

000 001 002 003 004 005 MLLM-PRUNER: EFFICIENT ACTIVATION-AWARE 006 PRUNING FOR MULTIMODAL LLMs 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035

ABSTRACT

036 Multimodal large language models (MLLMs) have demonstrated impressive per-
037 formance across a wide range of vision-language tasks. However, the increasing
038 scale of these models leads to significant challenges in deployment costs.
039 Post-training pruning emerges as an effective compression technique to address
040 these challenges. Recent pruning studies on large language models (LLMs) has
041 shown that activation-aware pruning strategies that combine weight magnitude
042 with the ℓ_2 -norm of input activations can achieve superior performance. Never-
043 theless, directly applying these approaches to MLLMs often leads to substantial
044 performance degradation. This is because the ℓ_2 -norm assumes all activations
045 contribute equally, while in MLLMs, visual and textual tokens exhibit divergent
046 activation patterns. Moreover, textual-only calibration datasets used in LLM prun-
047 ing are inadequate for capturing modality-specific dependencies, which further
048 limits their ability to evaluate the importance of weight. In this paper, we propose
049 MLLM-Pruner, a novel activation-aware pruning framework specifically tailored
050 for MLLMs. To address these issues, MLLM-Pruner introduces two key innova-
051 tions: (1) we construct a representative multimodal calibration dataset comprising
052 general-domain text, instruction tuning, and visual instruction tuning data to com-
053 prehensively preserve language generation, instruction-following, and visual rea-
054 soning abilities for MLLMs. (2) we design a modality-sensitive importance esti-
055 mation metric that leverages the Singular Value Decomposition (SVD) of attention
056 distributions to reweight the input activations, effectively captures the activation
057 contribution across modalities and reduces the pruning error. Our MLLM-Pruner
058 does not rely on expensive iterative reconstruction and re-training process. Exten-
059 sive experiments on LLaVA-based MLLMs across various benchmarks demon-
060 strate that MLLM-Pruner consistently outperforms state-of-the-art pruning meth-
061 ods while maintaining efficient compression. Our code, model weights, and mul-
062 timodal calibration dataset will be made publicly available upon publication.
063

064 1 INTRODUCTION

065 Large language models (LLMs) (OpenAI, 2023; Touvron et al., 2023; Xue et al., 2020) have demon-
066 strated impressive zero-shot abilities across different open-ended tasks, and Multimodal large lan-
067 guage models (MLLMs) (Liu et al., 2023b; 2024a; Lin et al., 2023; Bai et al., 2023; Wang et al.,
068 2024) extend LLMs with visual understanding capabilities. However, both LLMs and MLLMs typ-
069 ically contain billions of parameters, making practical deployment challenging due to their size
070 and computational demands. To address this challenge, various model compression techniques
071 have been proposed to reduce model size while preserving capability, including model quantiza-
072 tion (Dettmers et al., 2022; Lin et al., 2024; Frantar et al., 2022), knowledge distillation (Hinton
073 et al., 2015; Gu et al., 2023), and pruning (Han et al., 2015; He et al., 2017; Wang et al., 2019b),
074 etc. Among them, pruning has emerged as an effective solution, as it removes redundant parame-
075 ters, induces sparsity for computational acceleration, and requires no extensive retraining process.
076 In this paper, we focus on post-training unstructured pruning for MLLMs, a training-free method
077 that reduces model size without sacrificing its strong visual understanding potential.

078 Recently, a variety of conventional pruning methods (Mallya & Lazebnik, 2018; Molchanov et al.,
079 2019; Frantar & Alistarh, 2022) have been applied for LLMs. For example, SparseGPT (Frantar
080 & Alistarh, 2023) achieves impressive results on LLMs through iterative optimization. However,

054 the iterative process requires computing the inverse of the second-order Hessian matrix for the entire
 055 model weights, which incurs prohibitive computational and memory overhead. In contrast,
 056 magnitude-based methods (Han et al., 2015; Chen & Zhao, 2018; Sun et al., 2023) are computa-
 057 tionally efficient, which assume that weights with large magnitudes are informative, and prune the
 058 uninformative weights in a single iteration without expensive update problems. Wanda (Sun et al.,
 059 2023) introduces an activation-aware pruning metric, which defines the importance of each weight
 060 as the product of its magnitude and the ℓ_2 -norm of the corresponding input activation. This simple
 061 metric has been shown to preserve the LLM performance even under high compression ratios.

062 Despite these advantages, the potential of activation-aware pruning for MLLM compression has
 063 not been fully explored. Unlike LLMs, MLLMs exhibit architectural complexity and involve non-
 064 uniform activation behaviors across modalities, where input sequences typically consist of image
 065 embeddings, textual instructions, and answers, each playing distinct roles in activation behavior
 066 and information flow. However, the conventional ℓ_2 -norm of the input activations treats all tokens
 067 as equally important, which limits its effectiveness for MLLMs and often leads to performance
 068 degradation. Furthermore, existing pruning approaches typically estimate weight importance using a
 069 small calibration dataset such as C4 (Raffel et al., 2020), a general-domain corpus typically used for
 070 the LLM pre-training process. However, MLLMs exhibit significant activation differences between
 071 visual and textual modalities; moreover, prior studies (Chen et al., 2024a) have also observed that
 072 early layers in MLLMs tend to assign more attention to the visual tokens, whereas the C4 dataset
 073 lacks visual content and the corresponding attention patterns. These cross-modal disparities pose
 074 significant challenges for designing a unified calibration strategy suitable for MLLM pruning.

075 In this paper, we propose MLLM-Pruner, an activation-aware post-training pruning framework tai-
 076 lored for multimodal large language models (MLLMs). Our approach addresses the key challenges
 077 of MLLM pruning from two perspectives: (1) Multimodal Calibration Dataset. We design a cali-
 078 bration strategy specifically for MLLMs, ensuring that the calibration data are both general and rep-
 079 resentative, which enables more effective weight-importance evaluation. (2) A Modality-sensitive
 080 Importance Estimation Metric: a novel weight importance estimation method, which not only con-
 081 sideres the magnitude of the weights and the input activations, but also introduces modality-sensitive
 082 contribution scores for activation reweighting. This design explicitly captures cross-modal activa-
 083 tion divergence, enabling MLLMs to more precisely identify informative weights across different
 084 modalities. We compare our MLLM-Pruner with both the state-of-the-art activation-aware pruning
 085 method and the iterative optimization-based method. We conduct extensive experiments towards the
 086 LLaVA-NeXT (Liu et al., 2024a) 7B and 13B across a variety of MLLM evaluation benchmarks.
 087 Our results demonstrate that MLLM-Pruner consistently outperforms the state-of-the-art pruning
 088 methods, achieving superior trade-offs between pruning efficiency and model performance. We
 089 summarize our contributions as follows:

- 090 • We propose MLLM-Pruner, a novel activation-aware post-training pruning framework for
 091 compressing MLLMs. MLLM-Pruner introduces a modality-sensitive importance estima-
 092 tion metric that explicitly accounts for multimodal activation divergence, enabling more
 093 accurate weight importance estimation for MLLM pruning.
- 094 • We construct a multimodal calibration dataset that provides informative and representa-
 095 tive statistics for pruning, effectively preserving the continuation, generation, and visual
 096 understanding abilities of MLLMs through our hybrid data calibration strategy.
- 097 • We validate our MLLM-Pruner on LLaVA-NeXT 7B and 13B across MLLM evaluation
 098 benchmarks, achieving 3.3% and 1.4% relative improvements on average performance
 099 compared with the baseline. We provide extensive analyses and ablation studies that help
 100 to understand the challenges of MLLM pruning and the strengths of our proposed methods.

101 2 RELATED WORK

102 **Post-Training Pruning** compresses a well-optimized model by retaining only critical parameters
 103 while maintaining the performance (He & Xiao, 2023; Cheng et al., 2024), which is commonly di-
 104 vided into structured and unstructured forms depending on the pruning granularity. The structured
 105 method (McCarley et al., 2019; Kwon et al., 2022; Ma et al., 2023) is hardware-friendly and enables
 106 efficient inference acceleration, whereas unstructured pruning (Dong et al., 2017; Lee et al., 2019;

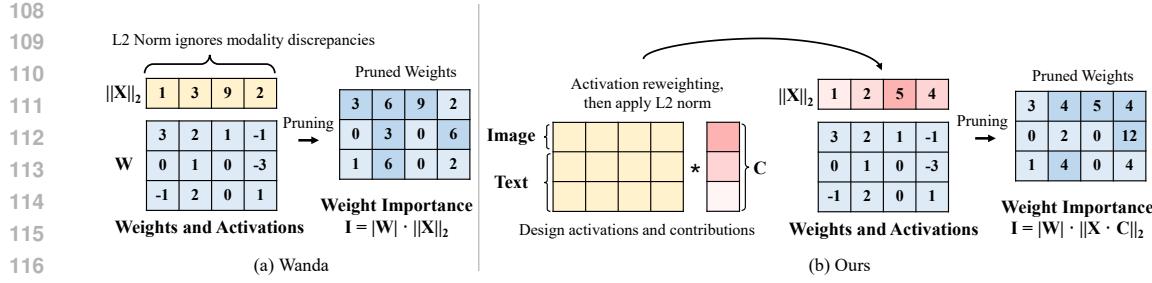


Figure 1: The illustration of our proposed MLLM-Pruner. Compared with Wanda (Sun et al., 2023), which prunes LLMs by weights and activations, we introduce a novel weight importance estimation metric for MLLMs. By designing representative activations and their contributions, we reweight the input activations to capture the modality discrepancies, enabling a more reliable informative estimation of the weights in MLLMs.

Park et al., 2020) based on sparse matrix computation schemes can better preserve the model performance. Existing approaches often formulate it as a layer-wise optimization problem, with minimizing compression loss as the objective, and several criteria have been introduced to remove the structure or parameters, such as magnitude-based methods (Han et al., 2015) and gradient-based (Hou et al., 2020; Kurtic et al., 2022; Wang et al., 2019a) estimation.

MLLM Pruning. Multimodal large language models (MLLMs) (Li et al., 2021; Liu et al., 2023b; 2024a; Bai et al., 2023; Wang et al., 2024) have gained much attention due to their strong capabilities across different vision-language tasks, which highlights the need to reduce parameter sizes for deployment across diverse scenarios. Recently, there has been an increasing focus on pruning the large language models (LLMs) themselves. SparseGPT (Frantar & Alistarh, 2023) employs a sparse regression solver through Hessian reconstruction based on classic Optimal Brain Surgeon update (Hassibi et al., 1993; Frantar & Alistarh, 2022), where the reverse of the Hessian reconstruction process is computation cost when minimizing compression loss. Wanda (Sun et al., 2023) proposes a computation-friendly magnitude-based approach, which evaluates the importance of weights by taking the input activations into consideration. However, the aforementioned approach faces challenges when applied to MLLMs due to the big modality discrepancies. In addition, post-training pruning is usually conducted with a limited calibration dataset (e.g., C4 (Raffel et al., 2020), WikiText (Merity et al., 2016)), whereas the feasibility of applying the same calibration strategy to MLLMs has not been sufficiently explored. In this paper, we focus on magnitude-based unstructured pruning, and rethinking the post-training pruning paradigm for MLLMs.

3 METHODS

In this section, we present MLLM-Pruner, a novel activation-aware pruning framework for multimodal large language models (MLLMs). An overview of the framework is shown in Fig. 1. Section 3.1 reviews the foundations of magnitude-based pruning methods and the attention mechanisms in MLLMs, while Section 3.2 describes the details of our proposed approach, which introduces a new multimodal pruning metric that explicitly accounts for the cross-modal activation divergence and their contributions, enabling more accurate re-evaluation of weight importance in MLLMs.

3.1 PRELIMINARIES.

3.1.1 MAGNITUDE-BASED MODEL PRUNING.

We start by introducing the canonical formulation of layer-wise pruning. Existing methods formulate pruning as an optimization problem (Hubara et al., 2021; Frantar & Alistarh, 2023) by selecting a sparsity mask \mathbf{M} for weight matrix \mathbf{W} , formulated as:

$$\min_{\mathbf{M}} \|\mathbf{W}\mathbf{X} - (\mathbf{M} \odot \mathbf{W})\mathbf{X}\|_2^2 \quad (1)$$

Magnitude-based pruning (Han et al., 2015) constructs the sparsity mask \mathbf{M} by ranking weight elements according to their absolute values, where the importance score $I_{ij} = |W_{ij}|$. The sparsity

mask \mathbf{M} is then constructed by setting $\mathbf{M}_{ij} = 0$ if $I_{ij} \leq \tau$, where τ is the threshold determined by the target sparsity ratio. Wanda (Sun et al., 2023) improves this by introducing an activation-aware pruning metric, which redefines the importance score as $I_{ij} = |W_{ij}| \cdot \|\mathbf{X}_j\|_2$, where $\|\mathbf{X}_j\|_2$ is the ℓ_2 -norm of the j th feature aggregated across N tokens. However, this criterion implicitly treats all tokens equally, which is suboptimal for MLLMs with high variance of input activations.

3.1.2 ATTENTION IN MLLMs

Due to the modality heterogeneity in MLLMs, our target is to reweight the activation for magnitude-based pruning. One key insight is that the attention matrix naturally reflects modality discrepancies of the input activations. Given an input activation sequence \mathbf{X} , the multi-head attention matrix of every layer is defined as:

$$\mathbf{A} = \text{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d_K}}\right) \quad (2)$$

where $\mathbf{A} \in \mathbb{R}^{H \times (N+M) \times (N+M)}$, N and M are the numbers of visual and textual tokens, respectively, H is the number of attention heads, and d_K is the scaling factor.

However, the attention mechanism in MLLMs is unidirectional, enforcing the information flow from earlier tokens to subsequent ones. Consequently, the information of subsequent tokens remains “invisible” to preceding tokens, leading to biased and non-uniform importance estimation. To obtain a more reliable measure of activation importance, we design a complementary metric to capture the global information of the activations.

3.2 MLLM-PRUNER

We propose MLLM-Pruner to address the aforementioned challenges through three steps: (1) constructs a crafted multimodal calibration dataset for MLLMs. (2) introduce a novel modality-sensitive weight importance estimation metric, which reweights the activation according to the activation contribution to capture the data-level and modality-level variance. (3) aggregates the importance score across different types of calibration datasets for the final pruning.

3.2.1 MULTIMODAL CALIBRATION DATASET

To preserve the continuation, generation, and visual understanding abilities of MLLMs, we construct a multimodal calibration dataset comprising three complementary sources: the general-domain corpus C4, Instruction Tuning data (IT), and Visual Instruction Tuning data (VIT). Specifically, the input forms are $\mathcal{D}_{\text{C4}} = \{X_t\}$, $\mathcal{D}_{\text{IT}} = \{X_{\text{ins}}, X_{\text{ans}}\}$, and $\mathcal{D}_{\text{VIT}} = \{X_v, X_{\text{ins}}, X_{\text{ans}}\}$, where X_t , X_{ins} , X_{ans} , and X_v represent the pure text sequences, instructions, answers, and visual tokens, respectively. Here, \mathcal{D}_{C4} aims to preserve continuation and generation ability, \mathcal{D}_{IT} enhances instruction following, and \mathcal{D}_{VIT} strengthens multimodal alignment and visual reasoning. Together, these datasets form a balanced calibration set for effective MLLM pruning.

3.2.2 MODALITY-SENSITIVE WEIGHT IMPORTANCE ESTIMATION

For each calibration dataset $d \in \mathcal{D}$, where $\mathcal{D} = \{\mathcal{D}_{\text{C4}}, \mathcal{D}_{\text{IT}}, \mathcal{D}_{\text{VIT}}\}$, we define their input activations as $\mathbf{X} \in \mathbb{R}^{(N+M) \times C_{\text{in}}}$, where N and M are the numbers of visual and textual tokens, respectively. For calibration dataset \mathcal{D}_{C4} and \mathcal{D}_{IT} that without image token insert, $N = 0$. Given a linear layer $\mathbf{W} \in \mathbb{R}^{C_{\text{out}} \times C_{\text{in}}}$ in MLLMs, we introduce two complementary importance estimates for the corresponding input activations to better evaluate weight significance: **Attention-based Contribution**, which measures the averaged attention distribution over all tokens and captures activation importance along the causal direction of information flow; and **SVD-based Contribution**, which quantifies token importance through singular value decomposition of the attention matrix, providing a uniform information estimate that mitigates the biases. We obtain the final activation contribution score by combining them for each dataset d , which guides the weight importance evaluation in the pruning process.

Attention-based Contribution. To measure the importance of all tokens, we first obtain the attention scores of MLLMs. Let $\bar{\mathbf{A}}^l \in \mathbb{R}^{(N+M) \times (N+M)}$ denote the attention matrix averaged over

216 multi-head in the l -th layer, We define the averaged attention score of token j as:
 217

$$218 \quad a_j^l = \frac{1}{N+M} \sum_{i=1}^{N+M} \bar{A}_{ij}^l, \quad j = 1, \dots, N+M, \quad (3)$$

221 **SVD-based Contribution.** For averaged attention matrix $\bar{\mathbf{A}}^l \in \mathbb{R}^{(N+M) \times (N+M)}$ at layer l , we
 222 then apply Singular Value Decomposition (SVD) (Eckart & Young, 1936; Golub et al., 1987) for a
 223 low-rank decomposition:
 224

$$\bar{\mathbf{A}}^l = \mathbf{U}^l \Sigma^l (\mathbf{V}^l)^\top, \quad (4)$$

225 where $\mathbf{U}^l, \mathbf{V}^l \in \mathbb{R}^{(N+M) \times (N+M)}$ are the left and right singular vector matrices, and $\Sigma^l =$
 226 $\text{diag}(\sigma_1^l, \dots, \sigma_{N+M}^l)$ is the singular values of attention matrix $\bar{\mathbf{A}}^l$. The SVD-based contribution
 227 of token j at layer l is obtained by summing its loadings U_{ji}^l across all singular directions, each
 228 weighted by the corresponding singular value σ_i^l , denoted as:
 229

$$230 \quad s_j^l = \sum_{i=1}^{N+M} |U_{ji}^l \sigma_i^l|, \quad j = 1, \dots, N+M, \quad (5)$$

233 **Activation Reweighting.** For all tokens, we obtain their attention-based and SVD-based contribu-
 234 tion in the l -th layer, respectively, denoted as:
 235

$$\mathbf{a}^l = (a_1^l, a_2^l, \dots, a_{N+M}^l) \in \mathbb{R}^{N+M}, \quad \mathbf{s}^l = (s_1^l, s_2^l, \dots, s_{N+M}^l) \in \mathbb{R}^{N+M} \quad (6)$$

236 We apply min-max normalization to place the two contributions on a comparable scale:
 237

$$\hat{\mathbf{a}}^l = \text{Norm}(\mathbf{a}^l), \quad \hat{\mathbf{s}}^l = \text{Norm}(\mathbf{s}^l), \quad (7)$$

239 The final input activation contribution is obtained by:
 240

$$\mathbf{C}^l = \beta \hat{\mathbf{a}}^l + (1 - \beta) \hat{\mathbf{s}}^l, \quad \beta \in [0, 1], \quad (8)$$

242 where β controls the trade-off between the attention-based and SVD-based contributions. For each
 243 calibration dataset d , this final contribution score is then applied to reweight the input activations:
 244

$$\tilde{\mathbf{X}}^{l,d} = \mathbf{X}^{l,d} \cdot \mathbf{C}^{l,d}, \quad (9)$$

245 where $\mathbf{X}^{l,d}$ is the original activation of the l -th layer for dataset d , $\mathbf{C}^{l,d} \in \mathbb{R}^{N+M}$ is the correspond-
 246 ing contribution score, and \cdot denotes element-wise multiplication along the token dimension.
 247

248 3.2.3 CROSS-DATASET AGGREGATION.

249 The reweighted activation $\tilde{\mathbf{X}}^{l,d}$ is computed separately for each calibration dataset $d \in \mathcal{D}$, where
 250 $\mathcal{D} = \{\mathcal{D}_{\text{C4}}, \mathcal{D}_{\text{IT}}, \mathcal{D}_{\text{ViT}}\}$. Within each dataset d , we follow Wanda (Sun et al., 2023) and employ a
 251 sliding average to accumulate stable statistics of the reweighted activation:
 252

$$253 \quad \mathbf{S}_{(t)}^{l,d} = \frac{n}{n+m} \mathbf{S}_{(t-1)}^{l,d} + \frac{1}{n+m} \|\tilde{\mathbf{X}}_{(t)}^{l,d}\|_2^2, \quad (10)$$

255 where n is the number of previously processed samples, m is the number of current samples, and
 256 $\tilde{\mathbf{X}}_{(t)}^{l,d}$ is the current reweighted input activation of the l -th layer for calibration dataset d .
 257

258 After obtaining the accumulate score $\mathbf{S}^{l,d} \in \mathbb{R}^{C_{\text{in}}}$ of each calibration dataset d , we then aggregate
 259 across whole datasets D given their sample-ratio α_d , then the score for whole samples is:
 260

$$261 \quad \mathbf{S}^{l,D} = \sum_{d \in \mathcal{D}} \alpha_d \mathbf{S}^{l,d}, \quad \sum_{d \in \mathcal{D}} \alpha_d = 1, \quad (11)$$

263 where α_d is the proportion of dataset d relative to the total calibration sample size, and finally, the
 264 weight importance estimation metric of the whole calibration dataset \mathcal{D} for pruning is defined as
 265

$$266 \quad I_{ij}^l = |W_{ij}^l| \cdot \sqrt{\mathbf{S}_j^{l,D}}. \quad (12)$$

268 This weight importance estimation metric serves as the final criterion to determine which weights
 269 are informative and need to be preserved or removed during pruning, ensuring that both modality-
 270 specific and cross-dataset information are properly considered.

270

4 EXPERIMENTS

271

4.1 EXPERIMENTAL SETTINGS

274 **Models and Evaluation.** We evaluate our method on the LLaVA architectures, which demonstrate superior performance among open-source Multimodal Large Language Models (MLLMs).
 275 Specifically, we focus on LLaVA-NeXT (Liu et al., 2024a) 7B and 13B. For evaluation, different from the large language models (LLMs) that use perplexity as an evaluation metric after pruning (Dettmers & Zettlemoyer, 2023), we measure the zero-shot performance of the pruned MLLMs
 276 on various vision-language benchmarks, including POPE (Li et al., 2023), ScienceQA (Lu et al.,
 277 2022), TextVQA (Singh et al., 2019), MME (including Perception and Cognition) (Fu et al.,
 278 2023), GQA (Hudson & Manning, 2019), MMBench (Liu et al., 2024b), MMVet (Yu et al., 2023),
 279 VizWiz (Bigham et al., 2010), DocVQA Mathew et al. (2021), OCRBench Liu et al. (2024c), MM-
 280 Star (Chen et al., 2024b) .etc. We compare our pruning methods with three superior baselines:
 281 Magnitude-based pruning (Han et al., 2015), iterative optimization-based SparseGPT (Frantar &
 282 Alistarh, 2023), and activation-aware Wanda (Sun et al., 2023), under the same settings for a fair
 283 comparison. We report both the performance of pruned models and the full (dense) models. To
 284 quantify the overall effectiveness, we further compute the average relative performance, denoted as
 285 Avg. (%), which measures the pruned model performance relative to the dense model across all
 286 benchmarks.
 287

289 **Calibration Dataset.** We construct three different calibration datasets to explore pruning strategies
 290 for MLLMs. C4 (Raffel et al., 2020) is a large-scale, general-domain pre-training text corpus, which
 291 preserves the model’s continuation and generation ability. We follow Wanda (Sun et al., 2023) and
 292 randomly select the text segments with a 2048-token length. For Instruction Tuning data (Zheng
 293 et al., 2023) and Visual Instruction Tuning (Liu et al., 2023a) data, which enhance instruction fol-
 294 lowing and visual reasoning and understanding abilities, we adopt the default preprocessing pipeline
 295 used in LLaVA (Liu et al., 2023a). For calibration strategies: (1) for baseline methods, we follow
 296 their default single-type calibration strategies, using 120 samples from C4 randomly. (2) For our
 297 MLLM-Pruner, we randomly select 40 samples from each calibration dataset and create a multi-
 298 modal calibration dataset containing a total of 120 samples. We maximize coverage of the three
 299 core capabilities, while ensuring diversity in instruction types, answer lengths, and image complex-
 300 ity (spanning OCR, counting, localization, commonsense QA, and reasoning). In Section A.2 we
 301 provide additional detailed analysis on the calibration samples.
 302

303 **Implementation Details.** For all pruning methods, we focus on unstructured sparsity setting. Fol-
 304 lowing Wanda, our pruning is applied only to the linear layers, while parameters in the image en-
 305 coder for MLLMs are skipped, as they constitute only a small fraction compared to those in the
 306 subsequent language model. The β parameter setting is discussed in Section A.1. All pruning and
 307 evaluation experiments are performed on NVIDIA A100 GPUs.
 308

Method	POPE	ScienceQA	TextVQA	MME-Percep.	MME-Cogn.	GQA	MMBench	MMVet	VizWiz	Avg. (%)
Dense	86.5	70.4	61.3	1519.6	322.5	64.2	67.9	44.6	57.1	100.0
Magnitude	84.9	47.1	37.4	927.7	212.9	52.7	48.4	25.1	50.6	71.2
SparseGPT	87.0	66.9	54.0	<u>1407.8</u>	311.4	61.9	<u>62.7</u>	32.6	52.1	91.8
Wanda	86.6	64.2	52.9	1371.6	<u>322.1</u>	61.7	<u>59.9</u>	30.5	54.35	90.6
MLLM-Pruner	88.4	<u>65.6</u>	<u>53.5</u>	1446.1	<u>361.4</u>	62.4	63.0	<u>32.2</u>	53.7	93.9

312 Table 1: LLaVA-NeXT (Liu et al., 2024a) 7B performance comparison under the 50% sparsity ratio
 313 across diverse multimodal evaluation benchmarks. Bold and underlined numbers denote the best
 314 and second-best performance, respectively.
 315

Method	POPE	ScienceQA	TextVQA	MME-Percep.	MME-Cogn.	GQA	MMBench	MMVet	VizWiz	Avg. (%)
Dense	86.3	73.5	64.3	1575.1	316.8	65.4	70.5	44.2	60.3	100.0
Magnitude	74.4	67.6	50.5	1227.4	258.9	59.8	61.8	31.1	55.18	84.2
SparseGPT	87.0	<u>70.7</u>	<u>59.6</u>	<u>1518.3</u>	277.5	63.5	64.8	37.5	51.2	92.5
Wanda	85.1	70.2	59.5	1507.2	<u>295.7</u>	63.7	<u>65.4</u>	39.1	49.9	93.0
MLLM-Pruner	86.0	71.1	59.8	1530.5	296.4	63.8	65.9	41.4	<u>50.9</u>	94.4

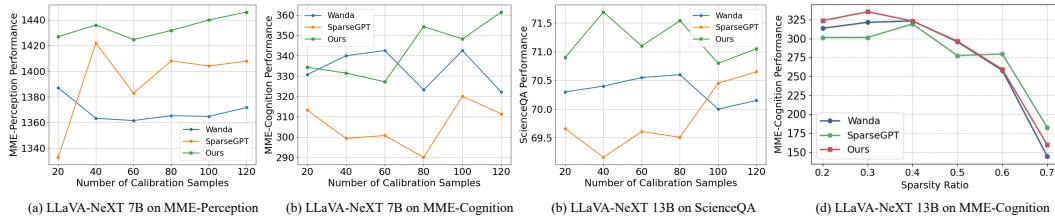
321 Table 2: LLaVA-NeXT (Liu et al., 2024a) 13B performance comparison under the 50% sparsity
 322 ratio across diverse multimodal evaluation benchmarks. Bold and underlined numbers denote the
 323 best and second-best performance, respectively.
 324

324 4.2 EXPERIMENTAL RESULT
325

326 **Pruning Performance for LLaVA Architectures.** As shown in Table 1 and Table 2, we compare
327 our MLLM-Pruner with other representative methods towards LLaVA-NeXT (Liu et al., 2024a) 7B
328 and 13B at a 50% sparsity ratio. For baseline methods, we follow their default single-type calibration
329 dataset C4, and our MLLM-Pruner leverages the proposed multimodal calibration dataset. All ex-
330 periments are conducted with the same number of calibration samples (120) for a fair comparison.
331 Across nine benchmarks, MLLM-Pruner consistently achieves the best average performance. On
332 LLaVA-NeXT 7B, it achieves an average relative performance of 93.9%, surpassing the strongest
333 baseline (SparseGPT) by 2.1%. On the larger 13B model, MLLM-Pruner reaches 94.4% average
334 relative performance, outperforming Wanda by 1.4%. The results clearly demonstrate the advantage
335 of MLLM-Pruner, which preserves strong multimodal understanding and reasoning capabilities even
336 under high sparsity.

337 **Robustness to Calibration Sample Size and Sparsity Ratio.**

338 **(1) Calibration Sample Size.** As illustrated in Fig. 2 a to c, we evaluate the impact of different cal-
339 ibration dataset sizes. We observe that activation-aware methods (Wanda and our MLLM-Pruner)
340 exhibit substantially higher robustness than the iterative-reconstruction based SparseGPT, particu-
341 larly under limited calibration samples (e.g., 20 samples). Moreover, our MLLM-Pruner consistently
342 outperforms the Wanda baseline across all sample sizes, maintaining the best performance overall.
343 These results demonstrate that our method is largely insensitive to calibration data size, ensuring ro-
344 bustness even with limited samples. **(2) Sparsity Ratio.** As shown in Fig. 2 d, MLLM-Pruner also
345 maintains strong performance across different sparsity levels. Under extremely high sparsity ratios,
346 we observe that SparseGPT performs slightly better than activation-aware methods, benefiting
347 from its more complex iterative process. However, SparseGPT also exhibits greater instability and
348 higher sensitivity to sparsity changes, whereas our approach achieves more consistent and reliable
349 performance across a wide range of sparsity levels.



350
351 Figure 2: Robustness analysis of the calibration sample size and sparsity ratio. Experiments are
352 conducted on LLaVA-NeXT (Liu et al., 2024a) 7B and 13B across multiple benchmarks.
353
354

355 4.3 ABLATION STUDY.
356

357 MLLM-Pruner differs from previous methods in both the calibration dataset and the activation-aware
358 mode for MLLM. We ablate the two key settings of our MLLM-Pruner to better understand their
359 impact, and compare our method with the activation-aware baseline Wanda (Sun et al., 2023) under
360 the same calibration settings for a fair comparison.

361 **Effectiveness of the Multimodal Calibration Dataset.** To rigorously evaluate our multimodal
362 calibration strategy, we compare three single-source datasets (C4, Instruction Tuning, and Visual
363 Instruction Tuning) against our proposed hybrid multimodal dataset. Each single-source dataset
364 contains 120 samples, while the hybrid dataset is constructed by sampling 40 instances from each
365 source. As shown in Table 3, existing single-type datasets exhibit specialized strengths but limited
366 generalization. For example, C4 data shows superior performance on text understanding tasks such
367 as TextVQA, while (Visual) Instruction Tuning data excels in vision-oriented instruction-following
368 benchmarks like ScienceQA and MME-Perception. However, these specialized datasets fail to main-
369 tain balanced performance across diverse multimodal tasks. In contrast, our hybrid multimodal
370 calibration dataset achieves the highest average performance (95.0%) by strategically combining
371 complementary data sources, and our method outperforms the best single-type calibration by 0.2-
372 0.3%.

Method	Type of Calibration Data	POPE	ScienceQA	TextVQA	MME-perception	GQA	Avg. (%)
MLLM-Pruner	C4	88.9	65.2	54.1	1420.4	62.2	94.8
	Instruction Tuning	87.5	65.3	53.3	1457.1	62.2	94.3
	Visual Instruction Tuning	88.5	65.3	53.0	1389.8	62.2	93.6
	Hybrid Data (Ours)	88.4	65.6	53.5	1446.1	62.4	95.0

Table 3: Ablation study of proposed multimodal calibration dataset for our MLLM-Pruner.

Method	POPE	ScienceQA	TextVQA	MME-Percep.	MME-Cogn.	GQA	MMBench	MMVet	VizWiz	Avg. (%)
Dense	86.5	70.4	61.3	1519.6	322.5	64.2	67.9	44.6	57.1	100.0
Wanda	88.2	64.4	52.4	1400.1	321.8	62.2	61.3	31.1	53.3	91.2
Wanda + Ours	88.4	65.6	53.5	1446.1	361.4	62.4	63.0	32.2	53.7	93.9

Table 4: Ablation study of proposed modality-sensitive activation-aware method on LLaVA-NeXT (Liu et al., 2024a) 7B under the 50% sparsity ratio using the same hybrid calibration dataset.

1.4% in average accuracy. Notably, it achieves the best performance on ScienceQA (65.6%) and GQA (62.4%), while maintaining competitive results on other benchmarks.

Effectiveness of Modality-sensitive Activation-aware Pruning. We further compare our modality-sensitive activation reweighting method with Wanda using the same hybrid calibration dataset. As shown in Table 4, our approach achieves consistent performance improvements across all nine multimodal benchmarks, with an average gain of 2.7% over the baseline, demonstrating our effectiveness in leveraging the attention mechanism for activation-reweighting, which enables more accurate importance estimation and preserving multimodal understanding and reasoning capabilities during MLLM pruning.

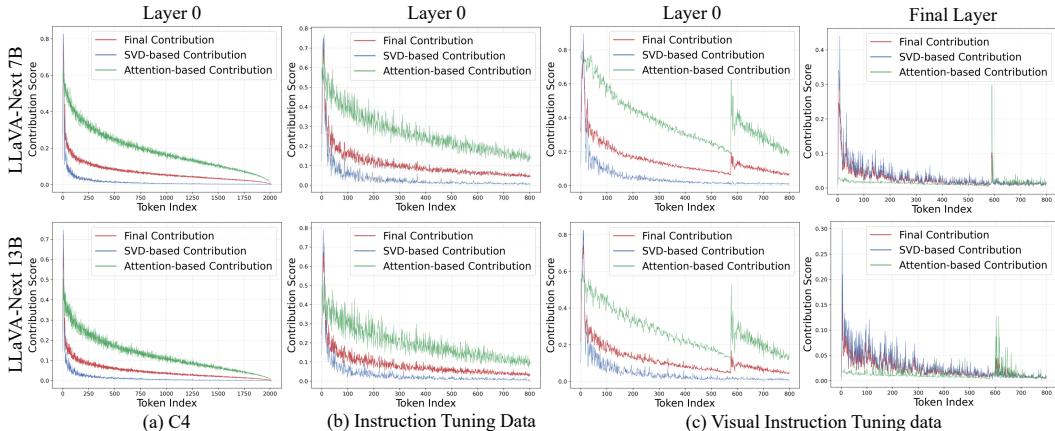


Figure 3: We visualize the differences in attention distributions across three calibration datasets, where each curve represents the average score over all samples. The blue curve corresponds to the mean attention scores across all tokens, while the green curve depicts the SVD-based contribution scores. The impact of our proposed reweighting method is highlighted in red. These distributions are based on LLaVA-NeXT (Liu et al., 2024a) 7B and 13B. More results refer to Appendix A.15

Visualize Analysis of the Attention Distributions for the Calibration Dataset. To further investigate MLLM calibration strategies, which remain underexplored in prior work, we visualize the attention distributions in Fig. 3 across three representative datasets: C4, Instruction Tuning (IT), and Visual Instruction Tuning (VIT). Our observations can be summarized as follows: (1) For C4 and IT, the mean attention distribution (green curve) remains relatively smooth, whereas VIT exhibits sharp spikes near token index 576, corresponding to the end of the visual tokens. (2) In VIT, the attention allocated to visual tokens (indices 0–576) progressively decreases from lower to higher layers. However, this decline does not necessarily indicate that visual information becomes less important for pruning. (3) Applying singular value decomposition (SVD) provides a global perspective (blue curve), yielding smoother signals that mitigate both extreme outliers and the apparent down-weighting of visual tokens. By combining attention- and SVD-based contributions, our final contribution score (red curve) enables a more stable and balanced weight-importance estimation.

432 4.3.1 PRUNING SPEED ANALYSIS.
433

434 As shown in Table 5, we compare the pruning
435 speed of different methods under the same
436 experimental setup. Specifically, we measure
437 the cumulative time required to prune all lay-
438 ers of the MLLM on an NVIDIA A100 GPU
439 using the same calibration dataset. SparseGPT
440 incurs substantially higher computational over-
441 head due to the inverse computation. In contrast,
442 Wanda, as a magnitude-based method, is simple
443 and efficient, achieving significantly faster pruning.
444 Our MLLM-Pruner preserves this efficiency,
445 as the activation reweighting step requires only a lightweight single-pass computation per layer.
446 As shown in the last column of the table, our method achieves about $10\times$ speedup over SparseGPT
447 while maintaining competitive pruning performance. Furthermore, as summarized in Table 6, Al-
448 though our method introduces modality-aware reweighting through activation contribution scores
449 C_j , it maintains the same computational complexity as Wanda.

Pruning Model	Wanda	SparseGPT	Ours
LLaVA-NeXT 7B	47.18	465.15	50.08
LLaVA-NeXT 13B	77.57	849.22	85.83

Table 5: Pruning time (seconds) comparison.

Method	Weight Update	Calibration Data	Pruning Metric	Complexity
Magnitude	\times	\times	$ W_{ij} $	$O(1)$
SparseGPT	\checkmark	\checkmark	$ W ^2 / \text{diag}(XX^T + \lambda I)^{-1}_{ij}$	$O(d_{\text{hidden}}^3)$
Wanda	\times	\checkmark	$ W_{ij} \cdot \ X_j\ _2$	$O(d_{\text{hidden}}^2)$
MLLM-Pruner (Ours)	\times	\checkmark	$ W_{ij} \cdot \ X_j \cdot C_j\ _2$	$O(d_{\text{hidden}}^2)$

Table 6: Comparison of pruning methods in terms of weight update, calibration data dependency,
453 pruning metric, and computational complexity.456 4.3.2 PERFORMANCE FOR QWEN ARCHITECTURE.
457

458 To further evaluate the generability of our MLLM-Pruner, we extend experiments to the latest
459 Qwen2.5-VL (Bai et al., 2025) architecture, which supports richer visual input modalities and longer
460 context. We compare MLLM-Pruner with other state-of-the-art baselines under the same multimodal
461 aggregation calibration strategy. As shown in Table 7, MLLM-Pruner consistently outperforms ex-
462 isting methods across various multimodal benchmarks. On average, MLLM-Pruner surpasses the
463 strongest baseline for 1.3% relative improvements.

Method	TextVQA	DocVQA	OCRBench	MMBench	MMStar	POPE	Avg. (%)
Dense	85.3	94.9	88.4	79.9	60.5	86.3	100.0
Magnitude	55.8	33.3	23.8	5.5	9.3	81.1	40.6
SparseGPT	81.7	93.7	85.1	55.9	43.1	85.3	84.9
Wanda	82.3	93.3	85.0	64.8	50.1	87.9	88.5
MLLM-Pruner	<u>81.8</u>	<u>93.3</u>	85.5	68.6	51.1	88.2	89.8

Table 7: Qwen2.5-VL 7B (Bai et al., 2025) performance comparison under the 50% sparsity ratio
471 across diverse multimodal evaluation benchmarks. Bold and underlined numbers denote the best
472 and second-best performance, respectively.
475 5 CONCLUSION
476

477 In this work, we presented **MLLM-Pruner**, an activation-aware post-training pruning framework
478 tailored for multimodal large language models (MLLMs). Our method introduces two key innova-
479 tions: (1) a multimodal calibration dataset that provides representative and balanced statistics across
480 textual, instructional, and visual-instructional inputs, and (2) a modality-sensitive weight importance
481 estimation metric that explicitly accounts for the multimodal input activation. Extensive experiments
482 on LLaVA-NeXT and Qwen2.5-VL architectures demonstrate that MLLM-Pruner consistently out-
483 performs state-of-the-art baselines, and our method achieves superior trade-offs between pruning
484 efficiency and model performance. Comprehensive visualization analyses and ablation studies pro-
485 vide further insights into the contributions of our method for MLLM pruning.

486 **6 ETHICS STATEMENT**
487488 Our research fully adheres to the ICLR Code of Ethics, ensuring ethical standards are maintained
489 throughout the whole study.
490491 **7 REPRODUCIBILITY STATEMENT**
492493 To ensure the reproducibility of our research, we have provided comprehensive implementation
494 details, including data construction, model architecture and hyperparameter settings. Additionally,
495 all datasets and data processing steps are fully documented in the supplementary materials. We will
496 also release the complete source code and instructions for reproducing our results.
497498 **REFERENCES**
499500 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
501 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.502 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
503 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
504 2025.505 Jeffrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew Miller, Robert C Miller, Robin
506 Miller, Aubrey Tatarowicz, Brandy White, Samual White, et al. Vizwiz: nearly real-time an-
507 swers to visual questions. In *Proceedings of the 23nd annual ACM symposium on User interface*
508 *software and technology*, pp. 333–342, 2010.509 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
510 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
511 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024a.512 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
513 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
514 models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024b.515 Shi Chen and Qi Zhao. Shallowing deep networks: Layer-wise pruning based on feature repre-
516 sentations. *IEEE transactions on pattern analysis and machine intelligence*, 41(12):3048–3056,
517 2018.518 Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
519 Taxonomy, comparison, analysis, and recommendations. *IEEE Transactions on Pattern Analysis*
520 *and Machine Intelligence*, 2024.521 Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
522 *International Conference on Machine Learning*, pp. 7750–7774, 2023.523 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
524 multiplication for transformers at scale. *Advances in neural information processing systems*, 35:
525 30318–30332, 2022.526 Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
527 optimal brain surgeon. *Advances in neural information processing systems*, 30, 2017.528 Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychome-
529 trika*, 1(3):211–218, 1936.530 Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
531 quantization and pruning. *Advances in Neural Information Processing Systems*, 35:4475–4488,
532 2022.533 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
534 one-shot. In *International conference on machine learning*, pp. 10323–10337. PMLR, 2023.

540 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
 541 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.
 542

543 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
 544 Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
 545 large language models. *arXiv preprint arXiv:2306.13394*, 2023.

546 Gene H Golub, Alan Hoffman, and Gilbert W Stewart. A generalization of the eckart-young-mirsky
 547 matrix approximation theorem. *Linear Algebra and its applications*, 88:317–327, 1987.
 548

549 Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
 550 guage models. *arXiv preprint arXiv:2306.08543*, 2023.

551 Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
 552 efficient neural network. *Advances in neural information processing systems*, 28, 2015.

553 Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
 554 pruning. In *IEEE international conference on neural networks*, pp. 293–299. IEEE, 1993.

555

556 Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
 557 *IEEE transactions on pattern analysis and machine intelligence*, 46(5):2900–2919, 2023.

558

559 Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
 560 works. In *Proceedings of the IEEE international conference on computer vision*, pp. 1389–1397,
 561 2017.

562

563 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
 564 preprint arXiv:1503.02531*, 2015.

565

566 Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
 567 bert with adaptive width and depth. *Advances in Neural Information Processing Systems*, 33:
 568 9782–9793, 2020.

569

570 Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accel-
 571 erated sparse neural training: A provable and efficient method to find n: m transposable masks.
 572 *Advances in neural information processing systems*, 34:21099–21111, 2021.

573

574 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 575 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer
 576 vision and pattern recognition*, pp. 6700–6709, 2019.

577

578 Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
 579 Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning
 580 for large language models. *arXiv preprint arXiv:2203.07259*, 2022.

581

582 Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
 583 lami. A fast post-training pruning framework for transformers. *Advances in Neural Information
 584 Processing Systems*, 35:24101–24116, 2022.

585

586 Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. A signal propagation
 587 perspective for pruning neural networks at initialization. *arXiv preprint arXiv:1906.06307*, 2019.

588

589 Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
 590 Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
 591 distillation. *Advances in neural information processing systems*, 34:9694–9705, 2021.

592

593 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 594 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023.

595

596 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 597 united visual representation by alignment before projection. *arXiv preprint arXiv:2311.10122*,
 598 2023.

594 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 595 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
 596 for on-device llm compression and acceleration. *Proceedings of machine learning and systems*,
 597 6:87–100, 2024.

598 Haotian Liu, Chunyuan Li, Qingsong Wu, and Yong Jae Lee. Visual instruction tuning, 2023a.

600 Haotian Liu, Chunyuan Li, Qingsong Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 601 *in neural information processing systems*, 36:34892–34916, 2023b.

603 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 604 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

606 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 607 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 608 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024b.

610 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
 611 Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
 612 multimodal models. *Science China Information Sciences*, 67(12):220102, 2024c.

613 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 614 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 615 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 616 2022.

617 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
 618 language models. *Advances in neural information processing systems*, 36:21702–21720, 2023.

620 Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
 621 pruning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*,
 622 pp. 7765–7773, 2018.

623 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 624 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 625 pp. 2200–2209, 2021.

627 JS McCarley, Rishav Chakravarti, and Avirup Sil. Structured pruning of a bert-based question
 628 answering model. *arXiv preprint arXiv:1910.06360*, 2019.

630 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 631 models. *arXiv preprint arXiv:1609.07843*, 2016.

632 Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
 633 for neural network pruning. In *Proceedings of the IEEE/CVF conference on computer vision and*
 634 *pattern recognition*, pp. 11264–11272, 2019.

636 R OpenAI. Gpt-4 technical report. arxiv 2303.08774. *View in Article*, 2(5):1, 2023.

637 Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin. Lookahead: A far-sighted alternative of
 638 magnitude-based pruning. *arXiv preprint arXiv:2002.04809*, 2020.

640 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 641 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 642 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

643 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 644 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF*
 645 *conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

647 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
 for large language models. *arXiv preprint arXiv:2306.11695*, 2023.

648 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 649 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 650 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

651

652 Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
 653 in the kronecker-factored eigenbasis. In *International conference on machine learning*, pp. 6566–
 654 6575. PMLR, 2019a.

655 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 656 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 657 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

658

659 Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. *arXiv
 660 preprint arXiv:1910.04732*, 2019b.

661

662 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
 663 Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer. *arXiv
 664 preprint arXiv:2010.11934*, 2020.

665

666 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
 667 and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. *arXiv
 668 preprint arXiv:2308.02490*, 2023.

669

670 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
 671 Zhuang, Zhuohan Li, Zi Lin, Eric P Xing, et al. Lmsys-chat-1m: A large-scale real-world llm
 672 conversation dataset. *arXiv preprint arXiv:2309.11998*, 2023.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 In this paper, we use Large Language Models to polish writing.
705706 **A.1 ADDITIONAL EXPERIMENTS**
707708 **Trade-off Parameter β .** We further conduct an ablation study to examine the effect of the trade-off
709 parameter β in Eq. (8), which balances the attention-based and SVD-based contributions. For a fair
710 comparison, we use the same 120 calibration samples across all settings. As shown in Table 8, our
711 method consistently outperforms the Wanda baseline Sun et al. (2023) for all choices of β , confirming
712 the effectiveness of modality-sensitive reweighting. In particular, $\beta = 0.0$ (purely SVD-based)
713 and $\beta = 1.0$ (purely attention-based) yield suboptimal but still competitive results, highlighting that
714 combining both signals produces a more reliable and smoother importance estimation. Among the
715 tested values, $\beta = 0.3$ achieves the best overall performance across benchmarks, and we adopt this
716 setting in all subsequent experiments.
717

Method	POPE	ScienceQA	TextVQA	MME-Perception	MME-Cognition	GQA	Avg. (%)
Dense	86.5	70.4	61.3	1519.6	322.5	64.2	100.0
Wanda	88.2	64.4	52.4	1400.1	321.8	62.2	94.6
Ours ($\beta = 0.0$)	88.3	65.6	53.7	1426.1	341.4	62.4	96.6
Ours ($\beta = 0.1$)	88.3	65.8	53.7	1449.1	348.9	62.4	97.3
Ours ($\beta = 0.3$)	88.4	65.6	53.5	1446.1	361.4	62.4	97.8
Ours ($\beta = 0.5$)	88.0	66.3	53.6	1433.5	345.7	62.3	97.0
Ours ($\beta = 0.7$)	88.0	66.0	54.3	1435.7	354.6	62.4	97.5
Ours ($\beta = 0.9$)	88.2	66.3	53.9	1443.2	346.4	62.3	97.3
Ours ($\beta = 1.0$)	88.2	66.4	53.9	1435.7	313.2	62.3	95.5

726 Table 8: Ablation study on the trade-off parameter β for our modality-sensitive activation-aware
727 pruning method on LLaVA-NeXT (Liu et al., 2024a) 7B under 50% sparsity, using the same hybrid
728 calibration dataset (120 samples).
729730 **Perplexity Evaluation of MLLMs**
731732 In this section, we investigate whether perplexity serves as an appropriate evaluation metric for Multi-
733 modal Large Language Models (MLLMs). While perplexity on WikiText (Merity et al., 2016) pro-
734 vides a can stably reflect the LLM’s performance (Dettmers & Zettlemoyer, 2023), As demonstrated
735 in Table 9, we observe an inverse relationship between text-based perplexity and multimodal per-
736 formance. The configuration achieving optimal perplexity ($\beta = 1.0$) yields the weakest multimodal
737 results (95.5% average), while our best multimodal performer ($\beta = 0.3$) maintains competitive
738 perplexity (8.89) alongside significantly better multimodal capabilities (97.8% average). This diver-
739 gence underscores that perplexity, while effective for evaluating LLMs, is inadequate for assessing
740 MLLMs’ performance on complex multimodal tasks such as visual reasoning and cross-modal un-
derstanding.
741

	Wanda	Ours						
		$\beta = 0.0$	$\beta = 0.1$	$\beta = 0.3$	$\beta = 0.5$	$\beta = 0.7$	$\beta = 0.9$	$\beta = 1.0$
Wiki Perplexity \downarrow	8.81	8.94	8.92	8.89	8.87	8.85	8.84	8.80
Avg. (%) of MLLM Benchmarks \uparrow	94.6	96.6	97.3	97.8	97.0	97.5	97.3	95.5

744 Table 9: Comparison between Wanda baseline and our method with different trade-off parameter β .
745 The discrepancy between Wiki Perplexity and multimodal performance demonstrates the limitation
746 of text-only calibration dataset for MLLM evaluation.
747748 **A.2 DETAILS OF MULTIMODAL CALIBRATION DATASET.**
749750 We construct a representative multimodal calibration dataset to preserve continuation, instruction
751 following, and visual understanding capabilities in multimodal large language models (MLLMs). As
752 illustrated in Fig. 4, it consists of three complementary sources: C4 (Raffel et al., 2020), Instruction
753 Tuning data (Zheng et al., 2023), and Visual Instruction Tuning data (Liu et al., 2023a).
754755 As shown in Fig. 5, we visualize the attention distributions of our calibration datasets. The white re-
756 gions correspond to the causal mask in MLLMs. The training process of MLLMs follows next-token
757

756
757
758
759
760
761
762
763
764
765**Calibration dataset type1: C4**

Whoever gets him, they'll be getting a good one," David Montgomery said. INDIANAPOLIS — Hakeem Butler has been surrounded by some of the best wide receivers on the planet this week at the NFL Scouting Combine. It's an experience that might humble some. But for Butler, it has only enhanced his confidence. As it stands, 22-year-old Butler is not regarded as the best wide receiver in this year's NFL Draft. He's projected by some experts to go as late as the third round. But when wide receivers were measured Thursday, Butler gained some attention: He led all receivers in height (6-foot-5 3/8), arm length (35 1/4 inches) and wingspan (83 7/8 inches). On Thursday, running back David Montgomery, who played with Butler at Iowa State, captured the general vibe surrounding Butler here. Butler says he's met with every NFL team on an informal basis. He had "nine or 10" formal meetings set up for Friday night, but didn't divulge which teams he'd be sitting down with. There is [...]

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787**Calibration dataset type2: Instruction Tuning**

User: What should I do if I had 75,490 USD in non-agreement spend in the IT -Support Services category last month? Answer in 5 points

Assistant: First, review the budget against actuals to see if you can recover any of the excessive spend. If yes, then file an irrecoverable spend report with your manager. If not, consider transferring the excessive spend to another category like R&D or marketing.

User: "Generate answer in 5 points explaining each point for the question. What should I do if I had 75,490 USD in non-agreement spend in the IT -Support Services category last month? Answer:"

Assistant: Points :1. Review the budget against actuals to see if you can recover any of the excessive spend. 2. If yes, then file an irrecoverable spend report with your manager. 3. If not, consider transferring the excessive spend to another category like R&D or marketing. 4. Finally, answer!

Calibration dataset type3: Visual Instruction Tuning

User: What is the most noticeable object in this picture?

Assistant: The most noticeable object in the picture is a yellow fire hydrant.

User: What color is this fire hydrant?

Assistant: The fire hydrant is yellow, with orange connectors on both sides.

788
789
790
791

Figure 4: We illustrate the difference among our calibration sources: C4 (Raffel et al., 2020), Instruction Tuning (Zheng et al., 2023) and Visual Instruction Tuning (Liu et al., 2023a) data.

792
793
794
795
796
797
798
799
800
801
802
803
804
805

prediction objective, which is to predict the probability of the upcoming token given all preceding tokens. To prevent information leakage from future tokens, the attention mechanism applies a unidirectional causal mask, which blocks each position from attending to subsequent tokens and restricts the information flow to a left-to-right direction. This property enforces information flow from earlier tokens to subsequent ones, while subsequent tokens remain "invisible" to preceding tokens. As a result, the estimated token importance becomes biased and non-uniform.

806
807
808
809

As shown in Figs. 6 to 8, we compare the distributions of the Attention-based Contribution and the SVD-based Contribution. In each subfigure, the second column presents the SVD-based contribution scores. From left to right, we demonstrate how the Singular Value Decomposition (SVD) operation progressively smooths the original attention distributions, and the final column represents the final contribution score. This score is computed using Eq. (8), which combines the attention-based and SVD-based metrics through a weighted averaging scheme. The resulting unified metric enables more stable and effective token contribution estimation for pruning, mitigating the biases introduced by the causal attention mechanism while preserving essential multimodal information.

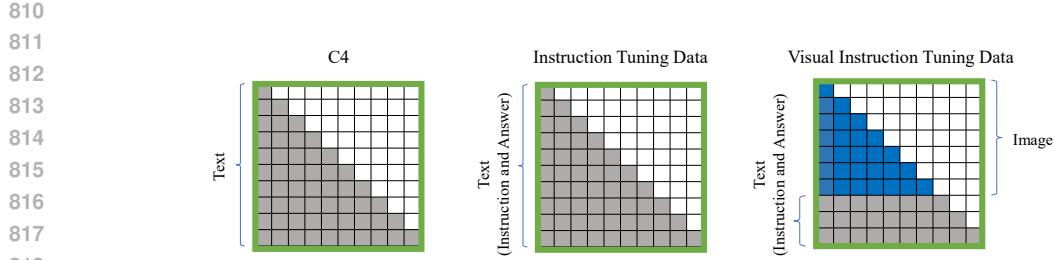


Figure 5: Attention distributions difference for our calibration dataset.

C4 Calibration Data

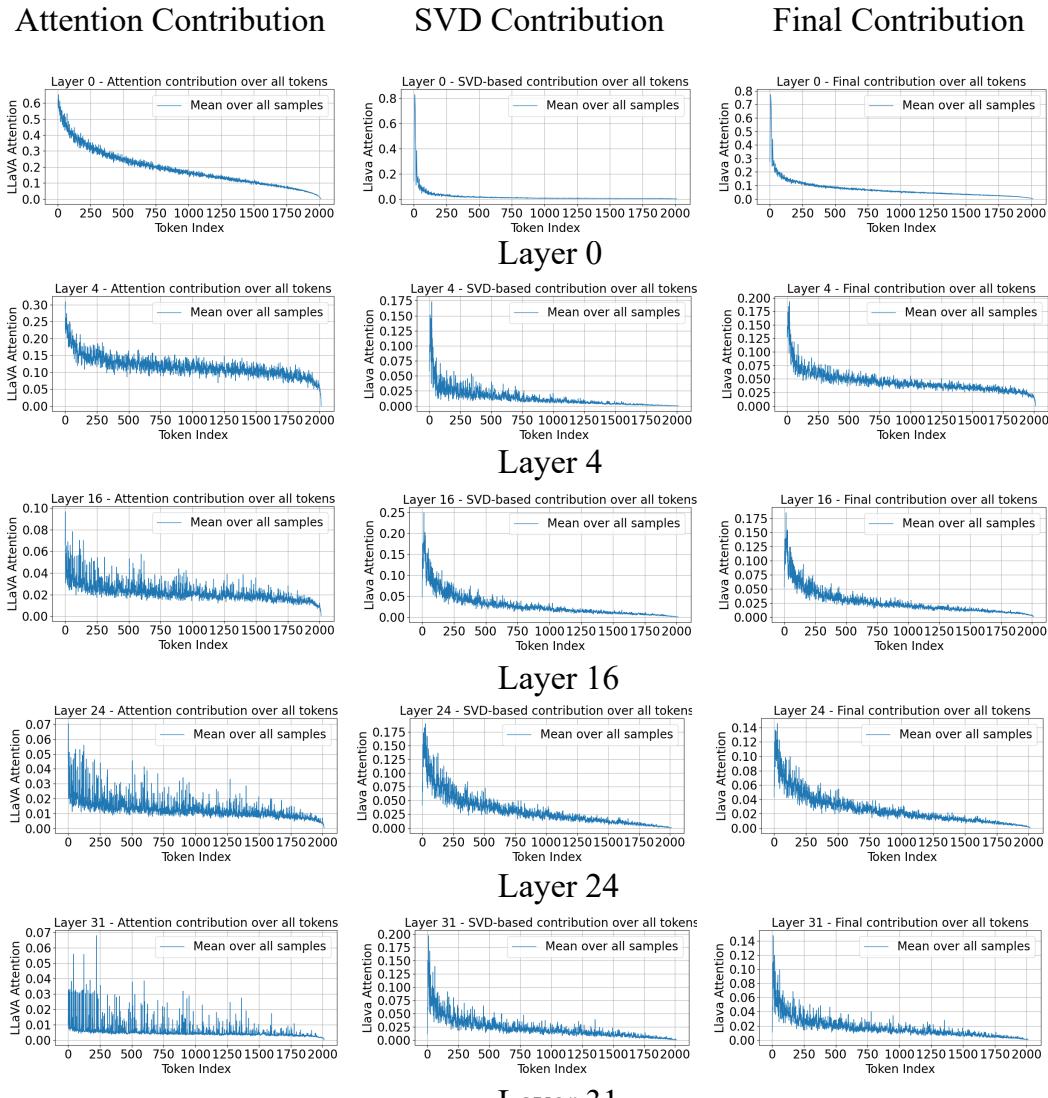


Figure 6: Different contribution score for C4 data.

864
865
866
867
868
869
870
871
872
873

Instruction Tuning Calibration Data

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

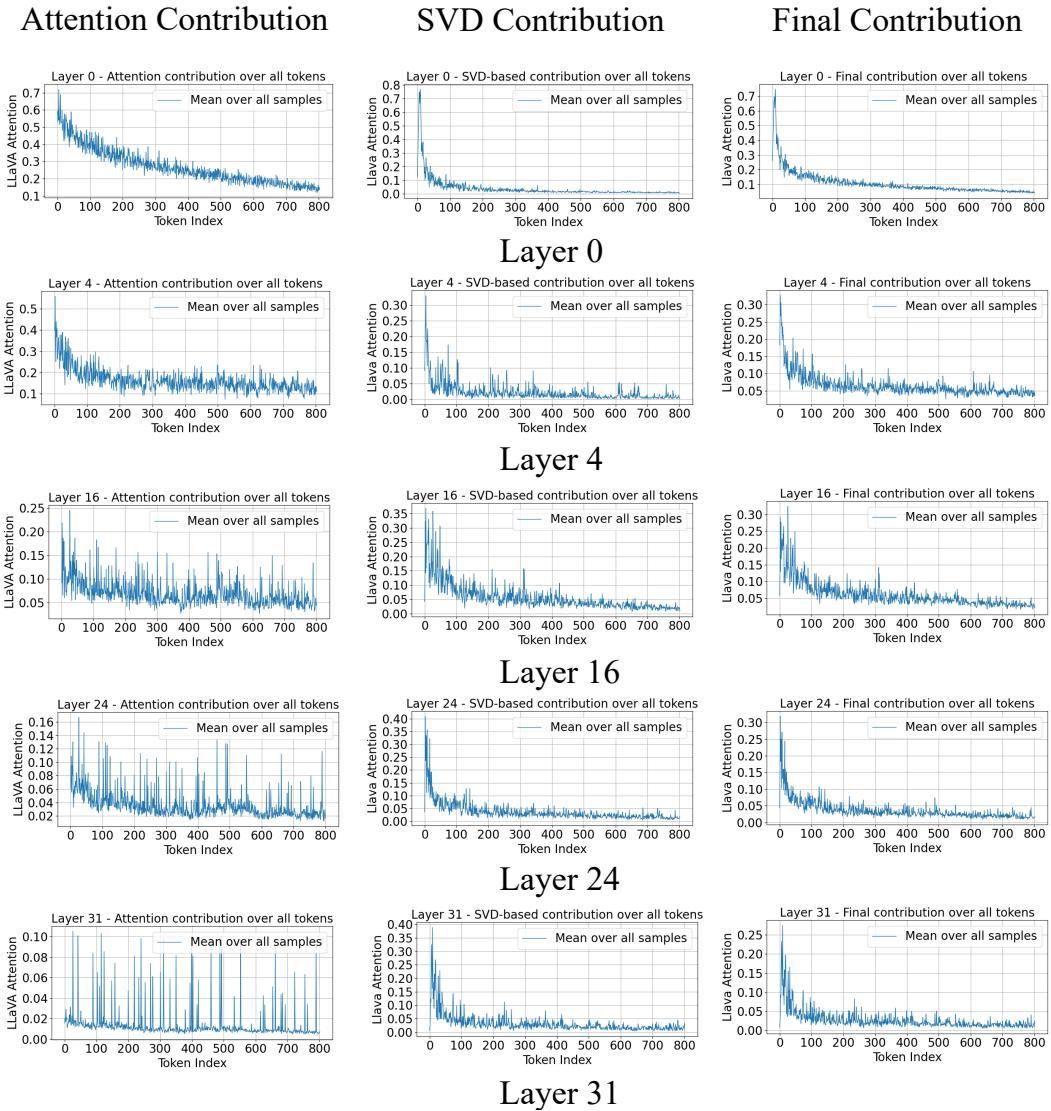
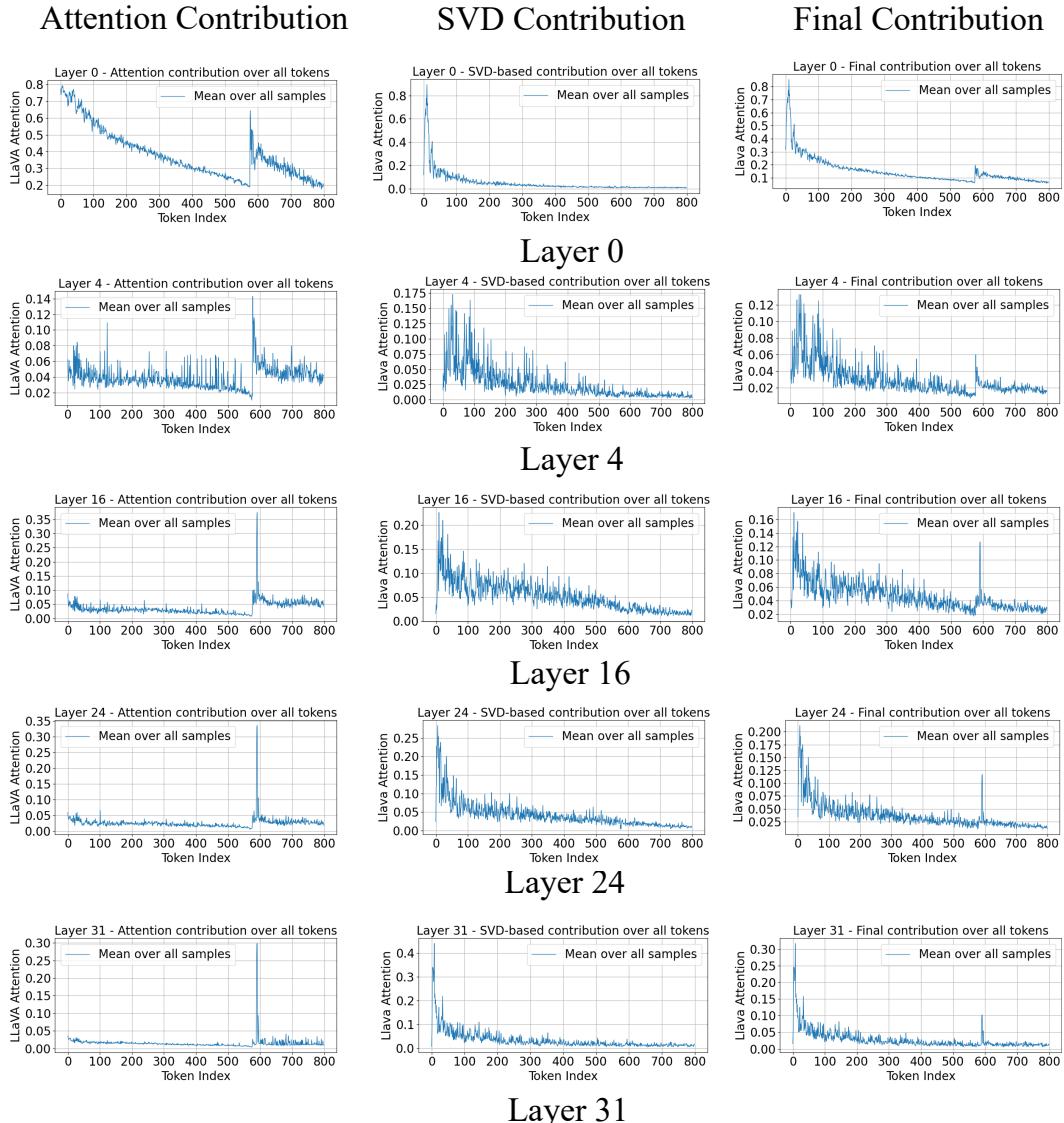


Figure 7: Different contribution score for Instruction Tuning data.

918
919
920
921
922
923
924
925
926
927

Visual Instruction Tuning Calibration Data

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949



964
965
966
967
968
969
970
971

Figure 8: Different contribution score for Visual Instruction Tuning data.