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ABSTRACT

Structure-based computational drug design, which employs methods trained on
large datasets of protein–ligand complex structures, has been revolutionized by
breakthroughs such as AlphaFold. In parallel, ligand-based computational drug
design, driven by models trained on extensive bioactivity resources, has impacted
drug discovery by enabling the simultaneous prediction of numerous biological
effects of small-molecule ligands. Yet, despite recent advances in both structure-
and ligand-based approaches, no existing method integrates them effectively at
scale. We introduce Contrastive Geometric Learning for Unified Computational
Drug Design (ConGLUDe), an approach that leverages both structure- and ligand-
based training data through geometric and contrastive learning. The ConGLUDe
architecture combines a geometric protein encoder, producing both spatial binding
pocket and global protein representations, with a ligand encoder. The encoders are
trained jointly via contrastive learning on 20K protein–ligand complexes from PDB-
bind and 77M ligand-based datapoints from ChEMBL, PubChem, and BindingDB.
With ConGLUDe, multiple key drug discovery tasks, including virtual screening,
binding pocket prediction, ligand-conditioned pocket selection and target fishing,
can be addressed within a single model. ConGLUDe achieves state-of-the-art per-
formance on zero-shot virtual screening benchmarks and strong results across other
tasks, demonstrating the benefit of joint structure–ligand training. By replacing
a set of specialized models with a single system and by unifying structure- and
ligand-based paradigms, ConGLUDe represents a major step toward foundation
models for drug discovery.

1 INTRODUCTION

The key component of drug discovery is the interaction between a protein and a potential ligand.
Most drugs are small molecules that bind to a disease-associated protein target to activate, inhibit,
or modify its function (Kinch et al., 2024). Understanding these protein-ligand interactions (PLIs)
enables meaningful engagement with biological systems and the purposeful design of therapeutic
agents (Gohlke et al., 2000; Du et al., 2016). For decades, computational methods, collectively
referred to as computer-aided drug design (CADD), have been employed to predict and analyze these
interactions. These computational methods have traditionally been categorized into two primary
paradigms: structure-based drug design (SBDD) and ligand-based drug design (LBDD), depending on
whether the methods approach the PLI problem via the protein structure or ligand activities (Macalino
et al., 2015; Vemula et al., 2023). In recent years, advancements in artificial intelligence (AI) and
machine learning (ML) have profoundly enhanced the understanding and modeling of protein-ligand
interactions. These technologies have been applied directly in both LBDD (Dahl et al., 2014;
Lenselink et al., 2017; Mayr et al., 2018) and SBDD (Ballester & Mitchell, 2010b; Corso et al., 2023)
methods, as well as indirectly through breakthroughs in protein modeling. Notably, developments
like AlphaFold have revolutionized protein structure prediction, "enabling" SBDD for any protein
sequence and significantly advancing the design of novel therapeutics (Jumper et al., 2021).

Structure-based and ligand-based drug design are the two fundamental paradigms of drug
discovery. Structure-based drug design (SBDD) (Blundell, 1996) relies on the three-dimensional
(3D) structure of the target protein’s binding site. Generally, this information is obtained through
the experimental determination of protein-ligand complexes (Mutharasappan et al., 2020), a process
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Figure 1: ConGLUDe unifies structure-based and ligand-based drug design.

that is far from trivial and has historically limited the application of SBDD to only a fraction of
known proteins. Experimental structures are systematically archived in the Protein Data Bank (PDB)
(Berman et al., 2000), which contains ∼235k entries1, a fraction of which includes biologically
relevant ligands, providing a valuable resource for SBDD research. Recently, the challenge of
obtaining 3D protein structures has been largely addressed by AlphaFold2 (Jumper et al., 2021),
which provides accurate predictions for most protein sequences. However, AlphaFold2 does not offer
information about ligand binding sites, leaving binding site prediction as a crucial step in the SBDD
pipeline (Zhao et al., 2020). Once the binding site is identified, candidate molecules are screened
with methods such as docking (Kuntz et al., 1982; Fan et al., 2019), molecular dynamics (De Vivo
et al., 2016), and free energy perturbation (Beveridge & Dicapua, 1989; Cournia et al., 2021) to
evaluate their binding potential and understand protein-ligand interactions. Traditionally, molecular
docking has relied on simple (semi-) empirical scoring functions to quantify these interactions (Li
et al., 2019), but ML- and AI-based scoring functions have also emerged (Ballester & Mitchell,
2010b; Wallach et al., 2015). More recently, AI innovations have enabled the holistic prediction
of protein-ligand complexes either with AI-based blind docking methods (Stärk et al., 2022; Corso
et al., 2023; Pei et al., 2024), or foundation models for molecular structure prediction of biological
complexes (Abramson et al., 2024; Wohlwend et al., 2024; Discovery et al., 2024).

Ligand-based drug design (LBDD) (Merz Jr et al., 2010) relies solely on ligand-based information
and experimental data on ligand activity for a target of interest, without requiring knowledge of how
the ligand interacts with the protein. A large amount of ligand-based data has been made publicly
available in databases such as PubChem, which contains approximately 300 million bioactivity data
points (Kim et al., 2024). This wealth of data has made ML an integral part of LBDD since the
early 1990s, in the form of quantitative structure-activity relationship (QSAR) (Hansch et al., 1962;
Muratov et al., 2020) modeling leveraging support vector machines (Burbidge et al., 2001), random
forests (Svetnik et al., 2003), gradient boosting (Babajide Mustapha & Saeed, 2016; Sheridan et al.,
2016), and more recently, multi-task deep neural networks (Lenselink et al., 2017; Mayr et al., 2018;
Yang et al., 2019). Traditionally, ML-based LBDD has been limited to protein targets with sufficient
experimental data to train target-specific QSAR models. However, recent few-shot and zero-shot
learning methods have expanded activity prediction to scarce-data scenarios (Vella & Ebejer, 2022;
Schimunek et al., 2023; Seidl et al., 2023). Proteochemometrics augments ligand-based models
with explicit protein representations, typically sequence-derived descriptors such as physicochemical
amino-acid scales or learned embeddings, so a single model can generalize across related targets,
capture selectivity patterns and supports transfer to unseen targets (Lapinsh et al., 2001; Öztürk et al.,
2018; Bongers et al., 2019; Svensson et al., 2024).

1From https://www.rcsb.org/stats/growth/growth-released-structures. Accessed on 08/05/2025.
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Structure-based approaches have weak ligand representations, and ligand-based approaches
have weak protein-structure representations. While both SBDD and LBDD have led to many
successful drug discovery projects and continue to bridge biomolecular research with machine
learning, neither paradigm fully exploits the complementary wealth of structural and ligand data
needed to learn meaningful, joint representations (Sadybekov & Katritch, 2023). Within the structure-
based methods, AlphaFold3 (Abramson et al., 2024) was trained on almost the entire PDB, which
contains 200k protein structures, but contains only 40k small molecules (Shao et al., 2022), limiting
the depth of the ligand representations. Conversely, ligand-based models such as ChemNet (Preuer
et al., 2018), trained on 220 million bioactivity measurements covering 3.6 million compounds, or
transformer architectures like ChemBERTa (Chithrananda et al., 2020) and MolBERT (Li & Jiang,
2021), pretrained on 77 million and 4 billion SMILES strings, respectively, include no explicit protein
structural information and therefore yield only weak, implicit representations of protein targets.
Jointly training robust protein and ligand representations on a shared, biologically meaningful task
promises to dramatically enhance drug discovery by capturing the intricate interplay of protein–ligand
interactions. Yet, no existing architecture simultaneously leverages both the full breadth of three-
dimensional structural data (e.g., tens of thousands of PDB entries) and large-scale ligand databases
(e.g., millions of bioactivity measurements) within a unified learning framework.

Unification of structure- and ligand-based drug discovery through geometric contrastive learn-
ing allows for foundation models in drug discovery. We introduce Contrastive Geometric Learn-
ing for Unified Computational Drug Design (ConGLUDe), a framework that co-trains a geometric
protein encoder, producing both spatial binding pocket and global protein representation, and a ligand
encoder using contrastive objectives on both 3D structures of protein-ligand complexes from the
PDB and ligand-based bioactivity data from PubChem (Kim et al., 2024), BindingDB (Gilson et al.,
2015), and ChEMBL (Gaulton et al., 2011). This co-training unifies SBDD and LBDD, and allows
a single model to be used for many different drug discovery tasks, such as a) virtual screening, b)
binding pocket identification, c) ligand-conditioned pocket selection, and d) target fishing (Figure 1).
In our evaluations, ConGLUDE attains state-of-the-art virtual screening, remains competitive for site
detection, improves pocket selection by ligand-conditioning, and delivers promising performance at
zero-shot target fishing.

2 BACKGROUND AND PRELIMINARIES

2.1 NOTATION AND DEFINITIONS

Protein–ligand interaction data point. A PLI data point is defined as a triplet (G,M, y), where G
denotes a protein, M a ligand (typically a small molecule), and y a binary or real-valued label. In
structure-based datasets, PLIs data points are derived from experimentally resolved 3D structures
of protein-ligand complexes. Protein–ligand pairs with observed co-crystal structures are labeled
as positives (y = 1), while all other combinations are treated as negatives (y = 0). In contrast,
ligand-based datasets provide activity measurements for a large set of small molecules tested against
a given target protein, typically obtained through biological assays. Labels may be binary (active:
y = 1, inactive: y = 0) or continuous affinity values (y ∈ R), such as IC50 or Kd.

Protein and ligand representations. We represent proteins as geometric graphs G, where each
node corresponds to an amino acid residue. Each node is assigned a 3D coordinate (specifically, the
position of the Cα atom) and a feature vector encoding residue-specific properties, extracted using
ESM-2 (Lin et al., 2023). Edges connect each node to a maximum of 10 nearest neighbors within a
10 Å radius. Ligands are represented as fixed-length vectors constructed by concatenating Morgan
fingerprints (Morgan, 1965) with RDKit chemical descriptors (Landrum & contributors, 2006).

Definition of binding sites. Structure-based datasets enable direct annotation of protein binding
sites – the regions where ligands interact with the protein. Here, we define a binding site for a given
ligand as the geometric center z ∈ R3 of all protein residues that lie within a 4 Å radius of any ligand
atom.

An overview of all notation used in this work is provided in Appendix A.
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2.2 BINDING POCKET PREDICTION USING VN-EGNN

When experimental binding site annotations are unavailable, accurately identifying binding pockets
becomes a critical step in SBDDs. Sestak et al. (2024) proposed an approach based on an equivariant
graph neural network with virtual nodes (VN-EGNN) to address this task. In this framework, the
protein is represented as a geometric graph (as described above), augmented with a small set of
virtual nodes. Each virtual node is initialized with a coordinate on a sphere around the protein and a
feature vector given by the mean of all protein residue embeddings. Virtual nodes are connected to
every protein residue, enabling the network to integrate both local and global structural information.
VN-EGNN employs a three-step heterogeneous message-passing scheme between protein and virtual
nodes, detailed in Appendix C.1. The model is trained with a combination of three objective
functions (see Appendix C.2) to predict the 3D coordinates of potential binding pockets, denoted
by the final virtual node positions z′1, . . . , z

′
N ∈ R3, where N is the number of virtual nodes. In

addition to predicting binding site centers, the model outputs pocket-level feature representations
b′1, . . . , b

′
N ∈ RE from the final layer. These embeddings are used to assign confidence scores to

predicted pockets and can facilitate downstream tasks such as pocket ranking or contrastive learning.

2.3 VIRTUAL SCREENING USING CONTRASTIVE LEARNING

Contrastive learning has recently emerged as a powerful paradigm for virtual screening, enabling
protein and ligand representations to be embedded in a shared latent space where interactions are
inferred via representational similarity (Singh et al., 2023; Gao et al., 2024; Han et al., 2024; Wang
et al., 2024; McNutt et al., 2024; Gil-Sorribes et al., 2025). This framework typically consists of
three components:

• a molecule encoder, which projects ligand representations into the shared latent space,
• a protein and pocket encoder, which maps sequence- or structure-based representations of

the target protein and binding site into the same space, and
• a contrastive loss function, which encourages interacting protein–ligand pairs to have similar

embeddings and non-interacting pairs to be dissimilar.

Contrastive approaches have achieved state-of-the-art performance compared to traditional docking
methods. A key advantage is their computational efficiency: embeddings can be precomputed,
allowing large-scale screening to be reduced to fast similarity calculations between protein and ligand
embeddings. Most existing methods rely either on whole-protein representations (Singh et al., 2023;
Wang et al., 2024; McNutt et al., 2024) or on predefined binding pocket representations (Gao et al.,
2024; Han et al., 2024). The recently introduced Tensor-DTI (Gil-Sorribes et al., 2025) combines
both protein- and pocket-level encodings.

3 CONTRASTIVE-GEOMETRIC LEARNING FOR UNIFIED DRUG DESIGN
(CONGLUDE)

In short, ConGLUDe employs a geometric protein encoder based on a modified VN-EGNN (Sestak
et al., 2024) architecture, which predicts candidate binding site locations ẑ1, . . . , ẑK ∈ R3 together
with corresponding representations b1, . . . , bK ∈ RD as well as a global protein embedding p ∈ RD.
A complementary molecule encoder maps ligands into representations m ∈ R2D, aligned with the
concatenated protein/pocket embeddings [bi,p].

ConGLUDe integrates structure- and ligand-based learning by alternating between (i) structure-based
batches, where it learns to detect and characterize binding sites and pair them with their ligands, and
(ii) ligand-based batches, where it leverages large-scale bioactivity measurements. Figure 2 provides
an overview of the architecture and training procedure.

3.1 CONGLUDE ARCHITECTURE

3.1.1 PROTEIN AND BINDING POCKET ENCODERS.

We extend the original VN-EGNN formulation by introducing an additional non-geometric virtual
node P , which aggregates information from the entire protein but has no spatial coordinates. In

4
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Figure 2: ConGLUDe architecture. A: Message-passing scheme of ConGLUDe with five steps:
1. message exchange between residue nodes, 2. residue nodes to virtual pocket nodes, 3. pocket
nodes to residue nodes, 4. residue nodes to virtual protein node, 5. virtual protein node to residue
nodes. B: The protein encoder supplies a representation of the whole protein p, and of each detected
pocket bk. The ligand encoder encodes each small molecule into a protein matching representation
mp and a pocket-matching representation mb. C: Contrastive loss functions used in our approach.
Structure-based losses include Lm2p: InfoNCE between a concatenated protein-pocket representation
and all ligand representations from the batch, Lp2m: InfoNCE between a ligand and all protein
representations in the batch, and Lm2b: InfoNCE between a ligand and all pocket representations
from the corresponding protein. The NCE loss between a protein and annotated ligand representations
(LLB) is used on ligand-based data.

addition to the three geometric message-passing steps of VN-EGNN (Appendix C.1), we add two
non-geometric steps from residue nodes to the protein node (R → P) and vice versa. (P → R):

Message passing step 4 (R → P):

µ
(RP)
j = ϕe(RP)(p,hj) (1)

µ(RP) =
1

S

S∑
j=1

µ
(RP)
j (2)

p = p+ ϕh(RP)

(
p,µ(RP)

)
(3)

Message passing step 5 (P → R):

µ
(PR)
i = ϕe(PR)(hi,p) (4)

hi = hi + ϕh(BR)

(
hi,µ

(PR)
i

)
(5)

Here, µ(RP)
j denotes the messages sent from residue node j to the protein node, while µ

(PR)
i

denotes the reverse direction. The functions ϕe(RP) , ϕh(RP) , ϕe(PR) and ϕh(BR) are layer-specific
multi-layer-perceptrons (MLPs) of the GNN. Our model uses 5 layers of VN-EGNN, but we omit
the layer index in Eq. C.1–C.12 and Eq.1–5 for clarity. Applying the structure encoder to a protein
graph G yields

X′,H ′,Z′,B′,p′ = VNEGNN(G)

where X′ = (x′
1, . . . ,x

′
S) ∈ RS×3 and H ′ = (h′

1, . . . ,h
′
S) ∈ RS×E are the residue coordinates and

features, Z′ = (z′1, . . . , z
′
N ) ∈ RN×3 are the coordinates of the virtual nodes representing binding

pockets, and p′ is the global protein embedding from the protein virtual node.
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To rank binding pocket predictions by confidence, we follow Sestak et al. (2024) and apply a two-layer
MLP with scalar outputs to the pocket representations: c′ = MLP(B′), c′ ∈ RN . Since multiple
virtual nodes may converge to the same binding pocket, we cluster them based on their spatial
coordinates using DBSCAN (Ester et al., 1996). For each cluster, we then compute the mean of
the coordinates, feature vectors, and confidence values, yielding X̂ ∈ RK×3, Ĥ ∈ RK×E , ĉ ∈ RK

with K < N . Finally, pocket- and protein-level representations are projected into the contrastive
embedding space of dimension D via linear transformations: B = Linear(B̂), p = Linear(p′).

3.1.2 LIGAND ENCODER

For the ligand encoder, we adopt a simple yet effective design motivated by prior work, which has
shown that molecular fingerprints combined with MLPs often outperform more complex architectures
such as graph neural networks for encoding small molecules (Siemers et al., 2022; Luukkonen et al.,
2023; Praski et al., 2025; Seidl et al., 2023; Unterthiner et al., 2014). Formally, the initial ligand
representation is mapped into the contrastive embedding space of dimension 2D using a 2-layer
MLP:

m = [mp,mb] = MLP(M), m ∈ R2D.

This lightweight architecture enables simultaneous encoding of large batches of ligands, making it
well-suited for high-throughput virtual screening across extensive compound libraries.

3.1.3 INFERENCE MODES

ConGLUDe supports multiple inference modes. In classical virtual screening, predictions are
made by comparing the protein representation with the protein-specific component of the ligand
embedding, s (p,mp), where s(., .) denotes the cosine similarity and higher similarity indicates
a higher likelihood of binding. This formulation also applies to target fishing, where a ligand is
tested across multiple proteins. For binding site identification, the VN-EGNN–based encoder directly
outputs candidate pocket centers with confidence values. Predicted pockets can be ranked either
ligand-independently by these confidence scores or in a ligand-conditioned manner by their similarity
to the pocket-specific component of the ligand embedding, s (bl,mb). When the objective is to
evaluate ligand binding to a predefined pocket on a given protein, ConGLUDe employs a similarity
measure between the ligand embedding and the protein–pocket representation, s ([p, bl],m).

3.2 CONGLUDE TRAINING

3.2.1 DATA

The ConGLUDe model can be trained on a combination of both structure-based and ligand-based
data. For each task, the structure-based training data, a subset of PDBBind by Wang et al. (2005), are
derived from the respective baseline methods. As ligand-based data we use the MERGED dataset
curated by McNutt et al. (2024), which combines PubChem (Kim et al., 2024), BindingDB (Gilson
et al., 2015), and ChEMBL (Gaulton et al., 2011) and remove all proteins with >90% sequence
identity to any test set protein. For details on all datasets, see Appendix C.

3.2.2 TRAINING OBJECTIVE

The ConGLUDe objective is to minimize the loss on both ligand-based and structure-based data:

L = LSB + LLB, (6)

where LSB is the loss on structure-based training data and LLB is the loss on ligand-based training
data, which are detailed further below. During training, each step samples a batch of either structure-
based or ligand-based data at random, and the optimization objective is applied accordingly.

Training on Structure-Based Data. For structure-based data, annotated protein binding sites
provide supervision for binding site prediction. In this setting, the loss decomposes into a geometric
term and a contrastive term:

LSB = Lgeometric + Lcontrastive (7)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The geometric component, Lgeometric, is equivalent to the objective function of VN-EGNN (see
Sestak et al. (2024) and Appendix C.2).

Beyond the geometric objective, we leverage contrastive learning to align the representations of
ligands with their corresponding proteins and predicted binding pockets. For a given protein-ligand
complex, the ligand embedding m(j) is encouraged to be close in representation space to the
concatenated protein and pocket embeddings [p(j), b

(j)
l ], where b(j)l is the predicted pocket closest to

the ligand’s true binding site: l = argmink=1,...,K(||z− ẑk||). This alignment is implemented using
a three-way InfoNCE loss, similar to CLIP (Radford et al., 2021):

Lcontrastive =
1

3J

J∑
j=1

(
L(j)
p2m + L(j)

m2p + L(j)
m2b

)
,with (8)

L(j)
p2m = InfoNCE([p(j), b

(j)
l ],m(j), {m(1), . . . ,m(J)}; τp2m) (9)

L(j)
m2p = InfoNCE(m(j)

p ,p(j), {p(1), . . . ,p(I)}; τm2p) (10)

L(j)
m2b = InfoNCE(m

(j)
b , b

(j)
l , {b(j)1 , . . . , b

(j)
K }; τm2b) (11)

with the usual definition of InfoNCE (see Eq.A.1). In the first direction - “protein/pocket to molecule”
– the protein/pocket representation acts as the anchor, and the model is trained to associate it with
its true ligand while treating other ligands in the batch as negatives. In the reverse direction, the
ligand representation is split into two components. The first component, m(j)

p , is aligned with the
protein embedding p(j) while contrasting it against other proteins in the mini-batch (“molecule
to protein”). The second component, m(j)

b , is aligned with the closest predicted binding pocket
b
(j)
l while contrasting it against the remaining pockets predicted on the same protein ("molecule to

binding site"). The temperature parameters are chosen as the inverse square root of the corresponding
contrastive space dimension, i.e. τp2m = 1√

2D
and τm2p = τm2b = 1√

D
. An alternative options for

the InfoNCE could be the CLOOB loss (Fürst et al., 2022; Sanchez-Fernandez et al., 2023).

Training on Ligand-Based Data. When training on ligand-based datasets, we leverage large
collections of annotated active and inactive compounds for a given protein target. Since no structural
information on the binding pocket is available in this setting, the VN-EGNN module cannot be
meaningfully optimized and is therefore kept frozen during training. For each batch, active and
inactive compounds are sampled at a ratio of 1:3, and the model is trained with sigmoid contrastive
loss (Gutmann & Hyvärinen, 2010; Seidl et al., 2023; Zhai et al., 2023), which uses the cosine
similarity tween the whole-protein representation p and the corresponding part of the small molecule
embeddings mpm, and the activity labels y:

LLB(y,p, {mp1, . . . ,mpM}) = NCE(y,p, {mp1, . . . ,mpM}) =

= − 1

M

M∑
m=1

(ym log(σ(s(p,mpm))) + (1− ym) log(1− σ(s(p,mpm)))) , (12)

where ym ∈ {0, 1} denotes the activity label for the protein-ligand pair and σ is the sigmoid function.

4 EXPERIMENTS AND RESULTS

We train models and evaluate CONGLUDE’s performance on four drug-discovery tasks: virtual
screening (Section 4.1), binding-pocket prediction (Section 4.2), ligand-conditioned pocket selection
(Section 4.3), and target fishing (Section 4.4). The first two are widely studied with established
benchmarks, whereas the latter two are more data-poor and have less standardized benchmarks and
baselines. Train and test datasets are detailed in Section D, training procedures in Section E, and
task-specific metrics in Section F.

4.1 VIRTUAL SCREENING

We compare our method with the classical docking methods Surflex-Dock (Spitzer & Jain, 2012),
AutoDock Vina (Trott & Olson, 2010) and Glide-SP (Halgren et al., 2004), the machine-learning

7
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Table 1: Zero-shot performance on virtual screening on the DUD-E and LIT-PCBA datasets measured
by AUROC, BEDROC and EF at 1%. For ConGLUDE we report the median and mean-absolute-
deviation over three training re-runs. Best value per column is marked in bold; values within the
MAD of the best are also highlighted.

DUD-E LIT-PCBA
AUROC↑ BEDROC↑ EF 1% ↑ AUROC↑ BEDROC↑ EF 1% ↑

Surflex-Dockb – – – 51.47 – 2.50
AutoDock Vinab 71.60 – 7.32 – – –
Glide-SPb 76.70 40.70 16.18 53.15 4.00 3.41

RF-Scoreb 65.21 12.41 4.52 – – –
NNScore b 68.30 12.20 4.02 – – –
GninAb – – – 60.93 5.40 4.63

Pafnucyb 63.11 16.50 3.86 – – –
OnionNetb 59.71 8.62 2.84 – – –
DeepDTAb – – – 56.27 2.53 1.47
BigBindb – – – 60.80 – 3.82
PLANETb 71.60 – 8.83 57.31 – 3.87

DrugCLIPb 80.93 50.52 31.89 57.17 6.23 5.51
SPRINT 69.01a 13.26a 4.85a 73.40c 12.30c 10.78c

ConGLUDe
(ours)

81.29
±(1.11)

49.49
±(1.94)

31.76
±(1.13)

64.06
±(3.25)

12.24
±(2.06)

11.03
±(1.81)

a evaluated in this work. b values from Gao et al. (2024). c values from McNutt et al. (2024).

based scoring functions RF-Score (Ballester & Mitchell, 2010a), NNScore (Durrant & McCammon,
2011) and GninA (McNutt et al., 2021), deep learning methods predicting pocket-ligand interactions,
Pafnucy (Stepniewska-Dziubinska et al., 2017), OnionNet (Zheng et al., 2019), DeepDTA (Öztürk
et al., 2018), BigBind (Brocidiacono et al., 2024) and PLANET (Zhang et al., 2024), as well as
the contrastive learning-based virtual screening methods DrugCLIP (Gao et al., 2024) and SPRINT
(McNutt et al., 2024). Results on AUROC, BEDROC, and enrichment factor at 1% can be found
in Table 1, and additional results on EF 0.5% and 5% are shown in Appendix tables G1 and G2.
ConGLUDE performs on par with the best method, DrugCLIP, on DUD-E, and for BEDROC and
EF 1% metrics is also on par with the best method on LIT-PCBA, which is SPRINT. Notably,
ConGLUDE clearly outperforms DrugCLIP on LIT-PCBA and SPRINT on DUD-E, demonstrating
strong cross-benchmark generalization.

4.2 BINDING SITE PREDICTION

We retain the performance of VN-EGNN Sestak et al. (2024). Full results of all compared methods
from Sestak et al. (2024) in Appendix Table G3.

Table 2: Performance at binding site identification in terms of DCC and DCA success rates on the
COACH420, HOLO4K, and PDBbind datasets. Best value marked bold.

Methods COACH420 HOLO4K PDBbind2020

DCC↑ DCA↑ DCC↑ DCA↑ DCC↑ DCA↑
VN-EGNN 0.605 0.750 0.532 0.659 0.669 0.820
ConGLUDe 0.602 0.726 0.525 0.693 0.689 0.856

4.3 LIGAND-CONDITIONED POCKET SELECTION

We also performed ligand-conditioned pocket selection, where candidate pockets are ranked by their
likelihood to bind to a given ligand, which is in contrast with unconditioned predictors that ignore
ligand information. We compared ConGLUDe to a docking-based method (DiffDock (Corso et al.,

8
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Table 3: Performance of ligand-conditioned pocket selection measured by the top-1 DCC success
rate at a 4Å threshold. Values in parentheses indicate 95% confidence intervals. The best-performing
method is highlighted in bold .

PDBBind Time ASD
DCC↑ DCC↑

P2Rank 0.45 (0.41, 0.50) 0.24 (0.22, 0.26)
VN-EGNN 0.40 (0.36, 0.45) 0.14 (0.13, 0.16)
DiffDock 0.37 (0.33, 0.42) 0.35 (0.33, 0.37)
ConGLUDe 0.49 (0.44, 0.53) 0.20 (0.19, 0.22)

2023)) and two unconditioned baselines (P2Rank (Krivák & Hoksza, 2018), VN-EGNN (Sestak et al.,
2024)). Unlike docking, which simulates every ligand–pocket pair, ConGLUDe embeds ligands and
pockets separately and scores them via a dot product, offering a major speed advantage. We evaluated
on a PDBbind time split (Stärk et al., 2022) and the ASD benchmark enriched for allosteric sites (Liu
et al., 2020), reporting Top-1 DCC@4Å. ConGLUDe outperforms DiffDock and both unconditioned
baselines on PDBbind (Table 3). On ASD, performance drops for all methods due to allosteric
pockets that are rarely seen during training, and unconditioned predictors frequently miss these
sites. ConGLUDe still improves ligand-specific selection over unconditioned baselines, but overall
accuracy is limited by VN-EGNN’s detection of allosteric pockets. Details in App. Section G.3.

4.4 ZERO-SHOT TARGET FISHING

We evaluated ConGLUDe on target fishing data from Reinecke et al. (2024), which contain drug
targets for ≈1,000 ligands. The biotechnology to determine drug targets, called Kinobeads chemical-
proteomics, is vastly different from the training data of ConGLUDe, and thus the datasets constitutes
a challenging new domain, which we approach zero-shot. We preprocessed the dataset by mapping
gene symbols to one or multiple PDB entries, and extracting the SMILES of ligands and target
rankings. We encoded each ligand and protein using ConGLUDe, and ranked the potential target
proteins for each ligand by the cosine similarity. We then computed the ROC-AUC to measure the
ability to distinguish correct protein targets from incorrect ones (ROC-curves for five ligands are
shown in Figure G2). ConGLUDe reaches an average AUC of 0.688 ± 0.197 (across ligands) at
zero-shot target fishing and among the top-5% predictions a correct target is contained for 70.4% of
the molecules, which indicates that our method can readily be used for identifying drug targets.

4.5 ABLATION STUDIES

See Appendix Section G.5.

5 CONCLUSION, LIMITATIONS AND DISCUSSION

We introduce ConGLUDe, an approach that combines structure- and ligand-based drug design via an
architecture that can profit from both ligand- and structure-based training data. In difficult, zero-shot
virtual screening benchmarks, ConGLUDe reaches state-of-the-art, and can also solve multiple other
tasks, such as binding pocket identification, ligand-conditioned pocket selection, and target fishing.
Limitations. Our method can be applied to proteins with experimentally resolved 3D structures as
they appear in PDB. Although we performed well in difficult zero-shot settings, it is unclear how the
performance changes for predicted 3D structures or proteins that are very distant from any proteins
that occur in PDB. Similarly, our method performs well for typical drug-like small molecules and
natural ligands, but we have not explored how the performance changes for small molecules from
very distant chemical spaces. Discussion. Our results indicate that a Deep Learning architecture that
effectively uses both structure- and ligand-based data and combines it into a single model, can be
considered as a foundation model for drug discovery. Nevertheless, we envision that our paradigm can
lead to even more precise and powerful models, perhaps in combination with generative approaches.

9
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ETHICS STATEMENT

This work relies exclusively on publicly available datasets for computational drug discovery, and no
experiments involving humans or animals were conducted.

REPRODUCIBILITY STATEMENT

All datasets used in this work are public. We will release the complete code for all experiments,
including scripts for data download/pre-processing, fixed train/val/test splits, configuration files with
exact hyperparameters and random seeds, and evaluation code for the metrics. We will also provide
pre-trained checkpoints, as well as an installation guide for the used libraries.

USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used in the preparation of this manuscript to improve the
grammar, readability, and stylistic consistency of texts written by the authors. LLM-based tools also
assisted in literature searches. All scientific concepts, analyses, figures, and results were developed,
implemented, and validated solely by the authors. Code development was likewise carried out by the
authors, with code-assistance tools (e.g., GitHub Copilot, Claude Code) used only to debug or refine
existing implementations and for narrowly defined tasks under explicit author guidance. At no point
were LLMs used to generate research ideas or explore scientific concepts.
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A NOTATION

The following table summarizes all the notation used throughout this paper.

Definition Symbol Type

Scalars
batch size J N
contrastive space dimension D N
VN-EGNN output dimension E N
number of binding site VNs N N
number of predicted binding sites after clustering K N
number of labeled small molecules for a given protein M N
number of protein residues S N
Representations
protein residue representation h′

s RE

pocket representation before clustering b′n RE

protein representation before projection p′ RE

pocket representation before projection b̂k RE

final protein representation p RD

final pocket representation bk RD

small molecule representation mm = [mpm,mbm] R2D

Coordinates
protein residue position x′

s R3

pocket node position before clustering z′k R3

predicted binding pocket center/final VN position ẑn R3

Data quantities
predicted confidence value for ẑn ĉn R
ground-truth confidence value for ẑn cn {c0, [0.5, 1]}
residue-level binding site label zs {0, 1}
binary activity label for molecule mm ym {0, 1}
Constants
fall-back value for confidence calculation c0 0.001
tolerance radius for confidence calculation γ 4.0
temperature for Lp2m τp2m

1√
2D

temperature for Lm2p τm2p
1√
D

temperature for Lm2b τm2b
1√
D

Functions
cosine similarity s(., .) RD × RD → [−1, 1]
sigmoid function σ(., .) R → [0, 1]

The InfoNCE loss used for structure-based training is defined as follows:

InfoNCE(q(j),k(j), {k(1), . . . ,k(J)}; τ) = − log
exp

(
s(q(j),k(j))/τ

)∑J
i=1 exp

(
s(q(j),k(i))/τ

) . (A.1)

B COMPARED METHODS

Virtual screening methods can broadly be classified into two families: physics- and knowledge-driven
docking engines that search conformational space and apply handcrafted or empirical scoring, and
machine-learning scoring functions that learn structure–activity relationships from data. Classical
docking methods such as Glide-SP (Halgren et al., 2004), AutoDock Vina (Trott & Olson, 2010), and
Surflex (Spitzer & Jain, 2012) generate ligand poses within a predefined protein pocket and rank them
using empirical scoring functions that combine physics-inspired energy terms. Building on these,
pose-based machine learning methods like NN-Score (Durrant & McCammon, 2011), RF-Score
(Ballester & Mitchell, 2010a), and the CNN-augmented docking framework Gnina (McNutt et al.,
2021) operate on already docked complexes, predicting binding affinity or pose quality from structural
features of the protein–ligand arrangement.
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To move beyond handcrafted features, a series of deep learning models have been proposed that
also require an explicit binding pocket. Examples include 3D CNNs such as Pafnucy (Stepniewska-
Dziubinska et al., 2017), which voxelize the local binding site; distance-shell descriptors as in
OnionNet (Zheng et al., 2019); and graph neural networks approaches like BigBind (Brocidiacono
et al., 2024) and PLANET (Zhang et al., 2024). These methods explicitly exploit geometric and
chemical details of the binding environment and generally aim to rescore or refine docking outputs.

More recently, contrastive learning approaches have been introduced to bridge proteins and ligands
directly. DrugCLIP (Gao et al., 2024) learns joint representations by contrasting ligands with
explicit binding pocket embeddings, while SPRINT (McNutt et al., 2024) adopts a sequence-based
whole-protein representation to align ligands with their corresponding targets.

C VN-EGNN DETAILS

C.1 HETEROGENEOUS MESSAGE PASSING

Following Sestak et al. (2024), we briefly summarize the heterogeneous message passing scheme
used in VN-EGNN. Each layer consists of three message passing steps that exchange information
between protein residues (R) and virtual binding pocket nodes (B).

The first step corresponds to the standard equivariant graph neural network (EGNN) formulation
(Satorras et al., 2021), where information is exchanged between neighboring protein residues:

Message passing step 1 (R → R):

µ
(RR)
ij = ϕe(RR)(hi,hj , ∥xi − xj∥) (C.1)

µ
(RR)
i =

1

|N (i)|
∑

j∈N (i)

µ
(RR)
ij (C.2)

xi = xi +
1

|N (i)|
∑

j∈N (i)

xi − xj

∥xi − xj∥
ϕx(RR)(µ

(RR)
ij ) (C.3)

hi = hi + ϕh(RR)

(
hi,µ

(RR)
i

)
. (C.4)

Here, the coordinates xi and features hi of residue nodes are updated based on aggregated messages
from their neighbors. The MLPs ϕe(RR) , ϕx(RR) , and ϕh(RR) are learnable functions specific to
each layer. The same applies to all MLPs ϕ. in the subsequent steps.

In the second step, residue nodes transmit information to virtual pocket nodes B, which act as proxies
for potential binding sites:

Message passing step 2 (R → B):

µ
(RB)
ij = ϕe(RB)(bi,hj , ∥zi − xj∥) (C.5)

µ
(RB)
i =

1

S

S∑
j=1

µ
(RB)
ij (C.6)

zi = zi +
1

S

S∑
j=1

zi − xj

∥zi − xj∥
ϕx(RB)(µ

(RB)
ij ) (C.7)

bi = bi + ϕh(RB)

(
bi,µ

(RB)
i

)
(C.8)

Finally, the third step propagates information in the reverse direction, from virtual nodes back to
residue nodes:
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Message passing step 3 (B → R):

µ
(BR)
ij = ϕe(BR)(hi, bj , ∥xi − zj∥) (C.9)

µ
(BR)
i =

1

N

N∑
j=1

µ
(BR)
ij (C.10)

xi = xi +
1

N

N∑
j=1

xi − zj
∥xi − zj∥

ϕx(BR)(µ
(BR)
ij ) (C.11)

hi = hi + ϕh(BR)

(
hi,µ

(BR)
i

)
(C.12)

C.2 OBJECTIVE FUNCTIONS

VNEGNN (Sestak et al., 2024) is trained using a combination of losses that supervise the prediction
of binding site centers, residue-level segmentation, and confidence of the predictions.

To ensure accurate prediction of the binding site center (bsc) location, the squared distance between
the true binding site center z and the closest predicted center ẑn among N candidates is minimized:

Lbsc({ẑ1, . . . , ẑN}, z) = min
n∈1,...,N

∥z− ẑn∥2. (C.13)

For residue-level binding site segmentation, the network outputs predictions for each residue s through
a multilayer perceptron: ẑs = MLP (h′

s). The segmentation loss is defined as a differentiable Dice
loss, which compares the predicted and true residue labels zs:

Lseg({ẑ1, . . . , ẑS}, {z1, . . . , zS}; ϵ) = 1−
2
∑S

s=1 zs ẑs + ϵ∑N
n=1 zs +

∑S
n=s ẑs + ϵ

, (C.14)

where ϵ is a small constant to stabilize the division.

Moreover, each predicted center ẑn is assigned a confidence score ĉn which should reflect its
proximity to the true center. The target confidence cn is defined as:

cn =

{
1− 1

2γ · ∥z− ẑn∥ if ∥z− ẑn∥ ⩽ γ,

c0 otherwise,
, (C.15)

and the corresponding confidence loss is the mean squared error between predicted and target
confidences:

Lconfidence({ĉ1, . . . , ĉN}, {c1, . . . , cN}) = 1

N

N∑
n=1

(cn − ĉn)
2. (C.16)

The total VNEGNN objective combines the three components and is used as the geometric learning
objective in ConGLUDe’s structure-based training:

Lgeometric = Lbsc + Lseg + Lconfidence (C.17)

D DATASETS

D.1 STRUCTURE-BASED TRAINING DATASETS

For structure-based training, we utilized subsets of PDBBind v.2020 (Wang et al., 2005), adopting
the dataset partitions established by the baseline methods corresponding to each task. Specifically,
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for virtual screening, we followed the DrugCLIP split (Gao et al., 2024). For binding site prediction,
we trained on scPDB, consistent with VN-EGNN (Sestak et al., 2024), and for ligand-conditioned
pocket selection, we employed the time-based split used in DiffDock (Corso et al., 2023).

D.2 LIGAND-BASED TRAINING DATASETS

For ligand-based training, we employed the MERGED dataset introduced in SPRINT (McNutt et al.,
2024), which integrates data from PubChem (Kim et al., 2024), BindingDB (Gilson et al., 2015), and
ChEMBL (Gaulton et al., 2011). We use the combined MERGED training and test splits as the basis
for our training set and keep the same validation split as (McNutt et al., 2024). To prevent information
leakage, proteins with more than 90% sequence identity to any test protein were excluded, using
MMSeqs2 Steinegger & Söding (2017) with a coverage threshold of 0.8. The number of unique
proteins and total data points for each task subset can be found in Table D1

Table D1: Number of PLI data points in structure-based (SB) and ligand-based (LB) training and
validation datasets.

SB Data LB Data
Train Val Train Val

Task Complexes Proteins Data Points Proteins Data Points

Virtual Screening 24,896 400 3,526 56,187,278 47 5,809,414
Pocket Prediction 14,564 1,610 3,103 49,493,389 44 5,539,515
Pocket Selection 24,127 1,384 3,685 57,096,449 45 5,523,271

D.3 TEST DATASETS

We evaluated our models on diverse benchmark datasets tailored to each task.

For virtual screening, we used two widely adopted benchmarks, DUD-E (Mysinger et al., 2012) and
LIT-PCBA (Tran-Nguyen et al., 2020). The DUD-E dataset contains 22,886 active compounds against
102 protein targets, paired with property-matched decoys designed to mimic physical characteristics
of active molecules while differing in topology. LIT-PCBA complements DUD-E by providing
experimentally validated high-throughput screening results across 15 targets. Unlike DUD-E, which
uses synthetic decoys, LIT-PCBA relies exclusively on assay data, resulting in a more realistic and
more challenging benchmark for large-scale virtual screening.

Pocket prediction performance was evaluated on three established datasets, which were also used
in Sestak et al. (2024). Coach420 (Krivák & Hoksza, 2018) is a curated benchmark of 420 proteins
with annotated binding sites on single-chain structures. HOLO4K (Krivák & Hoksza, 2018) consists
of over 4,000 holo protein structures with experimentally verified binding pockets, many of which
are large multi-chain complexes. For both, Coach420 and HOLO4K, we adopt the so-called mlig
subsets, as detailed in Krivák & Hoksza (2018), which encompass only biologically relevant ligands.
Finally, the PDBBind v.2020 refined set (Wang et al., 2005) includes high-quality protein–ligand
complexes with reliable structural and binding affinity data, serving as a stringent benchmark for
pocket localization in realistic docking scenarios.

For ligand-conditioned pocket selection, we employed the temporal test split of PDBBind introduced
in EquiBind (Stärk et al., 2022), which ensures temporal separation between training and evaluation
complexes, thereby simulating prospective prediction performance. In addition, we constructed a
new benchmark based on the Allosteric Site Database (ASD, June 2023 release) (Liu et al., 2020).
This dataset comprises protein–ligand complexes annotated with allosteric binding sites, providing a
novel and challenging testbed for evaluating the generalization of models beyond orthosteric binding
interactions. We filtered out all proteins overlapping with the PDBbind training and validation sets
proteins.

For target fishing, we use the Kinobeads chemical-proteomics dataset of Reinecke et al. (2024). The
study profiled 1,183 kinase-directed small molecules in cancer-cell lysates by competitive enrichment
on immobilized inhibitors, yielding approximately 500k compound–protein measurements across
250 kinases. The resource reports apparent affinities (Kdapp) from a two-dose competition design
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Table D2: Summary of test datasets used for evaluation across different tasks. LB = ligand-based
datasets, SB = structure-based datasets.

Dataset Type Data Points Unique Proteins Unique Ligands

DUD-E LB 1,434,019 102 1,200,431
LIT-PCBA LB 2,808,770 15 (129) 383,772
Coach420 SB 348 300 278
HOLO4K SB 4235 3,446 1,700
PDBbind Refined SB 5,309 5,309 4,482
ASD SB 1802 1765 1117
PDBbind Time SB 384 321 328
Kinobeads LB 23,335,370 35,734 1,079

(100 nM and 1 µM) and provides high-confidence target calls via a trained random-forest classifier.
We treat these calls as positives and use the remaining measured proteins as negatives when ranking
targets per compound. The raw data are publicly available via ProteomicsDB. After pre-processing
and mapping gene symbols to one or multiple PDB-ids, we obtained a dataset of 1,079 ligands and
35,734 proteins.

Table D2 summarizes the number of data points, unique proteins and unique ligands for each test
dataset.

E HYPERPARAMETERS AND TRAINING DETAILS

For the protein encoder, we adopt VN-EGNN with the default parameters reported by Sestak et al.
(2024), i.e., a 5-layer architecture with distinct weights per layer, input dimension 1280 (from ESM-2
embeddings (Lin et al., 2023)), output dimension 100, SiLU activation, and residual connections.
Two linear projection layers are trained to map binding site and protein nodes into the contrastive
space of dimension D = 256.

Ligands are represented as extended connectivity fingerprints (ECFP6)(Rogers & Hahn, 2010) of
length 2048, concatenated with a vector of 210 chemical descriptors from RdKit (Landrum &
contributors, 2006), yielding an input dimension of 2258. The ligand encoder is a two-layer MLP
with hidden dimension 512, output dimension 2D = 512, GELU activation, 10% input dropout, and
50% dropout on the hidden layer.

Training uses a batch size of 64 on structure-based data, resulting in 63 negative ligands per protein
and vice versa through in-batch negative sampling. For ligand-based training, each batch contains 16
proteins, with actives and inactives sampled at a 1:3 ratio and capped at 10,000 active ligands per
protein. Contrastive loss temperature parameters are set to the inverse square root of the respective
embedding dimensions, i.e., τp2m = 1√

2D
and τm2p = τm2b = 1√

D
. All loss terms are weighted

equally in structure-based training, while the ligand-based loss is scaled by a factor of 6 to match the
magnitude of LSB .

We optimize using AdamW (Loshchilov & Hutter, 2019) with an initial learning rate of 10−3. A
learning rate scheduler reduces the rate by a factor of 10 when the validation metric does not improve
for 30 epochs, with a minimum learning rate of 10−6. Early stopping with a patience of 100 epochs
is applied based on the same validation metric. Separate models were trained for each task due to the
different data splits and training was conducted on NVIDIA A100 GPUs with 40GB memory for
200–350 epochs.

F METRICS

Depending on the task, we employ different evaluation metrics, which are formally described below.

For virtual screening, we evaluate the area under the receiver operating characteristic curve (AUROC),
the Boltzmann-enhanced discrimination of ROC (BEDROC) at α = 85, and enrichment factors (EF)
at different top 0.5%, 1% and 5%.
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Unlike AUROC, which treats all parts of the ranking equally and is therefore a strong general-purpose
metric, BEDROC is tailored to virtual screening scenarios where early recognition of actives is
critical (Truchon & Bayly, 2007). The enrichment factor at top x% quantifies the overrepresentation
of actives among the highest-ranked molecules. An EF of 1 corresponds to random ranking, while
larger values indicate stronger enrichment.

For binding pocket prediction, we measure the DCC (distance from predicted pocket center to
ground-truth pocket center) or DCA (distance from predicted pocket center to the closest atom of the
corresponding ligand) success rates at 4 Å. For a protein with k ground-truth pockets, we consider
the k top-ranked binding sites. The success rate is the fraction of ground-truth pockets where at least
one predicted pocket satisfies the DCC or DCA threshold of 4 Å.

For ligand-conditioned pocket selection, we consider the DCC success rate of the top-ranked predicted
pocket compared to all ground-truth pockets associated with the given ligand.

G EXTENDED RESULTS

G.1 VIRTUAL SCREENING

Tables G1 and G2 show the complete evaluation on DUD-E and LIT-PCBA split by dataset.

Table G1: Zero-shot performance on virtual screening on the LIT-PCBA dataset measured by AUROC,
BEDROC and EF at 0.05%, 1% and 5%. For ConGLUDE we report the median and mean-absolute-
deviation over three training re-runs. Best value per column is marked in bold; values within the
MAD of the best are also highlighted.

AUROC (%) BEDROC (%) EF
0.5% 1% 5%

Surflex 51.47 - - 2.50 -
Glide-SP 53.15 4.00 3.17 3.41 2.01
Planet 57.31 - 4.64 3.87 2.43
GninA 60.93 5.40 - 4.63 -
DeepDTA 56.27 2.53 - 1.47 -
BigBind 60.80 - - 3.82 -
DrugCLIP 57.17 6.23 8.56 5.51 2.27
SPRINT 73.40 12.30 15.90 10.78 5.29
ConGLUDe
(ours)

64.06
±(3.25)

12.24
±(2.06)

15.87
±(2.03)

11.03
±(1.81)

4.68 ±(0.30)

Table G2: Zero-shot performance on virtual screening on the DUD-E dataset measured by AUROC,
BEDROC and EF at 0.05%, 1% and 5%. For ConGLUDE we report the median and mean-absolute-
deviation over three training re-runs. Best value per column is marked in bold; values within the
MAD of the best are also highlighted.

AUROC (%) BEDROC (%) EF
0.5% 1% 5%

Glide-SP 76.70 40.70 19.39 16.18 7.23
Vina 71.60 - 9.13 7.32 4.44
NN-score 68.30 12.20 4.16 4.02 3.12
RFscore 65.21 12.41 4.90 4.52 2.98
Pafnucy 63.11 16.50 4.24 3.86 3.76
OnionNet 59.71 8.62 2.84 2.84 2.20
Planet 71.60 - 10.23 8.83 5.40
DrugCLIP 80.93 50.52 38.07 31.89 10.66
ConGLUDe
(ours)

81.29
±(1.11)

49.49
±(1.94)

39.43
±(0.97)

31.76
±(1.13)

10.71
±(0.26)
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To visualize the learned representation space, we applied t-SNE to project both protein and ligand
embeddings into two dimensions. As shown by one example in Figure G1, active ligands around the
embedding of their target protein, whereas inactive ligands are distributed more diffusely across the
space. This pattern highlights the model’s ability to capture meaningful protein–ligand relationships.

Inactives
Actives
Protein

Figure G1: t-SNE projection of protein and ligand embeddings for the DUD-E target with PDB ID
2FSZ.

G.2 BINDING SITE PREDICTION

Table G3 reports performance metrics at binding site identification for different methods similar to
Sestak et al. (2024).

Table G3: Performance at binding site identification in terms of DCC and DCA success rates. The
first column provides the method, the second the number of parameters of the model, the fourth
and the fifth column the performance on the COACH420 dataset, the sixth and seventh column the
performance on the HOLO4K dataset, and the remaining columns the performance on PDBbind2020.
The best performing method(s) per column are marked bold. The second best in italics.

Methods COACH420 HOLO4K PDBbind2020

DCC↑ DCA↑ DCC↑ DCA↑ DCC↑ DCA↑
Fpocket 0.228 0.444 0.192 0.457 0.253 0.371
P2Rank 0.464 0.728 0.474 0.787 0.653 0.826

DeepSite – 0.564 – 0.456 – –
Kalasanty 0.335 0.636 0.244 0.515 0.416 0.625
DeepSurf 0.386 0.658 0.289 0.635 0.510 0.708
DeepPocket 0.399 0.645 0.456 0.734 0.644 0.813

GAT 0.039 0.130 0.036 0.110 0.032 0.088
GCN 0.049 0.139 0.044 0.174 0.018 0.070
GAT + GCN 0.036 0.131 0.042 0.152 0.022 0.074
GCN2 0.042 0.131 0.051 0.163 0.023 0.089

SchNet 0.168 0.444 0.192 0.501 0.263 0.457
EGNN 0.156 0.361 0.127 0.406 0.143 0.302

EquiPocket 0.423 0.656 0.337 0.662 0.545 0.721
VN-EGNN 0.605 0.750 0.532 0.659 0.669 0.820
ConGLUDe 0.602 0.726 0.525 0.693 0.689 0.856
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G.3 LIGAND-CONDITIONED POCKET SELECTION

We performed ligand-conditioned pocket selection, for which, given a protein structure and a ligand,
methods have to rank binding pockets by their likelihood to bind the ligand. Unlike unconditioned
pocket predictors that do not have a query ligand as input, our task explicitly conditions on ligand
identity and thus supports ligand-specific pocket selection in virtual screening. This is the task that
also blind docking methods can perform. We compared the following methods (i) DiffDock used as a
docking-based selector , and (ii) two unconditioned pocket predictors, P2Rank and VN-EGNN, which
always return the same top pocket for a protein regardless of the ligand, and (iii) ConGLUDe. Our
model embeds the ligand and each candidate pocket and scores their compatibility with a single dot
product, which makes inference extremely fast. With precomputed pocket representations, thousands
of ligands can be encoded in seconds and scored via dot products. In contrast, docking-based
baselines must dock every ligand into every candidate pocket, which is orders of magnitude slower.
We evaluated on a PDBbind time-split to assess generalization to future complexes, and the ASD
benchmark containing allosteric sites and ligands. Candidate pockets are generated once per protein;
at test time we rank pockets per ligand. We report top-1 DCC success rate at 4ÅȮn the PDBbind
time split, ConGLUDe outperforms both the docking method (DiffDock) and unconditioned pocket
prediction baselines (see Table 3). On ASD, overall accuracy is lower for all methods due to the
prevalence of allosteric sites that rarely appear in training. Unconditioned predictors, including
VN-EGNN, often miss these pockets. Nevertheless, our contrastive ligand–pocket module improves
selection of the correct allosteric pocket for a given ligand more often than unconditioned baselines
(Table 3). However, the performance of ConGLUDe is limited by the weakness of VN-EGNN at
detecting allosteric sites. With an improved detector of allosteric binding pockets, ConGLUDe would
also improve. We discuss this also in Limitations.

G.4 TARGET FISHING

We visualized model performance on target fishing using ROC curves (Figure G2).
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Osimertinib: (AUC = 0.62)
Ibrutinib: (AUC = 0.87)
Abemaciclib: (AUC = 0.80)
Nilotinib: (AUC = 0.79)
Tofacitinib: (AUC = 0.79)

Figure G2: ROC curves for model performance across compounds. Left: Mean ROC curve across
all compounds with standard deviation shaded in gray. Right: Individual ROC curves for selected,
widely used kinase-inhibitors, showing per-task performance and corresponding AUC values. The
steep ascent of many of the curves indicates that some correct targets are ranked amont the top of the
list.

G.5 ABLATION STUDIES

We performed an ablation study on the main components of ConGLUDe: a) structure-based training
data, b) ligand-based training data, c) geometric loss, d) contrastive loss between molecule and protein,
and e) contrastive loss between molecule and binding site. The results of the ablation study are shown
in Table G4. On LIT-PCBA, ablating each component leads to a deterioration of the performance
metrics, which indicates that all components together contribute to the effectiveness of ConGLUDe.
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On the DUD-E benchmark, which is less realistic and thus less informative than LIT-PCBA, the
results indicate that the structure-based data are critical for the performance and ligand-based data
would not be necessary. Ablating single loss terms does not deteriorate the performance. Judging
from both datasets, the introduced components are important for the performance on realistic virtual
screening tasks.

Table G4: Performance on virtual screening on the DUD-E (Mysinger et al., 2012) and LIT-PCBA
(Tran-Nguyen et al., 2020) datasets measured by AUROC, BEDROC and EF at 1%.

DUD-E LIT-PCBA
AUROC↑ BEDROC↑ EF 1% ↑ AUROC↑ BEDROC↑ EF 1% ↑

only SB data 83.88 56.20 36.57 53.06 5.48 4.73
only LB data 67.11 10.61 5.31 67.94 11.11 9.38

no Lgeometric 83.26 53.05 34.79 64.17 11.41 10.06
no Lm2p 82.58 50.30 32.26 64.80 11.01 10.24
no Lm2b 81.55 50.16 32.34 64.90 10.97 8.98

ConGLUDe 82.04 50.80 32.52 66.25 13.63 12.25
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