
In-Context Decision Transformer: Reinforcement Learning via Hierarchical
Chain-of-Thought

Sili Huang 1 2 Jifeng Hu 1 Hechang Chen * 1 Lichao Sun 3 Bo Yang * 2

Abstract
In-context learning is a promising approach for
offline reinforcement learning (RL) to handle on-
line tasks, which can be achieved by providing
task prompts. Recent works demonstrated that in-
context RL could emerge with self-improvement
in a trial-and-error manner when treating RL tasks
as an across-episodic sequential prediction prob-
lem. Despite the self-improvement not requir-
ing gradient updates, current works still suffer
from high computational costs when the across-
episodic sequence increases with task horizons.
To this end, we propose an In-context Decision
Transformer (IDT) to achieve self-improvement
in a high-level trial-and-error manner. Specifi-
cally, IDT is inspired by the efficient hierarchical
structure of human decision-making and thus re-
constructs the sequence to consist of high-level
decisions instead of low-level actions that inter-
act with environments. As one high-level deci-
sion can guide multi-step low-level actions, IDT
naturally avoids excessively long sequences and
solves online tasks more efficiently. Experimen-
tal results show that IDT achieves state-of-the-art
in long-horizon tasks over current in-context RL
methods. In particular, the online evaluation time
of our IDT is 36× times faster than baselines in
the D4RL benchmark and 27× times faster in the
Grid World benchmark.

1. Introduction
Large transformer models (Vaswani et al., 2017) have shown
impressive abilities across a variety of domains, including

*Equal contribution 1School of Artificial Intelligence, Jilin Uni-
versity, China 2Key Laboratory of Symbolic Computation and
Knowledge Engineering of Ministry of Education, Jilin Univer-
sity, China 3Lehigh University, Bethlehem, Pennsylvania, USA.
Correspondence to: Bo Yang <ybo@jlu.edu.cn>, Hechang Chen
<chenhc@jlu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

text (Brown et al., 2020b), image (Dosovitskiy et al., 2020),
and audio (Alayrac et al., 2022). In the field of reinforce-
ment learning (RL), large transformer models can treat the
RL tasks as a type of sequential prediction problem, which
has proven successful in using solely offline training (Lee
et al., 2022; Reed et al., 2022). A notable shortcoming
lies with these methods to self-improve when employed in
online environments. To overcome this, in-context RL meth-
ods have been introduced, which enable continued policy
improvement (Laskin et al., 2023).

Recent works demonstrated that in-context RL can automat-
ically improve its performance in a trial-and-error manner
when across-episodic contexts serve as prompt conditions
(Lee et al., 2023a). The construction of the across-episodic
context is flexible and easy to implement, such as a chain
of experience that consists of multiple historical trajectories
arranged in ascending order of returns (Hao Liu, 2023). De-
spite the progress made, current methods are mostly limited
to short-horizon tasks with less than 100 timesteps (Laskin
et al., 2023). This arises from (1) the quadratic complexity
of the self-attention mechanism and (2) the significant in-
crease in the length of sequences caused by across-episodic
contexts. Such huge computational costs severely limit in-
context RL to apply the trial-and-error ability on traditional
RL tasks, which often reach 1000 timesteps, such as Mu-
JoCo (Fu et al., 2020) and Atari (Bellemare et al., 2013).

In fact, trial-and-error is the central idea of modern RL al-
gorithms (Sutton & Barto, 2018). It is an animal behavior
originated by a psychologist Thorndike (1927) who con-
siders trial-and-error as an elementary way of combining
search and memory. Correspondingly, the across-episodic
contexts provide memory, and the self-attention mechanism
reviews historical actions in the memory to search for better
actions. However, human decision-making is more complex
and operates on multiple levels of temporal abstraction (Sut-
ton et al., 1999b). For example, travelers tend to decide on
their budget first, then their mode of transportation, right
down to the smallest action. Inspired by this idea, a natural
perspective emerges:

“Can human multi-level decision-making bring out a more
efficient trial-and-error?”

As one high-level decision can guide multi-step low-level

1



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

end…𝒂

(a) Trial-and-error

Trajectory 1

actions *

…
1 𝒂2 𝒂3 𝒂1 𝒂2

*

Trajectory n

memory search
𝒂3
*

end…
Trajectory 1

1 𝒂2 𝒂3𝒂actions

1𝒛
High-level decisions

*𝒂1 𝒂2
*

Trajectory n…

2𝒛
memory search

*𝒛1

𝒂3
*

(b) High-level trial-and-error

Figure 1. Trial-and-error comparison of minimal actions and high-
level decisions, where * denotes better results. (a) In the trial-and-
error process, the memory consists of the smallest actions from
experiences and serves as context to search for better action. (b)
In the high-level trial-and-error process, the memory and search
act on high-level decisions. Since one high-level decision controls
multiple actions, we can use smaller memory to preserve experi-
ences and search for better decisions with less computational costs.

actions, it can considerably shorten across-episodic con-
texts and, therefore, significantly alleviate the computational
costs. In this view, we aim to explore a high-level trial-and-
error process, as shown in Figure 1. However, since the
model generates high-level decisions rather than low-level
actions that interact with the environment, our first challenge
is ensuring that better high-level decisions can encourage
better low-level actions. In addition, the in-context RL is
trained with supervised losses, which predicts each next step
conditioned on the past steps in the sequence. Unlike low-
level actions, the high-level decision is an abstract concept
that is usually not directly observable from training data.

To this end, we propose an efficient in-context RL method
called In-context Decision Transformer (IDT). Specifically,
IDT consists of Making Decisions, Decisions to Go, and
Reviewing Decisions modules to mimic the high-level trial-
and-error process. First, the Making Decisions module is
a decoder-only transformer that generates high-level deci-
sions autoregressively, where the high-level decision is rep-
resented by a vector sampled from a multivariate Gaussian
distribution. Then, the generated high-level decisions are fed
to the Decisions to Go module, which is also a decoder-only
transformer to generate low-level actions autoregressively.
The output of the Making Decisions module serves as a
conditional input to the Decisions to Go module, ensuring
high-level decisions correctly guide low-level actions. To
fill in the missing high-level decisions in the training data,
we designed the Reviewing Decisions module to encode
high-level decisions from sequences of low-level actions.
All three modules are learned end-to-end by predicting the
low-level actions from the training data.

Our contributions are as follows: (1) We propose IDT, an
in-context RL method that emerges with high-level trial-
and-error ability. IDT can learn by directly combining
sub-optimal data and efficiently improving itself through
multiple trials at test time. (2) Compared to the contexts
consisting of the smallest actions, IDT significantly short-
ens the evaluation time by 36× times on the D4RL base-
lines (Fu et al., 2020) and 27× times on the Large Grid
World environments (Lee et al., 2022). (3) IDT can achieve
state-of-the-art results with less training costs, especially
outstanding in long-horizon tasks.

2. Related Work
Transformer for Decision-Making. In general, rein-
forcement learning was proposed as a fundamentally online
paradigm (Sutton et al., 1999a). The nature of online learn-
ing comes with some limitations when meeting the appli-
cations for which it is impossible to gather online data and
learn simultaneously, such as autonomous driving. To this
end, offline RL proposes that the agent can learn from a fixed
dataset of previously collected data without gathering new
data during learning (Fujimoto et al., 2019; Kumar et al.,
2020; Yu et al., 2021; Kumar et al., 2019; Hu et al., 2022;
2023). In the context of offline RL, recent works explored
using transformer-based policy by treating RL tasks as a
type of sequential prediction problem. Among them, a deci-
sion transformer (Chen et al., 2021) is proposed to model
trajectories as sequences and autoregressively predicts ac-
tion conditioning on desired return-to-go, past states, and
actions. Trajectory transformer (Janner et al., 2021) demon-
strated that transformer could learn single-task policies from
offline data. Subsequently, the multi-game decision trans-
former (Lee et al., 2022) and Gato (Reed et al., 2022) further
showed that transformer-based policies could address multi-
tasks in the same domain and cross-domain tasks. However,
these works focused on distilling expert policies from of-
fline data and failed to enable self-improvement like IDT.
Instead, when the offline data are sub-optimal, or the agent
is required to adapt to new tasks, the multi-game decision
transformers need to finetune the model parameters while
Gato is required to get prompted with expert demonstra-
tions.

Meta RL. IDT falls into the category of methods of learn-
ing to learn, which is also known as meta-learning. More
precisely, recent in-context RL methods can be categorized
as in-context meta-RL methods. The general idea of learn-
ing self-improvement has a long history in RL but is limited
to hyper-parameters in the early stages (Ishii et al., 2002).
In-context meta-RL methods (Wang et al., 2016; Duan et al.,
2016) are commonly trained in the online setting by maxi-
mizing multi-episodic value functions with memory-based
architectures through environment interactions. Another

2



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

online meta-RL attempts to find good network parameter
initializations and then quickly adapt through additional
gradient updates (Finn et al., 2017; Nichol et al., 2018).
More recently, meta-RL has seen substantial breakthroughs,
from performance gains on popular benchmarks to offline
settings, such as Bayesian RL (Dorfman et al., 2021) and
optimization-based meta-RL (Mitchell et al., 2021). Con-
sidering the difficulty of a completely offline setting, recent
work has explored hybrid offline-online settings (Zahavy
et al., 2020; Pong et al., 2022). IDT is similar to the hybrid
offline-online setting, but the online phase does not involve
gradient updates.

In-Context RL. In-context RL is the one that addresses
tasks by providing prompts or demonstrations (Chen et al.,
2021; Janner et al., 2021; Huang et al., 2024a;b). By training
agents at a large scale, transformer-based policies usually
have the ability to learn in context (Lee et al., 2022; Reed
et al., 2022). The learning process is performed entirely in
context and does not involve parameter updates of neural
networks. In this work, we consider incremental in-context
RL that involves learning from one’s own behaviors through
a trial-and-error manner. Laskin et al. (2023) proposed Al-
gorithm Distillation (AD) that automatically improves its
performance in a trial-and-error manner by providing multi-
ple historical trajectories. Subsequently, Lee et al. (2023b)
proposed a Decision-Pretrained Transformer, which trains
the agent to find optimal behaviors faster by only predicting
the optimal trajectory. More recently, Hao Liu (2023) fur-
ther demonstrated that across-episodic contexts encourage
large transformer models’ emerging trial-and-error behav-
iors. However, these methods focus on the smallest action
level, which causes across-episodic contexts to induce too-
long sequences and suffer from huge computational costs.
In contrast, IDT explores the trial-and-error ability of high-
level decisions, which can significantly shorten the length
of across-episodic contexts and, therefore, alleviate the com-
putational costs arising from the self-attention mechanism.

3. Preliminaries
Partially Observable Markov Decision Process. We con-
sider learning problems in the context of Partially Observ-
able Markov Decision Processes (POMDP) represented by
the tuple M = (S,O,A, P,R). The POMDP tuple consist
of states s ∈ S , observations o ∈ O, actions a ∈ A, rewards
r ∈ R, and transition probability function P (st+1|st, at),
where t is an integer denoting the timestep. In environments
described by a POMDP, at each timestep t the agent receives
the observation ot, selects an action at ∼ π(·|ot) from its
policy, and then receives the next observation ot+1. A trajec-
tory is a sequence of observations, actions, and rewards and
is denoted by τ = (o0, a0, r0, . . . , oT , aT , rT ). The return
of a trajectory at timestep t, Rt =

∑T
t′=t r

′
t, is calculated as

the sum of future rewards from that timestep. In addition, a
completion token dt, a binary identifier, is used to indicate
whether a trajectory ends at time t.

Hierarchical Reinforcement Learning. RL algorithms
aim to maximize the expected return E[

∑T
t=0 rt] through-

out an agent’s lifetime or training episodes. In long-horizon
tasks, standard RL methods suffer from poor performance
due to the exponentially growing exploration space. Hi-
erarchical RL decomposes the long-horizon task into sub-
problems or subtasks such that a high-level policy learns
to perform the task by choosing optimal subtasks as the
high-level decisions (Pateria et al., 2021). High-level deci-
sions can be designed as discrete or continuous forms. The
discrete form can select multiple independent low-level pol-
icy models (Bacon et al., 2017), while the continuous form
usually serves as additional conditions to control a general
low-level policy model (Nachum et al., 2018). Since the
transformer-based policy is a conditional generative model,
it is naturally adapted to high-level decisions in the continu-
ous form, such as the return-to-go condition in the decision
transformer (Chen et al., 2021). In this work, we use a vec-
tor z to represent high-level decisions and assume that it is
sampled from a multivariate Gaussian distribution.

Transformers. The Transformer (Vaswani et al., 2017)
architecture consists of multiple layers of self-attention oper-
ation and MLP. The self-attention begins by projecting input
data X with three separate matrices onto D-dimensional
vectors called queries Q, keys K, and values V . These
vectors are then passed through the attention function:

Attention(Q,K, V ) = softmax(QKT /
√
D)V. (1)

The QKT term computes an inner product between two
projections of the input data X . The inner product is then
normalized and projected back to a D-dimensional vector
with the scaling term V . Transformers utilize self-attention
as a core part of the architecture to process sequential data
(Devlin et al., 2018; Brown et al., 2020a). In this work, we
use GPT (Radford et al., 2018) architecture that modifies
the transformer with a causal self-attention mask to focus
on the previous tokens in the sequence (j ∈ [1, i]), enabling
us to do autoregressive generation at test time.

4. Method
In this section, we present IDT, which models a high-level
trial-and-error process through a hierarchical chain of expe-
rience, as summarized in Figure 2.

4.1. Chain of Experience

The key factors that influence our modeling on how to repre-
sent trajectories are (1) the ability of transformers to uncover
meaningful patterns from multiple trajectories and (2) the

3



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

𝑧𝑡

𝑡 + 𝑐

Making High-level Decisions From Experience 
(across-episodic contexts)

𝑜𝑡−𝑐 𝑟𝑡−𝑐
^ 𝑜𝑡 𝑟𝑡

^ 𝑜𝑡+𝑐 𝑟𝑡+𝑐
^

… …

𝑡 − 𝑐 𝑡 𝑡 + 𝑐

𝑡 − 𝑐 𝑡

…
𝑜𝑡 𝑎𝑡

𝑎𝑡

Offline Data
{𝑜𝑡, 𝑎𝑡 , … , 𝑜𝑡+𝑐−1 ,𝑎𝑡+𝑐−1}

Reviewing
Decisions

Decisions to Go

𝑧𝑡 𝑜𝑡+𝑐−1 𝑎𝑡+𝑐−1

𝑎𝑡+𝑐−1

High-level 
Decisions

Decisions to Go

Reviewing

3

1

2

𝑅𝑡−𝑐
^

𝑑𝑡−𝑐 𝑅𝑡
^ 𝑑𝑡 𝑅𝑡+𝑐

^ 𝑑𝑡+𝑐

𝑟𝑡
𝑟𝑡+𝑐−1

…

Figure 2. The architecture of IDT is designed into three modules to simulate the high-level trial-and-error process. First, the (1) Making
Decisions module predicts a high-level decision by providing across-episodic contexts, where across-episodic contexts contain multiple
trajectories arranged in ascending order of the total rewards. Then, the (2) Decisions to Go module predicts actions for c steps conditioned
on the predicted high-level decision. Finally, the (3) Reviewing Decisions module reviews the executed actions to serve as an experience
for the next cycle. Note that the Reviewing Decisions encodes the true label of high-level decisions from offline data at training while
encodes from the executed actions at testing.

capacity to improve itself conditioned on experience. The
basic elements of trajectories are observations o, actions a,
rewards r, and completion token d. As modeling rewards is
a nontrivial task, we aim to have the model generate actions
based on the target returns R̂0 (Chen et al., 2021), which
can be updated using rewards R̂t = R̂0 −

∑t
j=0 rj . There-

fore, the following trajectory representation is amenable to
autoregressive training and generation:

τ = (R̂0, o0, a0, r0, d0, . . . , R̂T , oT , aT , rT , dT ). (2)

To facilitate the model to achieve target return, we construct
across-episodic contexts that consist of multiple trajecto-
ries for self-improvement during test time (Hao Liu, 2023).
This idea arises from the approach called chain of hindsight
(Liu et al., 2023), which trains language models from hu-
man feedback by conditioning on positive indicators and
negative-rated examples to predict corresponding positive-
rated examples. In the RL tasks, the positive indicator is
the target return, and previous trajectories serve as negative-
rated examples to predict the trajectory with higher returns.

Specifically, the chain of experience is represented by n
trajectories: s = (τ1, τ2, . . . , τn) where

τ i = (R̂i
0, o

i
0, a

i
0, r

i
0, d

i
0, . . . , R̂

i
T , o

i
T , a

i
T , r

i
T , d

i
T ). (3)

The trajectories are ascending sorted according to their total
rewards, i.e.,

∑T
t=0 r

1
t ≤

∑T
t=0 r

2
t ≤ · · · ≤

∑T
t=0 r

n
t . For

all n trajectories, the initial target return R̂i
0 equals the max

total reward, i.e., the last trajectory R̂n
0 =

∑T
t=0 r

n
t .

4.2. Hierarchical Chain of Experience

After building across-episodic contexts based on the chain
of experience, in-context RL can automatically improve its
performance at evaluation time by rolling trajectories in a
trial-and-error manner. However, this suffers substantial
computational costs when the horizon of tasks increases.

Since total rewards are obtained at the end of episodes, it
is more difficult to evaluate and improve a policy model in
long-horizon tasks. In traditional RL methods, an effective
solution is to decompose complex tasks into several sub-
problems by incorporating hierarchical structures (Nachum
et al., 2018). The high-level policy only needs to generate
a signal once to control the low-level policy to generate
multi-step actions. This allows (1) the high-level policy to
receive feedback faster, as if working on a short-horizon
task, and (2) the low-level policy only needs to consider
how to better implement the sub-tasks generated by the
high-level decision. Although the hierarchical structure can
be optimized end-to-end by reward signals, the trial-and-
error process in in-context RL is more complicated.

As psychologist Edward Thorndike mentioned, the trial-
and-error process includes two parts (Sutton & Barto, 2018),
memory and search. The high-level decision plays an impor-
tant role that is closely connected with memory and search.
A high-level decision is generated from the search process
and directly affects the quality of low-level executed ac-
tions. Subsequently, it also serves as the memory for future

4



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

searches. Therefore, we designed three modules to real-
ize a high-level trial-and-error process: Making Decisions,
Decisions to Go, and Reviewing Decisions.

Making Decisions. The purpose of the Making Decisions
module is to generate high-level decisions autoregressively,
where the high-level decision is represented by a vector
z sampled from a multivariate Gaussian distribution. As
the quality of z directly relates to low-level actions a, a
better high-level decision z is critical for inducing better low-
level actions a. Therefore, we reconstruct across-episodic
contexts represented as a high-level chain of experience
sh = (τ1h , τ

2
h , . . . , τ

n
h ). Each τ ih is denoted as:

τ ih = (R̂i
0, o

i
0, zi0, r̂

i
0, d

i
0, R̂

i
c, o

i
c, zic, r̂

i
c, d

i
c,

. . . , R̂i
kc, o

i
kc, zikc, r̂

i
kc, d

i
kc),

(4)

where each high-level decision z is generated every c steps,
T − c ≤ kc ≤ T , and r̂ic =

∑2c−1
t=c rit is the sum of c steps

rewards. By comparing with Equation (3), the high-level
chain of experience can considerably shorten the length of
contexts and, therefore, significantly alleviate the computa-
tional complexity of the self-attention mechanism.

Decisions to Go. Based on high-level decisions, the Deci-
sions to Go module is designed to generate low-level actions
that can interact with environments. Since the transformer-
based policy is a conditional generative model, we can build
a low-level context that contains high-level decisions to
control the low-level actions. The low-level context is repre-
sented as:

τ i,jl =(zij , o
i
j , a

i
j , r

i
j , zij , o

i
j+1, a

i
j+1, r

i
j+1,

. . . , zij , o
i
j+c−1, a

i
j+c−1, r

i
j+c−1),

(5)

where each τ i,jl starts from the generation step j ∈
{0, c, . . . , kc} of high-level decisions and completes c steps
low-level actions in the trajectory τ i. In particular, we in-
troduce the reparameterization trick (Jang et al., 2016) into
high-level decisions to ensure backpropagation through the
Decisions to Go module to the Making Decisions module.

Reviewing Decisions. The autoregressive training of
the conditional generation model is achieved by predict-
ing each token in the sequence. For example, when the
transformer model is trained to generate at, we need to
provide the action label at time t and condition it on the
historical actions {a0, . . . , at−1}. However, the supervisory
signals about high-level decisions z are not directly observ-
able from the sequence, as shown in Equation (4). For
instance, when the transformer model is trained to generate
zj (j ∈ {0, c, . . . , kc}), we have neither the true label of zj
nor the previous high-level decisions {z0, zc, . . . , zj−c}.

To this end, we replace the true label of zj with the gradients
from the Decisions to Go module trained to generate the

following c steps of actions {aj , aj+1, . . . , aj+c−1}. For
the previous high-level decisions {z0, zc, . . . , zj−c}, we in-
troduce the Reviewing Decisions module to encode the label
from low-level actions. As the high-level decisions induce
low-level actions, the low-level actions should be able to
infer high-level decisions inversely. Specifically, to infer
a previous high-level decision zt ∈ {z0, zc, . . . , zj−c}, we
first utilize the self-attention operation to aggregate the infor-
mation of at+c−1 and {ot, at, . . . , ot+c−1, at+c−1}. Then,
we apply a linear layer to encode zt from the aggregated
information. Note that the Reviewing Decision module is
not required to perform autoregressive generation, so any
sequence model, such as LSTM, can replace it.

By combining the above three modules, IDT can automati-
cally improve its performance at evaluation time by rolling
trajectories in a high-level trial-and-error manner. We now
introduce the implementation details of IDT, including ar-
chitecture, training, and testing.

4.3. Implementation of IDT

Architecture. We feed n trajectories into the Making Deci-
sions module, which results in 5×n×T/c tokens, with one
token for each of the five modalities: desired target return,
observation, high-level decision, reward, and completion.
In the Decisions to Go module, we feed 4× c tokens, with
one token for each of the four modalities: high-level deci-
sion, observation, action, and rewards. In the Reviewing
Decisions module, we feed 2 × c tokens, with one token
for each of the two modalities: observation and action. To
create the token embeddings, we train a linear layer for each
modality, which transforms the raw inputs into the desired
embedding dimension, followed by layer normalization (Ba
et al., 2016). Finally, the tokens are processed by a GPT
model that predicts future high- and low-level action tokens
through autoregressive modeling.

Training and Testing. During training, we are given
a dataset of offline trajectories, where the trajectories can
be suboptimal. In each iteration, we sample minibatches
of trajectories from the dataset. The Reviewing Decisions
module first encodes each true high-level decision z from
the minibatch every c steps. Then, the Making Decisions
module predicts the high-level decision zt given the input
token ot and past trajectories. Finally, the Decisions to Go
module autoregressively predicts c steps of low-level actions
{at, . . . , at+c−1} given zt and {ot, . . . , ot+c−1}. The low-
level actions are evaluated with either cross-entropy loss
or mean-squared error, depending on whether the actions
are discrete or continuous. The losses from each timestep
are averaged and updated in all three modules end-to-end.
At test time, we roll out the IDT with multiple trajectories
and report the largest return among trajectories. Follow-
ing the configuration from related works Hao Liu (2023);

5



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

类别 1 类别 2 类别 3

250

200

150

100

50

0

Te
st

in
g

 t
im

e
 

(m
in

u
te

)

Context size (timestep) at testing
200 2000

Grid World

4000

0.93 0.85
5.76

233.40

172.79

6.45

AT

AD

IDT (Ours)

52.24

Large Grid World

D4RL

90.79

30

20

10

0

Tr
a
in

in
g

 t
im

e
 

(h
o

u
r)

Context size (timestep) at training

200 2000

Grid World

4000

0.47

31.03

18.32

30.03AT

AD

IDT (Ours)

8.87

Large Grid World

D4RL

9.04

0.460.82

(a) (b)

0.27 2.80

Figure 3. Results for (a) testing and (b) training times. We report the training time per 10k gradient updates, the testing time for 50
episodes over Grid World, and 10 episodes over D4RL. Note that we use the number of steps to measure the context size here. The
number of tokens per step may vary depending on the algorithm. Each step in AD contains 4 tokens: observation, action, reward, and
completion. IDT’s Making Decisions module and AT have an extra return-to-go token. As the task length increases, the context length is
forced to grow exponentially, resulting in a square increase in computational costs. In contrast, IDT reconstructs the sequence to consist
of high-level decisions. Therefore, the context is smaller than one episode length, significantly reducing computational costs.

Laskin et al. (2023), we set a context size across n = 4
episodes. Note that the task horizons T used in this work
range from 20 steps to 1000 steps, and the maximum con-
text size reaches 20000 tokens. The pseudocode for IDT is
summarized in Appendix A. Source code and more hyper-
parameters are described in Appendix B.

5. Experiments
Dataset: Grid World. In this section, we first consider
the discrete control environments from the Grid World (Lee
et al., 2022), which is a commonly used benchmark for
recent in-context RL methods. The environments support
many tasks that cannot be solved through zero-shot gener-
alization after pre-training because these tasks cannot be
inferred easily from the observation. The episode of each
task is short enough to train a transformer-based policy with
across-episodic contexts feasibly. Specifically, we consider
the four evaluation environments: Darkroom, Darkroom
Hard, Darkroom Dynamic, and Dark Key-to-Door.

The evaluation environments provide a 2D discrete POMDP
where an agent spawns in a room and must find a goal
location. The agent only observes its own (x, y) coordinates
but does not know the goal location, which is required to
deduce it from the rewards received. The room dimensions
are 9×9 with the agent’s possible actions, including moving
one step either left, right, up, down, or staying idle. In
Darkroom, an episode lasts 20 steps, and the agent can
obtain a reward (r = 1) each time the goal is achieved. The
Darkroom Hard and Darkroom Dynamic are two variants
of Darkroom. In the Darkroom Hard, agents only obtain
a reward when the goal is achieved first. In the Darkroom
Dynamic, the goal is fixed to a corner, but the action space

is randomly permuted. In the Dark Key-to-Door, the length
of an episode is 50, where the agent is required to locate
an invisible key to receive a one-time reward first and then
identify an invisible door to obtain another one-time reward.

In addition, we create a variant of Large Darkroom, Large
Darkroom Hard, Large Darkroom Dynamic, and Large
Darkroom Key-to-Door, where the coordinate space of each
environment is expanded to 40× 40, and the episode length
is expanded 10 times. The dataset is collected from learning
histories that are generated by training gradient-based RL
algorithms, such as Deep Q-Network (Mnih et al., 2013).
For each environment, we randomly create 60 tasks from
the coordinate space and collect data for 1 million timesteps.

Dateset: D4RL. D4RL (Fu et al., 2020) is a commonly
used offline RL benchmark, including continuous control
tasks. The different dataset settings are described below.

• Medium: 1 million timesteps generated by a “medium”
policy that performs approximately one-third as well
as an expert policy.

• Medium-Replay: 1 million timesteps collected from
the replay buffer of an agent trained to the performance
of a “medium” policy.

• Medium-Expert: It consists of 1 million timesteps gen-
erated by the “medium” policy and another 1 million
timesteps generated by the expert policy.

The dataset is collected from Mujoco environments, includ-
ing HalfCheetah, Hopper, and Walker. The episode length
in D4RL is 1000, which is far more than that of Grid World.

6



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

0 50episodes

R
e
tu

rn

0

15

5

10

Darkroom

0 50episodes

R
e
tu

rn

0

8

4

Large Darkroom

0 50episodes

R
e
tu

rn

0

1.0

0.5

Darkroom Hard

0 50episodes

R
e
tu

rn

0

0.6

0.3

Large Darkroom Hard

0 50episodes

R
e
tu

rn

0

2.0

1.0

Dark Key-to-Door

0 50episodes

R
e
tu

rn

0

1.6

0.8

Large Dark Key-to-Door

0 50episodes

R
e
tu

rn

0

15

5

10

Darkroom Dynamic

IDT
AT
AD

IDT
AT
AD

IDT
AT
AD

IDT
AT
AD

IDT
AT
AD

IDT
AT
AD

IDT
AT
AD

0 50episodes

R
e
tu

rn

0

8

4

Large Darkroom Dynamic

IDT
AT
AD

Figure 4. Results for Grid World. An agent is expected to solve a new task by interacting with the environments for 50 episodes without
online model updates. Based on high-level decisions, our method outperforms both AT and AD, which rely on across-episodic contexts
with the smallest actions. In particular, IDT has significant advantages in handling long-horizon tasks.

Therefore, current in-context RL methods require huge com-
putational costs in D4RL, even though it is a commonly
used baseline for conventional RL algorithms.

Baselines. In this section, we investigate the performance
and efficiency of IDT relative to in-context RL, dedicated
offline RL, and imitation learning algorithms. Our baselines
can be categorized as follows:

• In-context RL: These methods use the transformer to
model trajectory sequences and predict actions autore-
gressively. We compare with recent methods, Agentic
Transformer (AT) (Hao Liu, 2023) and Algorithm Dis-
tillation (AD) (Laskin et al., 2023), which proposed
across-episodic contexts with the smallest actions.

• Temporal-difference learning: Most temporal-
difference (TD) learning methods use an action
space constraint or value pessimism and will serve as
faithful comparisons to IDT, representing standard
RL methods. We consider state-of-the-art TD3+BC
(Fujimoto & Gu, 2021) that is demonstrated to be
effective on D4RL.

• Imitation learning: Imitation learning methods sim-
ilarly utilize supervised losses for training, such as
Behavior Cloning (BC) (Torabi et al., 2018) and Deci-
sion Transformer (DT) (Chen et al., 2021). Following
AT, we compare with BC-10%, which is shown to be
competitive with state-of-the-art on D4RL. DT also
uses a transformer to predict actions autoregressively
but is limited to a single episode context.

For all comparison methods, we adhere closely to the orig-
inal hyper-parameter settings. To evaluate IDT and other
in-context RL algorithms, we roll out 10 episodes in D4RL

and 50 episodes in Grid World. For each result, we report
mean and standard error across 5 random seeds.

5.1. Evaluation of Computing Costs

An important property of in-context RL is that it can im-
prove itself without expensive gradient updates. However,
the computational costs of forward propagation are hidden
in short-horizon tasks. Therefore, we reported the training
time per 10k gradient updates, the evaluation time for 50
episodes over Grid World, and 10 episodes over D4RL. As
shown in Figure 3, our IDT has efficient training and signif-
icantly reduces the testing time compared to the baselines,
approximately 36× times faster in D4RL and 27× times
faster in large Grid World. More detailed results for each
task are described in Appendix C.

As the task length increases, the evaluation time of AT and
AD grows quadratically. This is because the across-episodic
contexts multiply the sequence length, leading to intoler-
able computational costs in the self-attention mechanism.
The AT algorithm requires four episodes for trial-and-error,
where each episode reaches 1000 steps in D4RL, and each
step contains 5 tokens. Therefore, each step of AT genera-
tion requires scanning 20k tokens. Since the AD algorithm
reduces a return-to-go token at each step, the training and
testing time are both less than AT. In contrast, IDT recon-
structs the sequence to consist of high-level decisions, and
thus, the context is smaller than one episode length. As
a result, IDT is significantly lower than baselines at both
training and testing times.

5.2. Grid World Results

To evaluate IDT’s self-improvement capabilities in unseen
tasks, we compared recent in-context RL methods in the

7



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

Table 1. Results for D4RL datasets. IDT outperforms both in-context RL (AT and AD) and supervised learning (BC) and performs
competitively with conventional RL algorithms (TD3+BC and TD3) on almost all tasks.

Dataset Environment BC-10% TD3+BC TD3 DT AT AD Ours

Medium-Expert HalfCheetah 94.11 96.59 87.60 93.40 95.81± 0.25 94.21 ± 0.46 96.12± 0.18

Medium-Expert Hopper 113.13 113.22 98.41 111.18 115.92± 1.26 108.32 ± 0.95 118.39± 0.75

Medium-Expert Walker 109.90 112.21 100.52 108.71 114.87± 0.56 111.36 ± 0.46 118.51± 0.48

Medium HalfCheetah 43.90 48.93 34.60 42.73 45.12± 0.34 42.28 ± 1.18 45.51± 0.26

Medium Hopper 73.84 70.44 56.98 69.42 70.45± 0.45 72.58 ± 0.54 83.24± 0.33

Medium Walker 82.05 86.91 70.95 74.70 88.71± 0.55 85.96 ± 0.46 88.94± 0.61

Medium-Replay HalfCheetah 42.27 45.84 38.81 40.31 46.86± 0.33 41.28 ± 0.21 45.58± 0.36

Medium-Replay Hopper 90.57 98.12 78.90 88.74 96.85± 0.41 91.32 ± 0.66 98.59± 0.26

Medium-Replay Walker 76.09 91.17 65.94 68.22 92.32± 1.21 89.21 ± 1.42 96.22± 1.06

Total Average 80.65± 1.34 84.83± 1.10 70.28± 1.20 77.49± 1.45 85.21± 1.12 82.84± 0.70 87.90± 1.06

50episodes

R
e
tu

rn

16

4

0

Darkroom Large Darkroom

25% optimal

50% optimal

75% optimal

100% optimal

15

5

10

R
e
tu

rn

50episodes0

25% optimal

50% optimal

75% optimal

100% optimal

12

8

Figure 5. Results for IDT conditioned on partial demonstrations.
IDT can accelerate self-improvement through the Review Deci-
sions module to encode external data prompts.

Grid World environments. The agent is required to solve
an unseen task by interacting with the environments for
50 episodes without online model updates. As shown in
Figure 4, IDT achieves state-of-the-art performance in a
wide range of tasks.

In large variant tasks, IDT significantly surpasses the base-
lines in both efficiency and performance. However, neither
AT nor AD showed obvious self-improvement trends, espe-
cially in Large Darkroom Hard. This is because the Large
Darkroom Hard is a task with sparse rewards, which makes
it difficult for AT and AD to capture the goal position in long
sequences. In contrast, IDT explores tasks in a high-level
trial-and-error manner, making receiving positive feedback
on rewards easier. Overall, IDT demonstrated that a high-
level trial-and-error manner is feasible rather than limited to
the smallest actions.

5.3. D4RL Results

In addition to short-horizon tasks specific to in-context RL
methods, we also test the performance of IDT on the D4RL
dataset, which is commonly used in conventional RL meth-
ods. Based on Fu et al. (2020), the results on D4RL are
normalized so that 100 denotes an expert policy. Baseline
numbers are reported by the AT paper and from the D4RL
paper. As shown in Table 1, IDT outperforms baselines in

a majority of the tasks and is competitive with the state-of-
the-art in the remaining tasks.

In the TD learning and imitation learning categories,
TD3+BC is generally the most remarkable algorithm. Com-
pared with them, the superior performance of IDT demon-
strates the advantages of using high-level trial-and-error.

5.4. Case Study on the Reviewing Decisions Module

A notable ability of transformer-based policy is to address
tasks by providing demonstration prompts. Although in-
context RL can improve itself without relying on demonstra-
tions, external prompts can speed up the process. Therefore,
we want to investigate whether IDT can benefit from this
setting. To answer this question, we design a ϵ-greedy policy
to collect external data in Darkroom and Large Darkroom
tasks, ranging from nearly random to optimal.

As shown in Figure 5, IDT improves each policy in context
until it is near-optimal. Notably, the more optimal the input
policy, the faster IDT improves it until it is optimal. De-
spite high-level decisions that cannot be directly observed
from the external demonstrations, IDT can extract experts’
intentions through the Reviewing Decisions module. In
particular, we also perform parameter sensitivity analyses
on high-level decision frequency (c) and context size (n
episodes), as shown in Appendix C.

6. Conclusion
In this work, we propose an efficient in-context RL method
IDT that treats RL tasks as an across-episodic sequence
problem and can improve itself at test time. The idea of
human multi-level decision-making inspires IDT and in-
troduces high-level decisions into the sequence prediction
process. Unlike current in-context RL methods limited to
short-horizon tasks, IDT is also good at standard RL bench-
marks, which typically have longer task horizons. On the

8



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

Grid World and D4RL benchmarks, we show that IDT can
outperform baselines in both efficiency and performance.

Impact Statement
In terms of the potential broader impact, our work provides a
new idea of incorporating high-level decisions in the design
of context, which may promote the development of the in-
context RL community. Besides, we do not see any negative
ethical and societal impacts of our work while using our
method in practice.

Acknowledgments
This work was supported by the National Key R&D Pro-
gram of China under Grant No. 2021ZD0112500; the Na-
tional Natural Science Foundation of China under Grant Nos.
U22A2098, U19A2065, 62172185, 61976102, 62206105
and 62202200; the International Cooperation Project of Jilin
Province under Grant Nos.20220402009GH, U2341229.

References
Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I.,

Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds,
M., et al. Flamingo: a visual language model for few-shot
learning. Advances in Neural Information Processing
Systems, 35:23716–23736, 2022.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic
architecture. In Proceedings of the AAAI conference on
artificial intelligence, volume 31, 2017.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020a.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020b.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence

modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dorfman, R., Shenfeld, I., and Tamar, A. Offline meta
reinforcement learning–identifiability challenges and ef-
fective data collection strategies. Advances in Neural
Information Processing Systems, 34:4607–4618, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126–1135.
PMLR, 2017.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. Advances in neural information
processing systems, 34:20132–20145, 2021.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional conference on machine learning, pp. 2052–2062.
PMLR, 2019.

Hao Liu, P. A. Emergent agentic transformer from chain of
hindsight experience. In Proceedings of the 20th Inter-
national Conference on Machine Learning (ICML 2023),
2023.

Hu, J., Sun, Y., Chen, H., Huang, S., Chang, Y., Sun, L.,
et al. Distributional reward estimation for effective multi-
agent deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:12619–12632, 2022.

Hu, J., Sun, Y., Huang, S., Guo, S., Chen, H., Shen, L.,
Sun, L., Chang, Y., and Tao, D. Instructed diffuser with
temporal condition guidance for offline reinforcement
learning. arXiv preprint arXiv:2306.04875, 2023.

9



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

Huang, S., Hu, J., Yang, Z., Yang, L., Luo, T., Chen, H.,
Sun, L., and Yang, B. Decision mamba: Reinforcement
learning via hybrid selective sequence modeling. arXiv
preprint arXiv:2406.00079, 2024a.

Huang, S., Sun, Y., Hu, J., Guo, S., Chen, H., Chang, Y.,
Sun, L., and Yang, B. Learning generalizable agents
via saliency-guided features decorrelation. Advances in
Neural Information Processing Systems, 36, 2024b.

Ishii, S., Yoshida, W., and Yoshimoto, J. Control of
exploitation–exploration meta-parameter in reinforce-
ment learning. Neural networks, 15(4-6):665–687, 2002.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. Ad-
vances in neural information processing systems, 34:
1273–1286, 2021.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. Advances in Neural Information Processing
Systems, 32, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S. S., Filos, A.,
Brooks, E., et al. In-context reinforcement learning with
algorithm distillation. In The Eleventh International Con-
ference on Learning Representations, 2023.

Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn, C.,
Nachum, O., and Brunskill, E. Supervised pretraining can
learn in-context reinforcement learning. arXiv preprint
arXiv:2306.14892, 2023a.

Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn, C.,
Nachum, O., and Brunskill, E. Supervised pretraining can
learn in-context reinforcement learning. arXiv preprint
arXiv:2306.14892, 2023b.

Lee, K.-H., Nachum, O., Yang, M. S., Lee, L., Free-
man, D., Guadarrama, S., Fischer, I., Xu, W., Jang, E.,
Michalewski, H., et al. Multi-game decision transformers.
Advances in Neural Information Processing Systems, 35:
27921–27936, 2022.

Liu, H., Sferrazza, C., and Abbeel, P. Chain of hindsight
aligns language models with feedback. arXiv preprint
arXiv:2302.02676, 3, 2023.

Mitchell, E., Rafailov, R., Peng, X. B., Levine, S., and
Finn, C. Offline meta-reinforcement learning with advan-
tage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. Advances in neural
information processing systems, 31, 2018.

Nichol, A., Achiam, J., and Schulman, J. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Pateria, S., Subagdja, B., Tan, A.-h., and Quek, C. Hierar-
chical reinforcement learning: A comprehensive survey.
ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Pong, V. H., Nair, A. V., Smith, L. M., Huang, C., and
Levine, S. Offline meta-reinforcement learning with on-
line self-supervision. In International Conference on
Machine Learning, pp. 17811–17829. PMLR, 2022.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in neural information
processing systems, 12, 1999a.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999b.

Thorndike, E. L. The law of effect. The American journal
of psychology, 39(1/4):212–222, 1927.

Torabi, F., Warnell, G., and Stone, P. Behavioral cloning
from observation. arXiv preprint arXiv:1805.01954,
2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

10



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S.,
and Finn, C. Combo: Conservative offline model-based
policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Zahavy, T., Xu, Z., Veeriah, V., Hessel, M., Oh, J., van
Hasselt, H. P., Silver, D., and Singh, S. A self-tuning
actor-critic algorithm. Advances in neural information
processing systems, 33:20913–20924, 2020.

11



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

Appendix of paper “In-Context Decision Transformer: Reinforcement Learning via Hierarchical
Chain-of-Thought”

A. Pseudocode of In-context Decision Transformer

Algorithm 1 In-context Decision Transformer.
1: Input: A dataset of Trajectories, Max Iterations M as training phase, Max episodes m at testing phase, A number of

trajectories n in hierarchical chain of experience, A number of steps of low-level actions c for one high-level decision
2: Output: The generated low-level actions
3: // Training
4: for i = 1 to M do
5: Randomly sample n episodes from dataset s = (τ1, τ2, . . . , τn)

6: Sort n episodes ascending according to their returns
∑T

t=0 r
1
t ≤

∑T
t=0 r

2
t ≤ · · · ≤

∑T
t=0 r

n
t

7: Compute returns-to-go R̂t = R̂0 −
∑t

j=0 rj for all steps for each episode, where R̂0 =
∑T

t=0 r
n
t

8: The Reviewing Decisions module encodes a high-level decisions z every c steps
9: Concatenate n episodes as a high-level sequence sh = (τ1h , τ

2
h , . . . , τ

n
h ) based on Equation (4)

10: Build a low-level sequence every c steps based on Equation (5)
11: The Making Decisions module predicts the next high-level decision tokens, and then the Decision to Go module

predicts the next c steps low-level action tokens for each predicted high-level decision token
12: Train the Reviewing Decisions, Making Decisions, and Decision to Go modules based on the loss of predicted

low-level actions end-to-end
13: end for
14: // Testing
15: for i = 1 to m do
16: Start a new episode i and reset the timestep t = 0
17: while t ≤ T do
18: The Making Decisions model generates next high-level decision token zit based on the across-episodic context

(τ i−3
h , τ i−2

h , τ i−1
h , . . . , R̂i

t, o
i
t), where τ ih is expressed as Equation (4)

19: for k = 0 to c− 1 do
20: The Decisions to Go model generates next low-level action ait+k based on the previous context

(zit, oit, ait, rit, . . . , zit, oit+k)
21: end for
22: The Review Decisions model encode the executed decision zit from the c steps (oit, a

i
t, . . . , o

i
t+c−1, a

i
t+c−1)

23: Compute the sum of c steps rewards r̂it and the next returns-to-go R̂i
t+c

24: Receive the next observation oit+c

25: Update the across-episodic context ((τ i−3
h , τ i−2

h , τ i−1
h , . . . , R̂i

t, o
i
t, zit, r̂it, dit, R̂i

t+c, o
i
t+c)

26: Update time step t = t+ c
27: end while
28: end for

In Algorithm 1, we introduce the training and testing process of IDT. At each iteration, we first construct a sequence
consisting of high-level decisions, as described in lines 5-9. Importantly, high-level decisions in the dataset are encoded by
the Reviewing Decisions module (line 8). In addition, each high-level decision will correspond to a short sequence of c
steps low-level actions, as described in line 10. Based on the constructed sequences, the Making Decisions and Decisions
to Go modules predict high-level decisions and low-level actions, respectively (line 11). Finally, the low-level actions are
evaluated with either cross-entropy loss or mean-squared error, depending on whether the actions are discrete or continuous.
The losses from each time step are averaged and updated in all three modules end-to-end, as described in line 12.

During testing, IDT needs to generate low-level actions autoregressively and interact with the environment m episodes. At
step t of episode i (line 18), the Making Decisions module first generates a high-level decision token zit conditioned on the
across-episodic context (τ i−3

h , τ i−2
h , τ i−1

h , . . . , R̂i
t, o

i
t), where τ ih is expressed as Equation (4). Then, the Decision to Go

will generate the following c steps low-level actions (at, . . . , at+c−1) autoregressively, as described in lines 19-21. Unlike
training, the Reviewing Decisions module encodes the executed decision from the actions generated by the Decision to Go

12



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

Table 2. Hyperparameters of IDT.

Hyperparameters Value

Number of layers 3
Number of attention heads 3
Embedding dimension 128
Activation function ReLU
c steps controlled by one high-level decision 10 D4RL and Large Grid World

5 Grid World

Training

Batch size 64
Dropout 0.1
Learning rate 1e-4
Learning rate decay Linear warmup for 1e5 steps
Grad norm clip 0.25
Weight decay 1e-4
Number of trajectories to form across-episodic contexts n 4 (Large) Dark Key-to-Door

10 other tasks in Grid World
4 D4RL

Testing

Target return for HalfCheetah 12000
Target return for Hopper 3600
Target return for Walker 5000
Target return for Darkroom 20
Target return for Darkroom Hard 1
Target return for Darkroom Dynamic 20
Target return for Darkroom Key-to-Door 2
Target return for Large Darkroom 15
Target return for Large Darkroom Hard 1
Target return for Large Darkroom Dynamic 15
Target return for Large Darkroom Key-to-Door 2
Number of trajectories to form across-episodic contexts n 4 (Large) Dark Key-to-Door

10 other tasks in Grid World
4 D4RL

module. Then, it serves as a condition for generating the next high-level decision zit+c, as described in lines 22-26.

B. Experimental Details
Source code is available at here.

Compute. Experiments are carried out on NVIDIA GeForce RTX 3090 GPUs and NVIDIA A10 GPUs. Besides, the CPU
type is Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. Since our memory is not enough to support AT training in D4rl tasks,
we refer to the results of the original paper. In contrast, our method has lower memory requirements because it naturally
shortens the across-episodic contexts.

Hyperparameters. The default length of across-episodic is four trajectories unless mentioned otherwise. In D4RL and
Large Grid World, the Decisions to Go module generates c = 10 steps low-level actions while the Making Decisions module
generates one high-level decision. In conventional Grid World, we set c = 5 because the task is too short. Except for
independent parameters and different input and output dimensions, three modules in IDT follow the same architecture. In
summary, Table 2 shows the hyperparameters used in our IDT model.

C. Additional Experimental Results
Parameter Sensitive Analysis of c. An important insight of IDT is that one high-level decision can guide c-step
low-level actions. We aim to investigate whether the size of c will affect the performance of IDT. Therefore, we tested
c = 1, 5, 10, 15, 20 in D4RL and Grid World, respectively. As shown in Figure 6, IDT maintains stable performance to

13

https://github.com/SiliHuang-ai/IDT


In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

120

100

80

1 5 10 15 20

Hopper Medium-Expert

Hopper Medium-Replay

Hopper Medium

D4RL

R
e
tu

rn

(a) Number of low-level actions

8

6

4

1 5 10 15 20

Large Darkroom

Large Darkroom Dynamic

Grid World

R
e
tu

rn

(b) Number of low-level actions

Figure 6. Parameter sensitive analysis of c. (a) IDT maintains stable performance to changes in c in dense reward D4RL tasks. (b) As c
increases, it becomes easier for the model to receive positive feedback to discover the target location in sparse reward Grid World tasks.

0 50episodes

R
e
tu

rn

0

15

5

10

Darkroom
200 (10 eps)

80 (4 eps)

40 (2 eps)

20 (1 eps)

10 (0.5 eps)

Figure 7. Context size: IDT in Darkroom with different context sizes. IDT emerges with trial-and-error ability once the context size is
large enough and across-episodic.

Table 3. Results for training and testing times. We report the training time per 10k gradient updates, the testing time for 50 episodes over
Grid World, and 10 episodes over D4RL. As the task length increases, the context length is forced to grow exponentially, resulting in
a square increase in computational costs. In contrast, IDT completes trial-and-error on high-level decisions in sizes smaller than one
episode length, significantly reducing computational costs.

Context size (step) Tasks Training (hour) Testing (minute)
AT AD Ours AT AD Ours

200

Darkroom 0.27 0.23 0.21 0.62 0.61 0.65
Darkroom Hard 0.29 0.28 0.20 0.59 0.56 0.58
Darkroom Dynamic 0.33 0.31 0.21 0.65 0.62 0.67
Dark Key-to-Door 1.12 1.01 0.44 1.89 1.50 1.52

2000

Large Darkroom 5.09 4.70 2.49 67.22 (13×) 45.08 (9×) 5.27
Large Darkroom Hard 6.48 6.69 2.93 66.81 (11×) 44.96 (7×) 6.09
Large Darkroom Dynamic 5.71 5.84 2.73 62.06 (11×) 42.12 (8×) 5.51
Large Dark Key-to-Door 18.87 18.23 3.06 167.07 (27×) 76.79 (12×) 6.18

4000
HalfCheetah 36.18 37.10 21.90 234.20 (37×) 173.11 (28×) 6.29
Walker 32.82 33.77 20.08 233.18 (36×) 172.34 (26×) 6.51
Hopper 24.08 22.23 12.99 232.82 (35×) 172.92 (26×) 6.56

14



In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought

changes in c in D4RL tasks. In contrast, larger c achieves better performance in Grid World. This is because the Grid World
is designed for tasks with sparse rewards where the agent needs to rely on rewards to reason about the target location. As c
increases, it becomes easier for the model to receive positive feedback to discover the target location.

What Context Size is Required for IDT? Similar to other in-context RL methods, we also test how context sizes are
required for IDT emerging with trial-and-error ability. As shown in Figure 7, multi-episodic contexts of 4 episodes are
necessary to learn a near-optimal IDT. When the context size is roughly the length of an episode, IDT begins to emerge with
self-improvement. The reason for this is likely that the context is large enough to retrain across-episodic information – e.g.,
at the start of a new episode, the context will be filled with transitions from most of the previous episode.

15


