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ABSTRACT

We propose AnveshanaAl, an application-based learning platform for artifi-
cial intelligence. With AnveshanaAl, learners are presented with a personal-
ized dashboard with streaks, levels, badges, and structured navigation across do-
mains such as data science, machine learning, deep learning, transformers, gen-
erative Al, large language models, and multimodal AI, with scope to include
more in the future. Through our portal, we design gamified tracking with points
and achievements to enhance engagement and learning, while switching between
Playground, Challenges, Simulator, Dashboard, and Community supports ex-
ploration and collaboration. Rather than using static question repositories like
existing platforms, we ensure balanced learning progression through a dataset
grounded in Bloom’s taxonomy, with semantic similarity checks and explainable
Al techniques improving transparency and reliability, along with adaptive, au-
tomated, and domain-aware assessment methods. The experiments depict broad
dataset coverage, stable fine-tuning with reduced perplexity, and measurable gains
in learner engagement. Together, these features illustrate how AnveshanaAl inte-
grates adaptivity, gamification, interactivity, and explainability to support next-
generation Al education.

The rapid growth of artificial intelligence (AI) and machine learning (ML) has created a strong de-
mand for platforms that enable effective skill development and hands-on practice. Although existing
coding environments such as CodeSignal (CodeSignal Team, 2025)), StrataScratch (StrataScratch
Team)| [2025), and Exercism (Exercism Team, 2025) provide structured exercises in programming
and data science, they fall short in addressing the unique requirements of AI/ML education. Un-
like general coding tasks, AI/ML problem-solving requires not only algorithmic implementation
but also conceptual reasoning, experimentation with models, and interpretation of results within
dynamic contexts.

Prior research has explored areas such as automated question generation, adaptive assessment, and
large-scale challenge design, but these efforts have largely remained fragmented. Current platforms
lack an integrated ecosystem that unifies these components to effectively simulate real-world AI/ML
tasks. In particular, three persistent gaps remain: the limited support for automated generation of
diverse and pedagogically meaningful challenges, the absence of robust mechanisms for fairness,
adaptability, and scalability in practice-based learning, and the lack of simulation-driven and com-
petitive features that can sustain learner motivation and long-term engagement.

This study addresses these gaps by investigating the design of an integrated AI/ML practice plat-
form that brings together automated question generation, adaptive assessment, and validation mech-
anisms. The work is guided by three research questions (RQ):

* RQ1: How can automated question generation methods be adapted to produce high-quality,
diverse, and skill-aligned challenges for AI/ML learners?

* RQ2: What mechanisms can be implemented to ensure fairness, adaptability, and scalabil-
ity in AI/ML challenge-based learning platforms?



Under review as a conference paper at ICLR 2026

* RQ3: How can simulation and competitive features enhance the pedagogical effectiveness
and long-term engagement of AI/ML learners within such platforms?

By framing the investigation around these questions, this study aims to lay the foundation for a next-
generation practice-based AI/ML learning environment that balances scalability, quality, and learner
engagement.

1 RELATED WORKS

1.1 PLATFORMS FOR LEARNING AND ASSESSMENT

Several platforms support practice-based learning and problem-solving in programming and data
science. For example, StrataScratch (StrataScratch Team), |2025)) provides analytical and algorithmic
questions across SQL, data science, and software development, with filters for difficulty, companies,
and industries. It also includes resources tailored to specific companies such as Accenture, Airbnb,
Amazon, and Apple, and supports PostgreSQL, MySQL(Oracle Corporation, [1995), and Python-
Pandas. Sigmoid Academy(Sigmoid Academy, 2024} hosts problem sets aimed at structured data-
related practice, while Deep-ML(Deep-ML Team, 2024) curates collections of machine learning
problems for benchmarking and skills evaluation.

While these platforms provide curated problem sets and structured practice opportunities, they lack
mechanisms for adaptive question generation, difficulty calibration, and peer-driven feedback. This
highlights the need for more personalized and scalable learning systems.

1.2 QUESTION GENERATION AND PEER ASSESSMENT SYSTEMS

Parallel research has investigated automated question generation and peer assessment platforms.
Maarek and McGregor(Maarek & McGregor, |2020) proposed a peer feedback platform for pro-
gramming artifacts that integrates software testing with peer assessment. The platform enables unit
testing, scenario testing, and anonymity, enhancing both feedback quality and collaboration.

Recent work explores large language models for question generation. Doughty and Wan evaluated
GPT-4(Radford et alJ 2019) for generating multiple-choice questions (MCQs) (Doughty & Wan,
2023) in programming education, comparing 651 generated and 449 human-crafted MCQs Their
findings suggest that LLMs can produce questions with clarity, alignment to Bloom’s taxonomy
(Bloom, |1956; |Ghosh et al.| [2024)), and strong learning objective correspondence, thereby reducing
educators’ workload.

In difficulty estimation, Wang et al. introduced C-BERT(Zhang et al., |2020), a multimodal ap-
proach combining BERT(Reimers & Gurevych,2019) and CodeBERT (Zhang et al.,[2020) to jointly
model problem text and code solutions. Experiments on Codeforces (Codeforces Team) [2024)) and
CodeChef (CodeChef Team), 2024)datasets demonstrated its superiority over baselines in estimating
problem difficulty.

Domain-specific models have also been explored. proposed EduQG (Bulathwela et al., |2020), a
model adapted from TS5 (Maarek & McGregor, 2020) and fine-tuned on scientific text and educa-
tional question datasets. EduQG (Bulathwela et al., [2020) outperforms baseline approaches in gen-
erating pedagogically relevant and educationally sound questions, illustrating the benefit of domain-
specific adaptation.

1.3 SUMMARY OF GAPS

In summary, existing platforms (e.g., StrataScratch (StrataScratch Team) [2025), Sigmoid Academy
(Sigmoid Academy, 2024), Deep-ML(Deep-ML Team, 2024))) emphasize curated and static ques-
tion repositories, while research on question generation highlights adaptive, automated, and domain-
aware assessment methods. However, the integration of dynamic question generation, difficulty
calibration, and community-driven peer feedback within practice platforms remains underexplored,
presenting a promising research direction.
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2 DATA CONSTRUCTION

The dataset underlying AnveshanaAl was designed to support scalable question generation and
adaptive learning, ensuring both technical correctness and pedagogical rigor. Unlike conventional
problem—answer corpora, the dataset integrates structured metadata that enables difficulty scaling,
multimodal transformations, and curriculum-aware personalization.

2.1 SOURCES AND PREPROCESSING

We constructed a dataset of over 10,000 problem—answer pairs across core domains of Artificial
Intelligence and Machine Learning. Input sources included curated academic material (course notes,
challenge repositories, and research references) as well as a seed set of human-authored tasks. All
problems were standardized through preprocessing steps such as tokenization, chunking, and em-
bedding, and were stored in a vectorized format for efficient retrieval. Each task was encapsulated
as a context package, linked with metadata such as Bloom’s taxonomy (Bloom, |1956; |Ghosh et al.,
2024)level and difficulty annotation.

2.2 SCHEMA AND AUGMENTATION

The dataset follows a structured schema with fields: id, problem, answer, category, difficulty,
tags, and bloom_level (Bloom, (1956} (Ghosh et al [2024), ensuring semantic retrieval, traceability,
and alignment with cognitive progression. To enhance coverage and diversity, two augmentation
strategies were employed. First, difficulty scaling introduced rephrased problems, domain-shift
variants, and edge cases, enriching the dataset with varying levels of challenge. Second, cross-mode
adaptation transformed base problems into coding, simulation, debugging, and viva-style formats,
thereby expanding task variety while preserving alignment with original concepts. Collectively,
these strategies improved the dataset’s robustness and pedagogical depth.

2.3 VALIDATION AND QUALITY ASSURANCE

Multiple validation layers were used to guarantee quality. Automated LLM self-checks filtered in-
consistent problems, while static validation ensured syntactic correctness. For executable coding
tasks, sandbox execution validated determinism and robustness. In parallel, rubric-based alignment
ensured coverage across Bloom’s taxonomy(Bloom, |1956; |Ghosh et al., [2024) and balanced repre-
sentation across difficulty levels.

2.4 DATASET CHARACTERISTICS

The final dataset comprises 10k+ entries, spanning beginner to expert levels across categories such
as Machine Learning, Deep Learning, Transformers, Generative Al, and Large Language Models.
Each entry is enriched with metadata to support adaptive delivery, personalization, and multimodal
task generation within the AnveshanaAl platform.

3 PLATFORM FUNCTIONALITIES

The proposed system caters to two types of users: (i) the learners, who solve challenges across
multiple modes, and (ii) the administrators/instructors, who design, deploy, and monitor the chal-
lenges. Given these roles, we describe the major panels of the platform.

3.1 LEARNER PANEL

The learner panel provides an interactive and gamified experience through the following compo-
nents:

1. Landing Dashboard: A personalized home page that greets learners with their current
level, day streak, and accumulated points. It summarizes progress through metrics such
as total challenges completed and learning paths explored. Gamification elements such as
streaks, badges, and levels sustain engagement.
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. Category Navigation: Challenges are organized into structured categories including Ma-
chine Learning, Deep Learning, Transformers, Generative Al, Large Language Models,
and Multimodal Al, enabling targeted exploration.

. Featured Challenges: Highlighted tasks such as the Neural Net Forward Pass are show-
cased to promote trending or recommended challenges.

. Gamified Progress Tracking: Learners can track their level, points, and streaks directly
within the interface. This provides real-time reinforcement of continuous practice.

. Core Functionalities: Quick access to the Playground, Challenges, Simulator, Dash-
board, and Community through the top navigation bar ensures smooth mode switching.

3.2 ADMINISTRATOR PANEL

The administrator panel supports instructors and platform managers with three key functionalities:

1. Challenge Design and Upload: Admins can create new problems using a structured

schema (problem, answer, difficulty, tags, Bloom level(Bloom) |1956; |Ghosh et al., [2024))
or upload them via CSV/JSON. Augmentation pipelines (paraphrasing, difficulty scaling,
cross-mode adaptation) enrich challenge diversity.

. Performance Analytics: Dashboards summarize learner performance, highlighting diffi-
cult concepts, repeated errors, and engagement levels. Metrics such as accuracy, comple-
tion rate, and time-to-solution support adaptive feedback.

. Data Export and Integration: Challenges, learner telemetry, and metadata can be ex-
ported for research or integrated into external LMS platforms.

3.3 SYSTEM ARCHITECTURE
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Figure 1: System architecture of the proposed platform.

The overall architecture (Figure[T)) follows a modular design consisting of the Question Generation
Pipeline (QGP), adaptive delivery engine, multimodal interaction layer, and analytics dashboard.
Core technologies include fine-tuned LL.Ms for question generation, Docker(Docker Inc., 2013ﬂ-
based sandboxes for secure code execution, vector databases for context retrieval, and Whisper-
based ASR for viva interaction. This modular approach ensures scalability, flexibility, and real-time
interactivity.(Pyatkin et al., 2022)

"https://github.com/docker/docker-ce
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Figure 4: Simulation Lab for experimenting
with AI/ML models and visualizations.
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Figure 6: Dashboard showcasing personalized progress tracking, streaks, levels, badges.

4 METHODOLOGY

The development of AnveshanaAl follows a systematic methodology that integrates pedagogical
design with robust technical implementation. The objective is to create an interactive and adaptive
platform for learners, combining Al-driven assessment, coding challenges, and immersive simula-
tions within a unified ecosystem.

At the core of the methodology lies the system architecture, which is designed as a modular, service-
oriented. The frontend is built using React with Vite (Meta Platforms Inc., 2013)" for rapid ren-
dering and responsiveness, while Tailwind CSS (Tailwind Labs, [2017)F| ensures a consistent and
visually appealing interface. The backend is powered by Node.js and Express(OpenJS Foundation,
|2009[EﬁExpressJ S Contributors, |2010[ﬂ which handle user management, session data, challenge
execution, and analytics. A MySQL database (Oracle Corporation, |1995[E| supports secure data
storage, including user profiles, performance logs, and challenge metadata.

https://github.com/tailwindlabs
*https://github.com/nodejs/node
‘nttps://github.com/expressis/express
*https://github.com/mysql/mysql-server
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The learning pipeline begins with the user logging into the platform through the Landing Dash-
board, which personalizes the experience by displaying recent activities, pending challenges, and
progress metrics. Learners can then explore the Challenges Interface, which hosts problem sets
across multiple domains and difficulty levels. Each challenge is connected to an automated evalua-
tion engine that executes submitted code in a sandbox environment, ensuring fairness, security, and
reproducibility.

To complement the problem-solving mode, the Simulation Lab provides interactive, scenario-
driven exercises where learners can apply theoretical concepts in practical contexts. This includes
system-level experiments, case-based simulations, and exploratory tasks that mimic real-world prob-
lem environments. The Viva Mode further extends the methodology by incorporating natural lan-
guage interactions with an Al-powered evaluator, enabling assessment of conceptual clarity and rea-
soning in a semi-structured oral examination format. Finally, the methodology integrates analytics
and adaptivity as core components. User performance is continuously tracked across challenges,
simulations, and viva sessions. These data points are processed using machine learning techniques to
generate personalized feedback, difficulty adjustments, and progress recommendations. This adap-
tive mechanism ensures that the platform not only evaluates learners but also supports their growth
through data-driven guidance.

5 EXPERIMENTATION

The experimental phase was designed to validate three core aspects of the system: (i) the quality and
representativeness of the constructed dataset, (i)i the performance of fine-tuned models in terms of
optimization stability and predictive capability, and (iii)the interpretability of model outputs through
explainability methods.

5.1 DATASET EVALUATION

The dataset was comprehensively analyzed along pedagogical, semantic, and annotation quality
dimensions to ensure its reliability and utility for educational Al applications.

5.1.1 MULTI-DIMENSIONAL ANNOTATION QUALITY ANALYSIS

We conducted a systematic evaluation of annotation consistency across three key dimensions: sub-
ject categories, difficulty levels, and Bloom’s taxonomy (Bloom, 1956};/Ghosh et al.| 2024)classifica-
tions. Table[I]presents comprehensive quality metrics demonstrating the dataset’s robust annotation
framework.

Table 1: Multi-Dimensional Annotation Quality Metrics

Annotation Dimension Total Categories Effective Categories Entropy Concentration Index Sample Size

Category 26 16.57 4.051 0.044 10,845
Difficulty 4 3.65 1.866 0.053 10,845
Bloom Level 6 5.84 2.546 0.011 10,845

The analysis reveals exceptional annotation quality across all dimensions. The category dimension
demonstrates comprehensive topic coverage with 64% effective utilization (16.57/26 categories)
and high entropy (4.051), indicating rich diversity without concentration bias (0.044). The difficulty
dimension achieves near-complete utilization (91%) across all four levels, ensuring balanced rep-
resentation from easy to expert-level questions. Most notably, the Bloom taxonomy(Blooml, [1956j
Ghosh et al.| [2024) dimension shows outstanding cognitive completeness with 97% effective uti-
lization (5.84/6 levels) and minimal concentration (0.011), confirming comprehensive coverage of
cognitive complexity levels.

5.1.2 CROSS-DIMENSIONAL CORRELATION ANALYSIS

To assess the relationships between annotation dimensions, we computed Cramér’s V (Cramér,
1946} (Chen et al., 2025) correlation coefficients, which measure association strength between cat-
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egorical variables. Figure [7] visualizes these relationships through a correlation heatmap, while
Table 2] provides detailed quantitative analysis.

Correlation Between Annotation Dimensions
(Cramér's V Coefficient)

10

°

Cramér's V Coefficient
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Figure 7: Cramér’s V(Cramér, |1946} Chen et al., 2025) correlation heatmap
showing associations between annotation dimensions. Values range from 0
(no association) to 1 (perfect association).

The strong category-difficulty correlation (0.596) validates systematic annotation patterns, demon-
strating that certain subject domains naturally exhibit higher complexity. Conversely, the weak
correlations between Bloom taxonomy and other dimensions (0.166-0.172) confirm that cognitive
complexity operates independently of subject matter and perceived difficulty, aligning with estab-

lished educational frameworks [1956).

Table 2: Cross-dimensional correlation analysis (Cramér’s V coefficient)

Dimension pair Cramér’s V  Strength Educational implication

Category <+ Difficulty 0.596 Strong Domain-specific complexity patterns support
adaptive learning systems

Category <+ Bloom level 0.166 Weak Independent cognitive assessment enables multi-
dimensional evaluation

Difficulty <> Bloom level 0.172 Weak Cognitive complexity operates independently of
perceived difficulty

5.1.3 PEDAGOGICAL DISTRIBUTION ANALYSIS

Figure [§] illustrates the distribution of Bloom’s taxonomy levels (Bloom| [1956}; (Ghosh et al.| 2024)
across four difficulty categories (Easy, Medium, Hard, Expert). The heatmap highlights that the
dataset maintains a balanced representation of cognitive levels, with notable density in the mid-level
categories of Analyze, Apply, and Evaluate. This ensures that learners are not restricted to rote
memorization but are progressively challenged to apply, analyze, and reason through problems.
The heatmap in Figure [8highlights that the dataset maintains balanced representation of cognitive
levels, with notable density in mid-level categories of Analyze, Apply, and Evaluate. This ensures
learners progress beyond rote memorization to higher-order thinking skills. The semantic similarity
analysis (Figure[9) confirms that question-answer pairs cluster between 0.6-0.8 similarity, indicating
strong contextual coherence without trivial repetition.

5.1.4 DATASET RELIABILITY ASSESSMENT

The evaluation highlights several key strengths of the proposed dataset. First, its scale and coverage
are substantial, comprising 10,845 questions across 26 subject categories, thereby ensuring broad
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Heatmap: Bloom Levels across Difficulties
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Figure 8: Heatmap showing the distribu-

tion of Bloom’s taxonomy (Bloom), 1956

Figure 9: Distribution of semantic similarity be-

[Ghosh et al| 2024) levels across difficulty tween question—answer pairs across the dataset.
categories.

applicability for machine learning—driven educational tasks. Second, the dataset demonstrates near-
complete cognitive completeness, with 97% utilization of Bloom’s taxonomy levels, which guaran-
tees representation of the full spectrum of cognitive complexity. Third, the balanced distribution
of annotations is evidenced by consistently low concentration indices (< 0.053), indicating the ab-
sence of bias toward particular categories or difficulty levels. Furthermore, the cross-dimensional
correlations align with established theory, reinforcing the dataset’s pedagogical validity. Finally,
semantic coherence analysis shows that question—answer pairs achieve strong alignment, cluster-
ing between 0.6 and 0.8 similarity, while still maintaining sufficient diversity to avoid redundancy.
Collectively, these findings confirm the dataset’s reliability and its suitability as a foundation for
adaptive, cognitively grounded Al learning platforms.

These metrics collectively establish the dataset’s suitability for educational Al research, providing
a robust foundation for developing and evaluating question-answering systems, difficulty prediction
models, and adaptive learning algorithms.

5.2 FINE-TUNING PERFORMANCE

Fine-tuning Loss Curves Perplexity over Training Steps
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Figure 10: Training and validation loss curves  Figure 11: Validation perplexity over training
observed during fine-tuning. steps.

The fine-tuned Mistral 7B model was evaluated using training—validation dynamics and perplexity.
Figure[I0|presents the training and validation loss curves. Both curves exhibit consistent downward
trends, converging after approximately 15k steps, with no signs of severe overfitting. This demon-
strates that the model effectively internalized the patterns in the dataset while maintaining strong
generalization capabilities.

Validation perplexity(Liu et all, 2023) trends, shown in Figure [TT] decreased steadily from around
1.5 to 1.3 over the course of training. This reduction demonstrates improved predictive capability

and stable optimization, validating the effectiveness of the fine-tuning strategy.
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Figure 12: XAI heatmap highlighting token importance.

5.3 EXPLAINABLE AI ANALYSIS

To probe the interpretability of the model, we performed a token importance analysis based on
gradients on research-style prompts highlights the top ten most influential tokens, with darker shades
indicating higher attribution scores.

The model consistently assigned high importance to semantically meaningful tokens such as ex-
planation, research-quality, and Bloom(Bloom, |1956; |Ghosh et al.l [2024), confirming that its pre-
dictions are guided by contextually relevant information. This suggests that AnveshanaAl not only
generates reliable outputs but also exhibits interpretable reasoning patterns aligned with educational
objectives.

6 RESULTS AND ANALYSIS

The results validate both dataset quality and fine-tuning effectiveness across dimensions of design,
convergence, interpretability, and quantitative evaluation. The curated dataset of over 10,000 QA
pairs offers balanced coverage of Bloom’s taxonomy (Bloom, 1956} Ghosh et al.,2024)), strong se-
mantic diversity, and reliable annotations. Fine-tuning Mistral-7B with 4-bit quantization (Jiang
& et al. |2023) yielded stable convergence and consistently reduced perplexity(Jelinek & Mercer,
1977;|Liu et al.| 2023)), confirming efficient training without loss of performance.

Quantitative evaluation reported a low perplexityLiu et al.| [2023| of 2.04, demonstrating high flu-
ency, and a BERTScore F1(Zhang et al.l[2020) of 0.427 (Precision(Van Rijsbergen, (1979} Bronnec
et al.,[2024) = 0.289, Recall(Van Rijsbergen, [1979; Bronnec et al., [2024) = 0.818, indicating strong
semantic coverage with extended explanatory richness. Explainability analysis further showed that
the model attends to semantically relevant tokens, enhancing interpretability and transparency in
reasoning.

Overall, these findings confirm that the integration of a well-curated dataset with efficient fine-
tuning produces a model that is fluent, interpretable, and pedagogically grounded.

7 CONCLUSION

The combination of low (Liu et al., 2023), high recall(Van Rijsbergen, 1979; Bronnec et al.,
2024), and interpretable reasoning patterns highlights both methodological soundness and prac-
tical applicability. While precision(Van Rijsbergen, (1979; Bronnec et al.,[2024) remains lower
due to elaborative outputs, this is beneficial in educational contexts where detailed explanations
aid learner understanding. The dataset’s balanced coverage across taxonomy levels ensures robust
evaluation of higher-order reasoning, and the use of quantization establishes computational effi-
ciency. Collectively, these results demonstrate that AnveshanaAl serves as both a reliable dataset
and an effective platform for transparent, adaptive, and educationally aligned AI systems.

REPRODUCIBILITY STATEMENT

We provide details necessary to reproduce our results as follows:
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¢ Experimentation: Described in Section 5 of the main text.

» Data generation: We constructed a dataset based on category and difficulty of ~10,000
Q/A pairs later refined through filtering and semantic similarity scoring. The dataset is pub-
licly available at https://huggingface.co/datasets/t-Shr/Anveshana_|
Al/blob/main/data.csv.

* Model training: We fine-tuned the Mistral-7B v0.1 model (4-bit quantization, LoRA
adapters) on our generated dataset using HuggingFace’s Trainer. Training was performed
with batch size 2 per device, learning rate 2 x 10~°, weight decay 0.01, and 5 epochs.
Checkpoints were saved every 500 steps (max 3 retained), while evaluation was run ev-
ery 700 steps with logging enabled. Mixed precision (FP16) training was used on a single
20GB GPU.
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