
Turning Software Engineers into Machine Learning Engineers

Alexander Schiendorfer * 1 Carola Gajek * 1 Wolfgang Reif 1

Abstract
A first challenge in teaching machine learning
to software engineering and computer science
students consists of changing the methodology
from a constructive design-first perspective to an
empirical one, focusing on proper experimental
work. On the other hand, students nowadays can
make significant progress using existing scripts
and powerful (deep) learning frameworks – focus-
ing on established use cases such as vision tasks.
To tackle problems in novel application domains,
a clean methodological style is indispensable. Ad-
ditionally, for deep learning, familiarity with gra-
dient dynamics is crucial to understand deeper
models. Consequently, we present three exercises
that build upon each other to achieve these goals.
These exercises are validated experimentally in a
master’s level course for software engineers.

1. Teaching Basic Machine Learning
The current state of the art of and popular interest in ma-
chine learning (esp. deep learning) is remarkable. There are
numerous blogs, tutorials, online-classes, and code snippets
that allow for very fast prototyping and experimentation.
Endeavors such as fine-tuning a pre-trained image classifica-
tion network for a special application domain have become
beginner tutorials (Chilamkurthy, 2017). While we believe
that all of these resources are valuable to get students mo-
tivated and excited about the field, we also noted them as
potential obstacles in acquiring basic machine learning prin-
ciples that are needed for practitioners keen on applying ML
to their domain of choice.

We noted that especially computer science and software
engineering students tended to struggle with the adoption of
an empirical mindset rather than a constructive one. That
is, instead of designing an ML model in terms of its hyper-

*Equal contribution 1Institute for Software & Systems Engineer-
ing, University of Augsburg, Augsburg, Germany. Correspondence
to: Alexander Schiendorfer <schiendorfer@isse.de>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

parameters (e.g., layers, network architecture, etc.) like one
would do for, say, a UML class diagram, we need to rely
on a systematic approach to experimental determination.
That involves proper protocols of experiments, investigation
of the learning rates (on train/val sets), or inspection of
gradient developments.

To the novice in ML, it might thus be overwhelming to deal
with both new algorithms, models, and techniques as well
as whole new development style, i.e., adopting an exper-
imental methodology. What should be treated as a black
box? What should be understood in more detail? This can
be exacerbated by the teachers’ emphasis on the former, due
to available material and individual curiosity. For instance,
numerical optimizers (that offer interfaces to inject gradi-
ents) beyond stochastic gradient descent typically need no
reimplementation and can be used off the shelf. Knowledge
about gradient dynamics, on the other hand, is particularly
valuable in terms of diagnosing vanishing/exploding gra-
dient problems that can help to improve training by, e.g.,
clipping gradients or adding batch-norm layers. Understand-
ing this core material paves the way for more elaborate
models such as autoencoders or GANs.

2. Practising Essential Machine Learning
Skills

The variety of available material and code for ML appli-
cations and especially powerful frameworks allow us to
quickly build impressive models. However, to get efficiently
meaningful models, it is advisable not to rely completely
on libraries and frameworks. We have identified three fun-
damental skills an ML engineer should acquire for it and
propose exercises for software engineering students to en-
hance them1. The first skill is a systematic methodology for
hyperparameter tuning, as ML users typically train plenty
of models with various architectures in order to find the one
(together with its corresponding hyperparameters) best per-
forming the desired task. Secondly, ML engineers should
know how to perform proper data splitting and the correct
usage of the resulting subsets, as this determines the validity
of the model. This is not trivial in practice, for instance, for
time series data with recurring patterns of different temporal

1The sources of the exercises can be accessed via https://
github.com/isse-augsburg/ecml2020-teach-ml.

https://github.com/isse-augsburg/ecml2020-teach-ml
https://github.com/isse-augsburg/ecml2020-teach-ml


Turning Software Engineers into Machine Learning Engineers

horizons. When applying numerical optimizers for training,
gradient problems can occur, especially with advanced or
customized algorithms. In order to be able to detect and
improve them, it is essential to understand the gradient sig-
nals, which we have identified as the third skill. This can be
the preparation to work with advanced visualization toolk-
its like TensorBoard2 to get more insight into the model’s
dynamics.

2.1. Introducing Hyperparameter Tuning

During their education, software engineers are typically
taught a constructive operational mode, i.e. creating well-
considered architectural and design models before imple-
menting their software. By contrast, the task of tuning
hyperparameters for ML models needs a more experimen-
tal approach. While there exist empirical guidelines and
research findings that point to promising regions or direc-
tions of the hyperparameter space, an ML engineer still
has to explore these regions in greater detail. Considering
an underfitting neural network as a simple example: it is
well known that increasing the complexity of the model by
adding more neurons or layers or decreasing the regular-
ization will yield better performance. However, finding the
optimal number of neurons and layers requires systematic
exploration, e.g. using common automatic hyperparameter
optimization algorithms like Grid or Random Search.

This union of methodical and explorative approach for hy-
perparameter tuning is new to software engineers and an
important aspect of the tasks of an ML engineer, so it needs
to be practiced. Therefore, we designed an exercise for our
students focusing on tuning the probably most important
hyperparameter (Goodfellow et al., 2016; Smith, 2017) for
an exemplifying simple regression problem trained with
gradient descent: the learning rate of the optimization al-
gorithm. We chose linear regression as the first model due
to its simplicity as the model itself has no hyperparame-
ters. The data set consists of eight two-dimensional data
points (x, y) sampled from an unknown, linear curve, alter-
natively with or without noise in the y-values. We designed
a widget visualizing the data points, the current linear model
ŷ(x) = w0 + w1x trying to fit the samples, the correspond-
ing current values of the weights w0 and w1 and the resulting
current loss L(y, ŷ) of the model, see Figure 1. The linear
function can be fitted in three different ways:

1. Adjusting the weights manually using the sliders at the
bottom of the widget. This is a good starting point to
get familiar with the widget and an intuition of suitable
weights of the linear function.

2. Gradually training the weights using gradient descent
step by step (button Gradient step) or repeatedly

2https://www.tensorflow.org/tensorboard

until a self-specified stopping criterion is met (button
Solve by gradient descent). In this mode,
the students can experiment with different values of
the learning rate and see the effects on the model. The
calculated derivatives of the loss by the weights provide
an idea of appropriate values of the learning rate.

3. Determining the optimal weights analytically using
the normal equations (button Solve by normal
equations) based on the pseudo-inverse matrix
(Goodfellow et al., 2016). This allows on the one hand
to check the correctness of the students’ gradient calcu-
lations and on the other hand to point out the difference
between analytical and numerical solution methods.

The button Show secret displays the actual weights of
the original, true linear function and can show that not even
the analytical normal equations can correctly determine the
original weights when considering noisy data.

2.2. Manage Proper Data Splitting

However, by now the students only learned to tune a hyper-
parameter of the optimization algorithm, i.e. the learning
rate. To actually tune model hyperparameters, splitting up
the data set in training and validation sets is necessary. As
commonly known, the training set is used to train various
models which are afterward evaluated on the unseen in-
stances of the validation set. After choosing the best model,
a second holdout set, the test set, gives an approximation of
how well the model will perform on new instances in pro-
duction. To obtain meaningful and comparable results, the
individual subsets must be both representative for the whole
data set and not be modified during the tuning process.

The second exercise shall teach the students how to
split a data set properly according to meaningful-
ness and reproducibility and how to choose the best
model hyperparameters based on these subsets. Specif-
ically, they have to find the optimal polynomial de-
gree to fit a given non-polynomial function. The in-
stances (x, y) are (for presentation reasons) again two-
dimensional and sampled from a trigonometry-based func-
tion y(x) = (x− 1) sin(x+ 2) +N (0, 1.5) with normal
distributed noise, as displayed in Figure 2. As the stu-
dents are already familiar with linear regression, we keep
it up for this exercise and add model hyperparameters
using polynomial basis functions [x2, x3, ..., xn] to sim-
ulate polynomial regression instead of introducing this
new model. At first, they need to split up the instances
properly (as explained above) into the three sets. Based
on the current polynomial degree k = 1, ..., n, the origi-
nally scalar input x ∈ R needs to be extended to a vector
h(x) = [x, x2, x3, ..., xk]T ∈ Rk by adding powers of x
as new features such that the vectors can be fed into the

https://www.tensorflow.org/tensorboard


Turning Software Engineers into Machine Learning Engineers

Figure 1. Widget for tuning the learning rate of gradient descent, contains detailed depictions of current gradient and values of w0, w1.

linear regressor ŷ
(
h(x)

)
= w0+w1x+w2x

2+ ...+wkx
k.

To choose the best hyperparameter value, i.e. the polyno-
mial degree k, the students plot a learning curve displaying
the training and validation error for k = 1, ..., n. The fi-
nal task is to calculate the generalization error the model
produces on the test set and comparing it to the validation
loss.

The exercise has been processed by ten groups of three stu-
dents, where we could detect that each group had problems
with different aspects, both concerning the data handling
and the tuning process: Some groups did not take care of
the representative segmentation of the data. As a conse-
quence, the validation and test set contained instances from
two disjoint areas of the data set, e.g. validation set with
x < 0 and test set x ≥ 0. Since the model selection is based
on the training and validation set, this segmentation will
focus on models well approximating the instances with neg-
ative x-values and disregard their behavior for non-negative
x-values. In a few groups, we could observe that the test
error was not calculated due to the missing expansion of the
original scalar inputs to powers of the input up to degree
k. The usage of a pre-processing pipeline for the given
and incoming instances during production (like applying
feature normalization, PCA, etc.) is necessary for complex,
real-world applications, too. One group even changed the
given code so that the previously fixed segmentation of data
was thus performed randomly on each execution which led
to non-reproducible results.

Regarding the tuning process, three issues occurred in in-
dividual groups: On the one hand, we observed a common
error to involve the test set already for selecting the best
model, a different group took this decision based only on

the training error - both variants are wrong. The last noticed
error concerns the error function that had to be implemented
by the students. Since the three data sets are typically not
of equal size, the summed error over all instances should be
averaged over the size of the respective sets.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Input

10

5

0

5

10

La
be

ls

Figure 2. The data set used for the second exercise:
80 samples drawn from the non polynomial function
y = (x− 1) sin(x+ 2) +N (0, 1.5) with normal distributed
noise.

2.3. Backpropagation and Auto-Differentiation

To train deeper models than linear regression, the automatic
derivation of gradients of the loss function with respect to
each weight is a key element. Backpropagation, as intro-
duced for classical multilayer perceptrons (Rumelhart et al.,
1985), is the algorithm that runs deep learning. Approaching
it for the first time might however feel daunting. In our expe-
rience, including many remarks about reverse-mode autodiff,



Turning Software Engineers into Machine Learning Engineers

Figure 3. A fully worked example of a 2-2-2 neural networks with current weights/activations in gray/orange.

chain-rule, Jacobian, or delta-rule will have students either
ignoring the material (“the autograd framework will do the
job”) or spending a generous amount of paper deriving equa-
tions by hand. Yet a healthy understanding of the gradients’
purpose is critical. Recent textbooks (e.g., (Géron, 2017))
have begun to include discussions on automatic differentia-
tion on simpler functions such as f(x, y) = x2+2xy+5 as
one ingredient of backpropagation (the other one being the
actual parameter update, i.e., the gradient step). However,
that approach might feel discontinuous to students, leaving
unclear what parts of the gradients of a neural network’s
parameters are derived automatically. For example, students
associated autodiff with the activation functions alone and
thought of backpropagation as an encompassing algorithm.

Therefore, our remedy was to work through the simplest
multidimensional neural network imaginable, i.e., a 2-2-
2 network as depicted in Figure 3 with a simple sum of
squared errors as loss. Having two outputs is beneficial
since, e.g., the output of h2 affects both y1 and y2, immedi-
ately requiring the multivariate chain rule. In that example,
y1 should go up and y2 should simultaneously go down.
Having a numerical example allows for “interpreting the
gradients”. For instance, considering the weight connecting
h1 and y2 (currently −2), students can verify that a small
increase from −2 to −1.9 would increase the input to (and
consequently the output of) y2, which is what we would
want to avoid.

The example network can be displayed when going through
backpropagation step-by-step, interleaved with the formal
steps necessary to calculate the involved gradients (back
from the loss, back through an activation, back to the

weights of a layer, etc.). The particular example we se-
lected also highlights problems with vanishing gradients
that emerge when using sigmoidal activation functions that
are improperly initialized (i.e., much too high in this case).
Later, this example is also useful to demonstrate how batch
normalization mitigates these issues and retains much more
usable gradient signals in earlier layers even with sigmoid.

In terms of practical exercises, the network can be used sim-
ply to have students calculate (some of) the gradients man-
ually, along with “checkpoints” such as that ∂L

∂w1,1
should

be −0.11. But it is probably more sensible to have them
code it in a programming language of their choice and keep
it extensible (try out different activation functions, write
a tiny autograd library, etc). In addition, we asked them
to interpret gradients the aforementioned way for different
training instances.

3. Conclusion
We reflected on our experiences with teaching essential
machine learning skills to software engineering students,
emphasizing the shift from a constructive to an empirical
mindset and the temptations of existing powerful black box
code snippets that need to be backed up by proper grasp
of the fundamentals. Based on what we assume to be the
more frequently recurring tasks for ongoing machine learn-
ing engineers, we suggested a lean teaching concept that
focuses on experimentation and understanding of gradient
dynamics. For all our proposed exercises, Jupyter notebooks
are made available and we hope to initiate a collection of
interesting code examples to turn software engineers into
ML engineers.



Turning Software Engineers into Machine Learning Engineers

References
Chilamkurthy, S. Transfer learning for com-

puter vision tutorial, 2017. URL https:
//pytorch.org/tutorials/beginner/
transfer_learning_tutorial.html. [Online;
23 June 2020].

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Géron, A. Hands-On Machine Learning With Scikit-Learn
& TensorFlow. O’Reilly Media Inc., Sebastopol CA,
United States of America, 2017. ISBN 9781491962299.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing internal representations by error propagation. Tech-
nical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

Smith, L. N. Cyclical learning rates for training neural net-
works. In 2017 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 464–472, 2017.

https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org

