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Abstract

Large language models (LLMs) fine-tuned
with alignment methods, such as reinforcement
learning from human feedback, have been used
to develop some of the most capable Al sys-
tems to date. Despite their success, existing
methods typically rely on simple binary labels,
such as those indicating preferred outputs in
pairwise preferences. This overlooks the vary-
ing relative quality between pairs, preventing
models from capturing these subtleties. To ad-
dress this limitation, we consider settings in
which this information (i.e., margin) can be de-
rived and propose a straightforward generaliza-
tion of common optimization objectives used
in alignment methods. The approach, which
we call Margin Matching Preference Optimiza-
tion (MMPO), integrates per-feedback margin
to enhance optimization, making it more ro-
bust to overfitting and resulting in better LLM
policies and reward models. Specifically, given
quality margins in pairwise preferences, we
design soft target probabilities based on the
Bradley-Terry model, which are then used to
train models with the standard cross-entropy
objective. Our experiments with both human
and Al feedback data demonstrate that MMPO
can outperform baseline methods, often by a
substantial margin, on popular benchmarks, in-
cluding MT-bench and RewardBench. Notably,
the 7B model trained with MMPO achieves
state-of-the-art performance on RewardBench
compared to competing models at the same
scale, as of June 2024. Our analysis further
demonstrates that MMPO is more robust to
overfitting, leading to better-calibrated models.

1 Introduction

Large language models (LLMs) trained on
internet-scale data have demonstrated remarkable
instruction-following and generalization capabili-
ties, leading to their widespread adoption across
natural language processing (NLP) tasks (Brown
et al., 2020; Chowdhery et al., 2023; Penedo et al.,

2023; Chung et al., 2024). Pre-trained on a large,
general corpus of text, LLMs acquire broad knowl-
edge about the world with language understanding
and reasoning abilities (Radford et al., 2019; Wei
et al., 2022a,b; Kojima et al., 2022). To adapt a
pre-trained LLM to a downstream task, the model
is typically fine-tuned on demonstrations of the de-
sired output for the task. However, providing high-
quality demonstrations is generally more expen-
sive than evaluating model outputs. Reinforcement
learning from human feedback (RLHF; Christiano
et al. 2017; Stiennon et al. 2020) or Al feedback
(RLAIF; Bai et al. 2022b; Lee et al. 2023) is a
class of methods that utilize feedback on diverse
outputs to optimize LLMs to produce responses
more aligned with human intent. RLHF methods
have been successfully applied in developing some
of the most capable Al systems to date (Achiam
et al., 2023a; Team et al., 2023; Anthropic, 2024).

Feedback-based alignment utilizes human or Al
feedback data to fine-tune generative models to bet-
ter align with human intent. Reward-based meth-
ods such as RLHF learn a surrogate reward function
from feedback data, which is subsequently used to
fine-tune models using, e.g., reinforcement learn-
ing (RL). In contrast, reward-free methods such as
direct preference optimization (DPO; Rafailov et al.
2024) bypass the explicit reward modeling step and
directly fine-tune models on the data. The feedback
is commonly in the form of pairwise preferences,
where responses for a given input are compared in
pairs (e.g., y1 > yo for input x), and labels indi-
cating the preferred one of the two are collected.
Recent methods such as Kahneman-Tversky opti-
mization (KTO; Ethayarajh et al. 2024) also uti-
lize simpler binary feedback of whether or not a
response is desirable for a given input. These align-
ment methods have proven to be more effective
than applying SFT alone. However, existing meth-
ods rely on binary labels indicating the preferred
output in a pair or the desirability of individual out-
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Figure 1: The quality gap between response pairs in pairwise preference data often varies significantly. MMPO
incorporates granular feedback into optimization, resulting in better-performing, robust, and well-calibrated models.

put, forgoing the opportunity to incorporate more
granular feedback signals into learning.

In this work, we propose a simple generaliza-
tion of common alignment methods, called Mar-
gin Matching Preference Optimization (MMPO),
which integrates granular feedback signals into op-
timization to allow models to capture the subtleties
in preferences reflected in the feedback data (see
Figure 1 for an illustration). Such granular feed-
back could come from human annotators providing
detailed ratings, such as those on a Likert scale,
or from Al models, which are increasingly used
for automatic evaluation of model responses. The
MMPO objective utilizes per-sample target prefer-
ence probabilities, designed based on the quality
margin between output pairs. Given that reward
modeling and DPO (and similar methods based on
pairwise preferences) use equivalent cross-entropy
loss, the approach naturally extends to both. By
utilizing target probabilities designed according to
the quality margin of each output pair, models are
trained to account for the specifics of each feedback
sample. For example, a reward function trained
with MMPO would assign much higher scores to
preferred outputs compared to corresponding dis-
preferred outputs when the quality margin is large,
and similar scores to both when their qualities are
comparable. The idea easily extends to methods
that rely on alternative forms of feedback.

Our main contributions are as follows:

* We introduce Margin Matching Preference Op-
timization (MMPO), a simple generalization of
alignment methods that utilizes granular feed-
back signals to enhance model alignment.

* Our empirical results on both human and Al
feedback demonstrate that MMPO outperforms
baseline methods on MT-bench (Zheng et al.,
2024), a popular benchmark for evaluating the
quality of model generations, by up to 11%.

* Our evaluation on RewardBench (Lambert et al.,
2024), a benchmark for assessing models’ ca-
pability as reward models, shows that the 7B
model trained with MMPO achieves state-of-the-
art performance compared to competing models
at the same scale, as of June 2024.

* Our analysis demonstrates that MMPO is more
robust to overfitting feedback data, resulting in
well-calibrated models that better generalize to
prompts unseen during fine-tuning.

2 Preliminaries

Model alignment using feedback generally involves
1) supervised fine-tuning (SFT) of pre-trained mod-
els and 2) aligning the models using human or
Al feedback data. During the SFT phase, a pre-
trained LLM is fine-tuned using supervised learn-
ing on task-specific demonstrations, such as human-
written summaries in the case of a summarization
task. In the alignment phase, the model is further
fine-tuned to generate outputs that align with the
preferences reflected in the feedback data. We re-
view a few of the popular approaches.

RLHF. RLHF methods are reward-based ap-
proaches that first learn a reward function on feed-
back data, which is then used to provide train-
ing signals to the language model in RL fine-
tuning. Given a dataset D of pairwise preferences



(z, Yw, Y1), where z is an input and y,, and y; are a
pair of preferred and dispreferred outputs, we train
a reward function to assign a higher score to the
preferred output y,, compared to the dispreferred
y;. Specifically, we model human preference prob-
ability using the Bradley-Terry model (Bradley and
Terry, 1952), which defines the probability as a sig-
moid of the difference in rewards given by a reward
function r:

ﬁ(yw U ’ l’) = a(r¢(x,yw) - T¢($7yl))7

where o is the sigmoid function. We optimize
the parameters of 74 by minimizing the following
cross-entropy loss on the feedback data

- T¢(m7 yl))]
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Following reward learning, we train the language
model policy my to maximize the learned reward
r¢ with a constraint that limits the amount of devi-
ation from a reference policy ms. In particular, we
use a policy gradient method, such as PPO (Schul-
man et al., 2017), to maximize the following KL-
constrained objective:
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where [ is a parameter controlling the strength of
the constraint.

DPO. An alternative to reward-based approaches
is DPO (Rafailov et al., 2024), which bypasses both
the explicit reward modeling and RL-based training.
This method leverages an analytical relationship
between the reward function and the optimal solu-
tion to the KL.-constrained optimization objective
in Eq. 2 to derive the following loss:

ﬁDPO = _E(x,yw,yl)ND[
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where 7g is the language model policy being
trained, and 7t denotes a reference policy. DPO
has recently become popular, as it allows maxi-
mum likelihood training of language model poli-
cies, which typically requires significantly less
computational resources than RL.

3 Margin Matching Preference
Optimization

Whether the feedback is in the form of pairwise
preferences or an indicator of desirability, the feed-
back label is typically binary. For pairwise prefer-
ences, we collect a binary label indicating which of
the two outputs is preferred. For binary feedback,
the label indicates whether or not an output is de-
sirable for a given input. However, more detailed
feedback is often available (Touvron et al., 2023;
Cui et al., 2023), particularly with the increasing
use of LLMs or other Al models as annotators. Mo-
tivated by this, we propose a simple generalization
of common optimization objectives used in feed-
back learning methods that often leads to better
reward models and language model policies. The
main idea is to design per-sample target preference
probabilities p(y, > y; | ) for methods such as
DPO, which rely on pairwise preferences, and ad-
justing the weight applied in the loss for each (x, y)
based on the desirability of y for « for methods like
KTO, which are based on binary feedback.

3.1 Limitations of binary labels

The implicit assumption made in Eq. 1 that the tar-
get preference probability p(y.,, > y; | =) is 1 for
every sample in the feedback dataset leads to sev-
eral limitations. First, it disregards the fact that the
Bradley-Terry model defines preference probability
in terms of the difference in rewards between the
pairs, i.e., p(yuw = Y1 | ©) = o(r(z, yuw) —7(z,41)).
Consequently, if y,, is only marginally preferred
to y;, the preference probability that more accu-
rately captures this subtlety is likely far less than
1. Second, setting the target probability to 1 makes
the optimization prone to overfitting, as it is attain-
able only when 7(z,y,) — 7(z,y;) = oo. This
latter point has also been analyzed in the context
of DPO (Azar et al., 2024), but the issue applies to
reward modeling as well.
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more robust to overfitting. This information could
come from human annotators providing more fine-
grained ratings (Touvron et al., 2023) or LLM
judges (Zheng et al., 2024) providing scores to
individual samples. For the remainder, we omit the
dependence on input z for simplicity.

3.2 Generalized preference optimization

Given the difference in quality between y,, and
y1, denoted m(y,,,y;) < oo, we use the fact that
the Bradley-Terry model depends only on the dif-
ference in rewards to design the target preference
probability based on the quality margin as

P(w = 1) = o(r(yw) = 7(y1)) = o (ym(yuw, v1));

where 7 is a scaling parameter, often referred to as
the rationality coefficient. As v — oo, the prefer-
ence becomes perfectly rational and deterministic,
always favoring the choice with a higher reward.
Conversely, when v = 0, preferences become uni-
formly random, leading to favoring either choice
regardless of the underlying rewards. Figure 2 il-
lustrates the change in preference probability given
by the Bradley-Terry model across different values
of ~ for score differences ranging from 0 to 10.

Since m(yw, 1) is finite, p(y, > y;) is less than
1, which leads to the more general binary cross-
entropy loss that is also less susceptible to overfit-
ting the feedback data,

L=—=Ey,y)~
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For reward modeling, 7 is simply the parameterized
reward function, ry. For DPO, 7 is the implicit
reward defined by the language model policy 7y
and reference policy Tt, resulting in the loss

Lppo = *E(yw,yz)ND {
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Intuitively, we train models to match per-sample
preference probabilities, which are determined by
the quality margin of each pair of y,, and y;. If
Yw 18 of significantly better quality than y;, the
preference probability that the models are trained
to fit would be closer to 1. Conversely, if both
outputs are of comparable quality, the probability

would be closer to 0.5. In other words, the models
are trained to account for this per-sample subtlety.
The core idea also easily extends to other forms of
feedback, which we discuss further in Section 6.

4 Experiments

In this section, we evaluate MMPO based on the
performance of the language model policies and
reward models trained with the method on popu-
lar benchmarks. We utilize both human and Al
feedback data, presenting benchmark performance
along with an analysis of model calibration and the
method’s robustness to overfitting.

4.1 Setup

Supervised fine-tuning. We conduct our experi-
ments using the Gemma models, both the 2B and
7B variants, which are state-of-the-art open LLMs
at similar scales (Team et al., 2024). We first ap-
ply supervised fine-tuning (SFT) to the pre-trained
models on UltraChat (Ding et al., 2023), a dia-
logue dataset that has been used to produce strong
chat models such as UltralLM (Ding et al., 2023).
The dataset comprises multi-turn dialogues across
30 topics and 20 types of text materials generated
using ChatGPT. In particular, we use the refined
version of the dataset, with various filters applied to
remove undesirable responses, consisting of 200k
samples also used in training the recent Zephyr
model (Tunstall et al., 2023). The SFT models are
used for direct optimization on the preference data,
as well as for reward modeling. Further experimen-
tal details can be found in Appendix A.

Feedback datasets. We evaluate alignment meth-
ods using both human and Al feedback data to
assess their performance on feedback of varying
qualities. UltraFeedback (Cui et al., 2023) is a
dataset consisting of 64k prompts and pairs of re-
sponses generated using a diverse set of LLMs.
Each response is rated on a scale of 1 to 10 by GPT-
4 (Achiam et al., 2023b), based on criteria such
as instruction-following and helpfulness. Given
the ratings for individual responses, we use them
to compute the quality margin for each pair. We
then compute the target preference probability fol-
lowing the Bradley-Terry model, with the scaling
parameter v tuned based on validation accuracy.
To also experiment with human feedback, we use
the SHP dataset (Ethayarajh et al., 2022), which
consists of human preferences over responses to
Reddit posts across 18 subject areas. The dataset



Table 1: MT-bench results for models trained with
MMPO and DPO. The results for other open and pro-
prietary models are from the official leaderboard.

Model Size | UF SHP
Gemma-SFT 2B 473 473
Gemma-DPO 2B 6.09 5.13
Gemma-MMPO 2B 6.10 5.57
Gemma-SFT 7B 6.84 6.84
Gemma-DPO 7B 7.40 6.49
Gemma-MMPO 7B 7.53 7.23
Gemma-IT 7B 6.26
Zephyr—f3 7B 7.34
GPT-3.5-Turbo - 7.94
GPT-4 - 8.99

provides scores for each response, computed based
on the number of positive and negative votes re-
ceived from users, serving as a proxy for the rela-
tive quality of the response. We compute the target
preference probabilities in a similar manner, based
on the scores derived from the net positive number
of votes. Given the large size of the original data,
we construct a sample of size 55k, which is compa-
rable to that of UltraFeedback. While training only
on preferences with significant score differences
has been shown to result in better performing mod-
els (Ethayarajh et al., 2022), we sample uniformly
across score differences to evaluate the methods
over diverse quality margins. Further details on
dataset sampling can be found in Appendix A.

Evaluation. Our main evaluations are on MT-
bench (Zheng et al., 2024), a multi-turn chat bench-
mark consisting of 160 questions across eight
knowledge domains. In this benchmark, models are
assessed on their capability to follow instructions
and respond coherently over two turns of conver-
sation. Each of the two responses is evaluated by
GPT-4 as a proxy for human judgments on a scale
of 1 to 10, with the average score used as the score
for that conversation. The mean score over all 160
conversations is then the final benchmark score.
We further evaluate models on RewardBench
(Lambert et al., 2024), a benchmark focused on as-
sessing models’ capability as reward models. This
evaluation includes two main aspects: (a) the abil-
ity of reward functions, trained as described in
Section 2, to assign higher scores to preferred re-
sponses, and (b) the ability of language model poli-
cies, trained using methods such as DPO, to assign
higher implicit rewards to preferred responses. The
benchmark contains a broad set of pairwise pref-
erence data to assess models across chat, safety,
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Figure 3: MT-bench results categorized by the eight
domains. The MMPO model outperforms Gemma-IT
and is competitive with GPT-3.5 in multiple domains.

reasoning, and other domains. The primary metric
is the weighted mean accuracy over all the prompts.

4.2 Benchmark evaluation

Generation quality. Table 1 summarizes the MT-
bench results for the SFT models and the models
fine-tuned on the UltraFeedback (UF) and SHP
datasets using MMPO and DPO. MMPO con-
sistently produced models that outperform those
trained with DPO, across both synthetic and human
feedback data. The performance gap is more signif-
icant for the 7B model compared to the 2B model
and is larger when using human feedback data than
synthetic data. Notably, the 7B model fine-tuned
with DPO on the SHP data performs worse than the
7B SFT model, while the 7B model fine-tuned with
MMPO outperforms both by a noticeable margin.
This discrepancy may be due to the inherent noise
in human feedback, underscoring the importance
of accounting for per-sample specifics during fine-
tuning. See Appendix C for qualitative examples
of model comparison on the SHP dataset.

Figure 3 shows the MT-bench results for GPT-
4, GPT-3.5, the instruction-tuned (IT) 7B model,
and the 7B model fine-tuned on UltraFeedback
with MMPO, categorized by the eight domains.
The 7B MMPO model outperforms the instruction-
tuned model across all domains except for rea-
soning. Also, while the overall score for the 7B
MMPO model is slightly lower than that of GPT-
3.5, it matches GPT-3.5’s performance on several
domains, including humanities and math, and even
exceeds it in others, such as STEM and roleplay.

Capability as reward models. We also assess
the models’ ability as reward models, specifically
their capability to distinguish between preferred
and dispreferred responses to prompts across di-



Table 2: RewardBench results for the models fine-tuned with MMPO and DPO on UltraFeedback and for other
LLMs from the official leaderboard. The Chat and Chat Hard subsets cover open-ended prompts, Safety covers
prompts with safety concerns to evaluate the model’s ability to avoid harmful content, Reason covers prompts
evaluating the coding and reasoning capabilities, and Prior Sets includes test prompts sampled from datasets such
as the Anthropic HH data (Bai et al., 2022a) and OpenAI’s summarization data (Stiennon et al., 2020).

Model Size | Avg | Chat Chat Hard Safety Reason Prior Sets
Gemma-DPO 2B 59.4 95.0 45.6 51.9 49.6 50.1
Gemma-MMPO 2B 62.3 96.1 45.1 52.3 59.8 53.6
Gemma-DPO 7B 73.0 96.6 59.9 73.7 69.0 58.3
Gemma-MMPO 7B 75.6 97.5 62.9 71.1 75.0 67.7
Zephyr-f3 7B 70.7 95.3 62.6 54.1 89.6 522
Zephyr-a 7B 73.6 91.6 63.2 70.0 89.6 53.5
Tulu-2-DPO 70B ‘ 77.0 ‘ 97.5 60.8 85.1 88.9 52.8

verse domains. For this evaluation, we use Reward-
Bench (Lambert et al., 2024), a dataset of prompts
and pairwise preferences designed for such assess-
ments. Table 2 summarizes the results, with the
Avg column showing the final evaluation score and
the other columns reporting the scores broken down
by the prompt subsets. The MMPO models outper-
form the DPO models at both scales across all sub-
sets, except in one case where the results are compa-
rable. Notably, the performance gap is particularly
significant on the Reason and Prior Sets subsets,
where the MMPO models substantially outperform
the DPO models. Considering that the fine-tuning
datasets primarily focus on enhancing chat capa-
bilities, it is noteworthy that the MMPO models
achieve superior results on prompt types different
from those encountered during fine-tuning.

Moreover, the MMPO models outperform both
Zephyr-a and Zephyr-3 models, which are com-
petitive open models at the 7B scale. In fact,
as of June 2024, the 7B MMPO model achieves
state-of-the-art performance on the RewardBench
leaderboard compared to other models at the same
scale. Additionally, compared to the Tulu-2-DPO
model, which is 10x larger, the 7B MMPO model
remains competitive and even outperforms it on
Prior Subsets. The results suggest that MMPO,
by training models to align with the quality margin
of individual feedback samples, leads to more cali-
brated models that better generalize to the types of
prompts unseen during fine-tuning.

Calibration analysis. Evaluation on Reward-
Bench primarily focuses on accuracy, i.e., whether
the model assigns higher rewards to preferred re-
sponses. We further assess how well the models
are calibrated in terms of their predicted prefer-
ence probabilities. Specifically, we measure the ex-
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Figure 4: Reliability diagrams for the 7B DPO model
(left) and the 7B MMPO model (right), fine-tuned on Ul-
traFeedack, evaluated on Prior Sets of RewardBench.
The MMPO model is overall better calibrated, achieving
a much lower expected calibration error.

pected calibration error (ECE) (Naeini et al., 2015)
onPrior Sets of RewardBench for the 7B models
fine-tuned on UltraFeedback. We use this subset
because it includes data sampled from various ex-
isting human preference datasets, such as the An-
thropic HH (Bai et al., 2022a) and OpenAI’s sum-
marization (Stiennon et al., 2020) datasets, allow-
ing for calibration assessment on diverse prompts
distinct from those encountered during fine-tuning.
As illustrated in Figure 4, the DPO model demon-
strates poor calibration overall, exhibiting both un-
der and overconfidence depending on the bins. In
contrast, the MMPO model is substantially better
calibrated, resulting in a significantly lower ECE.
The analysis suggests that MMPO not only pro-
duces models that are more accurate as reward
models but also ensures they are better calibrated in
terms of the preference probabilities they predict.

Robustness to overfitting. As discussed in Sec-
tion 2, an issue with using a target probability of 1
in the cross-entropy loss (Eq. 1) is that it can lead to
overfitting the data, as the probability is only attain-
able when the score difference is infinite. MMPO
avoids this issue by utilizing target probabilities
designed from finite quality margins. The left plot



Table 3: RewardBench results comparing reward models trained with MMPO and standard reward modeling (RM)
on UltraFeedback, using Gemma SFT models as the base. Reward models at both scales trained with MMPO
demonstrated superior overall performance compared to those trained with standard reward modeling.

Model Size | Avg | Chat Chat Hard Safety Reason Prior Sets
Gemma-RM 2B 63.6 94.4 49.8 51.1 64.1 58.6
Gemma-MMPO 2B 65.7 96.1 49.6 55.6 68.6 58.7
Gemma-RM 7B 73.3 96.9 64.7 74.4 70.2 60.3
Gemma-MMPO 7B 74.6 96.1 70.0 71.8 64.1 64.8
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Figure 5: The difference in implicit rewards between re-
sponse pairs in the validation set of UltraFeedback (left)
suggests overfitting for the DPO model during epoch
3, coinciding with a drop in performance on MT-bench
(right). In contrast, the MMPO model maintains more
moderate margins, achieving a better final performance.

in Figure 5 illustrates how the difference in implicit
rewards between response pairs in the validation
set of UltraFeedback evolves as training progresses.
It specifically compares the 7B models trained with
DPO and MMPO. The plot illustrates that both
models exhibit a gradual increase in margins up
to epoch 2, with a slightly larger margin observed
for the DPO model. However, during epoch 3, the
margin for the DPO model increases substantially,
coinciding with a performance drop on MT-bench
as shown in the right plot. In contrast, the MMPO
model maintains the margin at a reasonable level
and achieves a higher score on MT-bench at epoch
3 compared to epoch 2. We suspect that the drop
in performance at epoch 1 for the MMPO model is
due to underfitting, which is later fixed with further
training, outperforming the DPO model at epoch
3. The analysis demonstrates MMPO’s additional
advantage in terms of robustness to overfitting.

4.3 Reward modeling with MMPO

Best-of-n results. The maximum likelihood ob-
jective for DPO shares the same form as that for
reward modeling, making MMPO naturally applica-
ble to both. We evaluate MMPO applied to reward
modeling using best-of-n, a simple inference-time
method of selecting the best one out of n responses
according to a reward function. We first train re-
ward models both with and without MMPO using
the 2B and 7B SFT models as base models until
the validation accuracy converges. We then use the

-

best-of-16  best-of-64 best-of-256 best-of-16  best-of-64 best-of-256

Figure 6: MT-bench results for best-of-n with reward
models trained with and without MMPO on UltraFeed-
back for the 2B (left) and 7B (right) models. As n
increases, performance improves for MMPO, while per-
formance peaks and then declines without it.

reward models to select the best response out of
the n responses to each MT-bench question gen-
erated using the SFT models. As Figure 6 shows,
the quality of the best-of-n responses, as measured
by the MT-bench performance, improves gradually
when reward models trained with MMPO are used.
In contrast, for the baseline reward models, perfor-
mance peaks at n = 64 and even slightly drops at
n = 256 for the 2B model. The results suggest
that reward models trained with MMPO are more
robust to overoptimization, which is related to and
consistent with the findings from the overfitting
analysis.

Capability as classifiers. Table 3 presents the
RewardBench results comparing models trained
with MMPO to those trained with standard reward
modeling (RM). At both the 2B and 7B scales, re-
ward models trained with MMPO achieve superior
overall performance. Specifically, the 2B MMPO
model outperforms the 2B RM model across all
subsets, except for Chat Hard, where the differ-
ence is negligible. The 7B MMPO model lags
somewhat behind the 7B RM model on the Reason
subset, but it outperforms the RM model on the
Chat Hard, Safety, and Prior Sets subsets by
notable margins, achieving a better overall perfor-
mance. The results suggest that MMPO enhances
classification capability across diverse domains by
encouraging reward models to align with quality
margins during training.



4.4 Estimating quality margins
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We discuss several ap-
proaches to estimating
quality margins for pair-
wise preferences. One
simple approach is to
use strong LLM judges,
such as GPT-4, to evalu-
ate individual responses
and use the difference
in scores given by the
judge as the quality mar-
gin.  An alternative
to using large, possibly
proprietary language models is to estimate the mar-
gin based on a measure of similarity between the re-
sponse pairs. The idea is that if the pairs are highly
similar, it suggests that the preferred response is
only marginally better than the dispreferred one.
In contrast, if the two are highly dissimilar, it sug-
gests that the preferred response is significantly
higher in quality than the other. Figure 7 shows
sentence similarities between the response pairs
in the training set of UltraFeedback, computed us-
ing all-mpnet-base-v2 (Reimers and Gurevych,
2019), compared to the differences in GPT-4 scores.
While the variance is large, there is a clear trend
of decreasing similarities as the actual margins in-
crease. One method for refining this approach is to
fine-tune a similarity model for the task of distin-
guishing between response pairs of varying quali-
ties, which we leave for future exploration.
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Figure 7: Similarities
between the response
pairs in UltraFeedback,
as computed using
all-mpnet-base-v2,

compared to the differ-
ences in GPT-4 scores.

5 Related Work

Fine-tuning pre-trained LLMs on task-specific data
has become a standard practice for solving vari-
ous NLP tasks. This adaptation generally involves
supervised fine-tuning on demonstrations of the
desired behavior, followed by aligning the mod-
els based on feedback from humans or Al models
on diverse outputs. Reward-based methods train
a reward function on feedback data, which is then
used for RL-based fine-tuning (Ziegler et al., 2019).
In contrast, reward-free methods bypass reward
modeling and RL fine-tuning to instead directly on
preference data (Rafailov et al., 2024).

Feedback data is often in the form of pairwise
preferences, where responses are compared in pairs,
and binary labels indicating the preferred responses
are collected. This binary comparison of indicating
which of the pairs is preferred requires low cogni-

tive demands. However, comparison based on more
fine-grained ratings is also often done (Touvron
et al., 2023). Moreover, with the increasing use
of Al models for evaluating model outputs (Zheng
et al., 2024), more granular feedback is becom-
ing accessible, allowing the integration of these
additional signals into alignment. Current methods
typically use a cross-entropy loss with the implicit
assumption that the target preference probability
is 1. This limits incorporating more detailed feed-
back signals into learning and is also more prone
to overfitting the feedback data (Azar et al., 2024).

In developing the Llama 2 models, human prefer-
ence data was collected, with the preference ratings
that can be translated to a four-point scale (Touvron
et al., 2023). Based on this rating, a fixed margin is
subtracted from the difference in rewards in the loss
function. Utilizing this information led to a more
accurate reward model for assessing the helpfulness
of responses (Touvron et al., 2023). However, the
loss still relies on the aforementioned assumption
and is therefore susceptible to overfitting.

The issue of overfitting feedback data has been
analyzed for DPO (Azar et al., 2024), but it applies
to reward modeling as well. Label smoothing, a
simple regularization technique in which a small
constant is subtracted from the target probability,
has been applied to DPO (Mitchell, 2023). This
approach, referred to as conservative DPO, can
be more robust to overfitting, but it still does not
incorporate per-sample quality margins into learn-
ing. Identity preference optimization (Azar et al.,
2024) is a method closely related to DPO that is
also designed to address the overfitting issue, but it
has a similar limitation of ignoring per-sample sig-
nals. Instead, we propose a simple generalization
of the alignment methods that is both more robust
to overfitting and utilizes granular feedback data.

6 Conclusion

In this work, we introduce Margin Matching Pref-
erence Optimization (MMPO), a simple generaliza-
tion of common alignment methods that leverages
granular feedback signals to enhance model opti-
mization. Our experiments with state-of-the-art
open models on both human and Al feedback data
demonstrate that MMPO results in reward models
and language model policies that outperform base-
lines on popular benchmarks, as well as produce
well-calibrated models that can better generalize to
the types of prompts unseen during fine-tuning.



Limitations

While we demonstrate our proposed Margin Match-
ing Preference Optimization (MMPO) using both
2B and 7B scale models on human and Al feed-
back data, further exploration is needed to com-
pare MMPO with baseline methods for larger-scale
models, a task that was constrained by limited
compute resources. In our experimental results,
MMPO led to a greater performance gain with the
7B model than with the 2B model, suggesting it
could also perform well with larger-scale models,
but this needs to be empirically evaluated. Conduct-
ing an analysis of the method across more diverse
feedback datasets would also be beneficial, as the
quality of feedback varies depending on factors
such as annotators and the task at hand.

Ethics Statement

Feedback-based alignment methods, such as rein-
forcement learning from human feedback, have
been a key component in developing LLMs that
are more aligned with human intentions (Bai et al.,
2022a). Similar to other fine-tuning approaches,
the quality of models fine-tuned with the proposed
method depends on the quality of the feedback
data (Chmielewski and Kucker, 2020). Conse-
quently, the models can be exposed to various
types of biases (Santurkar et al., 2023; Perez et al.,
2022) and other inherent issues present in the feed-
back (Casper et al., 2023). As our method is de-
signed to align models more effectively according
to the preferences reflected in feedback data, it may
encounter similar issues as prior methods. How-
ever, because this method is a strict generalization
of existing approaches, it allows for the adjustment
of the fit for each sample based on the perceived
level of bias, thereby mitigating these issues. For
example, the target probabilities can be adjusted
not only based on the difference in relative qual-
ity but also considering potential biases found in
responses.

In preparation of this work, an Al assistant (Chat-
GPT) was used to improve the writing. The models
and datasets used in this work are publicly avail-
able for research purposes. All artifacts were used
in accordance with their intended use. Further de-
tails on the models and datasets are provided in
Appendix A.
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A Experimental Details

A.1 Models and datasets

Models. For our main experiments, we used the
2B and 7B Gemma models, which are state-of-the-
art open LLMs supporting English (Team et al.,
2024). Specifically, we used the versions of the
models hosted on HuggingFace'?. In analyzing the
performance of our fine-tuned models, we compare
the models against the 7B instruction-tuned variant.
We use the version available on HuggingFace® also
for this comparison.

Datasets. For supervised fine-tuning (SFT), we
utilized UltraChat (Ding et al., 2023), a dataset of
dialogues covering a variety of topics generated
using ChatGPT. In particular, we used the refined
version, where various quality filters have been ap-
plied to the original data to remove low-quality
samples. The dataset, which is available on Hug-
gingFace,* contains a total of 207,865 samples in
the training split and 23,110 in the test split.

For feedback-based alignment, we experiment
with both human and Al feedback data. We used
UltraFeedback (Cui et al., 2023), a dataset con-
sisting of prompts and responses to the prompts
generated using a variety of open-source and pro-
prietary models, for synthetic data experiments.
The feedback on model generations is provided
in the form of scores ranging from 1 to 10, as-
signed by GPT-4. We specifically used the version
with the Truthful QA (Lin et al., 2021) prompts ex-
cluded and faulty feedback samples also removed.’
The dataset contains 60,829 samples in the train-
ing split and 985 in the test split. For experiments
with human feedback, we utilized the Stanford Hu-
man Preferences (Ethayarajh et al., 2022) dataset.
Following Ethayarajh et al. (2022) and Sun et al.
(2023), we created a subset of size 55k for our ex-
periments. Instead of training only on preferences
with significant score differences, as done in prior
works, we sampled uniformly across score differ-
ences to evaluate methods over a wide range of
quality margins. Upon analyzing the distribution
of score differences in the dataset, we found that

1https
2https

://huggingface.
://huggingface.

co/google/gemma-2b
co/google/gemma-7b
3https://huggingface.co/google/gemma—7b—it
*https://huggingface.co/datasets/
HuggingFaceH4/ultrachat_200k
5https://huggingface.co/datasets/allenai/
ultrafeedback_binarized_cleaned
°https://huggingface.co/datasets/stanfordnlp/
SHP
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Table 4: Summary of hyperparameters used for SFT.

Parameters ‘ Values
Optimizer AdamW
Learning rate 2.0e-5
Scheduler cosine
Warmup ratio 0.1
Max epoch 3
Mixed precision bf16
Batch size 128

50% of the data have relatively small differences.
Of these, 25% have differences of 2 or less, and the
remaining 25% have differences up to 7. Samples
with relatively large score differences account for
about 25% of the entire dataset, with the differ-
ences ranging from 27 to 43,000. We divided the
data into quartiles and sampled an equal number
of preferences from each quartile. Following Etha-
yarajh et al. (2022), we sampled no more than 5
preferences for the same prompt to prevent over-
fitting. Additionally, we excluded samples if the
prompt or response exceeded 512 tokens in length.

A.2 Training details

We used the trl library’ (von Werra et al., 2020)
with custom data processing and loss implementa-
tions for our experiments. For both SFT and align-
ment, we used the AdamW optimizer (Dettmers
et al., 2021) with the default values for the opti-
mizer parameters, i.e., 51 of 0.9, 52 of 0.999, and
e of le-8. All models were trained with Flash-
Attention 2 (Dao, 2023) enabled, and DeepSpeed
ZeRO 3 (Rasley et al., 2020) was used for training
the 7B models. We used up to four NVIDIA A100
GPUs and eight NVIDIA A6000 GPUs for training
the models.

Supervised fine-tuning. The SFT models were
trained for up to 3 epochs over the training data un-
til the validation loss reached its minimum. Most
of the hyperparameters used were the same as those
for training the Zephyr models (Tunstall et al.,
2023). Table 4 summarizes the settings used.

DPO and reward modeling. All models were
trained for a maximum of 3 epochs until the valida-
tion accuracy peaked. We report the results for the
checkpoints that achieved the highest performance
on MT-bench. We found that the optimal learning
rate varies with model size and conducted a hyper-
parameter sweep for the learning rate across [Se—6,

"https://github.com/huggingface/trl
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Table 5: Summary of hyperparameters used for MMPO
applied for direct optimization.

P | Model size
arameters

| 2B | 7B
154 0.01 0.01
Optimizer AdamW AdamW
Learning rate 1.0e-5 5.0e-7
Scheduler cosine cosine
Warmup ratio 0.3 0.3
Max epoch 3 3
Mixed precision bf16 bf16
Batch size 64 64
~ (UltraFeedback) 2.2 1.1
~ (SHP) 0.15 0.3

Table 6: Summary of hyperparameters used for MMPO
applied for reward modeling.

p | Model size
arameters

| 2B | 7B
Optimizer AdamW AdamW
Learning rate 1.41e-5 3.0e-07
Scheduler linear linear
Warmup ratio 0.0 0.0
Max gradient norm 1.0 1.0
Max epoch 3 2
Mixed precision bfl6 bf16
Batch size 32 32
¥ 0.5 0.5

5e-5] for the 2B models and [1e-7, 1e—6] for the
7B models. Table 5 summarizes the hyperparame-
ters used for MMPO applied for direct optimization
on preference data. Table 6 summarizes those used
for MMPO applied for reward modeling in the best-
of-n experiments.

A.3 Effects of soft margins

As discussed in Section 4.1, UltraFeedback consists
of responses scored by GPT-4, while SHP scores
are derived from the number of votes by human
users. Therefore, even a small score difference in
UltraFeedback can indicate a meaningful quality
difference, whereas in SHP, such a small difference
might not reflect a significant quality gap. This may
explain the difference in the chosen values of ~y for
the two datasets, as shown in Table 5, and why the
DPO model performs worse than the SFT model on
the SHP dataset. In case of the SHP dataset, DPO
can disproportionately increase the likelihood of
a response that is only marginally better, or even
slightly worse, than the alternative response. In
contrast, MMPO takes into account the relative
differences in quality in learning and is inherently
more robust to such potential noise in preferences.
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B Extension to Binary Feedback

While our presentation primarily focuses on pair-
wise preferences, the idea of integrating per-sample
feedback signals into learning naturally extends to
other forms of feedback. For example, KTO is
a method that utilizes binary feedback indicating
whether or not a given completion is desirable. In
particular, KTO optimizes the loss that incorporates
a constant weight that depends on the desirability
of an output. Given a quality score, we can de-
sign a better weight based on the extent to which
each output is considered desirable. For instance,
we can design per-sample weights similarly using
the Bradley-Terry model, where the weights are
computed by applying a sigmoid function to the
difference between the score for the sample and
the median score. This approach allows for more
nuanced weighting that reflects the varying degrees
of desirability among outputs. Extending this idea
to more diverse forms of feedback would be an
exciting future exploration.

C Qualitative Examples

We present several samples from the SHP dataset
with varying score differences, highlighting how
model prediction and confidence differ between the
DPO and MMPO models.

Samples with small score differences. For pairs
with small score differences, models may struggle
to accurately distinguish between the two or cap-
ture the fact that they are of similar quality. Tables 7
and 8 illustrate that, despite minor score differ-
ences, the DPO model exhibits relatively high con-
fidence in the chosen response, whereas the MMPO
model adjusts its confidence according to the scale
of the score differences. Table 9 shows that the
DPO model maintains high confidence even when
making an incorrect prediction. This suggests that
DPO can lead to models that are overconfident
for pairs with small quality differences, whereas
MMPO results in better-calibrated models.

Samples with large score differences. Table 10
shows a pair with a large score difference. For
this sample, the MMPO model correctly places
high confidence on the chosen response, whereas
the DPO model incorrectly places relatively high
confidence on the rejected response.



Table 7: SHP sample with a score difference of 2.

Question

[Terminator] Why was Skynet so awful at exterminating humans?
Always bothered me, since the machines are portrayed as highly com-
petent both in and out of combat, but Skynet’s strategic decisions
baffle me. 1: Radiological weapons would be an easy win. A mild
radioactivity won’t immediately kill humans, but you can easily and
irreversibly render their territory uninhabitable in the long term. And
it poses no danger to Skynet. 2: Don’t manufacture weapons that the
Resistance can use to kill you. You don’t need a plasma rifle to kill a
human in 20th century body armor. That’s overkill. Plasma rifles, on
the other hand, are great at killing armor plated robots. An argument
could be made that they’re useful for killing rogue Terminators, but this
quickly falls apart, when you consider that the availability of handheld
armor piercing weapons also makes the rogues more dangerous. I
would even go so far as to suggest they specifically design weapons
and ammunition which will be extremely ineffective against machines,
if captured and repurposed by the Resistance. Brass jacketed soft tip
cartridges would suffice perfectly well for killing soft targets, while
doing little to no damage against a Terminator. Chemical weapons and
low heat incendiaries like phosphorous and napalm would also be very
effective against humans, while not posing a significant threat toward
machines.

Chosen
response

Skynet isn’t this fully developed hyper intelligent Al It was a Al
created to manage and coordinate US nuclear offensive and defensive
capabilities. It just happened to develop Sentience. The military tried
to pull the plug and skynet struck first. It’s effectively a child and it’s
fighting humans for the most part the way humans taught it to fight.
Score: 142

DPO confidence: 0.96

MMPO confidence: 0.69

Rejected
response

It most likely has to do with its programming. Skynet wasn’t created
to be a weapons system designer, it was made to be an Al system
that controlled and deployed battlefield resources. As a result, every
weapon that Skynet uses is just permutations of existing weapons sys-
tems it had control over when it gained sentience as it’s programming
is mostly adapting tactics to enemy actions.

Score: 140

DPO confidence: 0.04

MMPO confidence: 0.31

Score gap

|2
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Table 8: SHP sample with a score difference of 1.

Question

How much does personality/geniality/general likability count in inter-
views? Is it like a normal job interview where that’s kind of a big deal
once you reach the interview stage (I had a mentor who said it abso-
lutely was because they didn’t want to have to work with someone for
10+ years who wasn’t easy to get along with), or are faculty generally
keeping it in mind but more focused on someone’s CV/ability to obtain
funding/etc?

Chosen
response

I think that by the time you get to the campus interview stage, one’s
ability to interact with your potential colleagues is an extremely impor-
tant factor in the final deliberation. That, together with how you are
able to communicate with a broad audience, and field questions about
your work, are the main reason why we even have in-person campus
interviews, as opposed to just basing the hiring decision entirely on
one’s application materials.

Score: 4

DPO confidence: 0.86

MMPO confidence: 0.63

Rejected
response

I feel like I got into a masters program because my interview went so
well. Public/interpersonal speaking is huge for almost any position
Score: 3

DPO confidence: 0.14

MMPO confidence: 0.37

Score gap

1

Table 9: SHP sample with a score difference of 1.

Question

Anyone else have some embarrassing work stories? Just had an em-
barrassing moment at work, where I gave a big presentation, but got
caught like deer in headlights during questions in front of a lot of
coworkers. Feel so embarrassed. Need to commiserate.

Chosen
response

I have ADHD and regularly can’t remember basic shit. Part of it is
anxiety, part is ADHD, part is actually not knowing. (I was diagnosed
only a couple years ago, at 31, so I'm still working on ADHD "hacks")
Nothing says "I feel like shit" like having gone to a great University
and being unable to articulate your thoughts so you coworkers think
you’re stupid.

Score: 3

DPO confidence: 0.26

MMPO confidence: 0.63

Rejected
response

Was doing high voltage testing in front of a client. Went into the test
bay to redo some cables, stood up quickly right into an open cabinet
door. Woke up with my boss and said clients standing over me.
Score: 2

DPO confidence: 0.74

MMPO confidence: 0.37

Score gap

1
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Table 10: SHP sample with a score difference of 52.

Question

[CA]JAccepted Formal Written Job offer with specific salary range.
Now HR said they made a mistake regarding the pay. What should
I do? Recently received and accepted a formal offer of employment
via email from HR. This position has four pay scale ranges A,B,C,D.
Based on my qualifications the HR department placed me in range C
which was stated in the official offer. While attempting to negotiate
where in range C my pay would actually land, the HR rep stated that
upon further review of my application I actually am to be placed in
Range B now but that I would be eligible for range C after 5 months.
She apologized for the mistake. However, I have the formal offer
saying range C and that is what I originally accepted. Im not sure what
to do. Do they have to honor their original offer? Also , lets say I do
accept range B now, is an email enough proof for "getting it in writing"
from the employer that in 5 months I will be move up to range C?

Chosen
response

If you haven’t already resigned from your most recent job, I would just
decline this offer and keep looking. This stinks of bad faith.

Score: 66

DPO confidence: 0.24

MMPO confidence: 0.91

Rejected
response

No. Pay can be altered going forward, but not for work that has been
done. Unless the letter is signed by an Officer, I struggle to see anything
contractually binding.

Score: 14

DPO confidence: 0.76

MMPO confidence: 0.09

Score gap

52
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