) with and without the proposed PD by varying the perturbation magnitude ε under different
adversarial attacks (including FGSM, PGD20, and CW20) as shown in Fig. 4. As observed, the
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proposed PD could generally increase the robustness, particularly it significantly improves the ro-
bustness against large attack budget (ε) especially on AT and FS models, although all the models are
trained under the same ε = 8. On the other hand, though the proposed PD just marginally improves
Trades, such improvement appears consistent on all the attack budgets. (Note: More detailed com-
parison experiments with the three baselines including black-box attack and the more sophisticated
AutoAttack (AA) (Croce & Hein, 2020) can be seen in the Appendix.)

Table 1: Accuracy under white-box attacks on CIFAR-10

MODELS CLEAN
ACCURACY UNDER WHITE-BOX ATTACK (ε = 8)

FGSM PGD20 PGD40 PGD100 CW20 CW40 CW100

STANDARD 95.60 36.90 0.00 0.00 0.00 0.00 0.00 0.00
AT 85.70 54.90 44.90 44.80 44.80 45.70 45.60 45.40
TLA 86.21 58.88 51.59 - - - - -
LAT 87.80 - 53.84 - 53.04 - - -
BILATERAL 91.20 70.70 57.50 – 55.20 56.20 – 53.80
TRADES 86.07 67.25 55.16 52.97 54.94 52.87 54.88 52.83
FS 90.00 78.40 70.50 70.30 68.60 62.40 62.10 60.60
RST-AWP 88.25 67.94 63.73 - 63.58 61.62 - -
RLFATT 82.72 - 58.75 - - 51.94 - -
RLFATP 84.77 - 53.97 - - 52.40 - -
FS+PD 89.99 79.37 72.02 70.53 69.57 64.26 62.76 61.70

Comparison with SOTAs: Taking the FS as the typical baseline, we conduct comparisons be-
tween the proposed FS+PD and the current state-of-the-art adversarial training methods including
1) AT Madry et al. (2017), 2) TLA (Mao et al., 2019), 3) LAT (Sinha et al., 2019), 4) Bilateral (Wang
& Zhang, 2019), 5) FS (Zhang & Wang, 2019). Moreover, other recent methods proposed to pro-
mote the robust generalisation are also included, such as 6) RST/AT-AWP (Wu et al., 2020) and 7)
RLFATT/P Song et al. (2019). We demonstrate the accuracy of these different methods in Table 1
and Table 2 on CIFAR-10, CIFAR-100 and SVHN respectively. For CIFAR-10, it can be seen that
our proposed FS+PD has achieved the best performance under all the adversarial attacks without fur-
ther sacrificing the standard accuracy compared to the baseline FS. In addition, it can be observed
that our method also outperform the recent robust generalisation methods such as RST/AT-AWP, and
RLFATT/P by a large margin. For CIFAR-100 and SVHN, our proposed method also demonstrates
consistently higher accuracy than almost all the other models, except that a slightly inferior to FS
under PGD100 and CW100 on SVHN.

Table 2: Accuracy under different attack on CIFAR-100 and SVHN

MODELS
CIFAR-100(ε = 8) SVHN(ε = 8)

CLEAN FGSM PGD20 PGD100 CW20 CW100 CLEAN FGSM PGD20 PGD100 CW20 CW100

STANDARD 79.00 10.00 0.00 0.00 0.00 0.00 97.20 53.00 0.30 0.10 0.30 0.10
AT 59.90 28.50 22.60 22.30 23.20 23.00 93.90 68.40 47.90 46.00 48.70 47.30
LAT 60.94 - 27.03 26.41 - - 91.65 - 60.23 59.97 - -
BILATERAL 68.20 60.80 26.70 25.30 - 22.10 94.10 69.80 53.90 50.30 - 48.90
FS 73.90 61.00 47.20 46.20 34.60 30.60 96.20 83.50 62.90 52.00 61.30 50.80
AT-AWP - - 30.71 - - - - - 59.12 - - -
RLFATT 58.96 - 31.63 - 27.54 - - - - - - -
RLFATP 56.70 - 31.99 - 29.04 - - - - - - -
FS+PD 72.72 74.77 49.75 49.35 36.25 36.19 96.54 97.42 67.72 53.13 63.75 49.72

5 CONCLUSION

We have developed a novel adversarial training method from a perturbation diversity perspective
in this paper. While existing adversarial training typically focuses the perturbation objective only,
which generates inhomogeneous data distribution and limits the model’s generalisation, our pro-
posed novel regularisation can certificate to generate adversarial perturbations as diverse as possible
to obtain better robust generalisation. We have provided theoretical and empirical investigations
which validate our perturbation diversity can lead to performance gains in a number of baseline
models.
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REPRODUCIBILITY STATEMENT

For empirical experiments, we have described our experiment settings including but not limited to
Operating systems, Pytorch Version, Graphics card model. We also put more details in the Appendix
including the parameters used in the experiments. We also upload our source codes as the additional
supplementary material with anonymous download link for our reference model. For theoretical
analysis, we have provided detailed proof and derivation in the Appendix.
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A APPENDIX

A.1 DETAILED EXPERIMENT SETTING

All the experiments are conducted on Ubuntu 20.04.1 LTS, Python 3.7.9, Pytorch 1.8.0, CUDA
11.1.1, and the GPUs are Nvidia-RTX3090. All the models adopt WideResNet-28-10 as the basic
model structure. Specifically, on all three datasets CIFAR-10, CIFAR-100 and SVHN, we train
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Algorithm 1 PGD-AT with Perturbation Diversity
Input: dataset S, training epochs K, batch size n, learning rate γ, budget ε, attack iterations T
Parameter: model parameter θ

1: for k = 1 to K do
2: for random batch {xi,yi}ni=1 ∼ S do
3: initialization: x′ ← x+U(x, ε), where U(x, ε) is the uniform random vector at center x

with radius ± ε
2

4: PGD attack with PD (maximising the cross-entropy loss and perturbation diversity):
5: for t = 1 to T do
6: Calculate the diverse adversarial perturbation on a mini-batch of data:

Z = Concatni=1(x
′
i − xi)

PD = det(ZTZ)
x′i ← PSx(x′i + ε · sign(∇x′

i
(Lθ(x′i, yi, θ) + log(PD))))

7: end for
8: adversarial training (updating model parameters):

θ ← θ − γ · 1n
∑n
i=1∇θL(x′i, yi, θ)

9: end for
10: end for
11: return model parameter θ.

models using SGD with momentum 0.9, weight decay 5 × 10−4, and initial learning rate 0.1. The
learning rate decays at epoch 60 and 90 with the rate 0.1. The attack iteration number during the
training period follows the baselines, such as 7 for PGD-AT and TRADES, 1 for FS, and the attack
step size is 2/255 for PGD and TRADES, 8/255 for FS. The attack budget ε is set to 8/255 for all
the methods, following many other related work.

Other training details are listed in Table 3. For the batch size, we tune empirically that 60 or 120
can lead to good performance. The hyperparameter means the ratio of the original objective and
the proposed PD. Note that though originally TRADES suggested to perform training on clean data,
we found in our experiments such practice achieved very poor performance on CIFAR-100 and
SVHN. Therefore, we train the TRADES baseline and TRADES+PD with adversarial examples on
these two datasets instead. The early stopping (Rice et al., 2020) is implemented in all the baseline
methods and the proposed PD methods. All the reported results are obtained with the most robust
models for each method.

Table 3: Detailed experiment setting
Methods Dataset Batch Size Hyperparameter Training Epoch

AT+PD
CIFAR-10 120 1 600

CIFAR-100 60 50 600
SVHN 120 1 600

FS+PD
CIFAR-10 60 1 600

CIFAR-100 60 0.1 300
SVHN 60 0.1 600

TRADES+PD
CIFAR-10 120 1 60

CIFAR-100 120 10 60
SVHN 120 1 60

The training procedure is provided in Alg. 1

A.2 DETAILED MODEL ROBUSTNESS ON DIFFERENT BASELINE MODELS

We show the robust accuracy on the three baseline frameworks under several white-box attacks
on CIFAR-10, CIFAR-100, and SVHN in this section with the attack iterations T = 20, 100 for
PGD (Madry et al., 2017) and CW (Carlini & Wagner, 2017).

As observed from Table 4, Table 5, and Table 6, overall, our proposed PD achieves a clear improve-
ment over all the three baseline models on the adversarial examples. Even though our method may
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reduce the standard accuracy very slightly, for the adversarial samples, our proposed PD improves
the baselines by a large margin. Particularly, with the implementation of PD, our approach
AT+PD is 30.3% and 27.92% higher than the baseline AT under PGD20 and CW20 attack on
SVHN respectively.

We also evaluate our proposed PD on the more sophisticated AutoAttack (AA) (Croce & Hein,
2020) as shown in the last column of Table 4. It can be observed that the proposed PD performs fair
under AA: PD wins in TRADES, loses in AT, and ties (or slightly loses) in FS. Recent studies show
that approaches considering sample relationships actually fail to defend against AA attack such as
FS and ATLD (Qian et al., 2021). We attribute this to the reason that attacks considering sample
relationships are usually weak. While weakly attacked samples can support the model to learn a
more smooth decision boundary in the high-dimensional space, they usually do not benefit finding
the most precise gradient, resulting in vulnerabilities in the decision boundary that can be found
and harnessed by more sophisticated attacks such as AA during test. We leave this phenomenon for
future research.

Table 4: Robust accuracy on different baseline models on CIFAR-10

MODELS CLEAN
ACCURACY UNDER WHITE-BOX ATTACK (ε = 8)

FGSM PGD20 PGD40 PGD100 CW20 CW40 CW100 AA

AT 86.35 68.15 54.66 54.39 54.32 53.66 53.45 53.42 44.04
AT+PD 86.97↑ 71.96↑ 64.14↑ 63.15↑ 62.42↑ 57.28↑ 56.28↑ 55.81↑ 42.15↓
TRADES 86.76 66.12 51.80 51.60 51.54 49.86 49.77 49.70 48.54
TRADES+PD 85.55↓ 66.04↓ 53.26↑ 53.09↑ 53.12↑ 50.54↑ 50.47↑ 50.50↑ 49.63↑
FS 90.00 78.40 70.50 70.30 68.60 62.40 62.10 60.60 36.64
FS+PD 89.99↓ 79.37↑ 72.02↑ 70.53↑ 69.57↑ 64.26↑ 62.76↑ 61.70↑ 36.37↓

Table 5: Robust accuracy on different baseline models on CIFAR-100

MODELS CLEAN
ACCURACY UNDER WHITE-BOX ATTACK (ε = 8)

FGSM PGD20 PGD100 CW20 CW100

AT 59.90 28.50 22.60 22.30 23.20 23.00
AT+PD 64.35↑ 39.76↑ 31.80↑ 31.66↑ 24.08↑ 23.42↑
TRADES 61.46 39.45 30.54 30.55 27.19 27.12
TRADES+PD 61.23↓ 39.48↑ 30.86↑ 30.71↑ 27.35↑ 27.22↑
FS 73.90 61.00 47.20 46.20 34.60 30.60
FS+PD 72.72↓ 74.77↑ 49.75↑ 49.35↑ 36.25↑ 36.19↑

Table 6: Robust accuracy on different baseline models on SVHN

MODELS CLEAN
ACCURACY UNDER WHITE-BOX ATTACK (ε = 8)

FGSM PGD20 PGD100 CW20 CW100

AT 93.90 68.40 47.90 46.00 48.70 47.30
AT+PD 94.66↑ 90.25↑ 78.20↑ 75.31↑ 76.62↑ 72.46↑
TRADES 93.90 77.42 61.54 60.75 58.05 57.66
TRADES+PD 94.70↑ 85.47↑ 65.06↑ 62.22↑ 62.19↑ 60.38↑
FS 96.20 83.50 62.90 52.00 61.30 50.80
FS+PD 96.54↑ 97.42↑ 67.72↑ 53.13↑ 63.75↑ 49.72↓

A.3 EFFECT ON BLACK-BOX ATTACK

We further examine the effects of PD on AT and AT+PD under transfer-based black-box attack. We
take CIFAR-10 as one typical example to illustrate such results. Four different models are used for
generating test time attacks including the Vanilla Training model, AT model, FS model, and our
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AT+PD model. As shown in Table 7, our proposed PD can improve AT in 9 cases, and is only
slightly inferior to the baseline AT in 3 cases.

Table 7: Accuracy under transfer-based black-box attack on CIFAR-10

DEFENSE
MODELS

ATTACKED MODELS (CIFAR-10)

VANILLA TRAINING AT FS AT+PD

FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20

AT 85.35 85.53 85.35 73.06 64.49 63.82 82.97 81.30 80.12 85.24 84.80 84.79
AT+PD 85.81 86.09 86.11 73.80 65.69 65.41 82.36 79.98 78.11 85.85 85.29 85.49

A.4 PROOF FOR THEORY 3.1

In this section, we provide the detailed proof for Theorem 3.1.

Theorem 3.1 Given the training set Sd = {xi}Ni=1 that consists of N i.i.d samples drawn from
a distribution S with K subsets {Cj}Kj=1 where we assume that adversarial perturbations of each
subset share the similar direction, and the set of adversarial perturbations of training set is {εi}Ni=1,
if the loss function l(·) of DNN fθ is k-Lipschitz, then for any δ > 0, with the probability at least
1− δ, we have

RGE ≤ GE+
k

N

K∑
j=1

∑
i∈Nj

‖Wij(εi − ε̂j)‖22 +M

√
2K ln 2 + 2 ln 1

δ

N
where

ε̂j = E[zadv − z|z ∈ Cj ] (9)

where z is data sampled from Cj with corresponding adversarial example zadv , Ni denotes the set
of index of training data which belongs to Ci,Wij is the transformation matrix, and M is the upper
bound of loss of the whole data manifold S. We also assume that the diversity of {ε̂j}Kj=1 is greater
than {εi}Ni=1.

Proof: Let Ni be the set of index of points of training set Sd = {si}Ni=1 that fall into the Ci and
(|N1|, ..., |NK |) is an i.i.d multinomial random variable with parameters n and (µ(C1), ..., µ(CK)).
The following holds by the Breteganolle-Huber-Carol inequality (cf Proposition A6.6 of Van &
Wellner (2000) ):

Pr

{
K∑
i=1

∣∣∣∣NiN − µ(Cj)
∣∣∣∣ ≥ λ

}
≤ 2Kexp(

−Nλ2

2
) (10)

Hence, with the probability at least 1− δ, we have:

K∑
j=1

∣∣∣∣Nj

N
− µ(Cj)

∣∣∣∣ ≤
√

2Kln2 + 2ln(1/δ)

N
(11)
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The upper bound of the robust generalisation can be formulated as:

|l(fθ(Sadv),Y)− l̂(fθ(Sadvd ),Yd)| =

∣∣∣∣∣∣
K∑
j=1

E(l(fθ(zadv),y)|z ∈ Cj)µ(Cj)−
1

N

N∑
i=1

l(fθ(x
adv
i ),yi)

∣∣∣∣∣∣
= |

K∑
j=1

(E(l(fθ(zadv),y)|z ∈ Cj)− E(l(fθ(z),y)|z ∈ Cj) + E(l(fθ(z),y)|z ∈ Cj))µ(Cj)

− 1

N

N∑
i=1

(l(fθ(x
adv
i ),yi)− l(fθ(xi),yi) + l(fθ(xi),yi))|

≤ |
K∑
j=1

(E(l(fθ(zadv),y)|z ∈ Cj)− E(l(fθ(z),y)|z ∈ Cj))µ(Cj)

− 1

N

N∑
i=1

(l(fθ(x
adv
i ),yi)− l(fθ(xi),yi))|+

∣∣∣∣∣∣
K∑
j=1

E(l(fθ(z),y)z ∈ Cj)(Cj)−
1

N

N∑
i=1

l(fθ(xi),yi)

∣∣∣∣∣∣
≤ GE +

∣∣∣∣∣∣
K∑
j=1

(E(l(fθ(zadv),y)|z ∈ Cj)− E(l(fθ(z),y)|z ∈ Cj))
|Nj |
N
− 1

N

N∑
i=1

(l(fθ(x
adv
i ),yi)− l(fθ(xi),yi))

∣∣∣∣∣∣
+ |

K∑
j=1

(E(l(fθ(zadv),y)|z ∈ Cj)− E(l(fθ(z),y)|z ∈ Cj))µ(Cj)−
K∑
j=1

(E(l(fθ(zadv),y)|z ∈ Cj)

− E(l(fθ(z),y)|z ∈ Cj))
|Nj |
N
|

≤ GE +

∣∣∣∣∣∣
K∑
j=1

(E(l(fθ(zadv),y)|z ∈ Cj)− E(l(fθ(z),y)|z ∈ Cj))
|Nj |
N
− 1

N

N∑
i=1

(l(fθ(x
adv
i ),yi)− l(fθ(xi),yi))

∣∣∣∣∣∣
+M

K∑
j=1

∣∣∣∣NjN − µ(Cj)
∣∣∣∣

≤ GE +
1

N

K∑
j=1

∑
i∈Nj

∣∣(l(fθ(xadvi ),yi)− l(fθ(xi),yi))− E(l(fθ(zadv),y)− l(fθ(z),y)|z ∈ Cj)
∣∣

+M
K∑
j=1

∣∣∣∣NjN − µ(Cj)
∣∣∣∣

Here, we assume |l(fθ(x1),y1)− l(fθ(x2),y2)| ≤ k‖fθ(x1) − fθ(x2)‖22 and ε is small enough
that fθ(xadv) can be approximated by its first order Taylor expansion. Then we have

RGE , |l(fθ(Sadv),Y)− l̂(fθ(Sadvd ),Yd)|

≤ GE +
k

N

K∑
j=1

∑
i∈Ni

‖(fθ(xadvi )− fθ(xi))− E(fθ(zadv)− fθ(z)|z ∈ Cj)‖22 +M

K∑
j=1

∣∣∣∣NiN − µ(Cj)
∣∣∣∣

≤ GE +
k

N

K∑
j=1

∑
i∈Ni

‖∇xfθ(x)(xadvi − xi)− E(∇zf(z)(zadv − z)|z ∈ Cj)‖22 +M

√
2K ln 2 + 2 ln 1

δ

N

There exists a transformation matrixWij such that

RGE ≤ GE +
k

N

K∑
j=1

∑
i∈Ni

‖Wij(εi − ε̂j)‖22 +M

√
2K ln 2 + 2 ln 1

δ

N
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where ε̂j = E[zadv − z|z ∈ Cj ].

This completes the proof. �
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