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ABSTRACT

Learned Indexes (LIs) represent a paradigm shift from traditional index structures
by employing machine learning models to approximate the Cumulative Distribution
Function (CDF) of sorted data. While LIs achieve remarkable efficiency for static
datasets, their performance degrades under dynamic updates: maintaining the
CDF invariant (}_ F'(k) = 1) requires global model retraining, which blocks
queries and limits the Queries-per-second (QPS) metric. Current approaches fail
to address these retraining costs effectively, rendering them unsuitable for real-
world workloads with frequent updates. In this paper, we present a Sigmoid-based
model, an efficient and adaptive learned index that minimizes retraining cost
through three key techniques: (1) A Sigmoid boosting approximation technique
that dynamically adjusts the index model by approximating update-induced shifts
in data distribution with localized sigmoid functions that preserves the model’s
e-bounded error guarantees while deferring full retraining. (2) Proactive update
training using Gaussian mix models (GMMs) that identify high-update-probability
regions for strategic placeholder allocation that speeds up updates coming in these
slots. (3) A neural joint optimization framework that continuously refining both
the sigmoid ensemble and GMM parameters via gradient-based learning. We
rigorously evaluate our model against state-of-the-art updatable LIs on real-world
and synthetic workloads, and show that it reduces retraining cost by 20x while
showing up to 3x higher QPS and 1000x lower memory usage.

1 INTRODUCTION

Context. Learned Indexes (LIs) (Ding et al., 2020; Chatterjee et al., 2024; Li et al., 2020; Heidari
etal., 2025b; Tang & et al., 2020; Kipf et al., 2020; Heidari & Zhang, 2025; Kim et al., 2024; Lan et al.,
2024; Heidari et al., 2025a) represent a paradigm shift in database indexing by replacing traditional
pointer-based structures (e.g., B-trees) with machine learning models that directly approximate
the cumulative distribution function (CDF) of sorted data. At their core, LIs treat the indexing
problem as a modeling task: given a sorted dataset, they learn a mapping of keys to their positions
by fitting the CDF F'(k), which describes the probability that a key < k exists in the dataset. This
approach enables single-step position predictions during queries, bypassing the O(logn) traversals
of B-trees (Ferragina & Vinciguerra, 2020a).

The Recursive Model Index (RMI) (Kraska et al., 2018) exemplifies this approach through a hier-
archical model ensemble, where higher levels narrow the search range and the leaf models predict
exact positions. Practical implementations like ALEX (Ding et al., 2020), DobLIX (Heidari et al.,
2025b), LISA (Li et al., 2020) optimize this further using piecewise linear regression, partitioning
the key space into segments modeled by:pos = a X k + b+ E, where a, b are learned parameters and
FE bounds the prediction error, ensuring correctness via a final localized search (e-bounded error),
and achieving 2-10x faster lookups than B-trees for static data (Ferragina & Vinciguerra, 2020a).

However, a fundamental limitation of LIs stems from their inherent assumption of static data distribu-
tions. Since CDF must maintain >, F'(k) = 1, any update to the key domain (insertions/deletions)
necessitates non-local adjustments to the entire model. This requirement makes it particularly
challenging to preserve model accuracy in dynamic workloads (Sabek & Kraska, 2023).

Previous studies (Ge & et al., 2023; Zhang et al., 2024; Ding et al., 2020; Galakatos et al., 2019;
Liang et al., 2024; Tang & et al., 2020; Ferragina & Vinciguerra, 2020b; Wu & Ives, 2024; Heidari
et al., 2025b) attempt to address this problem. Aside from methods such as DobLIX (Heidari et al.,
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Figure 1: (a) Retrain cost on three updatable LIs. Number of retrain occurrences and average
retrain duration are shown by bar plots and x markers, respectively. (b) Impact of update on
an LI model M;(.)

2025b), which implement LI in read-only structures and thus avoid update issues, other approaches
have limitations because they ignore the training cost of LI models (Wongkham et al., 2022; Ge et al.,
2023; Heidari et al., 2025a). Figure 1(a) quantifies the retraining overhead of three state-of-the-art
updatable LIs. The results reveal two key insights: (1) LIPP (Wu et al., 2021) and DILI (Li et al.,
2023) exhibit frequent retraining (approximately once every 500 updates), and (2) while ALEX (Ding
et al., 2020) shows fewer retraining events, each retraining incurs significantly higher latency. These
excessive retraining overheads render current LI systems impractical for update-intensive workloads,
common in real-world applications, as each retraining operation blocks query processing and severely
degrades system QPS.

Motivation. Figure 1(b) illustrates how a single update affects the key space of an LI model. This
model, denoted as M; !, with a non-zero error E/, maps a range across a key space. Incoming
updates, viewed as a random variable, impact this range in four distinct ways: (u1) shifts all elements
uniformly without changing the range size; (u2) expands the range by shifting M (k) to the right;
(u3) enlarges the range on the right side; (u4) does not alter the range size.

Each update induces a step-wise displacement in the model’s prediction space. We reformulate
retraining as a distributional prediction problem, where sigmoid functions approximate these discrete
shifts smoothly. The differentiable properties of the sigmoid enable gradual adaptation of the model,
deferring full retraining of CDF. For a single update, the sigmoid o (k, A, w,,, u) will be added to the
model M; (k). When incremental updates exceed the capacity of a single sigmoid, we introduce a
SigmaSigmoid ensemble to capture cumulative effects: M/ (k) = M;(k) + Zfil ok, A, wi, di) ,
where A/ dynamically grows with new update patterns. This boosting approach amortizes retraining
costs by (1) preserving existing model parameters and (2) isolating adjustments to affected regions
via localized sigmoid terms (See Appendix C for a detailed motivational example).

Approach. We propose Sigma-Sigmoid Modeling, (Sig2Model), an efficient updatable learned
index that minimizes retraining through adaptive sigmoid approximation and proactive workload
modeling. Our approach introduces three key techniques: First, Sig2Model employs a sigmoid
boosting technique that dynamically adjusts the index model to incoming updates. By approximating
the step-wise patterns of updates with localized sigmoid functions, each acting as a weak learner, the
system incrementally corrects model errors while maintaining e-bounded error guarantee. This allows
continuous model adaptation without immediate retraining. Second, we develop a Gaussian Mixture
Model (GMM) component that predicts update patterns, enabling strategic insertion of placeholders in
high-probability update regions. This anticipatory mechanism significantly reduces future retraining
needs by pre-allocating space in frequently modified index segments for future updates. Third,
Sig2Model integrates these components through a unified neural architecture that jointly optimizes
both the sigmoid ensemble parameters and GMM distributions via gradient-based learning. The
system processes updates in batched operations through a dedicated buffer, with a control module
monitoring model error bounds to trigger retraining only when necessary. During retraining phases,
the system simultaneously refines both the sigmoid approximations and placeholder allocations based
on observed update patterns.

Sig2Model adapts an LI model® to support efficient updates using the above three techniques. The
end-to-end workflow of Sig2Model for update and lookup operations is shown in Figure 2. For
updates, the system first checks whether the incoming update u exists in the current index domain D7.
If a pre-allocated placeholder is available, u is inserted directly. Otherwise, it is staged in the Update
Buffer. This buffer serves as an efficient batching mechanism, accumulating updates until a threshold
(p) is reached, at which point neural network training is triggered to optimize the SigmaSigmoid

'The full table of notations is provided in Appendix A.
2Our implementation builds upon RadixSpline (Kipf et al., 2020).
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Figure 2: Sig2Model Overview.
and GMM parameters. When the number of active sigmoids reach system capacity A during this
process, a full retraining is initiated. For lookups, queries first probe the buffer for key £. On a miss,
the inference module applies the learned SigmaSigmoid adjustments to the base model to perform a
final search within the LI’s error bound +F. If k£ not found in the E range, Sig2Model performs an
exhaustive search and triggers the retraining signal.

Contributions. The main contributions of this paper are as follows: (1) Index Model Approximation
(II): We propose Sig2Model, a novel method that leverages sigmoid functions as weak approximators,
similar to boosting techniques, to dynamically update the LI model. This approach significantly
reduces the need for retraining, offering an efficient and adaptive solution. (2) Probabilistic Update
Workload Prediction (V): We use GMM in Sig2Model to predict high-density regions in the key
distribution, allowing strategic placeholder placement and postponing retraining. (3) Neural Joint
Optimization: We propose two neural networks architecture (/N Ny, N Ng) connected via a shared
layer (/N IN.) that continuously fine-tunes both II and ¥ in a background process. (4) Comprehensive
Experimental Evaluation: We rigorously evaluate the performance of Sig2Model through extensive
experiments, and show over 20x reduce in retraining time and an increase of up to 3x in QPS
compared to the state-of-the-art LI solutions.

2 INDEX MODEL APPROXIMATION

In this section, we present the SigmaSigmoid Boosting approach for capturing model updates
efficiently. We assume that updates originate from an unknown distribution, denoted as Dy, pgqze. The
bias introduced by updates, which can be modeled as a step function, is approximated using smooth,
differentiable sigmoid functions (see Motivation in Section 1). This approximation avoids abrupt
changes and delays retraining by gradually adjusting the model.

For a model M at stage 7, if dataset D" (with s, keys) receives an update u between keys k; and
k41, the index model can be adjusted without full retraining using D™ U {u}. If a single sigmoid
fails to capture an update, additional sigmoids can be introduced. The combined effect of these
sigmoids, termed the SigmaSigmoid function, adjusts the model and postpones retraining.

The resulting SigmaSigmoid-based model, M/ (k,II), is defined as:

N
M{(k,T0) = My(k) + D ok, Ai,wi, 1) )
i=1

Adjustments to capture updates

IT = {(A;, w;, ;) bienr parameterizes N sigmoids, where A; controls amplitude, w; controls step
steepness, and ¢; centers the sigmoid around update locations. The system capacity N may differ
from the number of updates |U|, often with |[U| > N/. This model raises theoretical questions and
defines system limits, discussed in Appendix G. Ideally, round(M;(k;t1)) = round(M;(k;)) + 1,
requiring a new model M such that:

1<

M/ (k41 TT) — M (k;, TD)| < 2. @)

It is important to note that Equation 1 has a trivial solution for N updates or less, even without
training, by setting ¢; = u,; and A; = 1 for every i € [1 : A]. However, this approach does not fully
leverage the maximum capacity of SigmaSigmoid modeling.
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Figure 3: Neural Networks Architectures. The multi-layer neural network N N (c) processes se-
quential data batches for continuous learning. It employs highway networks, ReLLU activations,
and dropout layers to extract patterns and prevent overfitting. To address catastrophic forget-
ting (Kemker et al., 2018), two strategies are used: Replay Buffer (Di-Castro et al., 2022) and
Elastic Weight Consolidation (Kirkpatrick et al., 2017). The network outputs are fed into two
subnets, N N1r(a) and N Ny (b), each containing specific tasks. We explain [V N architecture in
Appendix D.

2.1 OPTIMIZATION OBJECTIVES
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Given a dataset D and update set U (collected from buffer B of size p), we adjust each key’s index
based on updates « € U where x < k. The updated model M*(-) is obtained by retraining on D U U.
Our goal is to find parameters IT for M’ (-, IT) that minimize:

L) = 501 Zkepov [M'(k,T0) = M*(R)| + % f(T]) 3

where f(-) is monotonically increasing, and |IT| < N. The optimization problem is:

i L(11
arg | min - L(I)

st. Eypypunr [|M(u,11) — M*(u)]] < a, 4)
P[|M’(k,IT) — M'(u,11)| < En] <8 Yu ~ Dypdate, k € DUU.

Solving Equation 4 is challenging for arbitrary hypothesis spaces M. We use sigmoids as base
models, transforming the original index function M. In this equation, o bounds prediction bias, and 3
specifies the allowable error level. When S = 0, the problem becomes NP-Hard, requiring a complete
search in M or even infeasible. Epy present the measure of confusion in LI models’ prediction can
be viewed as the variance of the index estimator for incoming © ~ Dypdate. An unbiased estimator
(o = 0) is preferred over high variance, as variance only expands the last-mile search range. In
addition, the target key in the lower variance has a higher likelihood of presence in the center of the
predicted range.

To ensure a non-empty feasible solution space for the optimization problem described in Equation 4,
it is necessary to show that maintaining unbiasedness (« =~ 0) leads to increased variance, thereby
bias-variance analysis indicates that Epp o é Additionally, the second constraint in Equation 4
accounts for the most probable incoming updates to optimize intervals effectively, and is the relaxed
derived as a modification of Equation 2, as shown in Theorem 1 (proof in Appendeix F):

Theorem 1 If Dypqate is bounded, Equation 2 satisfies IP[| M’ (k,IT) — M'(u,I)| < Er| < 8
forallw ~ Dypggre, k € DUU.

2.2 NEURAL UNIT FOR FINE-TUNING

The parameter set IT = {(A;, w;, ¢;) }ienr, where A is a hyperparameter, requires dynamic fine-
tuning to adjust the LI model M. We implement this through a neural network N Ny with two
fully-connected input networks (having N and 3 parameters respectively) connected to a shared
layer N N¢ as shown in Figure 2.

To minimize last-mile search errors, /N N1y is optimized to near-overfit conditions using mean squared
error (MSE) as the loss function: MSE(X™,Y") = ﬁ 2xr vy i — Y;)?, where I; is
computed via Equation 1.
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Figure 4: (a) Steps for using the estimated update workload to produce placeholders. (b) Retrain
Policy

The cost function incorporates a regularization term to minimize sigmoid usage for new buffer entries
BT:

£H(XT,YT):]V[SE(XT,YT)Jr%Z?/:l pg] exp (17%> 5)
where p is the buffer size, d is the normalization constant, and -y is an experimentally-tuned hyperpa-
rameter.

From Equation 3, we derive [II| ~ » (4 . jem, az0 and f(z) = & exp(1 — %) (which is monotonic).
This regularization design preferentially penalizes smaller amplitudes (A4;), pushing them toward
zero while allowing larger amplitudes to cover more examples, consistent with the monotonicity
of the index function. The optimization process solves Equation 4 using the prepared data from
Section 4.1.

3 UPDATE WORKLOAD TRAINING

In this section, we introduce Sig2Model’s update workload training, which is called Nullifier
component. Sig2Model trains a probabilistic model on the incoming update distribution, and whenever
a retraining signal is raised, it uses this trained distribution to put the update placeholder to improve
system performance.

Nullifer manages data with a workload Dy, by creating space for updates based on their distribution.
It operates on input data D™ = [kq, ko, ..., ks ] drawn from Dheys» With a maximum gap dyrax,
and extends D7 using the update distribution D44t (see Figure 2(a)). The gap size between keys
k; and k; (i < j) is calculated as

darax. [ Dupaae (@) da I GMM (2,¥, ) de
Sk ) = { max- fy! Dupdate(w) w deAXP’“ (@,0,)

er (6)
P:zj;fT Dupdate()dz P

To approximate D,,pdqte Using updates U, a Gaussian Mixture Model (GMM) (Zhao et al., 2023) is
used. The nullifier creates gaps in D7 by iterating over successive elements and applying Equation 6.
For j = ¢ + 1, this simplifies to I'(k) = GS(k_, k). Nullifer produces NULL values for each
k € D7, and the updated index for k is calculated as GS(k1, k) x Index(k), with I'(k) vacant
spaces before and I'(k,.) after. Figure 4(a) illustrates the procedure, initiated by the Control Unit and
relayed to the Retrain module, for constructing a new index model. This occurs after the index (V') is
revised by integrating placeholders among the data by utilizing the trained GMM.

3.1 TRAINING INCOMING WORKLOAD

The workload updates, D, pqate distribution, is modeled as a GMM (Section B.3), Dy pqate ~
GMM(k, U;), where U, = {(m;, ju;, 0;) }1£ |- weights 7;, means y;, and standard deviations ;. The
GMM parameters generated by a neural network. Training minimizes a loss function balancing
model accuracy and simplicity by penalizing unnecessary components.

The initial GMM parameters are established using a greedy approach (see Algorithm 2 in Appendix E).
Starting with the data set D°, it groups data into distributions by iteratively forming candidate
Gaussians using the two smallest elements and adding points that meet a confidence threshold § given
as a hyperparameter. Once no more points fit, the cluster is finalized, and the process repeats until all
data is assigned. This yields initial parameters o = {(7;, i1;, 0;) }2£; and an initial K, which may
overestimate the true number of components, but provides a strong starting point.
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3.2 NEURAL UNIT FOR FINE-TUNING.

Figure 2(b) shows the neural architecture N Ny that aims to fine-tune ¢ parameters. The model
consists of a single fully connected hidden layer with K neurons and leads to an output layer with
3K neurons. These layers are set up post-initialization, with the hidden layer being entirely linked
to the shared layer N No. The neural network, initialized with ¥y from Algorithm 2, directly
predicts the GMM parameters ¥ = {(7;, j1;, 0;) }/<,. During training, the loss is computed for each
batch of input data, gradients are calculated, and network weights are updated via gradient descent.
The process continues until the loss converges or GMM parameter changes are negligible. The
regularization term ensures components with small weights are suppressed, simplifying the model
without explicit pruning.

The GMM parameters are trained using the following loss function:

Ly(XT) == ey log (Z’i mN (x| ui,ao) N DML @)

The first term ensures accurate data modeling X7, and the second term penalizes small weights
m; to reduce unnecessary components. The regularization strength is controlled by ¢ > 0, and
0 < v < 1 adjusts the penalty’s scaling. This encourages sparsity, which reduces the number of
active components.

4  SIG2MODEL TRAINING

This section describes the core technical implementation of Sig2Model for the neural network
training and model retraining. We first explain the data preparation phase, and then delve

into the training processes. Algorithm 1 Training Procedure for Sig2Model Neural Net-
4.1 DATA PREPARATION works

1: Input: Buffer B7, Representation X, Labels Y, Thresh-
The data preparation phase combines olds erq, €y, Maximum Iterations M axIter, Neural Net-
buffer indices with original data in- work NN = {NN¢, NNp, N Ny}, Sampling Fraction
dices to provide the neural network \, Replay Buffer Size «

with both embedding representations 2. Qutput: Fine-Tuned N N

and updated positional contexts. This 3. Initialization: iterations < 0, Ly < 2, Ly <
integration enables the network to 2¢q

learn patterns based on data features 4. BT < ReindexRB(BT, RB™~!) > Reindex RB™~!
and their positional relationships. using Alg. 3 (Appendix E)

Buffer and Embedding. When the 5 repeat .
buffer, implemented using a B-tree, ~ © ILW « FeedForward(X U RB™"") using up-

reaches its capacity p, nodes are tra- dated weights . .

versed to sort the data and produce Lo+ Lo(XUB™,YURB™.I) > Using

BT, where T represents the buffer’s Equation 5

overflow count (stage). Using the cur- 8 if L1 < er and Ly < €w then _

rent model Ml/, the positions of the 9: b.reak > Desired error thresholds achieved

data points are determined. If a po- 10:  endif e

sition in D7 is already occupied, the 11’ if L1 > ep then > backp?“opagatzonen in Fig 2(b)

data is stored in the buffer. For sim- 12 Perform backpropagation on N Nig )

plicity, we assume DT is fully occu- 13 IL W « FeedForward(X U RB™™")

pied, although in practice the training 14 end if ) .

focuses on unaccommodated data. 15: Ly + Ly(X UBT) > Usmg Equghon 7
. . 16: if Ly > ey then > backpropagatwng’q’ in Fig 2(b)

Constructing Representation. In- (7. Perform backpropagation on N Ny

puts X7 are derived from the em- |g. end if

beddings of current data D7, D7, 19; iterations < iterations + 1

(DZ,,,p is the representation of D7). »0. until iterations > MaxIter
First, we obtain Ip; —~ which is 1. RB™ « UpdateRB(BI,,, RB""',\,x) b Update

the current buffer indexes from RB using Alg. 4 ( Appeg(iclﬁ;g E)

M/ (.,11;). Then we select the ele-
ment of D7, , that the index Ip-  refers to, thus X™ = D7, [Ip- |. Thus, X" corresponds to the

embedding of data points in D™ are occupied for buffer elements.”
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Generating Labels. Labels Y™ account for index changes after updates. For each X7, the model
output index Ip- [j] is corrected as Y = Ipr [j] + j. Since BT is sorted, the target index is

emb

preceded by j new update indices, ensuring accurate model training.

4.2 TRAINING PROCESS

The training process operates in two phases: (1) updating neural networks for incoming updates and
SigmaSigmoid modeling, (2) evolving the model from M to M, . These phases improve system
representation through the integration of A sigmoid functions within the neural network while

maintaining prior data buffers via Zﬁl o(., A;,w;, ¢;). The system triggers updates to the original
index model when performance metrics indicate degradation.

Neural Network Training Process. This section describes the neural network training procedure
(Figure 2(b)). Two cost functions, L1 and Ly, are computed based on the outputs of N Ny and N Nyg.
As these operate in different dimensions of spaces, a specialized training strategy (Algorithm 1) is
used. Each model minimizes its cost independently, iterating until both Ly < ey and Ly < ey are
met or the maximum iterations are reached.

The training process starts with a feed forward step using data from the current buffer B (Section 4.1).
Errors are calculated and backpropagation is performed only if Ly > ey or Ly > eg. Priority is
given to IV Ny if its error exceeds the threshold. The weights are updated, and the cycle continues
with N Ny, using a batch size equal to the buffer size p. Training stops when both errors are below
their respective thresholds or when the iteration limit is reached. Both cost functions have closed-form
derivatives for efficient optimization.

Learned Index Model Retraining. This section explains the Retrain Module for the underlying
LI model, shown in Figure 4(b), focusing on retraining signals, data preparation, and system re-
initialization after retraining for new updates.

Retrain Signals. Signals for retraining come from NN Training and the Inference Module (Fig-
ure 2(b,c)). During training, signals arise when backpropagation reaches its limit (iterations >
MaaxIter in Algorithm 1). During inference, signals occur when out-of-range searches show that M/
struggles to maintain accuracy, typically when the system reaches maximum capacity (Section G.2),
and the target not be found in the e-bounded range.

Data Preprocessing. We sort the data for training a new LI model. The output of N Ny generates
a GMM optimized for the update workload distribution (Dypgate (k) ~ GM M (k, U ;)). After the
buffer reaches capacity, B is merged with D" to create DT+, Using Dypdate, Equation 6 introduces
gaps between data points. Training data for M, are formed by pairing the entries in D™ ! with
their new indices. This ensures that the model smoothly handles anticipated gaps without need for
modifications.

Neural Networks Re-Initialize. Upon receiving update signals (Figure 4), the Control Unit initi-
ates training for the new model M ; while executing a systematic re-initialization protocol. The
SigmaSigmoid parameters undergo complete reset to preserve the update distribution Dypgare, With
distinct handling procedures for each neural network component: N Ny remains unchanged, con-
tinuously adapting to incoming data streams. For N N, the system neutralizes sigmoids from the
previous model M; through four coordinated operations: (1) complete purging of the replay buffer,
(2) zero-initialization of weights connecting to the output neurons {A; }?/:1, (3) recalibration of
sigmoid parameters {¢, }é\gl using either Dypgae or uniform random sampling from the key space,
and (4) uniform weight adjustment setting w; = 1 for all j € [1, N]. Uniformly modifying weights
tosetw; =1 |J]\L1 The neural network N Nc remains unchanged, preserving the feedforward paths
from N N¢ to N Ny to maintain the GMM while resetting SigmaSigmoid for future updates.

5 EXPERIMENTAL EVALUATION

We conduct a comprehensive evaluation of Sig2Model against state-of-the-art learned indexes (DILI,
LIPP, and Alex). Sig2Model shows significant improvements across three key metrics: Up to 3%
higher QPS, 20x lower training cost, and 1000x reduced memory usage compared to baseline
methods. These improvements are particularly significant in update-intensive scenarios that highlight
Sig2Model’s architectural advantages. Complete experimental configurations and additional results
are available in Appendices H and I respectively.
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Table 1: QPS comparisons with state-of-the-art methods. The numbers are in 106.QPS (MQPS).
S2M S2M—-¥ | S2M—-B | B+Tree | Alex | LIPP | DILI Average Max
Workload | Dataset s M7| S MI|S M7 S M S M
Wiki |54 54 |NA NA | NA NA | 20 41 | 52 | 54 |505% 48.8% | 2.68x 2.68x
Read-Only | Logn |63 62 |NA Na |NA NA | 19 62 | 60 | 63 |561% 554% |3.18x 3.18x
FB |45 45|Na Na |NA NA | 20 23 | 43 | 45 |555% 51.6% | 2.23x  2.23x
Wiki | 43 54 |41 51|39 49| 15 22 | 39 | 41 | 693% 758% | 2.86x 3.41x
Read-Heavy | Logn |41 51 |39 49 |38 47| 15 32 | 29 | 40 |612% 70.1% | 2.71x  3.38x
FB |26 33|25 31|24 30| 13 11| 23 | 25 | 628% 724% | 228x 291x
Wiki | 3.6 45 |33 42|31 40| 13 19 | 28 | 3.1 | 73.8% 802% | 2.76x 3.45x
Write-Heavy | Logn | 3.9 48 |37 46 |34 43| 13 32 | 29 | 36 |762% 83.5% | 3.00x 3.70x
FB |39 47|36 44|33 41 13 |ooMm | 21 | 35 |822% 884% |3.00x 3.61x
Wiki | 29 29 |27 28|24 24| 13 T4 | 22 | 24 | 768% 768% | 2.23x 2.23x
Write-Only | Logn |31 32|30 30|26 26| 12 28 | 22 | 25 |584% 62.8% | 2.58x 2.66x
FB |25 25|22 22|20 20| 12 |ooM| 17 | 21 |681% 68.1% | 2.04x 2.04x

QPS Comparison. Table 1 presents a detailed QPS comparison between Sig2Model (S2M), three
baseline methods, and two ablated variants: S2M—W (without placeholder training) and S2M—B
(without buffer component). We evaluate both single-threaded and multi-threaded configurations of
Sig2Model variants. We provide the details on multi-threading in Appendix 1.3. Sig2Model shows
superior QPS scaling as update rates increase, achieving an 82% average improvement (88% on the
multi-threaded version) over baseline methods.

In read-only workloads, Sig2Model matches the performance of its underlying RadixSpline im-
plementation while outperforming B+Tree by 15-20% and achieving comparable results to DILI.
The ablated variants S2M—WV and S2M—B are excluded from these tests. as thev specifically

I Sig2Mod B+Tree [ Alex LIPP [ DILI

optimize update handling rather than read perfor- 3%
mance. For read-heavy workloads with 10% up-
dates, Sig2Model achieves 2.7 x higher QPS on the
Logn dataset, with multi-threading providing 3.4 x
speedup. As update rates increase, Sig2Model main- (a) Request Distributions

tains a consistent 60% average QPS advantage over 7 I
competing methods. Write-heavy workload tests re- &3

veal particularly strong performance, with Sig2Model ~ =2

processing 4.7 MQPS on the Facebook dataset, signif- 0 = c o

icantly outperforming B+Tree (1.3M), LIPP (2.1M), (b) YCSB Workloads

and DILI (3.5M). Alex also fails in several experi- o] T SO Bifiee [ Alex EZE UPP B DI
ments due to its known memory constraints (Yang %<

et al.). In write-only scenarios, Sig2Model achieves é%

67.7-74.5% higher QPS than baselines through its " wiki LOGN

t. . d dat h dl h . (c) Datasets
optimized update handiing Mechantsms. Figure 5: Evaluation results. (a) QPS on

Various Request Distribution. Figure 5(a) demon- request distributions. (b) YCSB workloads.
strates Sig2Model’s consistent performance across (c) Index memory sizes.

six different request distributions for write-heavy workloads using the Wiki dataset (Dataset, 2019b).
The system maintains QPS improvements of 2.61 x over B+Tree, 1.78x over Alex, 1.15x over LIPP,
and 1.54x over DILI, showing a robust adaptation to varying access patterns.

YCSB Benchmark Results. Figure 5(b) shows Sig2Model achieves consistently superior QPS across
all six YCSB workloads (Cooper et al., 2010). For read-intensive workloads (YCSB B, C, and D), the
system delivers 2.1-4.1 MQPS, outperforming baseline methods by 1.0-2.8 x. In balanced workloads
(YCSB A and F), Sig2Model maintains strong performance at 3.3-3.8 MQPS while sustaining a
55.1% average QPS advantage. The system particularly excels in scan-heavy operations (YCSB
E), where its efficient range query processing yields 55% higher QPS than DILI and significantly
outperforms other baselines that suffer from substantial re-traversal overhead.

Index Memory Size. Figure 5(c) shows the memory usage of the Sig2Model and the baselines,
including memory for fine-tuning neural networks in the Sig2Model. Sig2Model uses up to 1000 x
less memory than DILI, due to its efficient placeholder placement and minimized buffer additions. In
contrast, DILI and LIPP consume more memory due to new leaf nodes and empty slots created during
conflicts. Alex’s in-place placeholder strategy is less efficient as it does not consider the incoming
workload distribution, leading to slightly higher memory usage than Sig2Model.

Core Components Ablation Study. We analyze the individual contributions of the three core
components of Sig2Model on the Wiki dataset under write-heavy workloads: (1) buffer management
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Table 2: Components ablation study
Components None B v II B+¥ II+¥ B+II Full
MQPS 0.03 14 20 21 2.3 2.9 3.0 3.6

(B), (2) index approximation network using SigmaSigmoid boosting (II), and (3) update workload
training using GMM (). Table 2 presents QPS measurements for all combinations of components.
The baseline RadixSpline with full retraining (None)
achieves only 0.03 MQPS. Individual components 08 b \
show varying effectiveness: ¥ (2.0 MQPS, compa- ggg
02
0

—e— Lossp

rable to Alex), II (2.1 MQPS), and B (1.4 MQPS).

The combinations of two components show synergis- o 2 30 40 50
tic effects, with B+IT achieving 3.0 MQPS and IT+¥ (a) Epochs

reaching 2.9 MQPS (surpassing LIPP). The complete | B0 e ———

Sig2Model configuration (B+II+W¥) delivers optimal B i

performance at 3.6 MQPS, consistent with our full  regley 8ter — R
system results in Table 1. aseme0 025 05 075 1 125 15 175

o . . (b) Normalized Required Epochs
Training Loss Curves. Figure 6(a) shows the loss 50 .

curves for N Ny and N Ny during ten rounds of fine- £3,
tuning on the Wiki dataset using the read-heavy work- ~&20

load. Both networks train smoothly and converge to 0 J

err and eg. Initially, N N requirez about 50 ep%chs 2 (cs) Uptligte Rlozundm o120
to converge, but this decreases to 29 epochs in later Figure 6: (a) Loss curves for NN and
updates due to memory retained from N Ng. Sim- NNy. (b) Ablation study on NN,.. (c)
ilarly, N Ny requires fewer epochs in subsequent Impact of distribution shift on required
updates, as the update distributions remain consistent, epochs.

and the GMM parameters (¥) do not require significant changes. After four updates with stable
workload, the initial loss for N Ny falls below ey, eliminating the need for further iterations.

—— Required Epochs

Distribution
shift

N N¢ Ablation Study. Figure 6(b) analyze the contributions of N No components to training
efficiency by measuring the increase in epochs required to reach ey and ey when components are
removed. Removing the reply buffer, highway NN, ReLU, Dropout, and EWC increase the epochs
by 1.42x, 1.31x, 1.24x, 1.21x, and 1.46 x, respectively. Simplifying fully connected layers from 3
to 1 results in a 1.73 X increase in epochs.

B Sig2Mod Alex [ LIPP

Retrain Cost Analysis. Figure 7 shows retraining

=
<

c [

fo i £
costs for Sig2ZModel and baselines under a write-only géz =
workload on the Wiki dataset. Sig2Model achieves — gF : R
up to 2.20x reduction in the total number of retrain- S0 100 200 40 a0
ings and a 20.58x decrease in the total duration of Number of Updates (Million)
retraining compared to the baselines. Figure 7: Retrain cost

Limitations. (1) Distribution Shift. Since the parameters in SigmaSigmoids and GMM are trained
on an initial data distribution, any shift in the distribution requires additional training time for the
neural network to adapt. For example, as shown in Figure 6(c), the number of training epochs
spikes during the 11th round when the data distribution changes from Zipfian to Exponential. (2)
Fixed SigmaSigmoid Capacity (N'). In our experiments, we use a constant value for A/ based on
hyperparameter sensitivity test (Adkins et al., 2024)(See Appendix 1.4). However, this value can
be dynamically adjusted based on the observed data distribution and workload to improve further
improve the performance.

6 CONCLUSION

Sig2Model presents a mathematically rigorous framework for efficient learned index updates, di-
rectly addressing the critical retraining bottleneck through innovative model adaptation techniques.
While index updates remain inherently non-local operations, our approach guarantees bounded
sub-optimality. By employing a boosting methodology, Sig2Model demonstrates that an ensemble of
weak approximators can progressively converge toward an optimal update policy—eliminating the
need for expensive full retraining cycles. This fundamental advancement not only maintains index
effectiveness during updates but also opens new research directions for sustainable learned index
architectures. Our work establishes a foundation for future systems that can adapt dynamically to
workload changes while preserving theoretical guarantees.
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A TABLE OF NOTATIONS

Table 3: Notations

D" Sorted keys after 7 update with size s,
b Embedded keys of D™ with vectors of size n

BT The single buffer for entire index structure at stage 7
1) The size of the buffer

RB™ The neural network replay buffer at stage 7

K The size of RB"

X7 i™ input to the neural network at stage 7

Y;" Corresponding label of X

A Amplitude of Sigmoid function

w Slope of Sigmoid function
) Center of Sigmoid function

o(z,A,w,p) | Parametrized Sigmoid function
Maximum number of Sigmoids

Dupdate The distribution of incoming updates
U Set of new updates drawn from Dy, pdate
M () The LI model after {™ retrain with maximum error E

M (,11,) The adjusted model of M;(.) with parameter IT, at stage 7
£ The maximum estimation error of M;(.)
A Sampling fraction
11 Set of sigma sigmoid parameters
v Set of GMM parameters
K Number of GMM’s kernel
M The hypothesis space of Sigma-Sigmoid based models, all

configurations of A sigmoids, with parameters defined by II.

(k) Determine size gap before given k

G Maximum gap between continuous keys

d Minimum possible distance between keys

o Model prediction bias factor

5] Interference factor
0 Confidence level of initial clustering

En Prediction confusion parameter

ern/ew Error threshold for Sigma-Sigmoid/Incoming updates model

s Size of data

B PRELIMINARIES

B.1 LEARNED INDEX (LI)

The learned indexes (Ding et al., 2020; Chatterjee et al., 2024; Li et al., 2020; Tang & et al., 2020;
Kipf et al., 2020; Kim et al., 2024; Lan et al., 2024) aim to improve the efficiency of data retrieval in
database systems by using machine learning models that map keys to their locations. The traditional
learned index employs ensemble learning and hierarchical model organization. Starting from the root
node and progressing downward, the model predicts the subsequent layers to use for a query key &
based on F(k) x s, where s is the number of keys, and F is the cumulative distribution function
(CDF) that estimates the probability p(z < k). Given the overhead of training and inference in
complex models, most learned indexes utilize piecewise linear models to fit the CDF. Querying
involves predicting the key’s position using pos = a X k + b with a maximum error e, where @ and b
are learned parameters, and e is for the final search to locate the target key.

Updatable Learned Index. Learned indexes require a fixed record distribution, making updates
difficult (Section 1). Solutions for up-datable learned indexes include: (i) delta buffer, (ii) in place,
(iii) hybrid structures Sun et al. (2023); Ge & et al. (2023). Delta buffer methods (e.g., LIPP) use
buffers to postpone updates, but merging occurs when buffers overflow. In-place approaches (e.g.,
Alex) reserve placeholders for updates but may cause inefficient searches when offsets fill up. Hybrid
methods balance efficiency and speed by combining buffers and placeholders. DILI, a hybrid solution,
uses a tree structure for level-wise lookups, but updates increase the tree height over time.
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Figure 8: Sigmoid function o (z) transformations.

B.2 MODEL ADJUSTMENT WITH SIGMOIDS

As discussed in Section 1, sigmoid functions enable smooth model adjustments by treating small
updates as gradual changes, reducing the frequency of retraining. The sigmoid function o(x) =

H% creates a "S"-shaped curve, commonly used in machine learning.

When combined with another function, for example, f(z)+ o(x — ¢), it introduces a smooth step-like
transition near ¢. This property makes sigmoids ideal for approximating stepwise behaviors.

The generalized sigmoid, o(z, A, w, ¢) = ﬁ, adds flexibility to control amplitude, slope,
and center, enabling broader behavior modeling in learned indexes.

B.3 GAUSSIAN MIXTURE MODEL FOR DISTRIBUTION MODELING

A Gaussian Mixture Model (GMM) assumes data are generated from a mixture of Gaussian distribu-
tions, each defined by a mean and variance. GMMs are flexible and well-suited for modeling complex,
multimodal key distributions in real-world workloads. The GMM is mathematically expressed as

K
GMM (2, W) = p(z) = > _mN(z | pi, i) (8)
i=1

where K is the number of Gaussian components (kernels) and ¥ = {(m;, u;, 0;) } | represents
the GMM parameters, 7; is the weight of the i-th component, and N (x | p;, ¥;) is the Gaussian

distribution with mean y; and covariance X; (Zfil m; = 1).

In learned indexes, GMMs predict update distributions. Each Gaussian component represents a key
cluster, enabling the precise placement of placeholders for future updates.

C MOTIVATIONAL EXAMPLE

Consider the LI model M (k) = 2.5k + 1.5 with a prediction error of E = 0.25 in the keys domain
D% = {-0.2,0.3,0.59,0.91}. The predicted indices for the elements in D° yield I 5o = My(D°) =
{1,2.25,2.975,3.775}. Consequently, for each I € Ipo, the range of search positions is given as
I £+ E. For example, for the key & = 0.59 where the prediction is M (0.59) = 2.975, the search
range is 2.975 + 0.25, resulting in the interval [2.725, 3.225]. Considering that positions are integers,
we only search for positions 3 and 4.

Consider an incoming update u; with a key value of u; = 0.46. This update alters the domain,
D' = {-0.2,0.3,0.46,0.59,0.91}, while the index set Ip1 = {1,2.25,2.65,2.975,3.775}. The
update does not affect the indices for —0.2 and 0.3, so the model M, remains applicable. How-
ever, for the elements 2.975 and 3.775, the indices are outdated. In essence, the predictions for
elements < u; remain unchanged, while elements in the domain that are > w, are impacted. Further-
more, it is evident that elements > u; experience an exact effect of 1, implying that incrementing
their previous prediction by one aligns their indices with the new index. This insight suggests
that by implementing a step-like adjustment to M, we can avoid training a new model M across
D'. By adding m to My, a new model is generated that produces adjusted outputs

Mé(k) = MQ(]C) —+ <m). Then, IJM(I)(Dl) = {1,2257303,3971,4775} Wthh us-

ing E gives us the correct index for all the keys in D!. Given the second update us = 0.14,
D? = {-0.2,0.14,0.3,0.46,0.59,0.91}, you might choose to apply another step function, a second

sigmoid, expressed as M/ (k) = M| (k) + m , or you can fully utilize the capacity
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Figure 9: Adjusting the LI model upon receiving updates by employing the sigmoid as a step function.

of the initial sigmoid applied in M), formulated as M’ (k) = My(k) + (1%_&%) In line

with the Oakum razor principle, we choose My" instead of M{ because it is simpler and needs
less memory. However, the minimal memory usage isn’t always feasible, as it relies on the interval
between (i.e., distribution) updates. Consequently, the suggested model should account for these
intervals when determining the count of step functions (i.e., sigmoids). These approximations are
shown in Figure 9. This example demonstrates that by employing an appropriate step function, we
can modify the LI model without the need to retrain completely on new data. In subsequent sections,
we expand this concept and establish a formal learning framework to train the step function.

D CANONICAL NEURAL NETWORK (N N()

This section describes the shared weights of N N¢, a core component of the neural networks linked
to system parameters and update workload distribution. N N¢ processes embedded data to build
knowledge memory and representations for N Ny and N Ny . The next section details the architecture
of N N¢, followed by an explanation of data preparation for its input and the training process for
these networks during initialization and mid-development.

The multi-layer neural network N N¢ processes sequential data batches for continuous learning. It
employs highway networks, ReLLU activations, and dropout layers to extract patterns and prevent
overfitting. To address catastrophic forgetting Kemker et al. (2018), two strategies are used: Replay
Buffer Di-Castro et al. (2022) and Elastic Weight Consolidation (EWC) Kirkpatrick et al. (2017).
The network outputs feed into two subnets, N Ny and N Ny, each handling specific tasks. Key
components of N N¢ include:

Replay Buffer (RB). The replay buffer stores observed data (D°, BY, B2, ..., B"~!) as 4-ary
tuples: key, representation, global index, and age. Algorithm 3 updates global indexes for RB™ 1
upon new data B7, ensuring kps;n and kasa x are preserved the updated . Algorithm 4 refreshes the
replay buffer after neural networks by adding new data or replacing the oldest entries probabilistically
when capacity « is reached.

Highway Neural Network (2 layers). Input data (new and replayed) is processed through a 2-layer
highway network to mitigate vanishing gradients, similar to residual connections Srivastava et al.
(2015). This approach preserves essential features while learning new ones Wang et al. (2024).

Nonlinear Activation (ReLU). ReLU activation introduces non-linearity essential for capturing
complex relationships and avoids vanishing gradients during backpropagation Li & Yuan (2017);
Ribeiro et al. (2020).

Dropout Layer. Dropout randomly disables neurons during training to prevent overfitting and
improve generalization Srivastava et al. (2014); Baldi & Sadowski (2013).

Neural Network (3 layers). A 3-layer network improves the understanding of complex data
relationships, helping generalization between tasks.

EWC Regularization. Elastic Weight Consolidation (EWC) Liu et al. (2020) protects critical
parameters during training, mitigating catastrophic forgetting.

Fully Connected to Subnets. The final layer connects to subnets N Ng and N Ny, each handling
specific tasks, improving performance in multi-task scenarios.
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E ALGORITHMS

Algorithm 2 Greedy Initialization of GMM Parameters

1: Input: Data DY with Size sg, Confidence Level §

2: Output: GMM Parameters ¥, Number of Kernels K

3 Uy« 0, K« 0

4: while |D°| > 2 do

5 Select the two smallest elements: k, ko € D°

6: T < {ki,ko}, D° < D\ {ky, ko}

7 Construct a Gaussian N7 = N (avg(T'), samplevar(7T'))
8: for each element k € D° do

o: if P(k ~ Np) > 0 then

10: T « T U{k}

11: Update Ny < N (avg(T'), samplevar(T))
12: DY+ DO\ {k}

13: else

14: Uy Yo U (i, avg(T), samplevar(T)>
15: K+ K+1

16: end if

17: end for
18: end while
19: if [D| # 0 then

20: Add remaining elements to T’
21: Update the last normal distribution and its coefficient
22: end if

Algorithm 3 ReindexRB() Relndex Replay Buffer Indexes

1: Input: Updates Buffer B, Replay Buffer RB™ ! = {(k1,71, [1,a1), ., (K, s, Lx, )}
2: Output: Reindexed Replay Buffer RB™~!, Indexed Buffer B,
3 entr + 1,B],, 0
4: for i =1to xk do
5: while cntr < |B7| and B" [entr].key < k; do
6: Add((B7 [entr].key, BT [entr]|emy, Ii; + cntr,0)) to B,
7: entr < entr + 1
8: end while
9: 11 — Iz + cntr
10: a; —a; +1 > Increment age excluding k7 and kasax
11: end for

12: while cntr < p do

13: Add((BT [entr].key, BT [entr]emp, Im + cntr,0)) to B,
14: entr <— cntr + 1

15: end while

Algorithm 4 Update RB() Update Replay Buffer from 7 — 1 to 7
. Input: Indexed Buffer B7, , Replay Buffer RB7~!, Sampling Fraction \, Replay Buffer Size x

: Output: New Replay Blflgfwer RB™
: for each entry e in B], with probability A do
if |[RB™!| < & then
Addeto RB™1
else
Replace oldest element in RB™~! with e
end if
end for

: RB™ < SortByKey(RB™~1)

PORIADIUN RN

—_
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F PROOF OF THEOREM
We provide the proof for Theorem 1 in this section.

Proof 1 Step 1 (Discrete Spacing). By hypothesis, for any two consecutive keys k; < k;11, the gap
satisfies 1 < ’M/(kiJrl, ) — M'(k, H)’ < 2. Hence, if we list keys k in ascending order, each key
k can have only a small number of “neighboring keys” k4 for which |M'(k,11) — M’ (ky,1I)| < 2.
In particular, for Er chosen in the range [1,2), only the same key k or its one or two immediate
neighbors in the sorted order of keys can satisfy |M'(k,I1) — M’ (ky,II)| < Ep.

Step 2 (Choose Er; > 1). We pick Er1 > 1. Because each key k has at most O(1) neighboring keys
whose model outputs lie within Ex, the event |M'(k,11) — M’ (u,I1)| < Er can only occur if u is
either k itself or one of those few neighbors. Let Neighbor(k, Er1) denote this (small) set of possible
neighbors of k. Then |M'(k,II) — M'(u,1I)| < En = u € {k} U Neighbor(k, En).

Step 3 (Bound the Probability). Since the set {k} U Neighbor(k, En) is small and fixed for each k,
the probability that a random u ~ D,pa. lands in that set is bounded above by some function of its
measure or cardinality. Specifically,

P[|M’(k,H) — M'(u,TD)| < En} < P[u e {k} UNeighbor(k,En)]

Under assumption bounded D,pga., there exist a finite 3 and we can make this probability < 3 (e.g.,
B can be chosen based on density).

Thus, there is an Erp > 1 such that]P’HM’(k, M) — M'(u, H)| < En] < B, completing the proof.
G THEORETICAL ANALYSIS

This section addresses two theoretical aspects of Sig2Model: (1) how individual updates affect w
in the sigmoid approximation and (2) the neural network’s feasibility in achieving optimal sigmoid-
based approximation. We define € as the maximum error within M’s domain caused by the sigmoids’
gradual transition from O to their maximum A. Lastly, we analyze the time complexity of Sig2Model’s
main algorithms and update process.

G.1 w ANALYSIS WITH SINGLE UPDATE
This section analyzes the behavior of w for a constant A > 1 and an update u positioned at the center

of the sigmoid. Assuming D originates from a uniform domain and is large enough to reflect this
distribution, we study w for a specific error level e. For an update u between k; and k;1:

argminw : max{M (k; 1) — M (ki1 1) + 1, M'(k;) — M(k;)} < e )

Theorem 2 For the adjustment model M' and error ¢ > 0, and a random update min D < u <
2(0D1-1) 1y (b)

max D, we have, Elw] < ——5~—20p -

Proof 2 Let k; < u < ki1, ¢ € (1 : n— 1), and define d as the minimum distance from u to its

neighboring elements:

0 = min{u — k;, kiy1 — u}, k = arg kn}cin {u— ki, kiy1 — u}.
19041

In a uniform distribution, the distance between two elements is also uniformly distributed. If X ~
uniform(a,b), then for z,x’ ~ X, the random variable Y = |z — x| follows Y ~ uni form(0,b—
a). Thus, the distribution of 6 is uni form(0, max D — min D). For |D| elements:

E[quantile] = W . (10)

Since w falls into one of the |D| — 1 quantile:

0 ~ uniform(O,E[quantile]). (11)
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Assume uw = 0 and k = k; (left side closest). Using the sigmoid symmetry, the same analysis applies

Sfork =kiy1. Then, M'(0) = M(0) + H_%. From inequality 9:

A A
s<esl+el > 5> 15
14 e € €

ln<é71> 2w0%w§11n<é71>.
€ 0 €

Using E[f] from Eq. 11: Elw] < W In (%) Substituting Eq. 10 gives the result. This

conclusion applies symmetrically to the right side (k = k;1).

This shows the system numerically bounded and parameters change are monotone as the system
receives updates.

G.2 NEURAL NETWORK LEARNING FEASIBILITY

This section provides a theoretical framework to show that the proposed neural network operates
within a feasible solution space for optimal solutions. We derive a feasibility condition and prove that
a parameter configuration satisfying it always exists. Even in the worst case, where each sigmoid
covers a single update, the sigma-sigmoid modifications ensure the total error near the update is
limited to e.

The minimum distance d represents the densest region, where updates affect the center with distance d
from it. Assuming the closest key is at the left boundary, —d, —2d, —3d, . . ., the effect of 0/(0, A, 1, ¢)
on the index prediction is:
|U|—1
_ THewdi <e (12)
1=0

Note that the size update is the same as buffer size |U| = p.

Lemma 1 Given Equation 12 withw > 0, d > 0, and € > 0, the upper bound for |U]| is:

p=IUI< 2 (@) (13)

Proof 3 Let f(x) =
‘_

lelf(i) ~ OlU‘il f(z)dz + %[f(()) + f(|U] = 1)]. Focusing on the integral: folU‘il f(x)dz =

i=0

He% Using the Euler-Maclaurin formula, we approximate the sum:

|U]-1

ﬁ[ln(1+e‘*’d(|U|7l))fln(2)]. Then, given ; (i) < € wederive: |U| < 4 In(2e%—1)+1 ~
wde
ﬁ In (w), so this completes the proof.

Theorem 3 For any p = |U| > 2, d > 0, and € > 0, there exists a configuration of w and A
satisfying Equation 13.

Proof 4 A = e simplifies the inequality [U| < 2 In (e¥® — 1). The function f(w) = 2 In(e*? —1)
is continuous for w > 0 and diverges as w — 0. Thus, for any finite |U| > 2, there exists an w > 0
satisfying the inequality.

Theorem 3 shows that the system can achieve a parameter configuration that reduces the approximation
error, regardless of the update(buffer) size. If the system fails after extensive iterations (M axIter
in Algorithm 1), retraining (Section 4.2) becomes necessary, not due to the capacity of the Sigma-
Sigmoid model.

G.3 COMPLEXITY ANALYSIS
Updates Time Complexity. As shown in Figure 10, Sig2Model employs a multi-stage approach
to handle updates while minimizing retraining frequency. The system first attempts to insert new

updates into available placeholders using Gaussian Mixture Model (GMM) allocation, which has
a constant time complexity of O(1). When no placeholders remain, updates are stored in a B+tree
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buffer with logarithmic time complexity O(log p), where p represents the buffer’s maximum capacity.
Once the buffer reaches capacity (p updates), Sig2Model performs incremental integration of the
buffered updates into the model using SigmaSigmoid boosting. This operation has a time complexity
of O(s + plog p), where s denotes the current size of the index array. Finally, when the number of
active SigmaSigmoids reaches the system’s capacity N, Sig2Model initiates a full retraining of the
RadixSpline model with time complexity O(N log N), where N = s + p represents the total data
size (existing data plus buffered updates).

Sig2Model
Placeholder —=  Buffer | , dj"L"J:tdn‘fLm = Retrain Delay
Update
o(1) O(logp) O(s+plogp)  O((s + p)log(s + p)) gost

Figure 10: Approaches to delaying retrain categorized by insertion cost. s is the size of data and p is
buffer size.

Algorithms Time Complexity. The time complexity of the algorithms in Sig2Model is as follows:
(1) Lookup: O(Model + N + log(E. + €)), as it requires inference using the learned index model,
followed by II parameters with A/ sigmoids, and a final search of the data. (2) GMM clustering
(Algorithm 2): O(| D°|), which requires one pass over the initial data. (3) Reindexing reply buffer
(Algorithm 3): O(k + p), requiring a pass over both the buffer and the current reply buffer. (4)
Updating the reply buffer (Algorithm 4) from rb(¢t — 1) to rb(t): O(p), requiring a single pass over the
buffer size.(4) Construction Cost: The adjustment model requires a memory complexity of O(N), if
we have N Ny module complexity change to O(N + K). Additional overheads arise from tasks such
as generating the initial index model, M, trained on the dataset DP. These overheads depend on the
primary index modeling; in our case, we used RadixSpline Kipf et al. (2020). Additionally, the process
of training a neural network on DY incurs a computational complexity of O(MazIter x |D°|).

H EXPERIMENTAL SETTINGS

Environment. Sig2Model is implemented in C++17 and compiled with GCC 9.0.1. We use PyTorch
for the neural network implementation Paszke et al. (2019). The evaluation is performed on an
Ubuntu 20.04 machine with an AMD Ryzen ThreadRipper Pro 5995WX (64-core, 2.7GHz) and
256GB DDR4 RAM, and a data-centered GPU with 40GB vRAM.

Datasets. Sig2Model is assessed using three SOSD benchmark datasets Kipf et al. (2019): (1)
FB Dataset (2019a): 200M Facebook user IDs, (2) Wiki Dataset (2019b): 190M unique integer
timestamps from Wikipedia logs, (3) Logn: 200M values sampled from a log-normal distribution
(u = 0, 0 = 1). Key-value pairs are pre-sorted by key before Sig2Model initialization. All
experiments use 8-byte keys from the datasets with randomly generated 8-byte values.

Baselines. We compare Sig2Model against: (/) B+Tree: A standard STX B+Tree Bingmann (2024),
(2) Alex Ding et al. (2020): An in-place learned index, (3) LIPP Lan et al. (2023): A delta-buffer
learned index, (4) DILI Li et al. (2023): A hybrid index combining in-place and delta-buffer methods.
Open-source implementations are used for comparisons.

Workloads. QPS is measured on four workloads: (1) Read-Only: 100% reads, (2) Read-Heavy:
90% reads, 10% writes, (3) Write-Heavy: 50% reads, 50% writes, (4) Write-Only: 100% writes.
Read/write scenarios interleave operations (e.g., 19 reads per write in read-heavy). The keys are
randomly selected using a Zipfian distribution Barahmand & Ghandeharizadeh (2013).

Metrics. Evaluation metrics include: QPS: Average operations per second, Latency: 99th percentile
operation latency, Index size: Combined size of the index and neural network model.

System Parameters. System parameters are tuned by sensitivity analysis: buffer size (p = 1000),
replay buffer size (k = 500), sigmoid capacity (N = 20), RadixSpline error range (128) Kipf
et al. (2020), confidence level (§ = 0.95), regularization parameters (v = 0.5, ¢ = v = 1),
MazIter = 100, ey and ey (Algorithm 1) both set to 0.01, sampling fraction (A = 0.1, Algorithm 4),
and regularization coefficients in Equations 5 and 7 set to 1. The value d is empirically determined
for the initial data (D) of each dataset. D° size (sg) is 50% of the respective dataset size.
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I DETAILED EVALUATIONS RESULTS

1.1 CPU vs. GPU TRAINING.

GPU training significantly outperforms CPU training, especially as the number of sigmoids A
increases. Due to parallel processing, GPUs scale more efficiently, widening the performance gap at
higher AV. Table 4 shows this trend—while GPU time grows moderately, CPU time increases steeply,
making GPUs essential for larger model capacities.

Table 4: Training Time Comparison: CPU vs. GPU (in milliseconds)

N T CPU (ms) | GPU (ms)
1 15 17

5 241 28

10 399 56

20 955 108

50 4705 174

1.2 GMM IMPACT ANALYSIS.

Table 5 compares Sig2M odelgary (GMM-based placeholder placement) with Sig2M odel,qnq
(random placement). Sig2M odelgnrar has 32% higher update latency and 19.5% more memory
usage on average, as it strategically places placeholders based on predicted update distributions. In
contrast, Sig2M odel,,,q randomly places slots, leading to many unused placeholders. The lowest
increase in latency and memory usage is observed for the Logn dataset due to its complex distribution.

Table 5: Normalized update latency and memory usage of Sig2M odel,.qyq over Sig2Modelg s
on the write-heavy workload over different datasets.

Dataset | Latency | Memory
Wiki 43.2% 34.6%
Logn 16.3% 4.2%

FB 36.7% 19.9%

1.3 SIG2MODEL PARALLELIZATION ON INFERENCE MODULE

Since the Sigma-Sigmoid model boosted by multiple weak sigmoid learners, its computations can be
parallelized across multiple threads, improving performance by distributing the workload. Ideally,
the number of threads can be increased to N + 1; however, there is a trade-off between the benefits
of parallelization and I/O contention.

To evaluate the impact of thread parallelization, we varied the number of threads to process Sigmoid
components in the Sig2Model. Results, averaged over 5 runs (Figure 11), show overhead dropping
sharply to 1.0% at 7 threads. Beyond this, performance degrades slightly due to result aggregation
costs.

M’ Overhead (%)

# Threads

baseline(MR 4 6 7 12 17 20=N

Figure 11: Overhead M’ compared to M as a function of the number of threads. The overhead drops
sharply until 7 threads, then degrades slowly due to thread coordination costs.

At zero threads means single thread for all, the overhead is 7.2%, decreasing rapidly with more
threads. However, after 7 threads, degradation begins, reaching 5.1% at 20 threads (equal to \).
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This highlights that while threading improves performance, excessive synchronization can negate its
benefits.

1.4 SENSIVITY ANALYSIS
We performed extensive sensitivity analysis on key hyperparameters. We run the experiments on the

full version of Sig2Model on the Wiki Dataset with Read-heavy workload, and generalized these
results for all our experiments.

Table 6: Sensivity Analysis Results

Parameter (Tested Values) Value 1 Value 2 Value 3 Value 4
Sigmoid Size N/ 3.2 (-25.2%) | 3.9 (-8.6%) 4.3 (opt) 4.1 (-2.9%)
(5, 10, 20, 40)
Buffer Size p 4.0 (-5.4%) | 4.1 (-2.6%) 4.3 (opt) 4.2 (-0.8%)
(250, 500, 1000, 2000)
Replay Buffer 4.2 (-1.2%) 4.3 (opt) 4.2 (-0.4%) | 4.2 (-0.9%)
(250, 500, 1000, 2000)
Regularization Coeff. 4.1 (-2.9%) | 4.2 (-0.6%) | 4.2 (-0.2%) 4.3 (opt)
0,0.5,0.75, 1)
Error Thresholds € 4.3 (opt) 4.2 (-0.8%) | 4.1 (-2.3%) | 4.0 (-5.0%)
(0.1,0.2,0.4,0.8)

1.5 TAIL LATENCY ANALYSIS

We provide comprehensive p99 latency measurements relative to median latency across different
ensemble sizes (N) using our optimal 7-thread configuration on the Wikipedia read-heavy workload.

Table 7: p99 Latency Reduction over Different A/

Ensemble Size N/ 5 10 20 40
p99 Latency Reduction | -38.2% | -44.6% | -60.4% | -87.2%

We also run the same experiment on the other baselines (Table below). Our analysis reveals that
while all learned index systems exhibit some tail latency degradation due to retraining, Sig2Model
demonstrates significantly better behavior (60.4% reduction vs 92-127% for baselines).

Table 8: p99 Latency Reduction over Different Baselines

Baseline ALEX LIPP DILI Sig2Model (N = 20)
p99 Latency Reduction | -92.0% | -108.1% | -127.7% -60.4%

This improvement stems from two key factors: (1) LIPP and DILI require frequent retraining
(approximately every 500 updates), (2) While ALEX retrains less frequently, each retraining event
incurs substantially higher latency. Our design achieves better tail latency by distributing the retraining
overhead more evenly through the neural joint optimization framework.

1.6 ANALYSIS OF ENSEMBLE SIZE IMPACT ON LOOKUP

The larger ensemble sizes (N) linearly increase inference time. We address this concern through both
empirical analysis and architectural optimizations. First, our sensitivity analysis on the Wiki dataset
(read-heavy workload) reveals that Query-per-second (QPS) metric improves with larger A up to 20,
as the benefits of deferred retraining outweigh the latency costs. At N = 40, we observe a 2.9% QPS
drop (see Table 9), confirming that excessively large ensembles can negatively impact performance.

The choice of A = 20 represents a careful balance between update agility and lookup performance.
While larger ensembles could theoretically provide greater update capacity, our experiments confirm
that N = 20 delivers optimal throughput for read-heavy workloads while still offering substantial
improvements in update efficiency compared to traditional learned indexes.

Second, the parallelizable nature of the SigmaSigmoid architecture effectively compensates for the
increased computation. As detailed in Appendix 1.3, distributing the workload across just 7 threads
reduces the parallelization overhead to a negligible 1.0% for N = 20. This demonstrates that with
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Table 9: QPS performance for different ensemble sizes N

Ensemble Size N/ 5 10 20 (optimal) 40
Performance (MQPS) | 3.2 (-25.2%) | 3.9 (-8.6%) 4.3 4.1 (-2.9%)

proper implementation, the latency impact becomes practically insignificant for reasonable ensemble
sizes.
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