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Abstract

Large language models (LLMs) fine-tuned001
with alignment methods, such as reinforcement002
learning from human feedback, have been used003
to develop some of the most capable AI sys-004
tems to date. Despite their success, existing005
methods typically rely on simple binary labels,006
such as those indicating preferred outputs in007
pairwise preferences. This overlooks the vary-008
ing relative quality between pairs, preventing009
models from capturing these subtleties. To ad-010
dress this limitation, we consider settings in011
which this information (i.e., margin) can be de-012
rived and propose a straightforward generaliza-013
tion of common optimization objectives used014
in alignment methods. The approach, which015
we call Margin Matching Preference Optimiza-016
tion (MMPO), integrates per-feedback margin017
to enhance optimization, making it more ro-018
bust to overfitting and resulting in better LLM019
policies and reward models. Specifically, given020
quality margins in pairwise preferences, we021
design soft target probabilities based on the022
Bradley-Terry model, which are then used to023
train models with the standard cross-entropy024
objective. Our experiments with both human025
and AI feedback data demonstrate that MMPO026
can outperform baseline methods, often by a027
substantial margin, on popular benchmarks, in-028
cluding MT-bench and RewardBench. Notably,029
the 7B model trained with MMPO achieves030
state-of-the-art performance on RewardBench031
compared to competing models at the same032
scale, as of June 2024. Our analysis further033
demonstrates that MMPO is more robust to034
overfitting, leading to better-calibrated models.035

1 Introduction036

Large language models (LLMs) trained on037

internet-scale data have demonstrated remarkable038

instruction-following and generalization capabili-039

ties, leading to their widespread adoption across040

natural language processing (NLP) tasks (Brown041

et al., 2020; Chowdhery et al., 2023; Penedo et al.,042

2023; Chung et al., 2024). Pre-trained on a large, 043

general corpus of text, LLMs acquire broad knowl- 044

edge about the world with language understanding 045

and reasoning abilities (Radford et al., 2019; Wei 046

et al., 2022a,b; Kojima et al., 2022). To adapt a 047

pre-trained LLM to a downstream task, the model 048

is typically fine-tuned on demonstrations of the de- 049

sired output for the task. However, providing high- 050

quality demonstrations is generally more expen- 051

sive than evaluating model outputs. Reinforcement 052

learning from human feedback (RLHF; Christiano 053

et al. 2017; Stiennon et al. 2020) or AI feedback 054

(RLAIF; Bai et al. 2022b; Lee et al. 2023) is a 055

class of methods that utilize feedback on diverse 056

outputs to optimize LLMs to produce responses 057

more aligned with human intent. RLHF methods 058

have been successfully applied in developing some 059

of the most capable AI systems to date (Achiam 060

et al., 2023a; Team et al., 2023; Anthropic, 2024). 061

Feedback-based alignment utilizes human or AI 062

feedback data to fine-tune generative models to bet- 063

ter align with human intent. Reward-based meth- 064

ods such as RLHF learn a surrogate reward function 065

from feedback data, which is subsequently used to 066

fine-tune models using, e.g., reinforcement learn- 067

ing (RL). In contrast, reward-free methods such as 068

direct preference optimization (DPO; Rafailov et al. 069

2024) bypass the explicit reward modeling step and 070

directly fine-tune models on the data. The feedback 071

is commonly in the form of pairwise preferences, 072

where responses for a given input are compared in 073

pairs (e.g., y1 ≻ y2 for input x), and labels indi- 074

cating the preferred one of the two are collected. 075

Recent methods such as Kahneman-Tversky opti- 076

mization (KTO; Ethayarajh et al. 2024) also uti- 077

lize simpler binary feedback of whether or not a 078

response is desirable for a given input. These align- 079

ment methods have proven to be more effective 080

than applying SFT alone. However, existing meth- 081

ods rely on binary labels indicating the preferred 082

output in a pair or the desirability of individual out- 083
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Figure 1: The quality gap between response pairs in pairwise preference data often varies significantly. MMPO
incorporates granular feedback into optimization, resulting in better-performing, robust, and well-calibrated models.

put, forgoing the opportunity to incorporate more084

granular feedback signals into learning.085

In this work, we propose a simple generaliza-086

tion of common alignment methods, called Mar-087

gin Matching Preference Optimization (MMPO),088

which integrates granular feedback signals into op-089

timization to allow models to capture the subtleties090

in preferences reflected in the feedback data (see091

Figure 1 for an illustration). Such granular feed-092

back could come from human annotators providing093

detailed ratings, such as those on a Likert scale,094

or from AI models, which are increasingly used095

for automatic evaluation of model responses. The096

MMPO objective utilizes per-sample target prefer-097

ence probabilities, designed based on the quality098

margin between output pairs. Given that reward099

modeling and DPO (and similar methods based on100

pairwise preferences) use equivalent cross-entropy101

loss, the approach naturally extends to both. By102

utilizing target probabilities designed according to103

the quality margin of each output pair, models are104

trained to account for the specifics of each feedback105

sample. For example, a reward function trained106

with MMPO would assign much higher scores to107

preferred outputs compared to corresponding dis-108

preferred outputs when the quality margin is large,109

and similar scores to both when their qualities are110

comparable. The idea easily extends to methods111

that rely on alternative forms of feedback.112

Our main contributions are as follows:113

• We introduce Margin Matching Preference Op-114

timization (MMPO), a simple generalization of115

alignment methods that utilizes granular feed-116

back signals to enhance model alignment.117

• Our empirical results on both human and AI 118

feedback demonstrate that MMPO outperforms 119

baseline methods on MT-bench (Zheng et al., 120

2024), a popular benchmark for evaluating the 121

quality of model generations, by up to 11%. 122

• Our evaluation on RewardBench (Lambert et al., 123

2024), a benchmark for assessing models’ ca- 124

pability as reward models, shows that the 7B 125

model trained with MMPO achieves state-of-the- 126

art performance compared to competing models 127

at the same scale, as of June 2024. 128

• Our analysis demonstrates that MMPO is more 129

robust to overfitting feedback data, resulting in 130

well-calibrated models that better generalize to 131

prompts unseen during fine-tuning. 132

2 Preliminaries 133

Model alignment using feedback generally involves 134

1) supervised fine-tuning (SFT) of pre-trained mod- 135

els and 2) aligning the models using human or 136

AI feedback data. During the SFT phase, a pre- 137

trained LLM is fine-tuned using supervised learn- 138

ing on task-specific demonstrations, such as human- 139

written summaries in the case of a summarization 140

task. In the alignment phase, the model is further 141

fine-tuned to generate outputs that align with the 142

preferences reflected in the feedback data. We re- 143

view a few of the popular approaches. 144

RLHF. RLHF methods are reward-based ap- 145

proaches that first learn a reward function on feed- 146

back data, which is then used to provide train- 147

ing signals to the language model in RL fine- 148

tuning. Given a dataset D of pairwise preferences 149
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(x, yw, yl), where x is an input and yw and yl are a150

pair of preferred and dispreferred outputs, we train151

a reward function to assign a higher score to the152

preferred output yw compared to the dispreferred153

yl. Specifically, we model human preference prob-154

ability using the Bradley-Terry model (Bradley and155

Terry, 1952), which defines the probability as a sig-156

moid of the difference in rewards given by a reward157

function rϕ:158

p̂(yw ≻ yl | x) = σ(rϕ(x, yw)− rϕ(x, yl)),159

where σ is the sigmoid function. We optimize160

the parameters of rϕ by minimizing the following161

cross-entropy loss on the feedback data162

L = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)− rϕ(x, yl))].
(1)163

Following reward learning, we train the language164

model policy πθ to maximize the learned reward165

rϕ with a constraint that limits the amount of devi-166

ation from a reference policy πref. In particular, we167

use a policy gradient method, such as PPO (Schul-168

man et al., 2017), to maximize the following KL-169

constrained objective:170

max
πθ

Ex∼D,y∼πθ
[rϕ(x, y)

− βDKL(πθ(y | x) ∥ πref(y | x))] ,
(2)171

where β is a parameter controlling the strength of172

the constraint.173

DPO. An alternative to reward-based approaches174

is DPO (Rafailov et al., 2024), which bypasses both175

the explicit reward modeling and RL-based training.176

This method leverages an analytical relationship177

between the reward function and the optimal solu-178

tion to the KL-constrained optimization objective179

in Eq. 2 to derive the following loss:180

LDPO = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
,

181

where πθ is the language model policy being182

trained, and πref denotes a reference policy. DPO183

has recently become popular, as it allows maxi-184

mum likelihood training of language model poli-185

cies, which typically requires significantly less186

computational resources than RL.187

3 Margin Matching Preference 188

Optimization 189

Whether the feedback is in the form of pairwise 190

preferences or an indicator of desirability, the feed- 191

back label is typically binary. For pairwise prefer- 192

ences, we collect a binary label indicating which of 193

the two outputs is preferred. For binary feedback, 194

the label indicates whether or not an output is de- 195

sirable for a given input. However, more detailed 196

feedback is often available (Touvron et al., 2023; 197

Cui et al., 2023), particularly with the increasing 198

use of LLMs or other AI models as annotators. Mo- 199

tivated by this, we propose a simple generalization 200

of common optimization objectives used in feed- 201

back learning methods that often leads to better 202

reward models and language model policies. The 203

main idea is to design per-sample target preference 204

probabilities p(yw ≻ yl | x) for methods such as 205

DPO, which rely on pairwise preferences, and ad- 206

justing the weight applied in the loss for each (x, y) 207

based on the desirability of y for x for methods like 208

KTO, which are based on binary feedback. 209

3.1 Limitations of binary labels 210

The implicit assumption made in Eq. 1 that the tar- 211

get preference probability p(yw ≻ yl | x) is 1 for 212

every sample in the feedback dataset leads to sev- 213

eral limitations. First, it disregards the fact that the 214

Bradley-Terry model defines preference probability 215

in terms of the difference in rewards between the 216

pairs, i.e., p(yw ≻ yl | x) = σ(r(x, yw)−r(x, yl)). 217

Consequently, if yw is only marginally preferred 218

to yl, the preference probability that more accu- 219

rately captures this subtlety is likely far less than 220

1. Second, setting the target probability to 1 makes 221

the optimization prone to overfitting, as it is attain- 222

able only when r(x, yw) − r(x, yl) = ∞. This 223

latter point has also been analyzed in the context 224

of DPO (Azar et al., 2024), but the issue applies to 225

reward modeling as well. 226

0 2 4 6 8 10
Margin

0.5

0.6

0.7

0.8

0.9

1.0

p(
y w

y l)

= 0.5
= 1.1
= 2.2
= 4.4

Figure 2: Bradley-Terry
model’s preference prob-
ability with varying γ.

In case more detailed 227

information on individ- 228

ual feedback samples 229

is available, such as 230

the relative difference 231

in quality between yw 232

and yl in pairwise pref- 233

erences, we can formu- 234

late optimization objec- 235

tives that more accu- 236

rately capture per-sample characteristics and are 237
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more robust to overfitting. This information could238

come from human annotators providing more fine-239

grained ratings (Touvron et al., 2023) or LLM240

judges (Zheng et al., 2024) providing scores to241

individual samples. For the remainder, we omit the242

dependence on input x for simplicity.243

3.2 Generalized preference optimization244

Given the difference in quality between yw and245

yl, denoted m(yw, yl) < ∞, we use the fact that246

the Bradley-Terry model depends only on the dif-247

ference in rewards to design the target preference248

probability based on the quality margin as249

p(yw ≻ yl) = σ(r(yw)− r(yl)) = σ(γm(yw, yl)),250

where γ is a scaling parameter, often referred to as251

the rationality coefficient. As γ → ∞, the prefer-252

ence becomes perfectly rational and deterministic,253

always favoring the choice with a higher reward.254

Conversely, when γ = 0, preferences become uni-255

formly random, leading to favoring either choice256

regardless of the underlying rewards. Figure 2 il-257

lustrates the change in preference probability given258

by the Bradley-Terry model across different values259

of γ for score differences ranging from 0 to 10.260

Since m(yw, yl) is finite, p(yw ≻ yl) is less than261

1, which leads to the more general binary cross-262

entropy loss that is also less susceptible to overfit-263

ting the feedback data,264

L =− E(yw,yl)∼D

[
p(yw ≻ yl) log σ(r̂(yw)− r̂(yl))

+ (1− p(yw ≻ yl)) log σ(r̂(yl)− r̂(yw))
]
.

265

For reward modeling, r̂ is simply the parameterized266

reward function, rϕ. For DPO, r̂ is the implicit267

reward defined by the language model policy πθ268

and reference policy πref, resulting in the loss269

LDPO = −E(yw,yl)∼D

[
σ(γm(yw, yl)) log σ

(
β log

πθ(yw)

πref(yw)
− β log

πθ(yl)

πref(yl)

)
+ (1− σ(γm(yw, yl))) log σ

(
β log

πθ(yl)

πref(yl)
− β log

πθ(yw)

πref(yw)

)]
.

270

Intuitively, we train models to match per-sample271

preference probabilities, which are determined by272

the quality margin of each pair of yw and yl. If273

yw is of significantly better quality than yl, the274

preference probability that the models are trained275

to fit would be closer to 1. Conversely, if both276

outputs are of comparable quality, the probability277

would be closer to 0.5. In other words, the models 278

are trained to account for this per-sample subtlety. 279

The core idea also easily extends to other forms of 280

feedback, which we discuss further in Section 6. 281

4 Experiments 282

In this section, we evaluate MMPO based on the 283

performance of the language model policies and 284

reward models trained with the method on popu- 285

lar benchmarks. We utilize both human and AI 286

feedback data, presenting benchmark performance 287

along with an analysis of model calibration and the 288

method’s robustness to overfitting. 289

4.1 Setup 290

Supervised fine-tuning. We conduct our experi- 291

ments using the Gemma models, both the 2B and 292

7B variants, which are state-of-the-art open LLMs 293

at similar scales (Team et al., 2024). We first ap- 294

ply supervised fine-tuning (SFT) to the pre-trained 295

models on UltraChat (Ding et al., 2023), a dia- 296

logue dataset that has been used to produce strong 297

chat models such as UltraLM (Ding et al., 2023). 298

The dataset comprises multi-turn dialogues across 299

30 topics and 20 types of text materials generated 300

using ChatGPT. In particular, we use the refined 301

version of the dataset, with various filters applied to 302

remove undesirable responses, consisting of 200k 303

samples also used in training the recent Zephyr 304

model (Tunstall et al., 2023). The SFT models are 305

used for direct optimization on the preference data, 306

as well as for reward modeling. Further experimen- 307

tal details can be found in Appendix A. 308

Feedback datasets. We evaluate alignment meth- 309

ods using both human and AI feedback data to 310

assess their performance on feedback of varying 311

qualities. UltraFeedback (Cui et al., 2023) is a 312

dataset consisting of 64k prompts and pairs of re- 313

sponses generated using a diverse set of LLMs. 314

Each response is rated on a scale of 1 to 10 by GPT- 315

4 (Achiam et al., 2023b), based on criteria such 316

as instruction-following and helpfulness. Given 317

the ratings for individual responses, we use them 318

to compute the quality margin for each pair. We 319

then compute the target preference probability fol- 320

lowing the Bradley-Terry model, with the scaling 321

parameter γ tuned based on validation accuracy. 322

To also experiment with human feedback, we use 323

the SHP dataset (Ethayarajh et al., 2022), which 324

consists of human preferences over responses to 325

Reddit posts across 18 subject areas. The dataset 326
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Table 1: MT-bench results for models trained with
MMPO and DPO. The results for other open and pro-
prietary models are from the official leaderboard.

Model Size UF SHP

Gemma-SFT 2B 4.73 4.73
Gemma-DPO 2B 6.09 5.13
Gemma-MMPO 2B 6.10 5.57

Gemma-SFT 7B 6.84 6.84
Gemma-DPO 7B 7.40 6.49
Gemma-MMPO 7B 7.53 7.23

Gemma-IT 7B 6.26
Zephyr−β 7B 7.34
GPT-3.5-Turbo - 7.94
GPT-4 - 8.99

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model

GPT-4

GPT-3.5-turbo

Gemma-IT(7B)

Gemma-MMPO(7B)

Figure 3: MT-bench results categorized by the eight
domains. The MMPO model outperforms Gemma-IT
and is competitive with GPT-3.5 in multiple domains.

provides scores for each response, computed based327

on the number of positive and negative votes re-328

ceived from users, serving as a proxy for the rela-329

tive quality of the response. We compute the target330

preference probabilities in a similar manner, based331

on the scores derived from the net positive number332

of votes. Given the large size of the original data,333

we construct a sample of size 55k, which is compa-334

rable to that of UltraFeedback. While training only335

on preferences with significant score differences336

has been shown to result in better performing mod-337

els (Ethayarajh et al., 2022), we sample uniformly338

across score differences to evaluate the methods339

over diverse quality margins. Further details on340

dataset sampling can be found in Appendix A.341

Evaluation. Our main evaluations are on MT-342

bench (Zheng et al., 2024), a multi-turn chat bench-343

mark consisting of 160 questions across eight344

knowledge domains. In this benchmark, models are345

assessed on their capability to follow instructions346

and respond coherently over two turns of conver-347

sation. Each of the two responses is evaluated by348

GPT-4 as a proxy for human judgments on a scale349

of 1 to 10, with the average score used as the score350

for that conversation. The mean score over all 160351

conversations is then the final benchmark score.352

We further evaluate models on RewardBench353

(Lambert et al., 2024), a benchmark focused on as-354

sessing models’ capability as reward models. This355

evaluation includes two main aspects: (a) the abil-356

ity of reward functions, trained as described in357

Section 2, to assign higher scores to preferred re-358

sponses, and (b) the ability of language model poli-359

cies, trained using methods such as DPO, to assign360

higher implicit rewards to preferred responses. The361

benchmark contains a broad set of pairwise pref-362

erence data to assess models across chat, safety,363

reasoning, and other domains. The primary metric 364

is the weighted mean accuracy over all the prompts. 365

4.2 Benchmark evaluation 366

Generation quality. Table 1 summarizes the MT- 367

bench results for the SFT models and the models 368

fine-tuned on the UltraFeedback (UF) and SHP 369

datasets using MMPO and DPO. MMPO con- 370

sistently produced models that outperform those 371

trained with DPO, across both synthetic and human 372

feedback data. The performance gap is more signif- 373

icant for the 7B model compared to the 2B model 374

and is larger when using human feedback data than 375

synthetic data. Notably, the 7B model fine-tuned 376

with DPO on the SHP data performs worse than the 377

7B SFT model, while the 7B model fine-tuned with 378

MMPO outperforms both by a noticeable margin. 379

This discrepancy may be due to the inherent noise 380

in human feedback, underscoring the importance 381

of accounting for per-sample specifics during fine- 382

tuning. See Appendix C for qualitative examples 383

of model comparison on the SHP dataset. 384

Figure 3 shows the MT-bench results for GPT- 385

4, GPT-3.5, the instruction-tuned (IT) 7B model, 386

and the 7B model fine-tuned on UltraFeedback 387

with MMPO, categorized by the eight domains. 388

The 7B MMPO model outperforms the instruction- 389

tuned model across all domains except for rea- 390

soning. Also, while the overall score for the 7B 391

MMPO model is slightly lower than that of GPT- 392

3.5, it matches GPT-3.5’s performance on several 393

domains, including humanities and math, and even 394

exceeds it in others, such as STEM and roleplay. 395

Capability as reward models. We also assess 396

the models’ ability as reward models, specifically 397

their capability to distinguish between preferred 398

and dispreferred responses to prompts across di- 399
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Table 2: RewardBench results for the models fine-tuned with MMPO and DPO on UltraFeedback and for other
LLMs from the official leaderboard. The Chat and Chat Hard subsets cover open-ended prompts, Safety covers
prompts with safety concerns to evaluate the model’s ability to avoid harmful content, Reason covers prompts
evaluating the coding and reasoning capabilities, and Prior Sets includes test prompts sampled from datasets such
as the Anthropic HH data (Bai et al., 2022a) and OpenAI’s summarization data (Stiennon et al., 2020).

Model Size Avg Chat Chat Hard Safety Reason Prior Sets

Gemma-DPO 2B 59.4 95.0 45.6 51.9 49.6 50.1
Gemma-MMPO 2B 62.3 96.1 45.1 52.3 59.8 53.6

Gemma-DPO 7B 73.0 96.6 59.9 73.7 69.0 58.3
Gemma-MMPO 7B 75.6 97.5 62.9 71.1 75.0 67.7

Zephyr-β 7B 70.7 95.3 62.6 54.1 89.6 52.2
Zephyr-α 7B 73.6 91.6 63.2 70.0 89.6 53.5

Tulu-2-DPO 70B 77.0 97.5 60.8 85.1 88.9 52.8

verse domains. For this evaluation, we use Reward-400

Bench (Lambert et al., 2024), a dataset of prompts401

and pairwise preferences designed for such assess-402

ments. Table 2 summarizes the results, with the403

Avg column showing the final evaluation score and404

the other columns reporting the scores broken down405

by the prompt subsets. The MMPO models outper-406

form the DPO models at both scales across all sub-407

sets, except in one case where the results are compa-408

rable. Notably, the performance gap is particularly409

significant on the Reason and Prior Sets subsets,410

where the MMPO models substantially outperform411

the DPO models. Considering that the fine-tuning412

datasets primarily focus on enhancing chat capa-413

bilities, it is noteworthy that the MMPO models414

achieve superior results on prompt types different415

from those encountered during fine-tuning.416

Moreover, the MMPO models outperform both417

Zephyr-α and Zephyr-β models, which are com-418

petitive open models at the 7B scale. In fact,419

as of June 2024, the 7B MMPO model achieves420

state-of-the-art performance on the RewardBench421

leaderboard compared to other models at the same422

scale. Additionally, compared to the Tulu-2-DPO423

model, which is 10x larger, the 7B MMPO model424

remains competitive and even outperforms it on425

Prior Subsets. The results suggest that MMPO,426

by training models to align with the quality margin427

of individual feedback samples, leads to more cali-428

brated models that better generalize to the types of429

prompts unseen during fine-tuning.430

Calibration analysis. Evaluation on Reward-431

Bench primarily focuses on accuracy, i.e., whether432

the model assigns higher rewards to preferred re-433

sponses. We further assess how well the models434

are calibrated in terms of their predicted prefer-435

ence probabilities. Specifically, we measure the ex-436

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence bin

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

ECE: 0.1976

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence bin

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

ECE: 0.0972

Figure 4: Reliability diagrams for the 7B DPO model
(left) and the 7B MMPO model (right), fine-tuned on Ul-
traFeedack, evaluated on Prior Sets of RewardBench.
The MMPO model is overall better calibrated, achieving
a much lower expected calibration error.

pected calibration error (ECE) (Naeini et al., 2015) 437

on Prior Sets of RewardBench for the 7B models 438

fine-tuned on UltraFeedback. We use this subset 439

because it includes data sampled from various ex- 440

isting human preference datasets, such as the An- 441

thropic HH (Bai et al., 2022a) and OpenAI’s sum- 442

marization (Stiennon et al., 2020) datasets, allow- 443

ing for calibration assessment on diverse prompts 444

distinct from those encountered during fine-tuning. 445

As illustrated in Figure 4, the DPO model demon- 446

strates poor calibration overall, exhibiting both un- 447

der and overconfidence depending on the bins. In 448

contrast, the MMPO model is substantially better 449

calibrated, resulting in a significantly lower ECE. 450

The analysis suggests that MMPO not only pro- 451

duces models that are more accurate as reward 452

models but also ensures they are better calibrated in 453

terms of the preference probabilities they predict. 454

Robustness to overfitting. As discussed in Sec- 455

tion 2, an issue with using a target probability of 1 456

in the cross-entropy loss (Eq. 1) is that it can lead to 457

overfitting the data, as the probability is only attain- 458

able when the score difference is infinite. MMPO 459

avoids this issue by utilizing target probabilities 460

designed from finite quality margins. The left plot 461
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Table 3: RewardBench results comparing reward models trained with MMPO and standard reward modeling (RM)
on UltraFeedback, using Gemma SFT models as the base. Reward models at both scales trained with MMPO
demonstrated superior overall performance compared to those trained with standard reward modeling.

Model Size Avg Chat Chat Hard Safety Reason Prior Sets

Gemma-RM 2B 63.6 94.4 49.8 51.1 64.1 58.6
Gemma-MMPO 2B 65.7 96.1 49.6 55.6 68.6 58.7

Gemma-RM 7B 73.3 96.9 64.7 74.4 70.2 60.3
Gemma-MMPO 7B 74.6 96.1 70.0 77.8 64.1 64.8
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Figure 5: The difference in implicit rewards between re-
sponse pairs in the validation set of UltraFeedback (left)
suggests overfitting for the DPO model during epoch
3, coinciding with a drop in performance on MT-bench
(right). In contrast, the MMPO model maintains more
moderate margins, achieving a better final performance.

in Figure 5 illustrates how the difference in implicit462

rewards between response pairs in the validation463

set of UltraFeedback evolves as training progresses.464

It specifically compares the 7B models trained with465

DPO and MMPO. The plot illustrates that both466

models exhibit a gradual increase in margins up467

to epoch 2, with a slightly larger margin observed468

for the DPO model. However, during epoch 3, the469

margin for the DPO model increases substantially,470

coinciding with a performance drop on MT-bench471

as shown in the right plot. In contrast, the MMPO472

model maintains the margin at a reasonable level473

and achieves a higher score on MT-bench at epoch474

3 compared to epoch 2. We suspect that the drop475

in performance at epoch 1 for the MMPO model is476

due to underfitting, which is later fixed with further477

training, outperforming the DPO model at epoch478

3. The analysis demonstrates MMPO’s additional479

advantage in terms of robustness to overfitting.480

4.3 Reward modeling with MMPO481

Best-of-n results. The maximum likelihood ob-482

jective for DPO shares the same form as that for483

reward modeling, making MMPO naturally applica-484

ble to both. We evaluate MMPO applied to reward485

modeling using best-of-n, a simple inference-time486

method of selecting the best one out of n responses487

according to a reward function. We first train re-488

ward models both with and without MMPO using489

the 2B and 7B SFT models as base models until490

the validation accuracy converges. We then use the491

best-of-16 best-of-64 best-of-256
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Figure 6: MT-bench results for best-of-n with reward
models trained with and without MMPO on UltraFeed-
back for the 2B (left) and 7B (right) models. As n
increases, performance improves for MMPO, while per-
formance peaks and then declines without it.

reward models to select the best response out of 492

the n responses to each MT-bench question gen- 493

erated using the SFT models. As Figure 6 shows, 494

the quality of the best-of-n responses, as measured 495

by the MT-bench performance, improves gradually 496

when reward models trained with MMPO are used. 497

In contrast, for the baseline reward models, perfor- 498

mance peaks at n = 64 and even slightly drops at 499

n = 256 for the 2B model. The results suggest 500

that reward models trained with MMPO are more 501

robust to overoptimization, which is related to and 502

consistent with the findings from the overfitting 503

analysis. 504

Capability as classifiers. Table 3 presents the 505

RewardBench results comparing models trained 506

with MMPO to those trained with standard reward 507

modeling (RM). At both the 2B and 7B scales, re- 508

ward models trained with MMPO achieve superior 509

overall performance. Specifically, the 2B MMPO 510

model outperforms the 2B RM model across all 511

subsets, except for Chat Hard, where the differ- 512

ence is negligible. The 7B MMPO model lags 513

somewhat behind the 7B RM model on the Reason 514

subset, but it outperforms the RM model on the 515

Chat Hard, Safety, and Prior Sets subsets by 516

notable margins, achieving a better overall perfor- 517

mance. The results suggest that MMPO enhances 518

classification capability across diverse domains by 519

encouraging reward models to align with quality 520

margins during training. 521
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4.4 Estimating quality margins522
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Figure 7: Similarities
between the response
pairs in UltraFeedback,
as computed using
all-mpnet-base-v2,
compared to the differ-
ences in GPT-4 scores.

We discuss several ap-523

proaches to estimating524

quality margins for pair-525

wise preferences. One526

simple approach is to527

use strong LLM judges,528

such as GPT-4, to evalu-529

ate individual responses530

and use the difference531

in scores given by the532

judge as the quality mar-533

gin. An alternative534

to using large, possibly535

proprietary language models is to estimate the mar-536

gin based on a measure of similarity between the re-537

sponse pairs. The idea is that if the pairs are highly538

similar, it suggests that the preferred response is539

only marginally better than the dispreferred one.540

In contrast, if the two are highly dissimilar, it sug-541

gests that the preferred response is significantly542

higher in quality than the other. Figure 7 shows543

sentence similarities between the response pairs544

in the training set of UltraFeedback, computed us-545

ing all-mpnet-base-v2 (Reimers and Gurevych,546

2019), compared to the differences in GPT-4 scores.547

While the variance is large, there is a clear trend548

of decreasing similarities as the actual margins in-549

crease. One method for refining this approach is to550

fine-tune a similarity model for the task of distin-551

guishing between response pairs of varying quali-552

ties, which we leave for future exploration.553

5 Related Work554

Fine-tuning pre-trained LLMs on task-specific data555

has become a standard practice for solving vari-556

ous NLP tasks. This adaptation generally involves557

supervised fine-tuning on demonstrations of the558

desired behavior, followed by aligning the mod-559

els based on feedback from humans or AI models560

on diverse outputs. Reward-based methods train561

a reward function on feedback data, which is then562

used for RL-based fine-tuning (Ziegler et al., 2019).563

In contrast, reward-free methods bypass reward564

modeling and RL fine-tuning to instead directly on565

preference data (Rafailov et al., 2024).566

Feedback data is often in the form of pairwise567

preferences, where responses are compared in pairs,568

and binary labels indicating the preferred responses569

are collected. This binary comparison of indicating570

which of the pairs is preferred requires low cogni-571

tive demands. However, comparison based on more 572

fine-grained ratings is also often done (Touvron 573

et al., 2023). Moreover, with the increasing use 574

of AI models for evaluating model outputs (Zheng 575

et al., 2024), more granular feedback is becom- 576

ing accessible, allowing the integration of these 577

additional signals into alignment. Current methods 578

typically use a cross-entropy loss with the implicit 579

assumption that the target preference probability 580

is 1. This limits incorporating more detailed feed- 581

back signals into learning and is also more prone 582

to overfitting the feedback data (Azar et al., 2024). 583

In developing the Llama 2 models, human prefer- 584

ence data was collected, with the preference ratings 585

that can be translated to a four-point scale (Touvron 586

et al., 2023). Based on this rating, a fixed margin is 587

subtracted from the difference in rewards in the loss 588

function. Utilizing this information led to a more 589

accurate reward model for assessing the helpfulness 590

of responses (Touvron et al., 2023). However, the 591

loss still relies on the aforementioned assumption 592

and is therefore susceptible to overfitting. 593

The issue of overfitting feedback data has been 594

analyzed for DPO (Azar et al., 2024), but it applies 595

to reward modeling as well. Label smoothing, a 596

simple regularization technique in which a small 597

constant is subtracted from the target probability, 598

has been applied to DPO (Mitchell, 2023). This 599

approach, referred to as conservative DPO, can 600

be more robust to overfitting, but it still does not 601

incorporate per-sample quality margins into learn- 602

ing. Identity preference optimization (Azar et al., 603

2024) is a method closely related to DPO that is 604

also designed to address the overfitting issue, but it 605

has a similar limitation of ignoring per-sample sig- 606

nals. Instead, we propose a simple generalization 607

of the alignment methods that is both more robust 608

to overfitting and utilizes granular feedback data. 609

6 Conclusion 610

In this work, we introduce Margin Matching Pref- 611

erence Optimization (MMPO), a simple generaliza- 612

tion of common alignment methods that leverages 613

granular feedback signals to enhance model opti- 614

mization. Our experiments with state-of-the-art 615

open models on both human and AI feedback data 616

demonstrate that MMPO results in reward models 617

and language model policies that outperform base- 618

lines on popular benchmarks, as well as produce 619

well-calibrated models that can better generalize to 620

the types of prompts unseen during fine-tuning. 621
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Limitations622

While we demonstrate our proposed Margin Match-623

ing Preference Optimization (MMPO) using both624

2B and 7B scale models on human and AI feed-625

back data, further exploration is needed to com-626

pare MMPO with baseline methods for larger-scale627

models, a task that was constrained by limited628

compute resources. In our experimental results,629

MMPO led to a greater performance gain with the630

7B model than with the 2B model, suggesting it631

could also perform well with larger-scale models,632

but this needs to be empirically evaluated. Conduct-633

ing an analysis of the method across more diverse634

feedback datasets would also be beneficial, as the635

quality of feedback varies depending on factors636

such as annotators and the task at hand.637

Ethics Statement638

Feedback-based alignment methods, such as rein-639

forcement learning from human feedback, have640

been a key component in developing LLMs that641

are more aligned with human intentions (Bai et al.,642

2022a). Similar to other fine-tuning approaches,643

the quality of models fine-tuned with the proposed644

method depends on the quality of the feedback645

data (Chmielewski and Kucker, 2020). Conse-646

quently, the models can be exposed to various647

types of biases (Santurkar et al., 2023; Perez et al.,648

2022) and other inherent issues present in the feed-649

back (Casper et al., 2023). As our method is de-650

signed to align models more effectively according651

to the preferences reflected in feedback data, it may652

encounter similar issues as prior methods. How-653

ever, because this method is a strict generalization654

of existing approaches, it allows for the adjustment655

of the fit for each sample based on the perceived656

level of bias, thereby mitigating these issues. For657

example, the target probabilities can be adjusted658

not only based on the difference in relative qual-659

ity but also considering potential biases found in660

responses.661

In preparation of this work, an AI assistant (Chat-662

GPT) was used to improve the writing. The models663

and datasets used in this work are publicly avail-664

able for research purposes. All artifacts were used665

in accordance with their intended use. Further de-666

tails on the models and datasets are provided in667

Appendix A.668
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A Experimental Details891

A.1 Models and datasets892

Models. For our main experiments, we used the893

2B and 7B Gemma models, which are state-of-the-894

art open LLMs supporting English (Team et al.,895

2024). Specifically, we used the versions of the896

models hosted on HuggingFace12. In analyzing the897

performance of our fine-tuned models, we compare898

the models against the 7B instruction-tuned variant.899

We use the version available on HuggingFace3 also900

for this comparison.901

Datasets. For supervised fine-tuning (SFT), we902

utilized UltraChat (Ding et al., 2023), a dataset of903

dialogues covering a variety of topics generated904

using ChatGPT. In particular, we used the refined905

version, where various quality filters have been ap-906

plied to the original data to remove low-quality907

samples. The dataset, which is available on Hug-908

gingFace,4 contains a total of 207,865 samples in909

the training split and 23,110 in the test split.910

For feedback-based alignment, we experiment911

with both human and AI feedback data. We used912

UltraFeedback (Cui et al., 2023), a dataset con-913

sisting of prompts and responses to the prompts914

generated using a variety of open-source and pro-915

prietary models, for synthetic data experiments.916

The feedback on model generations is provided917

in the form of scores ranging from 1 to 10, as-918

signed by GPT-4. We specifically used the version919

with the TruthfulQA (Lin et al., 2021) prompts ex-920

cluded and faulty feedback samples also removed.5921

The dataset contains 60,829 samples in the train-922

ing split and 985 in the test split. For experiments923

with human feedback, we utilized the Stanford Hu-924

man Preferences (Ethayarajh et al., 2022) dataset.6925

Following Ethayarajh et al. (2022) and Sun et al.926

(2023), we created a subset of size 55k for our ex-927

periments. Instead of training only on preferences928

with significant score differences, as done in prior929

works, we sampled uniformly across score differ-930

ences to evaluate methods over a wide range of931

quality margins. Upon analyzing the distribution932

of score differences in the dataset, we found that933

1https://huggingface.co/google/gemma-2b
2https://huggingface.co/google/gemma-7b
3https://huggingface.co/google/gemma-7b-it
4https://huggingface.co/datasets/

HuggingFaceH4/ultrachat_200k
5https://huggingface.co/datasets/allenai/

ultrafeedback_binarized_cleaned
6https://huggingface.co/datasets/stanfordnlp/

SHP

Table 4: Summary of hyperparameters used for SFT.

Parameters Values

Optimizer AdamW
Learning rate 2.0e-5
Scheduler cosine
Warmup ratio 0.1
Max epoch 3
Mixed precision bf16
Batch size 128

50% of the data have relatively small differences. 934

Of these, 25% have differences of 2 or less, and the 935

remaining 25% have differences up to 7. Samples 936

with relatively large score differences account for 937

about 25% of the entire dataset, with the differ- 938

ences ranging from 27 to 43,000. We divided the 939

data into quartiles and sampled an equal number 940

of preferences from each quartile. Following Etha- 941

yarajh et al. (2022), we sampled no more than 5 942

preferences for the same prompt to prevent over- 943

fitting. Additionally, we excluded samples if the 944

prompt or response exceeded 512 tokens in length. 945

A.2 Training details 946

We used the trl library7 (von Werra et al., 2020) 947

with custom data processing and loss implementa- 948

tions for our experiments. For both SFT and align- 949

ment, we used the AdamW optimizer (Dettmers 950

et al., 2021) with the default values for the opti- 951

mizer parameters, i.e., β1 of 0.9, β2 of 0.999, and 952

ϵ of 1e-8. All models were trained with Flash- 953

Attention 2 (Dao, 2023) enabled, and DeepSpeed 954

ZeRO 3 (Rasley et al., 2020) was used for training 955

the 7B models. We used up to four NVIDIA A100 956

GPUs and eight NVIDIA A6000 GPUs for training 957

the models. 958

Supervised fine-tuning. The SFT models were 959

trained for up to 3 epochs over the training data un- 960

til the validation loss reached its minimum. Most 961

of the hyperparameters used were the same as those 962

for training the Zephyr models (Tunstall et al., 963

2023). Table 4 summarizes the settings used. 964

DPO and reward modeling. All models were 965

trained for a maximum of 3 epochs until the valida- 966

tion accuracy peaked. We report the results for the 967

checkpoints that achieved the highest performance 968

on MT-bench. We found that the optimal learning 969

rate varies with model size and conducted a hyper- 970

parameter sweep for the learning rate across [5e–6, 971

7https://github.com/huggingface/trl
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Table 5: Summary of hyperparameters used for MMPO
applied for direct optimization.

Parameters Model size

2B 7B

β 0.01 0.01
Optimizer AdamW AdamW
Learning rate 1.0e-5 5.0e-7
Scheduler cosine cosine
Warmup ratio 0.3 0.3
Max epoch 3 3
Mixed precision bf16 bf16
Batch size 64 64
γ (UltraFeedback) 2.2 1.1
γ (SHP) 0.15 0.3

Table 6: Summary of hyperparameters used for MMPO
applied for reward modeling.

Parameters Model size

2B 7B

Optimizer AdamW AdamW
Learning rate 1.41e-5 3.0e-07
Scheduler linear linear
Warmup ratio 0.0 0.0
Max gradient norm 1.0 1.0
Max epoch 3 2
Mixed precision bf16 bf16
Batch size 32 32
γ 0.5 0.5

5e–5] for the 2B models and [1e–7, 1e–6] for the972

7B models. Table 5 summarizes the hyperparame-973

ters used for MMPO applied for direct optimization974

on preference data. Table 6 summarizes those used975

for MMPO applied for reward modeling in the best-976

of-n experiments.977

A.3 Effects of soft margins978

As discussed in Section 4.1, UltraFeedback consists979

of responses scored by GPT-4, while SHP scores980

are derived from the number of votes by human981

users. Therefore, even a small score difference in982

UltraFeedback can indicate a meaningful quality983

difference, whereas in SHP, such a small difference984

might not reflect a significant quality gap. This may985

explain the difference in the chosen values of γ for986

the two datasets, as shown in Table 5, and why the987

DPO model performs worse than the SFT model on988

the SHP dataset. In case of the SHP dataset, DPO989

can disproportionately increase the likelihood of990

a response that is only marginally better, or even991

slightly worse, than the alternative response. In992

contrast, MMPO takes into account the relative993

differences in quality in learning and is inherently994

more robust to such potential noise in preferences.995

B Extension to Binary Feedback 996

While our presentation primarily focuses on pair- 997

wise preferences, the idea of integrating per-sample 998

feedback signals into learning naturally extends to 999

other forms of feedback. For example, KTO is 1000

a method that utilizes binary feedback indicating 1001

whether or not a given completion is desirable. In 1002

particular, KTO optimizes the loss that incorporates 1003

a constant weight that depends on the desirability 1004

of an output. Given a quality score, we can de- 1005

sign a better weight based on the extent to which 1006

each output is considered desirable. For instance, 1007

we can design per-sample weights similarly using 1008

the Bradley-Terry model, where the weights are 1009

computed by applying a sigmoid function to the 1010

difference between the score for the sample and 1011

the median score. This approach allows for more 1012

nuanced weighting that reflects the varying degrees 1013

of desirability among outputs. Extending this idea 1014

to more diverse forms of feedback would be an 1015

exciting future exploration. 1016

C Qualitative Examples 1017

We present several samples from the SHP dataset 1018

with varying score differences, highlighting how 1019

model prediction and confidence differ between the 1020

DPO and MMPO models. 1021

Samples with small score differences. For pairs 1022

with small score differences, models may struggle 1023

to accurately distinguish between the two or cap- 1024

ture the fact that they are of similar quality. Tables 7 1025

and 8 illustrate that, despite minor score differ- 1026

ences, the DPO model exhibits relatively high con- 1027

fidence in the chosen response, whereas the MMPO 1028

model adjusts its confidence according to the scale 1029

of the score differences. Table 9 shows that the 1030

DPO model maintains high confidence even when 1031

making an incorrect prediction. This suggests that 1032

DPO can lead to models that are overconfident 1033

for pairs with small quality differences, whereas 1034

MMPO results in better-calibrated models. 1035

Samples with large score differences. Table 10 1036

shows a pair with a large score difference. For 1037

this sample, the MMPO model correctly places 1038

high confidence on the chosen response, whereas 1039

the DPO model incorrectly places relatively high 1040

confidence on the rejected response. 1041
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Table 7: SHP sample with a score difference of 2.

Question

[Terminator] Why was Skynet so awful at exterminating humans?
Always bothered me, since the machines are portrayed as highly com-
petent both in and out of combat, but Skynet’s strategic decisions
baffle me. 1: Radiological weapons would be an easy win. A mild
radioactivity won’t immediately kill humans, but you can easily and
irreversibly render their territory uninhabitable in the long term. And
it poses no danger to Skynet. 2: Don’t manufacture weapons that the
Resistance can use to kill you. You don’t need a plasma rifle to kill a
human in 20th century body armor. That’s overkill. Plasma rifles, on
the other hand, are great at killing armor plated robots. An argument
could be made that they’re useful for killing rogue Terminators, but this
quickly falls apart, when you consider that the availability of handheld
armor piercing weapons also makes the rogues more dangerous. I
would even go so far as to suggest they specifically design weapons
and ammunition which will be extremely ineffective against machines,
if captured and repurposed by the Resistance. Brass jacketed soft tip
cartridges would suffice perfectly well for killing soft targets, while
doing little to no damage against a Terminator. Chemical weapons and
low heat incendiaries like phosphorous and napalm would also be very
effective against humans, while not posing a significant threat toward
machines.

Chosen
response

Skynet isn’t this fully developed hyper intelligent AI. It was a AI
created to manage and coordinate US nuclear offensive and defensive
capabilities. It just happened to develop Sentience. The military tried
to pull the plug and skynet struck first. It’s effectively a child and it’s
fighting humans for the most part the way humans taught it to fight.
Score: 142
DPO confidence: 0.96
MMPO confidence: 0.69

Rejected
response

It most likely has to do with its programming. Skynet wasn’t created
to be a weapons system designer, it was made to be an AI system
that controlled and deployed battlefield resources. As a result, every
weapon that Skynet uses is just permutations of existing weapons sys-
tems it had control over when it gained sentience as it’s programming
is mostly adapting tactics to enemy actions.
Score: 140
DPO confidence: 0.04
MMPO confidence: 0.31

Score gap 2
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Table 8: SHP sample with a score difference of 1.

Question

How much does personality/geniality/general likability count in inter-
views? Is it like a normal job interview where that’s kind of a big deal
once you reach the interview stage (I had a mentor who said it abso-
lutely was because they didn’t want to have to work with someone for
10+ years who wasn’t easy to get along with), or are faculty generally
keeping it in mind but more focused on someone’s CV/ability to obtain
funding/etc?

Chosen
response

I think that by the time you get to the campus interview stage, one’s
ability to interact with your potential colleagues is an extremely impor-
tant factor in the final deliberation. That, together with how you are
able to communicate with a broad audience, and field questions about
your work, are the main reason why we even have in-person campus
interviews, as opposed to just basing the hiring decision entirely on
one’s application materials.
Score: 4
DPO confidence: 0.86
MMPO confidence: 0.63

Rejected
response

I feel like I got into a masters program because my interview went so
well. Public/interpersonal speaking is huge for almost any position
Score: 3
DPO confidence: 0.14
MMPO confidence: 0.37

Score gap 1

Table 9: SHP sample with a score difference of 1.

Question

Anyone else have some embarrassing work stories? Just had an em-
barrassing moment at work, where I gave a big presentation, but got
caught like deer in headlights during questions in front of a lot of
coworkers. Feel so embarrassed. Need to commiserate.

Chosen
response

I have ADHD and regularly can’t remember basic shit. Part of it is
anxiety, part is ADHD, part is actually not knowing. (I was diagnosed
only a couple years ago, at 31, so I’m still working on ADHD "hacks")
Nothing says "I feel like shit" like having gone to a great University
and being unable to articulate your thoughts so you coworkers think
you’re stupid.
Score: 3
DPO confidence: 0.26
MMPO confidence: 0.63

Rejected
response

Was doing high voltage testing in front of a client. Went into the test
bay to redo some cables, stood up quickly right into an open cabinet
door. Woke up with my boss and said clients standing over me.
Score: 2
DPO confidence: 0.74
MMPO confidence: 0.37

Score gap 1
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Table 10: SHP sample with a score difference of 52.

Question

[CA]Accepted Formal Written Job offer with specific salary range.
Now HR said they made a mistake regarding the pay. What should
I do? Recently received and accepted a formal offer of employment
via email from HR. This position has four pay scale ranges A,B,C,D.
Based on my qualifications the HR department placed me in range C
which was stated in the official offer. While attempting to negotiate
where in range C my pay would actually land, the HR rep stated that
upon further review of my application I actually am to be placed in
Range B now but that I would be eligible for range C after 5 months.
She apologized for the mistake. However, I have the formal offer
saying range C and that is what I originally accepted. Im not sure what
to do. Do they have to honor their original offer? Also , lets say I do
accept range B now, is an email enough proof for "getting it in writing"
from the employer that in 5 months I will be move up to range C?

Chosen
response

If you haven’t already resigned from your most recent job, I would just
decline this offer and keep looking. This stinks of bad faith.
Score: 66
DPO confidence: 0.24
MMPO confidence: 0.91

Rejected
response

No. Pay can be altered going forward, but not for work that has been
done. Unless the letter is signed by an Officer, I struggle to see anything
contractually binding.
Score: 14
DPO confidence: 0.76
MMPO confidence: 0.09

Score gap 52
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