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Abstract—We propose a von Mises–Fisher sampling scheme
using Fibonacci lattices to generate high-quality deterministic
samples on the sphere. Key idea is an orthogonal inverse trans-
form to map uniform low-discrepancy or quasi-random samples,
ideally from Fibonacci lattices, to the sphere. The proposed new
sampling method can be applied in assumed density Riemannian
particle filters and controllers. Compared to random sampling, it
produces well-separated, locally homogeneous samples, yielding
superior convergence in numerical applications. The advantage
over UKF-like sampling schemes is the free choice of the number
of samples.

Index Terms—von Mises–Fisher density, Fisher density, low-
discrepancy sequence, Fibonacci lattice, Sobol sequence, deter-
ministic sampling, non-Euclidean, Riemannian, cubature, particle
filter

I. INTRODUCTION

Sampling from a given probability density function is a
central building block in many applications. The most promi-
nent application is cubature, i.e., approximating numerical
integration in higher dimensions. Cubature is a building block
in many applications, such as sensor data fusion, prediction,
state estimation, control, Bayesian optimization, and finance.
As opposed to the often-used mutually independent, identi-
cally distributed (iid) random samples, deterministic samples
provide better coverage of the space and convergence of the
integral [1]. In global optimization, a set of initial guesses has
to be distributed evenly in high-dimensional spaces. Determin-
istic samples cover the space more efficiently than random
samples [2]. Also, the apparently simple placement of sensors
[3], LED lights, boreholes, or plant seeds can be viewed as
a sampling problem. An elegant solution is seen in many
flower heads: the Fibonacci grid, yielding a conspicuous spiral
pattern, combines superior packing efficiency with flexibility
during growth [4].

The above examples are usually considered in Euclidean
spaces. However, their analysis on Riemannian manifolds
becomes more and more important. In modern wireless com-
munications, the angle of arrival (AoA) distribution is mod-
eled with spherical densities to facilitate highly efficient data
transmission using multiple inputs multiple outputs (MIMO)
techniques [5]. Wind directions in weather simulations [6] can
only be truthfully represented via a vector field with vectors
from Riemannian manifolds. Robotic design, kinematics, and
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Fig. 1: Sets of 50 von Mises–Fisher (or Fisher) samples
with different concentration parameters κ, produced by our
proposed method.

path planning require optimization, state estimation, and con-
trol on (hyper)spheres and (hyper)tori [7], [8]. Aircraft require
sophisticated balancing control. Their state is best represented
via quaternions that, in turn, require a hyperhemispherical
manifold [9].

Computations are often performed on linearized Euclidean
tangent spaces of the underlying Riemannian manifolds. This
works well if uncertainties are small. However, with greater
uncertainty, performing the calculations directly on the nonlin-
ear manifold becomes increasingly important. If a significant
part of the probability mass protrudes beyond periodicity
limits, the result will otherwise be distorted even with an
optimally selected linearization point. Drones and robots have
become smaller and more versatile. Therefore, the predictions
of the internal motion models (that must reflect the physical
capabilities) become more uncertain: a small drone can make
sudden changes in direction and speed that a passenger aircraft
would not be physically capable of. Weather simulations get
more fine-grained, and the individual forecasts, limited to
smaller areas, are more unstable. Products are pushing into
the mass market, equipped with more but cheaper sensors that
provide unreliable measurement data.

In summary, processing uncertain sensor data on nonlinear
manifolds becomes increasingly essential. This work addresses
this challenge with a novel sampling algorithm for the spher-
ical von Mises–Fisher (or Fisher) distribution.
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Fig. 2: Different types of Gaussian sampling in Euclidean space (top, E1 . . . E6) and von Mises–Fisher and Bingham sampling
on the spherical domain (bottom, S1 . . . S6). Figures are captured from the stated references. First column (E1, S1) shows
uniform-grid-based filters with individually weighted samples, second column (E2, S2) moment matching, other columns equally
weighted samples. Note that LCD samples (E6, S6) are much slower to compute than all others. We propose low-discrepancy
sampling with Fibonacci lattices on the sphere (S5), as it produces high-quality results and is fast.

The most widely used deterministic sampling method is
based on moment matching. Sample locations can be com-
puted, for example, by matching mean and covariance in
Euclidean domains [21] (see Fig. 2E2), and trigonometric
moments on (hyper)spherical manifolds [17] (see Fig. 2S2).
The major limitation here is that the number of samples
is fixed and cannot be adapted to the complexity of the
problem. Furthermore, how many and which moments should
be considered is usually unclear. The number of samples may
be increased by placing more samples on the main axes [12]
(see Fig. 2E3), and analogously on (hyper)spheres [18], [22]
(see Fig. 2S3). However, this approach still misses the areas
apart from the principal axes, so the probability mass present
there is not adequately represented. This can be improved by
using an “orbit-planet” sample arrangement [23], [19] (see
Fig. 2S4). It can be seen as mapping a regular Cartesian
grid such as the one in Fig. 3b to the sphere. However, this
leads to the “concatenation” of samples to circular rings near
the pole and lines near the equator, yielding bad coverage
of the space locally. We propose using a low-discrepancy
reference grid instead of the Cartesian grid to overcome this
coverage problem (see Fig. 2S5). We already proposed a
similar sampling scheme for the Gaussian density [13], [24]
(see Fig. 2E5).

The Localized Cumulative Distribution (LCD) can also be
used to produce arbitrary numbers of deterministic samples in
Euclidean domains [25] (see Fig. 2E6), as well as Riemannian
domains [26], [20] (see Fig. 2S6). These samples provide
very good homogeneous state space coverage according to the
desired density, arguably the best. However, one must solve a

nonlinear optimization problem to obtain the samples, which
might be too expensive for real-time applications.

In summary, existing deterministic sampling methods are
either inflexible or computationally expensive. Therefore, we
propose a sampling method that is fast and cheap to compute
and provides flexibility in the number of produced samples.

Our proposed deterministic sampling method is heavily
based on low-discrepancy point sets. Compared to independent
uniformly distributed samples (see Fig. 3a), low-discrepancy
point sets cover the space locally homogeneously (see Figs. 3c
and 3d). Specifically, low discrepancy means that all possible
axes-aligned rectangles inside the unit square [0, 1]2 contain a
number of samples that is approximately proportional to their
volume. And other than the regular axis-aligned square grid
(see Fig. 3b), every point has unique x and y coordinates,
respectively (see Fig. 3c). This ensures that the function into
which these points are inserted is evaluated with genuinely
different coordinates for every single sample. Low-discrepancy
point sets retain their local homogeneity if anisotropically
scaled along the coordinate axes [24].

We exploit this transformability to obtain spherical von
Mises–Fisher samples via a suitable two-dimensional inverse
transform. The von Mises–Fisher density on the S2 sphere is
also called Fisher density since it was first studied in detail by
Sir Ronald Fisher [27]. After the uniform density, it is the most
basic distribution on the sphere [28, pp. 167–173]. Considering
the limiting case of concentrated densities, it is identical to
the isotropic wrapped normal density [28, pp. 172–173], [26,
Sec. 6]. The (von Mises–)Fisher density has applications with
direction-of-arrival measurements [29], e.g., object tracking
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Fig. 3: Uniform samples in the two-dimensional unit square x ∈ [0, 1]2.

using an omnidirectional camera [30], and in white matter fiber
tracking using diffusion tensor magnetic resonance imaging
(DT-MRI) of the brain [31].

II. UNIFORM REFERENCE POINT SETS

This section describes suitable uniform reference point sets
that will later be transformed to the von Mises–Fisher density.
We focus on low-discrepancy point sets rather than random
samples as they provide superior convergence in numerical
integration applications [1, p. 176].

A. Equidistant Point Sets, for D = 1

In the scalar case, the best choice is simply the equidistant
point set

xi = i · 1
L
, i ∈ {0, 1, . . . , L− 1} . (1)

This can be seen as a rank-1 lattice with generator 1
L .

Sometimes, it is beneficial to use the centered version

xi =
2i− 1

2L
, i ∈ {1, . . . , L} , (2)

where no sample is exactly zero or one.

B. Golden Sequence, for D = 1

If the point set should be extensible while keeping the
previous samples in place, the golden sequence is a good
choice

xi = i · 1
Φ

mod 1 , i ∈ {0, 1, . . . , L− 1} , (3)

with

1

Φ
=

√
5− 1

2
= 0.618 . . . . (4)

This can be seen as a Kronecker sequence with generator
1
Φ . Centering can be performed here by simply counting i
in {1, . . . , L} instead of in {0, . . . , L− 1}.

C. Fibonacci–Rank-1 Lattice, for D = 2

The best possible [32] low-discrepancy point set in the
periodic unit square [0, 1)2 is the Fibonacci lattice

xi = i ·

 1
Fk+1

Fk

Fk+1

 mod 1 , (5)

i ∈ {0, 1, . . . , Fk+1 − 1} ,

where Fk is the k-th Fibonacci number [1, Ex. 2.8], k ∈ N.
This is a two-dimensional rank-1 lattice. The point set is
periodic along both axes and can be projected onto a torus.
Note that the total number L of lattice points xi must be a
Fibonacci number, L = Fk+1 (see Fig. 3c). A centered variant
would be

xi = i ·

 1
Fk+1

Fk

Fk+1

+
1

2Fk+1
mod 1 , (6)

i ∈ {0, 1, . . . , Fk+1 − 1} .

D. Fibonacci–Kronecker Lattice, for D = 2

A somewhat similar point set is also well known [33, Eq. 3].
It is a Kronecker lattice that again generates points xi in the
unit square [0, 1)2

xi = i ·

[
1
L
1
Φ

]
mod 1 , i ∈ {0, 1, . . . , L− 1} . (7)

It can be seen as combining the one-dimensional equidistant
point set (1) and the golden sequence (3). In contrast to (5),
the total number of points L is not restricted to Fibonacci
numbers here. One marginal (the one whose generator is 1

L )
is equidistant, and the other is not (see Fig. 3d). The point set
is periodic only along one dimension (the one whose generator
is 1

Φ ) and should, therefore, not be projected onto a torus but
is suitable for projection onto the sphere and the cylinder. A
centered variant is given as

xi =

[
2i−1
2L
i
Φ

]
mod 1 , i ∈ {1, . . . , L} . (8)
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Fig. 4: Transforming uniform deterministic samples to standard normal via inverse transform sampling. Uniform samples can
be transformed through the inverse of the CDF, yielding Gaussian samples (b). Equivalently, uniform samples can also be
transformed through the quantile function, again yielding Gaussian samples (c).

E. Random Samples

While we strongly recommend using the Fibonacci–rank-
1 lattice and the Fibonacci–Kronecker lattice as reference
point sets, of course, independent random samples could also
be used, resulting in mutually independent von Mises–Fisher
samples. An equivalent random von Mises–Fisher sampling
approach has been proposed in [34]. According to the Central
Limit Theorem, the Monte Carlo convergence resulting from
random samples will be only 1/

√
L. Loosely speaking, Monte

Carlo estimates based on random samples have a larger
variance than quasi-Monte Carlo estimates with the proposed
quasi-random or low-discrepancy Fibonacci lattices. However,
the expected variance of the estimate is more precisely known
for random samples due to the Central Limit Theorem. An
error estimate for our proposed method could still be obtained
via random shifting [1, pp. 155–157].

III. TRANSFORMATIONS

To obtain non-uniform samples, like samples from the von
Mises–Fisher density, the low-discrepancy sequences have to
be transformed accordingly.

A. Univariate Densities, D = 1

Transformations are particularly simple in the univariate
case. Suppose we want to obtain deterministic samples of a
probability density f(x) with x ∈ R. First, we calculate its
cumulative distribution function

F (x) =

∫ x

−∞
f(u) du . (9)

The desired non-uniform samples xfi ∼ f(x) are now com-
puted by propagating uniform samples xui ∈ [0, 1] through the
quantile function Q(p), which is the inverse of the cumulative
distribution [35, Theorem 8]

xfi = Q(xui ) , (10)

Q(p) = F−1(p) . (11)

Example – Univariate Standard Normal Density: For the
univariate standard normal desity fN (x)

fN (x) =
1√
2πσ

· exp
{
−1

2

(x
σ

)2
}

, (12)

we can write its cumulative distribution FN (x) as

FN (x) =
1

2
·
(
1 + erf

(
x√
2

))
(13)

and its quantile function QN (p)

QN (p) =
√
2 · erf−1(2 · p− 1) (14)

in closed form using the Gaussian error function erf(·) and
its inverse (see Fig. 4). The quantile function QN (p) of the
standard normal density is also called the probit function. To
obtain Gaussian samples, we can take uniform samples xui ,
e.g., centered equidistant samples (2), regard them as quantiles,
and transform them via the probit function QN (·) to Gaussian
samples xNi

xNi = QN (xui ) (15)

=
√
2 · erf−1

(
2 i− 1

L
− 1

)
(16)

(see Fig. 4c).

B. Multivariate Densities, D > 1

For multivariate densities, sampling is simplified if they are
separable. In that case, they can be written as the product of
their marginals, i.e., the densities of independent univariate
random variables that correspond to the coordinate axes

f(x, y, z, . . .) = fx(x) · fy(y) · fz(z) · · · . (17)

Then, each coordinate can be treated individually according
to (10), respectively. Otherwise, we have to first look for a
suitable orthogonal coordinate system such that the density
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Fig. 5: Effect of the parameter κ on the von Mises–Fisher density function.

is separable into those coordinates. For example, for multi-
variate Gaussians, such a mapping involves the eigenvalue
decomposition of the covariance matrix [13]. Others have
instead used the Cholesky decomposition [36], [37]. The
Cholesky-based inverse transform is, however, not orthogonal
and deteriorates the homogeneity of the samples (see [24,
Fig. 8]). The possibility of mapping two-dimensional low-
discrepancy grids to the sphere S2 and the cylinder S1 × R
has been noted before [38], but the opportunity to explicitly
approximate non-uniform spherical density functions like the
von Mises–Fisher density has not been explored yet.

IV. VON MISES–FISHER DENSITY ON S2

We describe the workflow of finding an orthogonal mapping
that, given uniform samples, produces the von Mises–Fisher
distribution

f(x) =
κ

2π (eκ − e−κ)
· exp

{
κ · µ⊤x

}
, (18)

µ, x ∈ S2 ⊂ R3 (19)

on the S2 sphere. Parameter µ defines the mode of the density,
and parameter κ the directional uncertainty. See Fig. 5 for
a visualization of von Mises–Fisher density functions f(x)
with various choices of κ. First, we settle on the spherical
coordinate system [θ, φ]⊤ with coordinate transformation ζ

ζ : S2SC → S2 ⊂ R3 (20)

ζ :

[
θ
φ

]
→

cos(θ)sin(θ) cos(φ)
sin(θ) sin(φ)

 , (21)

where S2SC
S2SC = [0, π]× [0, 2π]

is the domain of the spherical coordinates [θ, φ]⊤. This co-
ordinate transform serves as our skeleton grid. Because it
is orthogonal [39], the resulting transformed low-discrepancy
points retain their local homogeneity [40]. Without loss of
generality, we consider µ = e1 =

[
1 0 0

]⊤
(the final cloud

of samples can be shifted on the sphere later) and obtain

f(θ, φ) =
κ

2π (eκ − e−κ)
· exp{κ · cos(θ)} , (22)

and with the surface area element of the S2 sphere in spherical
coordinates,

dS2A = sin(θ) dθ dφ , (23)

we can compute the cumulative distribution F (θ, φ)

F (θ, φ) ∝
∫ φ

0

∫ θ

0

exp
{
κ · cos(θ̃)

}
· sin(θ̃) dθ̃ dφ̃ (24)

∝ (exp{κ} − exp{κ · cos(θ)}) · φ (25)

in spherical coordinates [θ, φ]⊤ ∈ S2SC. Thus, we obtain a
separable cumulative distribution function

F (θ, φ) = F1(θ) · F2(φ) (26)

consisting of two factors

F1(θ) =
1

eκ − e−κ
· (exp{κ} − exp{κ · cos(θ)}) , (27)

F2(φ) =
1

2π
· φ . (28)

Inverting F1(θ) yields the individual quantile function

Q1(p) = cos−1

(
1

κ
log

(
eκ − p ·

(
eκ − e−κ

)))
, (29)

= cos−1

(
1 +

1

κ
· log1p(p · expm1(−2κ))

)
, (30)

where (30) is a numerically optimized variant of (29), with
the often available functions compensating for round-off error

log1p(x) = log(1 + x) (31)
expm1(x) = ex − 1 . (32)

Note that similar transformations are used in stochastic sam-
pling methods of the von Mises–Fisher transformation [34,
Sec. II.A], [41, Sec. 3]. Together with the second individual
quantile function, the inversion of (28),

Q2(q) = 2π q , (33)

we obtain the complete quantile function

Q : R2 → S2SC (34)

Q :

[
p
q

]
→

[
Q1(p)
Q2(q)

]
, (35)
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Fig. 6: Proposed von Mises–Fisher Samples (39) on the S2 sphere using Golden Kronecker samples (7) as uniform reference
point set. Columns show different numbers of samples L, rows different concentration parameters κ.

that transforms uniform samples to von Mises–Fisher samples
in spherical coordinates [θ, φ]⊤. To obtain samples in Carte-
sian instead of spherical coordinates, we employ the mapping

ψ = ζ ◦Q : R2 → S2 ⊂ R3, (36)

with coordinate transform ζ (21) and concatenation operator
◦ : f ◦ g = f(g(·)) . This transformation turns any two-
dimensional low-discrepancy (or, trivially, random) sequence
xui into von Mises–Fisher distributed samples xfi

xfi = ψ(xui ) , (37)

xfi ∼ f(x) . (38)

In particular, choosing the centered Golden-Kronecker se-
quence (8) as the uniform reference point set, we obtain

xfi =


w

√
1− w2 · cos

(
2πi
Φ

)
√
1− w2 · sin

(
2πi
Φ

)
 , (39)

with

w = 1 +
1

κ
· log1p

(
2i− 1

2L
· expm1(−2κ)

)
. (40)

See Figs. 1 and 6 for a visualization that is based on the
Golden-Kronecker point set.

V. MEAN ROTATION

So far, we created samples with mean parameter µ = e1
and need a suitable transformation to obtain arbitrary mean
values µ ∈ SD. Thus, we look for a rotation matrix Q with

µ = Q · e1 . (41)

This sets the first column of Q to µ, and the other columns
have to be chosen orthonormal to µ and to each other, e.g.,
using the QR decomposition. See [34, Sec. II.C + Alg. 1] for
more details.

VI. EVALUATION

This section evaluates the proposed algorithm and compares
it to existing methods using two quality measures. The first
quality measure is the accuracy of κ. We draw von Mises–
Fisher samples for κ = 20 (without any moment correction)
with various sampling methods and for various numbers of
samples. We then determine their κ using maximum likelihood
estimation (MLE) [42] using the implementation in libDi-
rectional [43] and compare it to the ground truth, κ = 20,
respectively. The deviation is plotted over the number of
samples, indicating the convergence properties (see Fig. 7a).
Random samples were drawn according to [41], [44], using
the implementation in libDirectional [43]. LCD sampling
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Fig. 7: (a) Evaluation by estimating the κ parameter for various numbers of samples, with 100 trials. (b) Cumulative empirical
distribution of nearest neighbor distances for L = 30, κ = 20, see also bottom row for visualization of the samples.

was done by sample reduction [26] from the hundredfold
number of random samples. The other methods were obtained
by applying the proposed orthogonal inverse transform (30),
(33) to uniform template samples, in particular, i) the Sobol
set [45] with a random initial skip, ii) a centered regular
Cartesian lattice as seen in Fig. 3b, resulting in orbit-planet-
like arrangements, and iii) the centered Fibonacci-Kronecker
lattice (8). When applicable, the range between the best and
worst results out of 100 trials is indicated as a shaded area,
and the mean as a thick line. See the bottom row of Fig. 7 for
a visualization of the von Mises–Fisher samples from each
of these methods for L = 30. The proposed method yields
the best results in most cases, closely followed by LCD and
Sobol-based samples.

As an alternative quality measure, we compare the em-
pirical cumulative distribution (ECDF) of the geodetic dis-
tance cos−1

(
x⊤i · xj

)
between each sample xi and its closest

neighbor xj ,

min
j ̸=i

{
cos−1

(
x⊤i · xj

)}
(42)

(see Fig. 7b). LCD and Fibonacci methods generally achieve
greater sample pair distance as they place samples more locally
homogeneously.

Matlab source code is available on request and will eventu-
ally be published in [43], a MATLAB library for directional
statistics and directional estimation, and on IEEE Code Ocean.

VII. CONCLUSION

We introduced a novel deterministic sampling method for
the von Mises–Fisher distribution on the S2 sphere. It is based
on the Fibonacci–Kronecker lattice as a uniform reference
point set and an orthogonal inverse transform. Implementation
is straightforward; the whole method boils down to a single
formula (39). Other low-discrepancy point sets, such as the
Sobol sequence, can also be used.

Regarding two measures, κ parameter estimation and local
smoothness, the proposed samples achieve a higher quality
than random samples and orbit-planet arrangements. Trans-
formed Sobol samples, transformed Fibonacci samples (as pro-
posed), and LCD samples share the winning places, depending
on the specific application. LCD sampling is more complex to
compute as it requires numerical optimization of the sample
locations, so we achieve a promising tradeoff. Use cases of our
method are scenarios where i) a higher number of samples is
required than unscented sampling does provide, and ii) run
time and computational complexity considerations make LCD
sampling infeasible.
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