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ABSTRACT

Recently, Neural Fields (NeFs) have emerged as a powerful modelling paradigm
to represent discretely-sampled continuous signals. As such, novel work has ex-
plored the use of Conditional NeFs to model PDEs, by learning continuous flows
in the latent space of the Conditional NeF. Although this approach benefits from
favourable properties of neural fields such as grid-agnosticity and space-time-
continuous dynamics modelling, it does not make use of important geometric in-
formation about the domain of the PDE being modelled – such as information on
symmetries of the PDE – in favour of modelling flexibility. Instead, we propose
a NeF parameterization that preserves geometric information in the latent space
of the Conditional NeF: Equivariant Neural Fields. Using this representation, we
construct a framework for space-time continuous PDE modelling that preserves
known symmetries of the PDE. We experimentally validate our model and show
it readily generalizes to arbitrary locations, as well as geometric transformations
of the initial conditions - where other NeF-based PDE forecasting methods fail.

1 INTRODUCTION

Partial Differential Equations (PDEs) are a foundational tool in modelling and understanding
spatio-temporal dynamics across diverse scientific domains. Classically, PDEs are solved using
numerical methods like finite elements, finite volumes, or spectral methods. In recent years, Deep
Learning (DL) methods have emerged as promising alternatives due to abundance of observed and
simulated data as well as the accessibility to computational resources, with applications ranging
from fluid simulations and weather modelling (Yin et al., 2022; Brandstetter et al., 2022a) to
biology Moser et al. (2023). The systems modelled by PDEs often have underlying symmetries.
For example, heat diffusion or fluid dynamics can be modeled with differential operators which are
rotation equivariant, i.e. given a solution to the system of PDEs, its rotation is also a valid solution.
In such scenarios it is sensible, and even desirable, to design neural networks that incorporate
and preserve such symmetries by design to improve generalization and data-efficiency (Cohen &
Welling, 2016; Weiler & Cesa, 2019; Bekkers, 2019).

Crucially, DL-based approaches rely on data sampled on a grid, without the inherent ability to
generalize outside of it, which is restrictive in many scenarios (Prasthofer et al., 2022). To this end,
Yin et al. (2022) propose to use Neural Fields (NeFs) for modelling and forecasting PDE dynamics.
However, they fail to leverage the well-known equivariances present in the data.

We introduce a new class of SE(n)-equivariant conditional neural fields. We condition the
NeF through a point cloud of latent feature vectors defined over the symmetry group of interest,
disentangling pose and appearance in the latent space of functions. We subsequently propose a
framework for solving PDEs by learning traversals of the latent space of this equivariant NeF with
an equivariant Neural ODE, see Fig. 1 for an illustration.
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Figure 1: We propose to solve an equivariant PDE in function space by solving an equivariant ODE
in latent space. Through our proposed Equivariant Neural Field fθ, a field νt can be represented
by latent point clouds Zνt = {(pνt,i,aνt,i)}Ti=1 over symmetry group SE(2). A PDE flow (bottom)
corresponds to a trajectory of point clouds in latent space (top), generated by a learned neural ODE.

2 BACKGROUND AND RELATED WORK

We describe Deep Learning based approaches to data-driven dynamics modelling, and specifically
highlight the recent use of neural fields (NeFs) in this setting. We highlight the concept of symmetry
conservation in general DL model design and argue for the inclusion of such inductive biases in
DL-based PDE surrogates, which we achieve by introducing equivariant conditional NeFs.

DL approaches to dynamics modelling Most DL methods for solving PDEs attempt to directly
replace solvers with mappings between finite-dimensional Euclidean spaces, i.e. through the use
of CNNs (Guo et al., 2016; Ayed et al., 2020) or GNNs (Pfaff et al., 2020; Brandstetter et al.,
2022b) often applied autoregressively to an observed (discretized) PDE state. Instead, the Neural
Operator (NO) (Kovachki et al., 2021) paradigm attempts to learn infinite-dimensional operators,
i.e. mappings between function spaces, with limited success. Fourier Neural Operator (FNO) (Li
et al., 2020) extends this method by performing convolutions in the spectral domain. FNO obtains
much improved performance, but due to its reliance on FFT is limited to data on regular grids.

Inductive biases in DL and dynamics modelling The field of Geometric Deep Learning focuses
on constraining/designing a model’s space of learnable functions based on geometric principles
to obtain improved performance and better generalization. Prominent examples from Computer Vi-
sion research include Group Equivariant Convolutional Networks Cohen & Welling (2016); Bekkers
(2019) and Graph Neural Networks (GNNs) Kipf & Welling (2016), generalizations of CNNs that
respect symmetries of the data - such as dilations and continuous rotations (Weiler & Cesa, 2019;
Finzi et al., 2020; Knigge et al., 2022). In the context of dynamics modelling, equivariant archi-
tectures have been employed to incorporate various properties of physical systems in the modelling
process, examples of such properties are the symplectic structure (Jin et al., 2020), discrete symme-
tries such reversing symmetries (Valperga et al., 2022) and energy conservation (Greydanus et al.,
2019; Hernández et al., 2021).

Neural Fields in Dynamics Modelling Neural fields (NeFs) are a class of coordinate-based
neural networks, often trained to reconstruct discretely-sampled input signals in a continuous way.
More specifically, a neural field fθ : Rn → Rd is a field –parameterized by a neural network
with parameters θ– that maps n-dimensional input coordinates x ∈ Rn in the data domain, to
d-dimensional signal values f(x) ∈ Rd. By associating a conditioning latent zf ∈ Rc to each signal
f , a single conditional NeF fθ : Rn × Rc → Rd can learn to represent families D of continuous
signals such that ∀ f ∈ D : f(x) ≈ fθ(x; z

f ). Dupont et al. (2022) showed the viability of using
the latents zf as representations for downstream tasks (e.g. classification, generation) proposing
a framework for learning on neural fields. This framework inherits desirable properties of neural
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fields, such as inherent support for sparsely and/or irregularly sampled data, and independence
to signal resolution. Yin et al. (2022) propose to use conditional NeFs for PDE modelling by
learning a continuous flow in the latent space of a conditional neural field. In particular, a set of
latents {zνi }Ti=1 are obtained by fitting a conditional neural field to a given set of observations
{νi}Ti=1 at timesteps 1, ..., T ; simultaneously, a neural ODE (Chen et al., 2018) is trained with
those latents such that solutions correspond to the trajectories traced by the learned latents.

Figure 2: The pro-
posed Equivariant Neural
Field (top) under a roto-
translation g (bottom).

3 METHOD

Mathematical preliminaries Given a groupGwith identity element
e ∈ G, and a set X , the group action is a map Lg : G × X → X
such that Le(x) = x and Lgh(x) = Lg (Lh(x)). In particular, we
are interested in the Special Euclidean group SE(n) = Tn ⋊ SO(n).
SE(n) is the roto-translation group consisting of elements g = (t,R)
with group operation g g′ = (t,R) (t′,R′) = (Rt′ + t,RR′);
their action on function spaces is defined by Lgf(x) = f(g−1x) =
f(R−1(x − t)). Group elements of SE(n) are identified by a trans-
lation t ∈ Tn ≡ Rn and rotations R ∈ SO(n). Laws of physics do
not depend on the choice of coordinate system, this implies that many
PDEs are defined by SE(n)-equivariant differential operators N , i.e.,
such that LgN [f ] = N [Lgf ]. The same holds for ordinary differential

equations defined by equivariant vector fields, if
dz

dτ
=F (z) is such that

F (lgz) = lgF (z), where we denote the group action of SE(n) on the
state space with lg .

PDE Modelling with Equivariant Neural Fields We consider
flows of fields, denoted with ν : Rd × JT K → Rc, in which JT K :=
1, 2, . . . , T denotes the set of time points on which the flow is sampled.
A snapshot of the field at time index t is denoted with νt. We assume
the flow is governed by a PDE which we aim to learn and represent as
a neural ODE in latent space. To this end, we build upon the work of
Yin et al. (2022), and consider the following optimization problem

min
θ,ψ,zτ

Eν∈D,x∈X,t∈JT K ∥νt(x)− fθ(x; z
ν
t )∥

2
2 , where zνt = zν0 +

∫ t

0

Fψ(z
ν
τ )dτ , (1)

where Fψ is a neural network that parametrizes the neural ODE, that is, it maps latent zντ ∈ Rc

to its temporal derivative:
dzντ
dτ

=Fψ(z
ν
τ ). Here zνt denotes the latent associated with νt and is

inferred during training. Note that compared to Yin et al. (2022) where two independent objectives
are minimised simultaneously (one for zνt and θ and one for ψ), we train our model with a single
objective. Intuitively, this is to force the latents to not only reconstruct observations, but also to be
arranged in such a way that they can be fitted by a continuous flow.

Our objective is to leverage the inductive bias of equivariance to preserve SE(n) symmetries that a
PDE may possess in our neural surrogate. This requires the following necessary conditions:

1. The latent space Z is equiped with a well-defined group action lg .

2. The relation between field and latent is equivariant, i.e., ∀g∈SE(n) : Lgνt ⇔ lgZ
ν
t .

3. The neural ODE is equivariant, i.e., ∀g∈SE(n) : Fψ(lgz
ν
t ) = lgFψ(z

ν
t ).

The next section describes how we solve the necessary conditions (1.) and (2.) by defining the
latent space to a space of attributed point clouds in SE(n) and introducing a new class of SE(n)-
equivariant conditional neural fields. Condition (3.) will be satisfied by parametrizing the neural
ODE Fψ with an equivariant graph neural network (Bekkers et al., 2023).
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Equivariant Conditional Neural Fields We define NeFs that are conditioned on attributed point
clouds over SE(n). That is, as a conditioning variable we consider a set Z := {(pi,ai)}ni=1 of n
tuples that consist of a pose pi ∈ SE(n) and appearance ai ∈ Rc. In clearer terms, each field f will
be associated with a latent set Z through the NeF such that f(x) ≈ fθ(x;Z

f ). The latent space has
a well defined action lg given by lgZ = {(g · pi,ai)}ni , with g · pi being simply the group operation
of SE(n).

We propose a new class of equivariant neural fields (Fig. 2) that posses the following steerability
property

∀g ∈ SE(n) : fθ(g
−1x;Z) = fθ(x; lg Z) (2)

Through this property, a roto-translation of the field can be obtained by a roto-translation of the
latent point cloud. We define the equivariant neural field through cross-attention between relative
coordinates p−1

i x = RT
i (x− xi) and the appearance vectors ai via

fθ(x;Z) :=

n∑
i=0

v(ai) · softmax
(
q(p−1

i x)T k(ai)√
dk

)
, (3)

in which q is a learnable relative coordinate embedding function (we use SIREN from Sitzmann
et al. (2020)), and k, v are learnable linear transformations. The softmax is over the latent set, and
dk represents the dimensionality of the embeddings. Note that q can be any type of function that is
not necessarily equivariant since the quantity p−1

i x is bi-invariant under the group action via

∀g ∈ SE(n) : (pi,x) 7→ (g pi, g x) ⇔ p−1
i x 7→ (g pi)

−1g x = p−1
i g−1g x = p−1

i x . (4)

This also proves the steerability property (2) since by (4) the tuple g−1x, pi is equivalent to x, g pi.

4 EXPERIMENTS

We validate our model on two different PDEs. First, to experimentally validate the equivariance
properties of our framework, we train our models on 2D diffusion dc

dt = D∇2c, where c is a scalar
field, and D is the diffusivity. Specifically, we create a benchmark where for initial conditions we
insert a pulse at a random location in the grid x = (x1, x2) ∈ R2 s.t. −1<x1<1, 0<x2<1 for
the training data and −1<x1<1,−1<x2<0 for the test data (intuitively, train and test sets contain
pulses under different group actions respectively). We also evaluate on 2D Navier Stokes (Stokes
et al., 1851) corresponding to an incompressible fluid with dynamics dv

dt = −u∇v + v∆µ+ f, v =
∇× u,∇u = 0, where u is the velocity field, v the vorticity, and µ the viscosity. For f we choose a
symmetric forcing term. For dataset details see Appx. A.1, for experimental details see Appx. A.2.

The models are trained and evaluated with the MSE on intervals of T=20 steps split into tIN ∈
{1, ..., 10} and tOUT ∈ {10, ..., 20}. Only tIN is used for supervision with the loss described in Eq. 1.
Following Yin et al. (2022), we additionally provide results for randomly subsampled initial states
ν1, where we show very little degradation even when 95% of values are removed from the observed
initial state of a trajectory. A visualization of a predicted train and test trajectory for both datasets
may be found in Appx. A.3.

On the diffusion dataset (Tab. 1), our model obtains good performance on both train and test sets. In
this experiment, DINo fails to generalize to the test set due to its lack of symmetry-preservation. On
Navier-Stokes with symmetric forcing (Tab. 2), we similarly obtain good results on both train and
test sets, although performance degrades for timesteps tout. We conclude that symmetry-preservation
improves space-time continuous PDE solving.

5 CONCLUSION

In this paper we proposed a model which utilises pointclouds as conditioning terms for conditional
neural fields. Using an equivariant neural ode parameterised with a SE(n)-equivariant GNN we
showed that utilising these conditional local latent point clouds within PDE-modeling outperforms
the baseline DINo in two different experiments.
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Table 1: MSE ↓ on roto-translated 2D Diffusion.

2D Diffusion

tIN TRAIN tOUT TRAIN tIN TEST tOUT TEST

DINo 5.922e-04 2.400e-04 3.849e-03 5.115e-03
Ours 2.547e-05 9.808e-04 6.424e-05 9.221e-04

50% OBSERVED

DINo 4.132e-04 2.920e-04 3.977e-03 5.144e-03
Ours 7.000e-05 2.004e-03 9.721e-05 2.066e-03

5% OBSERVED

DINo 7.568e-04 7.160e-04 5.786e-03 6.861e-03
Ours 9.000e-05 2.000e-03 1.034e-04 2.159e-03

Table 2: MSE ↓ on 2D Navier-Stokes.

2D Navier Stokes

tIN TRAIN tOUT TRAIN tIN TEST tOUT TEST

DINo 2.585e-01 5.477e-01 5.381e-01 8.988e-01
Ours 2.009-e02 1.429e-01 4.030e-02 2.029e-01

50% OBSERVED

DINo 4.463e-01 7.632e-01 4.807e-01 8.719e-01
Ours 4.557e-02 1.812e-01 4.454e-02 2.400e-01

5% OBSERVED

DINo 4.717e-01 7.792e-01 4.658e-01 8.642e-01
Ours 5.541e-02 2.086e-01 4.475e-02 2.369e-01
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A APPENDIX

A.1 DATASET DETAILS

Diffusion 2D We generate rollouts of 2048 initial conditions for use as training data using an RK4
solver, and an additional 128 as test data. We sample initial conditions by selecting a random point x
in the domain [−1, 1]

2 (for training data −1<x1<1, 0<x2<1, for test data −1<x1<1,−1<x2<0)
and inserting a random value sampled from U [0.75, 1.25]. The full spatial grid is sampled at 64x64
resolution. We discard the initial five timesteps.

Navier-Stokes 2D We generate rollouts of 8192 initial conditions for use as training data using an
RK4 solver, and an additional 128 as test data. The spatial domain is set to Ω = [−1, 1]

2, viscosity
is 1e−3 and forcing term f is set as:

∀x ∈ Ω, f(x1, x2) = 0.3
(
cos(4πx1) + cos(4πx2)

)
(5)

The full spatial grid is sampled at 64x64 resolution.

A.2 EXPERIMENTAL DETAILS

Optimization For all experiments, we use the Adam optimization Kingma & Ba (2014), with
learning rates 1e−4 for the neural ODE Fψ and Equivariant Neural Field fθ and 1e−3 for the latents
z. All models are trained for 300 epochs. During testing and inference, we fit a newly initialized
latent to the observed initial state for 300 epochs.

Details on latents Latents are initialized as identity vectors, i.e. for all latents i ai = 1c with c
the dimensionality of the latent. The poses pi are initialized on an equidistantly spaced grid over the
domain and unit circle. We use 4 latents with c = 32 for all experiments we reported. Both latents
and poses are optimized for a state using backpropagation.

Details on equivariant neural field The q, k, v transforms are all linear layers that map to a hidden
dimensionality of 128. We apply 2 attention heads. The equivariant cross attention operation is
followed by two fully connected layers of dimensionality 128, the final one mapping to the output
dimensionality (which is 1 in all of our experiments).

A.3 SAMPLE TRAJECTORIES

We show some randomly selected test and train trajectories generated by our model. We fit latents
Z to the initial state of the selected trajectory ν, and unroll the neural ODE for 20 timesteps. In
each of the figures, the top row corresponds to the ground truth, the second row corresponds to the
predicted trajectory, the third row shows the position and orientation of the latent, and the final row
shows the absolute difference between ground truth and reconstruction.

Figure 3: A predicted solution on the training set for the diffusion equation.
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Figure 4: A predicted solution on the test set for the diffusion equation.

Figure 5: A predicted solution on the training set for the Navier-Stokes equation.

Figure 6: A predicted solution on the test set for the Navier-Stokes equation.

8


	Introduction
	Background and Related Work
	Method
	Experiments
	Conclusion
	Appendix
	Dataset details
	Experimental details
	Sample trajectories


