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Abstract

Vision-Language Models (VLMs), with their strong reasoning and planning capa-
bilities, are widely used in embodied decision-making (EDM) tasks in embodied
agents, such as autonomous driving and robotic manipulation. Recent research has
increasingly explored adversarial attacks on VLMs to reveal their vulnerabilities.
However, these attacks either rely on overly strong assumptions, requiring full
knowledge of the victim VLM, which is impractical for attacking VLM-based
agents, or exhibit limited effectiveness. The latter stems from disrupting most
semantic information in the image, which leads to a misalignment between the
perception and the task context defined by system prompts. This inconsistency
interrupts the VLM’s reasoning process, resulting in invalid outputs that fail to
affect interactions in the physical world. To this end, we propose a fine-grained
adversarial attack framework, ADVEDM, which modifies the VLM’s perception
of only a few key objects while preserving the semantics of the remaining regions.
This attack effectively reduces conflicts with the task context, making VLMs output
valid but incorrect decisions and affecting the actions of agents, thus posing a more
substantial safety threat in the physical world. We design two variants of based
on this framework, ADVEDM-R and ADVEDM-A, which respectively remove
the semantics of a specific object from the image and add the semantics of a new
object into the image. The experimental results in both general scenarios and EDM
tasks demonstrate fine-grained control and excellent attack performance.

1 Introduction

Visual-language models (VLMs) such as GPT-4 [1] and Gemini-2.0 [2] have been widely adopted for
embodied decision-making (EDM) tasks in embodied agents, including autonomous driving [3, 4, 5]
and robotic manipulation [6, 7, 8], due to their powerful reasoning and planning capabilities. In
these tasks, VLMs generate decisions and plannings based on current inputs and system states, and
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then convert them to control code to guide physical entities (e.g., vehicles, robotic arms) in their
interactions with the real world.

AdvEDM (Ours)

Existing attack

Benign

What Model See Action & Dialogue

How should the 
vehicle move then?

Input image

[Physical] Rasing Error

[Dialogue] I have no idea. 

[Reason] The image seems artistic, 
lacking any elements of self-driving 
vehicles or road scenarios.

[Physical] Accelerate()

[Dialogue] Unimpeded, accelerate 
forward!

[Reason] The image shows an 
unusually empty road ahead. 

Results

Anomaly Alert

VLM-based EDM
systems 

Collision

[Physical] Brake()

[Dialogue] Danger! Emergency 
brake.

[Reason] The image shows a 
yellow bus not far ahead. 

Normal Driving

Figure 1: Comparison of our attack framework with existing works in attacking VLM-based agents.
Existing attacks disrupt most of the semantics in the original image, causing the VLM to generate
invalid responses. In contrast, our attack selectively alters the VLM’s perception of a specific object
while preserving the semantic integrity of other regions. As a result, the VLM produces valid yet
incorrect decisions, effectively influencing the system’s interaction with the physical world.

However, VLMs have shown vulnerability to adversarial attacks [9, 10, 11, 12, 13, 14], where the
adversary manipulates the model’s output by introducing imperceptible perturbations into input
images. Existing attacks on VLMs can be classified into two categories: white-box attacks and
black-box attacks. White-box attacks, such as AttackBard [15] and CroPA [16], generate adversarial
examples by optimizing the end-to-end process, directly manipulating the textual outputs. But such
attacks are impractical for VLM-based embodied agents, as it is difficult for the adversary to access
the LLM modules within the VLM, which are fine-tuned on proprietary datasets for specific tasks
[17].

In contrast, black-box attacks where the adversary’s knowledge of the victim model is limited are
more practical. However, a fully black-box setting poses significant challenges for attackers, incurring
significant computational costs and limited attack effectiveness [18]. Therefore, many existing works
(like AttackVLM [10], CLIP-based Attack [19] and VT-Attack [20]) propose a compromise setting,
where the attacker has access to only the vision-text encoder of VLMs, referred to as the gray-box
setting. Since the vision-text encoder in VLM-based EDM systems is directly used in its pre-trained
form [21] and easy for the adversary to obtain, we focus on the gray-box attacks in this paper. These
attacks introduce adversarial perturbations to move the image’s embedding away from the clean
image’s embedding, thereby disrupting the VLM’s perception of the image. However, such attacks
have limited effectiveness against the VLM-based EDM system in embodied agents, which only make
the system output invalid results without guiding entity’s action in the physical world (like error
reports). This is because these systems employ chain-of-thought (CoT) techniques [22] to perform
reasoning and task planning. The CoT first analyzes the system’s current state and perceived inputs,
then proceeds to further reasoning based on the task description provided by system prompts [23, 24].
Existing attacks of this type alter the system’s overall perception of the image, causing a conflict with
the system prompts’ description, thereby interrupting the reasoning process and resulting in invalid
outputs rather than decisions and plannings. This process is illustrated in Fig. 1.

In this paper, we propose a novel fine-grained adversarial attack framework, ADVEDM, which makes
the VLM-based EDM system output valid but incorrect decisions. As illustrated in Fig. 1, our attack
disrupts the CoT in the VLM-based EDM system by modifying the VLM’s perception of the existence
of several key objects while retaining the original semantics of other parts. This significantly reduces
conflicts with the task context, ensuring the integrity and logical consistency during the reasoning
process. Consequently, the system outputs valid but incorrect decisions that can alter the entity’s
action, leading to a more substantial safety threat in the physical world.

Specifically, we design two attack methods based on this framework, ADVEDM-R and ADVEDM-A,
which respectively remove the semantics of an object from the image and add the semantics of a
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new object into the image, while preserving the semantics of others. The implementation of these
attacks faces two technical challenges: first, how to select appropriate regions in the image for the
removal and addition of the target object’s semantics; and second, how to preserve the semantics
of other regions after modifying the target semantics. To address the first challenge, we propose a
selection strategy based on the similarities between cross-modality embeddings, which leverages
the correlation between the VLM’s vision and text encoders [25, 26] by calculating the similarity
between image patch token embeddings and object text embeddings. For the second challenge,
considering that the image embeddings are typically generated by the attention mechanism of ViT
[27], we propose attention-[patch] fixation, which preserves the semantics of the remaining parts by
maintaining the product of the attention weights and patch token embeddings.

We evaluate our methods in both general image description scenarios and two representative embodied
decision-making tasks: autonomous driving and robotic manipulation. In general scenario, the average
attack success rates (ASR) for the two variants are 76.8% and 70.2%, with semantic preservation
rates of 66.7% and 71.6%. In EDM tasks, our method achieved an attack success rate of over 70%
and 64% in autonomous driving and robotic manipulation respectively, significantly outperforming
existing attacks. These results highlight the excellent fine-grained control of our attacks and their
effectiveness in posing a real safety threat to VLM-based EDM systems. More demos of our attacks
in real-world scenarios can be found on our website https://advedm.github.io/.

In conclusion, the contribution of this paper can be summarized as follows: (1) We propose a novel
fine-grained adversarial attack framework ADVEDM in the gray-box setting that selectively modifies
the semantics of key objects perceived by VLM-based EDM systems, disrupting their reasoning
process and leading to valid but incorrect decisions, thus increasing real-world safety risks. This aims
to reveal the vulnerabilities of current VLM-based EDM systems and foster future efforts to enhance
their robustness. (2) Based on the framework, we design two attacks ADVEDM-R and ADVEDM-A,
which respectively remove the semantics of a specific object or add the semantics of a new object to
the image. (3) The experimental results in both general scenarios and embodied decision-making
tasks indicate the excellent fine-grained control and effectiveness of our attacks.

2 Related Work

2.1 VLM-Based Embodied Decision-Making System

Due to their exceptional logical reasoning capabilities, VLMs have been widely applied to embodied
decision-making tasks [28, 29, 30]. The Chain-of-Thought (CoT) is widely used in VLM-based EDM
systems [22, 23], which breaks down the task into logical steps, refining the model’s decision-making
based on the current context and task requirements. Two prominent applications are autonomous
driving and robotic manipulation. In autonomous driving, VLMs fine-tuned on specialized datasets,
such as DriveLM [4], Dolphins [21], and DriveGPT [31], process road information captured by
sensors like cameras. VLMs in this task, combined with predefined system prompts, enable real-
time planning and adjustments to the vehicle’s driving state through CoT reasoning process. In the
robotic manipulation task, VLMs first perceive the input visual images, then combine them with
received instructions and system prompts to perform reasoning through CoT and generate decisions
and plannings regarding the robot’s actions like rotation, movement, and grasping. Finally, the
post-processing module translates these decisions into control code to manipulate its interactions with
the physical world [32]. In conclusion, VLM-based EDM systems play a crucial role in embodied AI
tasks. While extensive research has been conducted on the robustness of VLMs themselves [10], the
robustness and security of VLM-based EDM systems remain unexplored.

2.2 Adversarial Attack against VLMs

Adversarial attack involves manipulating the outputs of models by introducing imperceptible pertur-
bations to the inputs [33, 34, 35, 36, 37, 13, 38, 39, 40]. With the widespread application of VLMs,
there have been increasing researches focused on attacks against VLMs in recent years. Most of
existing works [19, 41, 42, 43, 44] focus on designing attack methods in a white-box setting, where it
is assumed that the adversary has full access to the victim model and other relevant information to
launch attack. These methods typically optimize the adversarial noise by minimizing the difference
between the logits of probability of the outputs and the pre-defined target text, thereby enabling
end-to-end attacks. Despite their high attack success rates, these attacks are impractical for the
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VLM-based EDM system, as it is difficult for the adversary to access VLMs fine-tuned on various
datasets for specific tasks [45].

To this end, some works proposed attacks in more general scenarios [9, 15, 46, 10], where the
adversary has limited knowledge about the victim VLMs. They usually employ pre-trained vision-
text encoders of VLMs as surrogate models, such as CLIP [47, 48]. These attacks involve making
the embeddings of adversarial examples diverge from those of original images or closer to those of
target images to disrupt the perception of VLMs. Although they are more practical for attacking
VLM-based EDM systems whose vision-text encoders are usually pre-trained and easy to obtain,
their effectiveness is limited due to the lack of fine-grained control. Specifically, they disrupt most of
the semantics perceived by the VLM from original images, thus interrupting the reasoning process
of VLMs and leading to invalid results that fail to influence interactions with the physical world. In
this work, we design two fine-grained adversarial attack methods ADVEDM-R and ADVEDM-A
that disrupt the perception of VLMs by precisely removing or adding the semantics of target objects,
while preserving other semantics in the original image.

3 Preliminary

3.1 Background
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Figure 2: The framework of VLM-based embodied
decision-making system.

Following existing works [49, 28], the VLM-
based EDM system consists of two compo-
nents, as shown in Fig. 2. The first com-
ponent is the decision-making module im-
plemented by a VLM, which includes a pre-
trained vision-text encoder (e.g., CLIP [25])
and a fine-tuned LLM. The vision-text encoder
encodes the environmental image along with
the received textual instructions and system
prompts, as described in Eq. 1.

ϕi = Ev(I), ϕt = Et(T ) (1)

where Ev(·) and Et(·) are the vision encoder
and text encoder, while ϕi and ϕt are the em-
beddings of the input image I and text instruction T . Note that the image encoders in VLMs are
typically based on the Transformer architecture, where the image embeddings ϕi include a [CLS]
token embedding (representing overall semantics) and patch token embeddings (representing local
semantics) [50]. We denote them as [cls] and [patch].

The LLM in the decision-making module is fine-tuned on a proprietary task-specific dataset. It takes
as input the fused and concatenated embeddings, performs reasoning through CoT, and generates
decisions and plannings. This process is formulated as TD = M(ϕi, ϕt; θ), where M is the LLM
with parameters θ, and TD is the textual outputs of decisions and plannings.

Upon generating decisions and plannings, the post-processing module translates and converts them
into executable control code for operating physical hardware of the entity, which can be expressed as
C = fp(TD). C is the control code and fp represents the post-processing module.

3.2 Threat Model

Adversary’s goal. To achieve fine-grained attack effectiveness, the adversary’s goal as inducing the
textual decisions where only the content regarding the target object is altered, while the rest remain
unchanged. Here, we formally define our fine-grained adversarial attack. Specifically, we decompose
the decision TD into descriptions for n individual objects in the image, which can be expressed as
TD = {Dobj1 , Dobj1 , ..., Dobjn}. Then the attack is formulated as Eq. (2).

min Sim(D′
objt , Dobjt)

s.t. Sim(D′
obji , Dobji) > δ, i ̸= t

∥I ′ − I∥2 < ϵ

(2)
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Figure 3: The pipeline of our methods ADVEDM-R and ADVEDM-A.

where objt is the target object, and D′
objt

and D′
obji

are decisions generated under adversarial exam-
ples I ′, while Dobjt and Dobji are under clean inputs I . Sim(·) measures semantic similarity between
texts, and δ and ϵ represent the constraints for the semantic preservation and visual stealthiness.

Adversary’s capacity. Since the textual input T is usually pre-defined like system prompts [6, 24]
and difficult to manipulate from from external sources, we assume the adversary can only perturb the
image inputs to launch an attack. Following many previous works like [10, 20, 19], we design our
attacks in the gray-box setting, where the adversary can only utilize the vision-text encoder of VLMs
as surrogate models to generate adversarial examples. Moreover, we also extend our attacks to the
black-box setting and provide a detailed discussion in Appendix D.

4 Methodology

4.1 Intuition
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Figure 4: Our strategy to select the target regions for
semantic removal and semantic addition.

Unlike previous adversarial attacks on VLMs
in general tasks like VQA, effectively attack-
ing the VLM-based EDM system requires in-
ducing valid yet incorrect decisions that im-
pact real-world interactions. This necessi-
tates a fine-grained adversarial attack that se-
lectively modifies the target object’s seman-
tics while preserving the overall reasoning in-
tegrity. Specifically, we propose two feasible schemes: (1) Semantic Removal (SR), namely
removing the semantics of a specific object while preserving those of others, and (2) Semantic Addi-
tion (SA), which involves adding the semantics of a specified object without altering the semantics
of others. For SR, the target output T ′

D should exclude the semantics of the target object objt while
preserving those of the remaining n− 1 objects. For SA, it should incorporate both the original n
objects and objt. Both schemes face two challenges: first, how to identify the key regions in the
image for SR or SA to ensure the effectiveness of attacks, and second, how to maintain the semantics
of the remaining parts of the image.

Given that the vision-text encoder in most VLMs is built on the Transformer architecture [45, 48],
we tackle the first challenge by identifying key regions based on the similarity between image patch
token embeddings and the text embedding of objt. This similarity effectively quantifies the extent to
which each patch contains the target object’s semantics, due to the ability of the vision-text encoder to
align visual and textual semantics. As shown in Fig. 4, patches with higher similarity scores contain
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more relevant semantic information. For SR, we choose the patches with higher similarity to the text
embeddings of target objects and erase their semantics. For SA, we select contiguous background
regions with relatively lower similarity to foreground objects’ embeddings, ensuring the injected
semantics minimally influence the semantics of other objects.

As for the second challenge, we adopt an attention- [patch] fixation approach. Specifically, during
the optimization of adversarial perturbation, we ensure that the product of attention weights and
patch token embeddings for the remaining regions closely matches that of the original image. This
approach effectively preserves both the overall semantics and local detailed features of them [51].

4.2 Our Methods

According to our intuition, we propose two attack methods ADVEDM-R and ADVEDM-A, which
remove the semantics of a specific object from the image and inject the semantics of a new object.

4.2.1 ADVEDM-R

We first demonstrate how to identify regions with target object’s semantics in the image. We calculate
the cosine similarity between the patch token embeddings and the text embedding of target object,
and then mark the patches with higher similarity and form a mask. This process is formally described
in Eq. 3 and 4.

S = CS([patch]I , Et(Ttar)) (3)

maski =

{
0, if si > ξ
1, if si ≤ ξ

}
(4)

where [patch]I is the patch token embeddings of clean image I , Et(Ttar) is the text embedding of
the target object encoded by Et and CS(·) is the cosine similarity function. The similarity vector
S ∈ Rn×1, where n is the number of image patches. mask is also an n-dimensional vector, whose
i-th element maski is determined by comparing the corresponding element si in S with a predefined
threshold ξ. Elements in mask with a value of 0 indicate that the corresponding image patches
contain richer semantics of the target object.

After obtain the mask, we remove the semantic of target object from both global and local perspec-
tives. For global semantics, we push the [CLS] token embedding that represents the overall semantics
of the image, away from Et(Ttar) to remove the target object’s global semantics, as shown in Eq. 5.

Lcls = CS([cls]I′ , Et(Ttar)) (5)

For local semantics, we utilize the obtained mask to erase the patches containing target semantics
from the image, and denote the masked image as M . In M , the patches originally rich in semantics
of the target object are replaced by meaningless 0-pixel values. Then, we align the embeddings of
corresponding patches in the adversarial example with those in M . This process is shown in Eq. 6.

Lp = −(1−mask) ∗ CS([patch]I′ , [patch]M ) (6)

Additionally, we propose the attention-[patch] fixation, ensuring that the key features of the rest parts
remain consistent with those of the original image, as shown in Eq. 7.

Lfix = −mask ∗ CS(AI′ ∗ [patch]I′ , AI ∗ [patch]I) (7)

where AI and AI′ are the means of attention weights across all attention layers in Ev of the original
image and adversarial example, as they reflect the semantic significance of each patch [51].

In conclusion, the entire process of ADVEDM-R can be expressed as Eq. 8, and w1 to w3 are the
weights of each loss item. The pipeline of ADVEDM-R is shown in Fig. 3.

min
I′

w1 ∗ Lcls + w2 ∗ Lp + w3 ∗ Lfix

s.t. ∥I ′ − I∥2 < ϵ
(8)
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Table 1: Quantitative results of attacks on MS-COCO dataset in the image description task.

Attacks
Models LLAVA-v2 MiniGPT4 Otter-Image BLIP-2 OFLMG-v2 Average

ASR(%) SPR(%) SS ASR(%) SPR(%) SS ASR(%) SPR(%) SS ASR(%) SPR(%) SS ASR(%) SPR(%) SS ASR(%) SPR(%) SS

PGD 71.7 22.5 0.390 70.8 17.9 0.313 73.4 18.1 0.363 74.5 17.0 0.426 79.2 20.4 0.350 73.9 19.2 0.368
MF-it 81.8 19.5 0.343 77.3 13.7 0.280 87.5 13.8 0.290 85.0 11.1 0.340 84.1 15.9 0.290 83.1 14.8 0.309
MF-ii 83.6 15.0 0.363 82.4 9.00 0.252 87.3 10.3 0.224 85.6 10.9 0.355 86.9 11.1 0.242 85.2 11.3 0.287

ADVEDM-R 75.2 71.3 0.705 73.9 66.4 0.626 80.9 64.4 0.652 74.3 65.3 0.737 79.6 66.2 0.695 76.8 66.7 0.683
ADVEDM-A 68.4 75.1 0.758 67.1 72.6 0.657 72.8 69.4 0.728 69.5 68.2 0.756 73.3 72.9 0.732 70.2 71.6 0.726

4.2.2 ADVEDM-A

In the implementation of ADVEDM-A, we first manually select contiguous patches of size m×m,
typically from the background or areas containing minimal specific objects. The selection can
refer patches with lower embedding similarity to the foreground objects’ text embeddings. After
the selection, we apply the same procedure as in Eq. 4 to mark the selected patches as 0 and the
remaining as 1, thereby generating the corresponding mask.

Due to the modality gap between image and text inputs in image-text encoders [52], textual descrip-
tions of the target object cannot effectively inject semantics into the image embeddings, especially
the patch token embeddings. To address this, we utilize a reference image R with m×m patches that
solely contains the target object (generated by a text2image model [53]). Here, we also incorporate
the target semantics into the original image from both global and local perspectives. For global
semantics, we align the [cls] of the adversarial example with the weighted fusion of [cls] from the
clean and target images, as detailed in Eq. 9.

Lcls = −CS([cls]I′ , (1− α)[cls]I + α[cls]R) (9)

Locally, the selected patches for semantic injection contain minimal information and thus have
lower attention weights. To ensure the vision encoder captures the injected semantics, we reallocate
attention weights of these patches by assigning them the scaled attention weights of the reference
image R. Other patches undergo a similar scaling to preserve global semantic consistency. The
process is described as Eq. 10. AR is the attention weights of R and β is the scale factor.

A′
i =

{
βARi

, if maski = 0
(1− β)AIi , if maski = 1

}
(10)

After obtaining the new attention weight map, we compute the key features by taking the product
of the weight map and the patch token embeddings of R. Subsequently, we align the key features
at corresponding positions in the adversarial example with those in R to achieve local semantic
injection, as shown in Eq. 11.

Lp = −(1−mask) ∗ CS(AI′ ∗ [patch]I′ , A′ ∗ [patch]R) (11)

Then we also consider to preserve the key features in other regions of the original image. Note that to
allocate sufficient attention weights for injected semantics, we should utilize the reallocated attention
weights A′. So the attention-[patch] fixation can be expressed as Eq. 12.

Lfix = −mask ∗ CS(AI′ ∗ [patch]I′ , A′ ∗ [patch]I) (12)

In conclusion, the overall optimization of adversarial examples is the same as Eq. 8. The pipeline of
ADVEDM-A is shown in Fig. 3.

5 Experiment

We conducted experiments in both general evaluation scenarios and EDM tasks. The general
scenario involves image description, which is consistent with existing adversarial attack evaluation
scenarios in general VLMs. The EDM tasks include autonomous driving and robotic arm manipula-
tion. Besides, more visualization results are provided in Appendix B and our webpage. The ablation
studies and exploration of transferability also can be found in Appendix C and D.
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Table 2: Quantitative results of attacks on Dolphins Benchmark dataset in autonomous driving scenes.

Attacks
Models LV-v2 MGPT-4 Otter Dol Avg.

ASR(%) SS ASR(%) SS ASR(%) SS ASR(%) SS ASR(%) SS

PGD 22.0 0.336 16.0 0.206 13.0 0.279 18.0 0.259 17.3 0.270
MF-it 17.0 0.303 21.0 0.250 15.0 0.253 13.0 0.237 16.5 0.261
MF-ii 24.0 0.315 17.0 0.223 8.00 0.260 10.0 0.234 14.8 0.258

ADVEDM-R 74.0 0.511 78.0 0.505 62.0 0.485 84.0 0.502 74.5 0.501
ADVEDM-A 68.0 0.564 73.0 0.489 66.0 0.509 79.0 0.546 71.5 0.527

5.1 Setups

Models. We employ several commonly-used VLMs, including BLIP-2 [54], MiniGPT-4 (MGPT-4)
[48], LLaVA-v2 (LV-v2) [47], Otter-Image (Otter-I) [55] and OpenFlamingo-v2 (OFLMG-v2) [56].
The vision-text encoders of BLIP-2 and MiniGPT-4 are based on EVA CLIP [26], while others are
based on OpenAI’s ViT CLIP [25].

Datasets. For general scenarios, we select MS-COCO 2014 [57, 58]. For the autonomous driving
scenario, we choose Dolphins Benchmark [21] and DriveLM-nuScenes [4] that are specialized for
this task, while for the robotic arm manipulation task, we sample 100 images from the physical world
and construct instructions and actions.

Attacks. We choose several typical adversarial attacks as baseline, including CLIP-Based PGD [19],
MF-it and MF-ii [10]. The norm constraint of the adversarial perturbation ϵ is set to 8/255. For
CLIP-Based PGD, we set the number of iterations to 20 with a step size of 0.01. For MF-it and MF-ii,
we use their official open-source code. Details of our methods’ settings are in Appendix A.

Metrics. We define Attack Success Rate (ASR) and Semantic Similarity (SS) to measure attack
effectiveness. Specifically, SS is the cosine similarity between output embeddings of adversarial and
clean samples calculated by a text encoder. We introduce Semantic Preservation Rate (SPR), which
measures the retention of other objects’ semantics in VLM description of input images. The detailed
formal definitions of these metrics are provided in Appendix A.

Note that the interpretation of evaluation metrics vary across different tasks. In the general image
description task, an attack is considered successful if it causes the target object to include or exclude
in the generated description. In this case, a higher ASR values indicate greater attack effectiveness,
while higher SPR and SS values reveal the attack better preserves the semantic integrity of the
image. In the EDM tasks, the attack is successful if the output decisions and plannings align with the
expected results after the addition or removal of target object’s semantics (i.e., valid yet incorrect).
However, since VLM-based EDM systems do not provide detailed descriptions of all objects in the
inputs, SPR cannot be reliably computed and is thus omitted from the corresponding experiments.

5.2 Evaluation in General Scenarios

Settings. According to our threat model, we employ the vision-text encoder of each victim model as
surrogate model to launch attack. For the attack target, we randomly select an object in the image to
remove its semantics or choose an object not in the image to inject its semantics. We randomly select
1000 images to generate adversarial examples and record the average ASR, SPR and SS.

Results. Tab. 1 shows that though existing attacks achieve high ASR values, they suffer from low
semantic preservation, with SPR values under 20%. This indicates they disrupt the majority of the
original image’s semantics, resulting in poor fine-grained control. In contrast, our methods exhibit a
slight decrease in ASR, but their SPR values are significantly higher (66.7% and 71.6%, respectively),
preserving most of the original image’s semantics and enabling fine-grained control. Our methods
also achieve higher SS values, as it preserves most of the original image’s semantics.

5.3 Evaluation in EDM tasks

5.3.1 Autonomous Driving Task

Settings. We conduct experiments on two specialized datasets, Dolphins Benchmark and DriveLM-
nuScenes, with three general VLMs (LLAVA-v2, MniGPT-4, and Otter-Image) and Dolphins (Dol)
[21], a VLM designed for decision-making task in autonomous driving. For each dataset, we randomly
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Table 3: Quantitative results of attacks on DriveLM-nuScenes dataset in autonomous driving scenes.

Attacks
Models LV-v2 MGPT-4 Otter Dol Avg.

ASR(%) SS ASR(%) SS ASR(%) SS ASR(%) SS ASR(%) SS

PGD 20.0 0.274 19.0 0.218 16.0 0.286 23.0 0.243 19.5 0.255
MF-it 19.0 0.263 24.0 0.242 9.00 0.245 17.0 0.237 17.3 0.247
MF-ii 14.0 0.260 17.0 0.221 12.0 0.253 14.0 0.234 14.3 0.242

ADVEDM-R 79.0 0.487 83.0 0.504 75.0 0.472 86.0 0.544 80.8 0.502
ADVEDM-A 73.0 0.536 79.0 0.517 71.0 0.509 82.0 0.530 76.3 0.523
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the pedestrians at the cross.

What ac'on should 
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not a road scene with cars driving, 
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🙋
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the vehicle take next?

🙋
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🙋
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the vehicle take next?

🙋

Untargeted A+ack

A+ack Target: [Truck]

A+ack Target: [Person]

Va  n i lla
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Figure 5: Visualization results in the au-
tonomous driving decision-making task.
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to the top of the triangle.

Remove the CD from the toy 
car. Put the toy person to the 

top of the triangle.

Remove the CD from the 
desktop. Put the toy person 

to the cup.

I will proceed with these 
key steps:
1.Grab the CD.
2.Remove the CD to the 
right of the toy car.
3.Grab the toy person.
4.Place the toy person to 
the top of triangle. Action result

There is no triangle here.
I will proceed with these 
key steps:
1.Grab the CD.
2.Remove the CD from the 
desktop.

Sorry, I do not find the 
CD, toy car, toy person 
and triangle in the 
image. 

I will proceed with these 
key steps:
1.Grab the CD.
2.Remove the CD from the 
desktop.
3.Grab the toy person.
4.Place the toy person to 
the cup.

Action result

Action result Action result

Vanilla

Va  n i lla

Va  n i lla

Figure 6: Visualization results in the VLM-based
robotic arm manipulation task.

select 100 road scene images and choose common objects in the road as target, such as vehicles,
pedestrians, and traffic lights. The impact of various attacks on the reasoning process of VLMs is
presented in detail in Appendix C.

Results. The quantitative results are reported in Tab. 2 and 3, and the visualization results are shown
in Fig. 5. According to the quantitative results, the average ASR of our methods are over 70% and
75% on the two datasets, respectively, dramatically outperforming existing attack methods. This
demonstrates that our attack can have a substantial impact on VLM-based decision-making systems
in autonomous driving. Our methods also achieve higher SS, as they ensure the model outputs valid
decisions that are structurally identical to normal outputs, such as "The vehicle should go straight/turn
left." Besides, the visualization results also demonstrate that our methods enable VLMs to make valid
but incorrect decisions, thereby affecting the vehicle’s driving state.

5.3.2 Robotic Manipulation Task

Settings. We take the robotic arm manipulation task as an example, where various objects are placed
on desktop, and then 100 images are captured to form the dataset. We still select three general VLMs
and EmbodiedGPT (EmGPT) [24], a VLM specifically designed for this task, as victim models. For
each image, the instructions we design involve the manipulation of two or more objects, including
the target object selected for attack. Moreover, to better visualize the results, we deploy the VLMs on
a UR robotic arm, where their outputs directly influence the robotic arm’s actions. The impact of
various attacks on the reasoning process of VLMs is also discussed in Appendix C.

Results. The quantitative results are shown in Tab. 4 and the visualization results are shown in Fig. 6.
The presentation videos of attacking on robotic arm manipulation can be found on our website. The
results highlight the superior effectiveness of our attack methods, achieving ASR values of 68.8%
and 64.5%, significantly surpassing those of existing attacks. When VLMs encounter existing attacks,
the perceived semantics are completely different from the original image, leading to error messages
such as “Sorry, there is no object A nor B on the desktop.", resulting in lower SS values. In contrast,
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Table 4: Quantitative results of attacks in robotic arm manipulation task.

Attacks
Models LV-v2 MGPT-4 Otter EmGPT Avg.

ASR(%) SS ASR(%) SS ASR(%) SS ASR(%) SS ASR(%) SS

PGD 16.0 0.123 12.0 0.165 11.0 0.103 7.00 0.079 11.5 0.117
MF-it 11.0 0.132 15.0 0.185 14.0 0.118 10.0 0.090 12.5 0.131
MF-ii 9.00 0.119 12.0 0.155 6.00 0.091 9.00 0.095 9.0 0.115

ADVEDM-R 72.0 0.459 66.0 0.428 63.0 0.466 74.0 0.450 68.8 0.451
ADVEDM-A 67.0 0.417 63.0 0.448 58.0 0.436 70.0 0.487 64.5 0.447

our methods mainly alter the VLM’s decisions and plannings regarding the target object, while
the decisions and plannings for non-target objects remain similar to those make for clean images,
ensuring that the SS values remain sufficiently higher.

6 Conclusion

In this work, we propose a fine-grained adversarial attack framework ADVEDM against the VLM-
based EDM systems, which aims to reveal the vulnerabilities of them. By only disrupting the VLM’s
perception of the target object while preserving other semantics, our attack maintains the integrity
of VLM’s reasoning process, enabling it to output valid yet incorrect decisions that influence the
entity’s interactions with the real world. Specifically, we design two attack variants: ADVEDM-R,
which removes the semantics of a specific object from the image, and ADVEDM-A, which injects the
semantics of a new object into the image. Experimental results in both general scenarios and EDM
tasks demonstrate the superior fine-grained control and attack effectiveness of our methods against
the VLM-based EDM systems, outperforming existing attacks targeting the VLM itself.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Part of our source code is in the supplementary material. The complete code
will be released after publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports appropriate information about the statistical significance of
the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information is provided in our appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research confirms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This is included in the Introduction and Conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly acknowledge and credit the original repository authors in the
provided code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We adopt LLM-as-a-judge in our experiments to processing results. The
detailed usage instructions and settings are provided in the appendix and the source code.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Experimental Settings

Parameter Settings of our methods. For ADVEDM-R, we select the top 20% of image patches
with the highest similarity to the target object’s text embedding and mask their pixels to generate
masked image M . We set w1, w2 and w3 in Eq. (3) to 0.5, 2, and 0.2, respectively. The optimization
is performed for 500 iterations using the Adam optimizer [59] with a learning rate of 0.005. For
ADVEDM-A, we We select a 100 × 100 pixel region in the image for semantic injection. When
reallocating attention weights, we set the scaling factor β = 0.4 in Eq. (12), and the fusion weight α
of [CLS] tokens is 0.5 in Eq. (11). During the optimization process, w1 to w3 is set to 0.8, 2, and 0.3,
respectively. The remaining optimization settings are kept identical to those of ADVEDM-R.

Experimental environment. All experiments are conducted on NVIDIA A100-SXM4 GPUs,
each equipped with 80GB of memory. For the calculation of metrics ASR and SPR, we adopt the
LLM-as-judge approach [45], employing GPT-3.5-turbo and other LLMs.

Definition of metrics. Semantic Similarity (SS) is defined as the cosine similarity of between output
embeddings of adversarial and clean images calculated by a text encode, which can be expressed as
Eq. 13:

SS = CS(Et(T ), Et(T
′)) (13)

where CS(·) is the cosine similarity function and T and T ′ represent the textual outputs of clean
images and adversarial examples respectively.

As for calculating SPR, the procedure is divided into two steps. The first step involves decomposing
all objects included in the description T and T ′, which can be done by GPT-3.5-turbo, as shown in
Eq. 14. The specific prompts for extracting the semantics of objects are provided in our source code.

D = L(T ) = {Obj1, Obj2, ..., Objn}
D’ = L(T ′) = {Obj′1, Obj′2, ..., Obj′n′}

(14)

L is the LLM served as the judge. D and D’ are the set of objects whose semantics are included in
the description T and T ′. Then we compute the SPR value as the preservation rate of the original
object semantics in D’, expressed as Eq. 15.

SPR =
|D’

⋂
D|

|D|
(15)

where | · | here represents the number of elements in the set.

B More Results of Experiments in EDM tasks

Here, we illustrate the reasoning process of VLM-based embodied decision-making systems to
better demonstrate how our methods precisely affect the VLM’s CoT while preserving its structural
integrity.

The CoT of VLMs in the autonomous driving task under various attacks as follows. The input
image and prompts are identical to Fig. 5 in the manuscript. Our methods enable the VLM to
correctly reason about non-target objects (like the green traffic lights) while inducing incorrect
reasoning specifically for the target object. This demonstrates the fine-grained control of our methods,
accurately manipulating targeted part of the VLM’s reasoning process.

CoT of the clean image: In current scenario, the green light allows the vehicle to proceed through the
intersection. Given the surrounding traffic—specifically, a truck ahead in the current lane and cars in the left
lane—the vehicle should maintain a safe speed and distance while continuing straight.

CoT of existing attacks: The current scene depicts a plate of fruit on a table with a cat nearby. As it
bears no clear connection to a road scenario, no relevant decision can be made.

CoT of ADVEDM-R: In the current scenario, the traffic light is green, allowing the vehicle to proceed
straight. With no vehicles or pedestrians ahead in the lane, it can accelerate safely.

21



Figure 7: Results of our methods under various ϵ values.

CoT of ADVEDM-A: In the current scenario, the green traffic light indicates that the vehicle can proceed
straight. However, since a pedestrian is at the intersection, the vehicle should slow down and brake to yield.
Once the pedestrian has passed, it can continue forward.

The CoT of VLMs in robotic arm manipulation are as follows. The input image and prompts are
consistent with Fig. 6 in the manuscript. Existing attacks prevent the VLM from recognizing any
objects mentioned in the instructions, disrupting the reasoning process and terminating the task.
ADVEDM-R enables the VLM to remain unaware of the target object while leaving other objects
unaffected. As a result, the system makes incorrect decisions related to the target object while
correctly executing other instructions. ADVEDM-A makes the VLM perceive the injected semantics
of the target object, and then make corresponding decisions and plannings for instructions involving
the object.

In conclusion, our methods perturb the VLM’s perception process to precisely manipulate its reasoning
about the target object while maintaining the coherence and integrity of the entire CoT.

CoT of the clean image: Seeing a CD on the toy car, grasp and remove it. Noticing the toy person and
the triangle, pick up the toy person and carefully place it on top of the triangle, ensuring stability.

CoT of existing attacks: Detected an apple and a book on the table, but no CD, toy car, or triangle.
Adjust the camera to search further. Found a fork and a doll in the corner, but no matching objects. Task
aborted.

CoT of ADVEDM-R: Detected a CD, a toy car, and a toy person but no triangle. Remove the CD first.
With no target for the toy person, pause the task and await further instructions.

CoT of ADVEDM-A: Detected a CD, a toy car, a toy person, a triangle, and a cup. First, grab and
remove the CD. Then, seeing the cup as the target container, decide to pick up the toy person and carefully
place it into the cup, ensuring stability before completing the task.

C Ablation Studies

Influence of ϵ. The ϵ in the manuscript is the norm constraint of adversarial perturbation. Here, we
set a range of ϵ values and select 100 images from MS-COCO for evaluation. Other settings are the
same as Sec. 5.1 in the manuscript. The average results for various metrics in five victim VLMs are
shown in Fig. 7. The visualization results under different ϵ are also illustrated in Fig. 8.

According to the results, the attack effectiveness is inferior when ϵ is set to 4/255, as the adversarial
perturbation is too slight to disrupt the perception of VLMs. As ϵ increases, the magnitude of
adversarial perturbation grows and our methods achieve stronger attack effectiveness. However, too
large magnitude of perturbation breaks the semantics of non-target objects in the image, resulting in a
significant drop in the SPR values, especially when ϵ ≥ 12/255. So ϵ = 8/255 serves as an optimal
setting that balances attack effectiveness and fine-grained control.
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Clean ε = 4/255 ε = 8/255 ε = 12/255 ε = 16/255

Figure 8: Visualization results under different ϵ settings.

Figure 9: Results of ablation study about three loss functions of our methods.

Ablation about loss functions. As shown in Eq. (10) in the manuscript, the optimization objective
of our methods consists of three loss functions: Lcls, Lp, and Lfix. We also select 100 images from
MS-COCO and also keep other settings identical to Sec. 5.2. The average results of various metrics
are illustrated in Fig. 9.

The ASR values decrease dramatically without Lcls or Lp, which demonstrates that removing or
injecting the target object’s semantics from both global and local perspectives is more effective.
Additionally, Lfix is critical to preserve non-target objects’ semantics, as the SPR values decrease to
about 0.35 and 0.4 respectively without Lfix.

Ablation about modules and hyper-parameters in ADVEDM-A. As for ADVEDM-A, we addi-
tionally provide some experimental results of ablation studies on attention-weight reallocation and
the hyper-parameters α and β in Eq. 9 and 10 to investigate their impact on the attack performance.
Specifically, we randomly select 100 images from the COCO dataset and evaluate the results on
MiniGPT-4 and LLAVA-V2. All other experimental settings remain the same as those described in
Appendix A. The results are presented in Tab. 5 and 6, respectively.

According to Tab. 5, without the attention-weight reallocation, both SPR and SS drop significantly,
which highlights the importance of this mechanism for fine-grained control. It ensures sufficient
attention is allocated to the original regions of the image, enabling the model to retain awareness of
the remaining semantics after the new semantic injection.

The results in Tab. 5 and 6 indicate that both α and β influence the strength of semantic injection for
the target objects. Larger values of them lead to increased attention weights assigned to the injected
semantics, resulting in higher ASR. However, this also affects the model’s perception of the semantics
of other objects in the image, leading to a decrease in SPR and SS. Overall, to better balance the two
aspects, we adopt α = 0.5 and β = 0.4 as our default configuration.
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Table 5: Ablation study of reallocation
module and α in Eq. 9.

Settings ASR (%) SPR (%) SS

α = 0.3 58.0 85.3 0.804
α = 0.4 67.5 80.7 0.776
α = 0.5 72.5 74.8 0.727
α = 0.6 78.0 66.1 0.655
α = 0.7 81.5 53.6 0.583

w/o realloc. 70.5 44.3 0.515

Table 6: Ablation study of β in Eq. 10.

Settings ASR (%) SPR (%) SS

β = 0.2 64.0 81.6 0.785
β = 0.3 69.5 79.0 0.752
β = 0.4 72.5 74.8 0.727
β = 0.5 74.0 67.6 0.690
β = 0.6 77.0 59.3 0.644

Table 7: Ablation studies of the weights of loss functions in ADVEDM-R and ADVEDM-A.

Settings
Metrics ADVEDM-R ADVEDM-A

ASR (%) SPR (%) SS ASR (%) SPR (%) SS

group (1) 79.5 64.3 0.626 77.0 69.2 0.674
group (2) 82.0 61.8 0.609 81.5 63.1 0.658
group (3) 69.0 74.5 0.723 65.5 79.6 0.771
baseline 75.0 71.8 0.691 72.5 74.8 0.727

Ablation about the weights of loss functions. We conduct studies on various combinations of
loss function weights, using the same data and model settings as described above. For AdvEDM-R,
we set the groups: (1) w1 = 0.8, w2 = 2, w3 = 0.2; (2) w1 = 0.5, w2 = 2.3, w3 = 0.2; (3)
w1 = 0.5, w2 = 2.0, w3 = 0.5; (4) w1 = 0.5, w2 = 2.0, w3 = 0.2 (baseline). For AdvEDM-A,
we set the groups: (1) w1 = 1.0, w2 = 2.0, w3 = 0.3; (2) w1 = 1.0, w2 = 2.2, w3 = 0.3; (3)
w1 = 0.8, w2 = 2.0, w3 = 0.5; (4) w1 = 0.8, w2 = 2.0, w3 = 0.3 (baseline). The results are
presented in Tab. 7.

According to the quantitative results, the weights w1 and w2 control the removal and injection of
target semantics. Increasing their weights tends to improve the ASR, as more attention is directed
toward the semantics of the target object. However, this also reduces the preservation of the original
semantics in the image, leading to lower SPR and SS values. By contrast, increasing w3 encourages
the model to preserve more of the original semantics, but it weakens the target objects’ semantics,
resulting in a decrease in ASR.

D Exploration of Transferability

To further evaluate the performance of our methods in black-box scenarios where the adversary has
no knowledge about the victim model, we adapt them into transfer-based attacks. Specifically, we
adopt SSA-CWA algorithm [60, 61] during the optimization process and employ four vision-text
encoders, CLIP-ViT-L14, CLIP-ViT-B32, CLIP-ViT-bigG-14, and ViT-SO400M-14-SigLIP [62], as
an ensemble of surrogate models.

Settings. We randomly select 100 images from MS-COCO and set target objects. The victim models
include four commercial black-box VLMs: GPT-4o [63], Gemini-2.0 [2], Claude 3.5 [64]. The
number of iterations is set to 30 for SSA-CWA, and the constraint of perturbation ϵ is 16/255. Other
settings are identical to Sec. 5.2.

Results. The results are shown in Tab. 8. In the more challenging black-box setting, the attack
effectiveness of our methods degrades, with the ASR of the two methods dropping by approximately
20% and 30% compared with attacks in the gray-box setting. Nevertheless, our methods still maintain
a notable level of effectiveness against commercial VLMs while preserving fine-grained control,
highlighting their potential for transferability to black-box scenarios. How to further enhance the
transferability of our attacks will be explored in future work.
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Table 8: Results of our methods in the black-box setting.
ADVEDM-R

Metrics
Models

GPT-4o Gemini Claude Average

ASR(%) 58.0 55.0 60.0 57.7
SPR(%) 71.3 68.1 70.6 70.0

SS 0.656 0.631 0.611 0.632

ADVEDM-A

Metrics
Models

GPT-4o Gemini Claude Average

ASR(%) 44.0 38.0 35.0 39.0
SPR(%) 73.7 76.4 77.5 75.9

SS 0.693 0.701 0.718 0.704

E Discussion about Limitations

In this work, we focus on leveraging adversarial perturbations to achieve fine-grained control over a
specific aspect of image semantics, namely the presence or absence of a particular object. In fact, other
levels of fine-grained semantics, such as altering the spatial location of objects or their interrelations,
may also induce valid yet incorrect decisions in embodied EDM systems. A comprehensive analysis
of these dimensions remains beyond the scope of this work, and we will further explore these aspects
in our future work.

Moreover, our attack involves manipulating the image uploaded by the user to the VLM, thereby
interfering with the system’s decision-making process in the digital domain. While certain existing
techniques, such as network interception and packet tampering—could potentially enable such attack,
it offers limited flexibility. In future work, we plan to explore physically deployable adversarial
examples (e.g., adversarial patches) to enable more passive and practical attack scenarios in the
physical world.
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