
Summary of Changes
Between this New Submission and the Previous Submission

We would like to thank the reviewers for the insightful comments and constructive suggestions. We are
delighted that ALL reviewers recognize the practical significance of our cross-ISA binary code
translation work, which makes an important contribution to detecting malware across ISAs by
leveraging a model trained on a high-resource ISA (X86-64), effectively addressing the data scarcity
challenge of low-resource ISAs. We are also encouraged by the reviewers’ acknowledgment of the
novelty of this work and its ability to fill gaps in the current state of the art (Reviewers DKbR and
FiFn), its coverage of multiple ISAs (Reviewers DKbR, FiFn, and yy4t), the value of unsupervised
learning (Reviewer yy4t), the improved performance (Reviewers FiFn and yy4t), and the clear
interpretation and explanation of how and why our model evolves (Reviewer C5ox). Additionally,
we appreciate the positive feedback on the quality of writing (Reviewer FiFn).

We first summarize the newly added experiments as follows.

● Expanded the malware datasets and conducted all experiments using these larger datasets
(Reviewer DKbR).

● Utilized CNNs for malware detection and presented the detection results (Reviewer DKbR and
FiFn).

● Included the MIPS ISA in the evaluation (Reviewer DKbR).
● Trained the baseline model, UnsuperBinTrans, on the additional ISA, and compared its

performance with our model (Reviewer FiFn).

In addition to the new experiments, this submission has been carefully revised to address all reviewers’
comments and concerns. Detailed responses and changes for each reviewer comment are provided
below.

======================= Response to Reviewer DKbR =======================

All the changes made in response to Reviewer DKbR’s comments are highlighted in Blue.

1. Reviewer's Comment:
“Small malware datasets.”

Authors’ Response:
We have expanded the malware datasets and conducted experiments using these larger datasets.
Specifically, we collected 2140,1740,1581,58, 1430 and 2 malware samples for the X86-64, i386,
ARM32, ARM64, MIPS32, and s390X architectures, respectively. All experimental results have been
updated accordingly, as detailed in the Evaluation Section.

----------------------------------------------------------------------------------------------------------------------------

2. Reviewer's Comment:



“Unclear description. MALTRANS is introduced as an ISA-to-ISA translation tool and presented as
such in Figure 1, but later, it is also described as capable of detection. Clarification is needed to
delineate its functions.” “Figure 2 shows the MALTRANS architecture; however, the flow is not entirely
clear.” “In the paragraph "Comparison with Optimal Model," the dataset usage is unclear.”

Authors’ Response:
MALTRANS is designed for ISA-to-ISA translation. The malware detection capability is provided by
the LSTM model, which analyzes assembly code translated by MALTRANS to detect malware. We
have revised the caption of Table 3 (Line 378) to clarify this point.

We have replaced the original Figure 2 with two separate subfigures (Line 216 to Line 223) that
illustrate how denoising auto-encoding and back translation are employed to train MALTRANS. The
presentation in Section 4.4 has also been revised accordingly to align with these changes.

In the "Comparison with Optimal Model" paragraph, for x86-64, i386, and ARM32, we used an 80/20
split for training and testing. For ARM64 and s390x (this is not as popular as x86-64 and ARM32),
however, we could only obtain 58 and 2 malware samples, respectively, from VirusShare.com (after
deduplication). We used 46 ARM64 and 1 s390x samples for training and 12 ARM64 and 1 s390x
samples for testing. While these sample sizes are limited, they reflect the value of MALTRANS: by
translating code from a low-resource ISA to a high-resource ISA, we can leverage models trained on
the high-resource ISA, addressing data scarcity challenges that would otherwise hinder robust detection
for low-resource ISAs. We have revised the “Task-Specific Training Dataset” and “Task-Specific
Testing Dataset” parts in Section 5.4 (Line 401 to Line 422) to clarify this.

----------------------------------------------------------------------------------------------------------------------------

3. Reviewer's Comment:
“Experiments performed on a single deep learning model.”

Authors’ Response:
We have utilized CNNs for malware detection and included the detection results in Appendix E (Line
803).

----------------------------------------------------------------------------------------------------------------------------

4. Reviewer's Comment:
“Absence of the MIPS ISA.”

Authors’ Response:
We have collected 1430 MIPS malware samples and included them in the evaluation. The revised
results include updates to the vocabulary size (Table 1; Line 424), BLEU scores (Table 2; Line 332),
malware detection results (Table 3; Line 378), and the hyperparameter study (Tables 4 and 5; Line
486 and Line 494). The presentation has been revised accordingly to reflect these updates.

----------------------------------------------------------------------------------------------------------------------------

5. Reviewer's Comment:
“The acronyms for BLEU, AUC, and F1-score are not expanded. Although they are widely recognized,
it would be helpful to describe each acronym and provide brief descriptions.”



Authors’ Response:
We have included the descriptions of BLEU score in Line 355 and AUC/F1-score in Line 420.

======================== Response to Reviewer FiFn ========================

All the changes made in response to Reviewer FiFn’s comments are highlighted in Magenta.

Reviewer's New Comment after Rebuttal:
“However, my concerns about limited novelty compared to UnsuperBinTrans remain, and
UnsuperBinTrans already achieved some of the claimed contributions. Therefore, I will maintain my
original scores.”

Authors’ Response:
Thank you for your kind response, and we apologize for not clarifying this earlier. Below, we
summarize the key novelties of MalTrans:

1. Enhanced Normalization Rules:MalTrans introduces new normalization rules for assembly
code, which differ significantly from those used by UnsuperBinTrans. Specifically,
normalization rules R1 and R2, which address issues with dummy names generated by IDA Pro
and normalize function names, are not applied by UnsuperBinTrans. The absence of these rules
results in numerous out-of-vocabulary words during testing, potentially degrading translation
performance. Table 4 illustrates the significant impact of R1 and R2 on malware detection
performance.

2. Application to Malware Detection: UnsuperBinTrans has not been previously applied to the
malware detection task, leaving its effectiveness in this domain uncertain. As shown in Table
3(a), when UnsuperBinTrans is applied to malware detection, it performs poorly. This could be
due to its unsuitable normalization rules and less effective model architecture. In contrast,
MalTrans achieves superior malware detection across ISAs, thanks to its improved model
architecture and tailored normalization schemes.

3. Broader ISA Coverage: While UnsuperBinTrans is limited to two ISAs (x86-64 and ARM
32), MalTrans extends the evaluation to a wider range of ISAs, demonstrating both broader
applicability and improved performance.

We hope this clarifies the distinct advantages of MalTrans compared to UnsuperBinTrans.

----------------------------------------------------------------------------------------------------------------------------

1. Reviewer's Comment:
“Among the contributions claimed in the paper, similar contributions were made in UnsuperBinTrans.
The novelty is the model architecture, normalization scheme, and availability for more ISAs.”

Authors’ Response:
We have revised the Introduction Section (the second bullet in the Contribution list; Line 82) to
highlight that our primary contribution is in code translation to support malware detection, effectively
addressing the data scarcity challenge that would otherwise impede robust detection for low-resource



ISAs. Additionally, we have revised the Conclusion Section in Line 537 to compare our work and
UnsuperBinTrans.

----------------------------------------------------------------------------------------------------------------------------

2. Reviewer's Comment:
“Assessment for s390x does not seem to be fair since there are only 2 malware samples.”

Authors’ Response:
We have revised the “Result Analysis” part in Section 5.4 (Line 427) to clarify that the s390x results
primarily demonstrate MALTRANS’s adaptability in low-resource conditions, and future work will
focus on including a larger s390x dataset for a more comprehensive evaluation.

----------------------------------------------------------------------------------------------------------------------------

3. Reviewer's Comment:
“It seems that the testing data sets are not consistent between Table 3 (a) and (b) for ARM64 and
s390x. So the accuracies obtained cannot be directly compared.”

Authors’ Response:
We have reconducted the experiments to ensure that only 20% of malware samples across the five ISAs
are translated by MALTRANS and tested using the x86-64-trained LSTM model for consistency with
Table 3(b). We have revised the “Task-Specific Training Datasets” and “Task-Specific Testing
Datasets” in Section 5.4 (Line 401) to detail how these datasets are constructed. The “Result
Analysis” part in Section 5.4 (Line 424) and Table 3(a) (Line 380) have been updated accordingly.
Additionally, the results where the LSTM model is trained on X86-64 and tested on all malware
samples in the other five ISAs have been moved to Appendix F (Line 871).

----------------------------------------------------------------------------------------------------------------------------

4. Reviewer's Comment:
“Do we actually need to go through a complex code translation process when we can get good results
with 265 data points?.”

Authors’ Response:
We have clarified this in the “Comparison with Optimal Model” part in Section 5.5 (Line 478),
explaining that, in an extreme case where only one binary is available for a given ISA, it is still
possible to detect whether it is malware using the x86-64-trained model, highlighting the necessity of
translation to address the data scarcity issue.

----------------------------------------------------------------------------------------------------------------------------

5. Reviewer's Comment:
“Can we get better BLEU scores if we have more data samples? Are these BLEU scores for 1-gram?”

Authors’ Response:
We have evaluated the adequacy of our mono-architecture datasets, with details in Appendix B (Line
780). We have clarified in the first paragraph of Section 5.3 (Line 358) that the BLEU scores are
computed as an average of unigram, bigram, trigram, and 4-gram precision.



----------------------------------------------------------------------------------------------------------------------------

6. Reviewer's Comment:
“It would be better if it is possible to provide numbers for UnsuperBinTrans for other ISAs although it
only focused on ARM32→X86. It should be trivial and a good comparison to do. Any possibility?”

Authors’ Response:
We have trained UnsuperBinTrans on the same mono-architecture training datasets for the additional
ISA pairs, as described in the fourth paragraph of Section 5.3 (Line 372). The results, including
BLEU scores (Table 2; Line 332) and malware detection results (Table 3; Line 378), have been
reported accordingly.

----------------------------------------------------------------------------------------------------------------------------

7. Reviewer's Comment:
“Why the accuracy results are better for ARM32→X86 although the BELU score is higher for
ARM64→X86? Any explanation for that?”

Authors’ Response:
The BLEU score measures n-gram overlap between translated and reference code, indicating
translation quality based on structural similarity. However, downstream malware detection depends
more on preserving code semantics rather than exact n-gram matches. This may explain why
ARM32→X86 achieves higher detection accuracy despite a lower BLEU score, as the translated
ARM32 code may better retain semantic features relevant to detection.

----------------------------------------------------------------------------------------------------------------------------

8. Reviewer's Comment:
“It would be ideal to compare the performance of malware detection using classical machine learning
techniques as a comparison with LSTM. Can that be done?”

Authors’ Response:
We have utilized CNNs for malware detection and included the detection results in Appendix E (Line
804).

----------------------------------------------------------------------------------------------------------------------------

9. Reviewer's Comment:
“What would be the impact on the accuracy if few-shot learning is done? What should be the ideal
ratio of data for 2 ISAs?”

Authors’ Response:
Few-shot learning could potentially improve accuracy. However, since our focus is on unsupervised
learning, we did not use labeled code samples for training MALTRANS. We leave it as future work.



======================== Response to Reviewer yy4t ========================

All the changes made in response to Reviewer yy4t’s comments are highlighted in Red.

1. Reviewer's Comment:
“How does this work compare and contrast with the related works mentioned ([7], [9], [11], [12])?”

Authors’ Response:
We have discussed this in Appendix H (Line 1006).

----------------------------------------------------------------------------------------------------------------------------

2. Reviewer's Comment:
“How can the paper justify the statement that UnsuperBinTrans is the first and only existing work
without comparing or contrasting with other relevant works mentioned in the relevant references?”

Authors’ Response:
We have revised Section 2.3 (Line 147) that UnsuperBinTrans is the first and only existing work
focused on binary code translation by leveraging deep learning techniques.

----------------------------------------------------------------------------------------------------------------------------

3. Reviewer's Comment:
“How practical are the two principles utilized for BPE merge times?”

Authors’ Response:
The two principles are derived from both empirical experiments and theoretical insights discussed in
prior research. We have revised the “Byte Pair Encoding (BPE)” part in Section 5.2 (Line 322 and
Line 341)to clarify this.

----------------------------------------------------------------------------------------------------------------------------

4. Reviewer's Comment:
“In reality, would a vocabulary size discrepancy exist unless the reviewer is missing something?”

Authors’ Response:
Yes, a vocabulary size discrepancy (> 15%) may exist. If the vocabulary size of one ISA is significantly
larger (or smaller) than that of another, a subset of the vocabulary from this ISA (or the other) may be
selected for training MALTRANS to address the imbalance.

----------------------------------------------------------------------------------------------------------------------------

5. Reviewer's Comment:
“Is there supporting evidence to back the recommendation that "The vocabulary size of each ISA is
recommended to be <12K"?”

Authors’ Response:



We have revised the second bullet point in the “Byte Pair Encoding (BPE)” section of Section 5.2
(Line 341) to clarify this. The 12K threshold was determined empirically as the optimal balance
between model performance and computational efficiency.

----------------------------------------------------------------------------------------------------------------------------

6. Reviewer's Comment:
“What are the final evaluation losses for the training of each ISA?”

Authors’ Response:
For each ISA pair, we trained the translation model until the evaluation loss dropped below 0.5, as
presented in the “Training Details” part of Section 5.2 (Line 350).

----------------------------------------------------------------------------------------------------------------------------

7. Reviewer's Comment:
“How many parameters does the model have if the training takes around one day?”

Authors’ Response:
We have presented the parameters of the shared encoder, source decoder, target decoder in the
“Training Details” part of Section 5.2 (Line 350).

----------------------------------------------------------------------------------------------------------------------------

8. Reviewer's Comment:
“Why did the paper utilize 4-gram precision? Why not higher than 4-gram precision?”

Authors’ Response:
We have clarified in the first paragraph in Section 5.3 (Line 355) that the BLEU scores are computed
as an average of unigram, bigram, trigram, and 4-gram precision.

We did not consider n-grams higher than 4-grams for the following reasons. (1) Higher n-grams (5+
grams) become increasingly sparse. This issue is exacerbated in code translation, where instruction
sequences are typically shorter than natural language sentences, making higher n-grams less reliable as
evaluation metrics. (2) The original BLEU metric proposed by [16] demonstrated that 4-gram BLEU
provides an optimal balance between accuracy and computational efficiency. Beyond 4-grams, the
benefits diminish due to increased computational costs and reduced reliability.

----------------------------------------------------------------------------------------------------------------------------

9. Reviewer's Comment:
“How does the translation quality compare with other works such as [11] and [12]?”

Authors’ Response:
The work in [11] utilizes neural machine translation techniques for binary code similarity comparison
but does not perform binary code translation across ISAs. Specifically, it employs only the encoder of a
neural machine translation model to generate embeddings for two pieces of binary code, and measures
similarity based on embedding distance. In contrast, our work focuses on translating binary code across
different ISAs.



The work in [12] focuses on source code translation (e.g., C to Java), which differs significantly from
binary code translation (e.g., assembly code from x86-64 to ARM32). 

As the objectives and languages differ, a direct comparison of translation quality is not applicable.

----------------------------------------------------------------------------------------------------------------------------

10. Reviewer's Comment:
“Should the reported results include an error range?”

Authors’ Response:
Apologies for the delay. Due to time constraints, we have not completed this experiment. We will
include the error range in the final revision.

----------------------------------------------------------------------------------------------------------------------------

11. Reviewer's Comment:
“discuss the scalability issue of the proposed system and how the system can be adapted to handle the
packed or obfuscated malware.”

Authors’ Response:
We have presented the translation time in the last paragraph of Section 5.3 (Line 377) and discussed
how to handle packed or obfuscated malware in Appendix H (Line 1020).

----------------------------------------------------------------------------------------------------------------------------

12. Reviewer's Comment:
“more details about the model architecture, data preprocessing, and hyperparameters”

Authors’ Response:
We have detailed the data preprocessing in Appendix A (Line 756). We have detailed model
architecture and hyperparameters in Appendix C (MALTRANS; Line 810), Appendix D (LSTM;
Line 826) and Appendix E (CNN; Line 837).

======================== Response to Reviewer C5ox ========================

All the changes made in response to Reviewer FiFn’s comments are highlighted in Violet.

1. Reviewer's Comment:
“Motivation is weak… Is it true that IoT malware are so numerous to outmatch all other domains (like
Windows and Android)?”

Authors’ Response:
We have revised the “Motivation” part in Section 4 (Line 153). The motivation for this work stems
from the data scarcity of malware, which is a significant challenge for IoT. Due to the heterogeneity of
IoT devices, a variety of ISAs are used in their development. However, this diversity has led to a lack



of sufficient malware data for many ISAs, hindering effective malware detection. In contrast, Windows
and Android, which primarily operate on x86 and ARM architectures, do not face the issue of data
scarcity.

Furthermore, malware detection for platforms like Windows and Android is a well-studied problem,
with numerous mature solutions available. For IoT, however, malware detection remains
underexplored, and critical issues, such as the scarcity of malware data for certain ISAs, remain
unresolved.

Notably, IoT malware incidents surged by 87% in 2022 compared to 2021, reaching 112.3 million cases
(link). This sharp rise highlights the increasing security threats facing IoT ecosystems.

----------------------------------------------------------------------------------------------------------------------------

2. Reviewer's Comment:
“How the authors computed the BLEU score for their experiments?”

Authors’ Response:
We have revised the first paragraph in the “Translation Results” section of Section 5.3 (Line 356)
to explain how we compute the BLEU scores.

----------------------------------------------------------------------------------------------------------------------------

3. Reviewer's Comment:
“Which specific ISAs are the authors targeting with their experiments?”

Authors’ Response:
We apologize for the confusion. The term "x86" used in the paper actually refers to x86-64. We have
carefully revised the paper to eliminate this ambiguity.

----------------------------------------------------------------------------------------------------------------------------

4. Reviewer's Comment:
“Missing examples. Can the authors submit examples of their translations? This might help understand
better the quality of the translation.”

Authors’ Response:
We have included some examples of our translations in Table 12 and 13 in Appendix F (Line 931 and
Line 972).
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MALTRANS: UNSUPERVISED BINARY CODE TRANSLA-
TION FOR MALWARE DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Applying deep learning to malware detection has drawn great attention due to its
notable performance. With the increasing prevalence of cyberattacks targeting
IoT devices, there is a parallel rise in the development of malware across various
Instruction Set Architectures (ISAs). It is thus important to extend malware detec-
tion capacity to multiple ISAs. However, training a deep learning-based malware
detection model usually requires a large number of labeled malware samples. The
process of collecting and labeling sufficient malware samples to build datasets for
each ISA is labor-intensive and time-consuming. To reduce the burden of data
collection, we propose to leverage the ideas and techniques in Neural Machine
Translation (NMT) for malware detection. Specifically, when dealing with malware
in a certain ISA, we translate it to an ISA with sufficient malware samples (such as
X86-64). This allows us to apply a model trained on one ISA to analyze malware
from another ISA. Our approach reduces the data collection effort by enabling
malware detection across multiple ISAs using a model trained on a single ISA. We
have implemented and evaluated the model on six ISAs, including X86-64, i386,
ARM64, ARM32, MIPS32 and s390x. The results demonstrate its high translation
capability, thereby enabling superior malware detection across ISAs.

1 INTRODUCTION

The impacts of malicious software are worsening day by day. Malicious software, or malware, refers
to programs designed to harm, interrupt, or damage computers, networks and related resources Preda
et al. (2008). Nowadays, numerous malware detectors have been developed Xie et al. (2024b;a), and
their effectiveness largely depends on the techniques employed. Signature-based malware detection
searches for the patterns belonging to known malware families Sathyanarayan et al. (2008), but it is
often inaccurate in detecting modified or new malware. Behavioral analysis-based detection examines
the execution behavior of programs to detect suspicious actions Liu et al. (2011), but it is unscalable.

Applying deep learning to malware detection has drawn great attention due to its notable performance.
Existing deep learning-based approaches leverage neural networks, such as CNNs, RNNs, and LSTM,
to identify malware Sewak et al. (2018); Gopinath & Sethuraman (2023). The high accuracy and
adaptability of deep learning models make them particularly effective at detecting even sophisticated
and previously unseen malware variants He et al. (2023); Lei et al. (2022); Zhang et al. (2024).

Challenge. With the growing prevalence of cyberattacks targeting IoT devices, there has been a
corresponding increase in the development of malware across various Instruction Set Architectures
(ISAs). By creating malware capable of targeting multiple ISAs, attackers can maximize their reach
and impact, enabling widespread attacks such as botnets that compromise numerous devices Davanian
& Faloutsos (2022); Caviglione et al. (2020). Thus, it is crucial to extend malware detection
capabilities to multiple ISAs. However, existing deep learning-based methods typically require a
large number of malware samples for training. The process of collecting and labeling sufficient
malware samples to build datasets for each ISA is labor-intensive and time-consuming.

Our Approach. Malware is typically a closed-source program, where the source code is usually
unavailable. What we can access is the binary representation of malware. A binary, after being
disassembled, is expressed in an assembly language. Given this insight, we propose to apply the
ideas and techniques in Neural Machine Translation (NMT), which focuses on translating texts across
human languages Artetxe et al. (2018) to reduce the burden of data collection.

1
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When handling a binary in a given ISA (referred to as the source ISA), we translate it to an ISA with
rich malware samples, such as X86-64, which we refer to as the target ISA. Once translated, we
use a model trained on the target ISA to test the translated code. This approach facilitates malware
detection across multiple ISAs using a model trained solely on the target ISA, eliminating the need
for extensive malware samples in other ISAs.

We design an unsupervised binary code translation model called MALTRANS, which can translate
binaries across ISAs. MALTRANS contains a shared encoder for both ISAs and a separate decoder for
each ISA. It operates in a completely unsupervised manner, eliminating the need for parallel datasets.
Importantly, the training of MALTRANS does not require any malware samples and relies only on
binaries compiled from the abundance of open-source programs. Despite never encountering any
malware samples during training, MALTRANS is still capable of translating malware across ISAs
with high translation quality.

Results. We have implemented our model MALTRANS, and evaluated its performance on six ISAs:
X86-64, i386, ARM32, ARM64, MIPS32, and s390x. Our experiments show that MALTRANS
achieves up to 0.4 BLEU score for i386→X86-64, 0.32 BLEU score for ARM32→X86-64, 0.34
BLEU score for ARM64→X86-64, 0.35 BLEU score for MIPS32→X86-64, and 0.37 BLEU score
for s390x→X86-64, while the baseline method UnsuperBinTrans Ahmad & Luo (2023) reaches
much lower BLEU scores for these ISA pairs. Furthermore, we apply MALTRANS to the malware
detection task, and the results are extremely encouraging: when a malware detection model is trained
on X86-64 and transferred to detect malware in the other five ISAs, it achieves AUC scores of 0.996,
0.981, 0.915, 0.920, and 0.923 for i386, ARM32, ARM64, MIPS32, and s390x, respectively. These
results show that MALTRANS has superior translation quality, thereby enabling exceptional malware
detection in multiple ISAs by translating binaries across ISAs. Below we highlight our contributions:

• We propose MALTRANS, a novel unsupervised approach to translate binaries across different
ISAs. The training of MALTRANS does not require any malware samples, yet it is still
capable of translating malware across ISAs and achieves high translation quality.

• By translating binaries from low-resource ISAs to a high-resource ISA, MALTRANS enables
the detection of malware in low-resource ISAs using a model trained on the high-resource
ISA, effectively addressing the data scarcity challenge that would otherwise hinder robust
detection for low-resource ISAs.

• We have implemented the model and evaluated its performances on six ISAs: X86-64, i386,
ARM32, ARM64, MIPS32, and s390x. The results demonstrate the model’s high translation
quality, enabling superior malware detection across ISAs. We plan to make the source code,
trained model, and datasets publicly available.

2 RELATED WORK

2.1 MALWARE DETECTION

Signature-Based Detection. Traditionally, malware detection relied heavily on signature-based
methods, where known patterns of malicious code are identified and stored in databases Sebastio
et al. (2020). Tools like antivirus software use the signatures to scan files and detect malware Rohith
& Kaur (2021); Al-Asli & Ghaleb (2019); Sathyanarayan et al. (2008); Behal et al. (2010). While
effective against known threats, such methods struggle with new or polymorphic malware, which can
change its code to evade detection.

Behavior-Based Detection. Behavior-based detection identifies malware by analyzing the behavior
of programs at runtime Liu et al. (2011); Burguera et al. (2011); Aslan et al. (2021); Saracino et al.
(2016). It looks for suspicious activities, such as unusual system calls or network behavior Burguera
et al. (2011); Aslan et al. (2021). However, these approaches are unscalable and suffer from false-
negative rates if the malicious behavior is not triggered during monitoring.

Machine/Deep Learning-Based Detection. In recent years, machine/deep learning has emerged as a
powerful tool for malware detection. Machine/deep learning techniques can analyze vast amounts of
data and learn to identify patterns associated with malware. Techniques such as decision trees Utku
et al. (2018), Support Vector Machines (SVMs) Hasan & Rahman (2017), and neural networks Jeon
et al. (2020), including models like CNNs, RNNs, and LSTM, have been widely applied in malware
detection tasks Sewak et al. (2018); Gopinath & Sethuraman (2023); Wang et al. (2023a; 2024).

2
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MalTrans translates a binary in the source ISA to the target ISA (X86-64). The translated binary is 
analyzed by the malware detection model to check whether it is malicious. 

Target 
ISA data 
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Figure 1: Applying MALTRANS to detect malware in a source ISA using a malware detection model
trained on the target ISA (X86-64).

2.2 SOURCE CODE TRANSLATION

Source code translation refers to the process of converting code written in one programming language
into another. Early work in source code translation uses transpilers or transcompilers Andrés &
Pérez (2017); Tripuramallu et al. (2024), which rely on handcrafted rules. However, they produce
unidiomatic translations that prove hard for human programmers to read. Another issue is incomplete
feature support. For instance, a feature available in the source language might not have a direct
equivalent in the target language, leading to functional gaps or the need for workarounds.

Recent advancements in deep learning have introduced new approaches to source code transla-
tion Roziere et al. (2020); Weisz et al. (2021); Lachaux et al. (2020). But as malware is closed-source
where the source code is usually unavailable, source code translation does not work for malware.

2.3 PROGRAM ANALYSIS-BASED BINARY CODE TRANSLATION

Several approaches leverage program analysis techniques to convert binary code from one ISA
to another. They can be broadly categorized into static analysis-based translation and dynamic
analysis-based translation. Static analysis-based translation analyzes and translates the binary code
before execution Shen et al. (2012); Cifuentes & Van Emmerik (2000). However, ensuring that all
paths are accurately translated can be challenging. Dynamic analysis-based translation performs
translation during execution Chernoff et al. (1998); Ebcioglu et al. (2001), but it introduces runtime
overhead and requires sophisticated runtime environments, which can increase complexity and
resource consumption. Additionally, both approaches face challenges related to architecture-specific
features and encounter difficulties in achieving accuracy, performance, and compatibility.

In this work, we propose unsupervised binary code translation inspired by recent advances in neural
machine translation. This represents a new and emerging direction. To the best of our knowledge,
UnsuperBinTrans Ahmad & Luo (2023) is the first and only existing work that applies deep learning
techniques to binary code translation. Our evaluation demonstrates that our model outperforms
UnsuperBinTrans in binary code translation and achieves superior malware detection across ISAs.

3 MOTIVATION AND OVERVIEW

Motivation. IoT malware incidents surged by 87% in 2022 compared to 2021, reaching 112.3 million
cases Sonicwall (2023). The heterogeneity of IoT devices introduces a wide variety of ISAs used in
their development, driving a parallel increase in malware targeting multiple ISAs. This highlights the
critical need to extend malware detection capabilities across ISAs. However, existing deep learning-
based methods typically rely on large datasets of malware samples for training. The diversity of ISAs
exacerbates this challenge, as sufficient malware data is often unavailable for many ISAs, hindering
effective detection. Furthermore, collecting and labeling malware to build comprehensive datasets for
each ISA is both labor-intensive and time-consuming. To reduce the burden of data collection, our
idea is to translate a binary from one ISA to another ISA with sufficient malware samples. We refer
to the former ISA as the source ISA, and the latter one as the target ISA. Subsequently, we can use a
malware detection model trained on the target ISA to test the translated binary.

3
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Overview. Figure 1 shows the workflow of applying our binary translation model, called MALTRANS,
to detect malware across ISAs. Note that our goal is to reduce the effort required to collect task-
specific datasets—which contain labeled malware samples (as related to the step 2 in Figure 1)—for
training the malware detection model. This contrasts with mono-architecture datasets that can be
conveniently created using open-source programs (as related to the step 1 ) for training MALTRANS.

In step 1 , we use widely available open-source programs to train MALTRANS for translating
binaries from the source ISA to the target ISA (such as X86-64). As the training is unsupervised,
we cross-compile the open-source programs on different ISAs using cross-compilers to build mono-
architecture datasets. Notably, the training of MALTRANS does not require any malware samples.
Moreover, it should be highlighted that malware is typically a closed-source program, where the
source code is usually unavailable. Thus, cross-compilation that generates binaries across ISAs from
source code does not apply to malware.

In step 2 , we train a deep learning-based malware detection model using a task-specific dataset
containing malware and benign samples in the target ISA.

Finally, in step 3 , when dealing with a binary in the source ISA, we use MALTRANS to translate
the binary to the target ISA and reuse the malware detection model trained on the target ISA to test
the translated code for detecting malware.

In summary, our approach leverages the abundance of malware samples available for the target ISA
to enhance detection capabilities for other ISAs, thereby reducing the burden of data collection for
malware detection. More importantly, collecting sufficient malware samples for certain ISAs can be
particularly challenging. Our approach overcomes this difficulty, making robust malware detection
feasible even for ISAs where malware collection is difficult.

4 MODEL DESIGN

We present the design and training of MALTRANS. Notably, the training of MALTRANS requires
only mono-architecture datasets for each involved ISA, without the need for any malware samples.

4.1 INSTRUCTION NORMALIZATION

A binary, after being disassembled, is expressed in an assembly language. Given this insight, a surge
of NLP-inspired binary analysis approaches have been proposed Li et al. (2022; 2023); Zan et al.
(2022); Ye et al. (2023). A binary is represented as a sequence of instructions. An instruction includes
an opcode (specifying the operation to be performed) and zero or more operands (specifying registers,
memory locations, or literals). For example, mov eax, ebx is an instruction where mov is an opcode
and eax and ebx are operands.

In NLP, the out-of-vocabulary (OOV) issue is a well-known problem, and it exacerbates significantly
in our case, as constants, strings, and address offsets are frequently used in instructions. To mitigate
the OOV problem, we employ the normalization strategy. Furthermore, according to a study by Jean
et al. (2015), learning a translation model with a large vocabulary can significantly increase the
computation complexity and hamper translation performance. Thus, normalizing instructions can
also reduce the vocabulary size of both source ISA and target ISA, as well as minimize the vocabulary
size discrepancy, thereby enhancing translation performance (see the evaluation).

Below are the normalization rules. Appendix A shows examples by the application of these rules.

• (R1): We use IDA Pro IDA (2023) to disassemble binaries, which generates dummy
names Dummy name (2023). We replace dummy names with their respective prefixes. E.g.,
i) word_, dword_, and xmmword_ represent data of different lengths. They are replaced
with <WORD>, <DWORD> and <XMMWORD>. ii) off_ and seg_ represent offset pointer value
and segment address value. They are replaced with <OFF> and <SEG>. Other symbols are
replaced with <TAG>.

• (R2): Function names are replaced with <FUNC>.
• (R3): Number constants are replaced with <VALUE>. Hexadecimal numbers are replaced

with <HEX>. Minus signs are preserved.
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Figure 2: Training MALTRANS on the denosing auto-encoding and back-translation objectives.

4.2 MODEL ARCHITECTURE

MALTRANS contains a shared encoder for both source and target ISAs and a separate decoder for
each ISA. We use a multi-layer bidirectional Transformer to design the encoder and decoders. The
model architecture is shown in Figure 2. We regard opcodes/operands as words and basic blocks as
sentences. A basic block is a straight-line sequence of instructions with no branches inside it.

We train MALTRANS in an unsupervised manner. Pretraining is a key ingredient of unsupervised
neural machine translation Conneau et al. (2020); Conneau & Lample (2019). Studies have shown
that the pretrained cross-lingual word embeddings has a significant impact on the performance of an
unsupervised machine translation model Yang et al. (2018). We adopt this and pretrain the encoder
and decoders of MALTRANS to bootstrap the iterative process of our binary translation model.

4.3 MODEL PRETRAINING

We employ the causal language modeling (CLM) and masked language modeling (MLM) objectives
to train the encoder and decoder. (1) The CLM objective involves training the model to predict a
token et, given the previous (t− 1) tokens in a basic block P (et|e1, ..., et−1, θ). (2) For MLM, we
randomly sample 15% of the tokens within the input basic block and replace them with [MASK] 80%
of the time, with a random token 10% of the time, or leave them unchanged 10% of the time.

The first and last token of an input basic block is a special token [/s], which marks the start and
end of a basic block. We add position embedding and architecture embedding to token embedding,
and use this combined vector as the input to the bi-directional Transformer network. Position
embeddings represent different positions in a basic block, while architecture embeddings specify the
architecture of a basic block. Both position and architecture embeddings are trained along with the
token embeddings and help dynamically adjust the token embeddings based on their locations.

4.4 MODEL TRAINING FOR CODE TRANSLATION

We train MALTRANS in an unsupervised manner using the following learning objectives: denoising
auto-encoding (DAE) and back translation (BT).

Denoising Auto-Encoding (DAE). The DAE reconstructs a basic block from its noised version, as
depicted in Figure 2(a). Given the input source block, Bsrc, we introduce random noise into it (e.g.,
altering the token order by making random swaps of tokens), resulting in the noised version, B

′

src.
Then, B

′

src is fed into the shared encoder, whose output is analyzed by the source decoder. The
training aims to optimize both the shared encoder and source decoder to effectively recover Bsrc.
Through this, the model can better accommodate the inherent token order divergences. Similarly, the
shared encoder and source decoder are optimized when the input is a target basic block, Btgt.

Back Translation (BT). We adapt the back-translation approach Feldman & Coto-Solano (2020) to
train our model in a translation setting, as shown in Figure 2(b). As an example, given an input source
block Bsrc, we use the model to translate it to the target ISA (i.e., applying the shared encoder and the
target decoder), as shown in the process 3 . We then feed the translated block B̃tgt to the model and
train it to predict the original block Bsrc (i.e., applying the shared encoder and the source decoder),
as shown in the process 4 . As training progresses, the model produces better synthetic basic block
pairs through back translation, which serve to further improve the model in the subsequent iterations.

5
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After training, MALTRANS is able to translate basic blocks across ISAs. During testing, it translates
each basic block of a given binary and concatenates the translated blocks into a new translated binary.

5 EVALUATION

5.1 EXPERIMENTAL SETTINGS

We implemented MALTRANS using Transformer. Specifically, for each shared encoder and separate
decoder, we used a 4-layer Transformer with 64 hidden units, 4 heads, ReLU activations, a dropout
rate of 0.1, and learned positional embeddings. Appendix C presents the details of the model. All
the experiments were conducted on a computer with a 64-bit 3.6 GHz Intel Core i9-CPU, a Nvidia
GeForce RTX 4090, 64GB RAM, and 4TB HD.

Model Comparison. We consider two types of models for comparison as follows.

• Baseline Model 1: UnsuperBinTrans Ahmad & Luo (2023). To the best of our knowl-
edge, UnsuperBinTrans is the first and only existing work that focuses on binary code
translation using deep learning techniques. UnsuperBinTrans employs an encoder-decoder
architecture, using RNNs for the encoder and decoder, and is based on unsupervised training.

• Baseline Model 2: IR-based malware detection model. Intermediate representation (IR) can
abstract away architecture differences inherent in different ISAs, and represent instruction
sets of different ISAs in a uniform style angr (2024). We consider a malware detection
model trained on IR code as a baseline.

• Optimal Model: Same-ISA model. We consider a malware detection model trained and tested
on the same ISA, without employing any translation, as the optimal model. As expected,
this model, if trained with sufficient data, is likely to outperform a model trained on one ISA
and tested on another, representing the best-case scenario. Moreover, if the performance
difference between the best model and our model is small, it indicates effective translation.

5.2 TRAINING MALTRANS

We consider six ISAs: X86-64, i386, ARM64, ARM32, MIPS32, and s390x. Our goal is to reuse the
malware detection model trained on X86-64 (where sufficient malware samples are available) for the
other four ISAs. To achieve this, we translate binaries from the other five ISAs to X86-64.

Mono-Arch Datasets for Training MALTRANS. We first collect various open-source programs,
including openssl-1.1.1p, binutils-2.34, findutils-4.8.0, and libgpg-error-1.45. They are widely used
in prior NLP-based binary analysis works Ding et al. (2019); Li et al. (2021). We compile these
programs on each ISA using GCC-11.4.0 with different optimization levels (O0-O3). We then
disassemble each binary using IDA Pro IDA (2023) and collect basic blocks, which are normalized
and deduplicated. Finally, we create a mono-architecture dataset for each ISA: 2, 789, 119 blocks for
X86-64, 2, 803, 557 blocks for i386, 7, 413, 083 blocks for ARM64, 5, 812, 795 blocks for ARM32,
4, 813, 685 blocks for MIPS32, and 5, 365, 474 blocks for s390x. We evaluate the adequacy of our
datasets, as detailed in Appendix B.

Note that the datasets used for training MALTRANS have no overlap with (1) the dataset used for
testing the translation capability of MALTRANS and (2) the testing dataset used in the malware
detection task. The details of these datasets are introduced in the following sections.

Byte Pair Encoding (BPE). After creating the mono-arch dataset for each ISA, we use byte pair
encoding (BPE) (Sennrich et al., 2016) to process the datasets. The BPE merge times can change the
vocabulary size. Based on our investigations, we find that the vocabulary size discrepancy between
the source and target ISA plays a critical role in the model’s translation performance. Therefore, to
enhance MALTRANS’s translation capability, we set the BPE merge times based on the following
principles derived from empirical experiments and theoretical insights presented in prior research:

• The vocabulary size discrepancy between the source and target ISA should not exceed 15%.
A large vocabulary discrepancy can lead to an imbalanced learning problem, where the
model disproportionately focuses on the larger vocabulary, resulting in inefficiencies or
overfitting to the less-represented vocabulary Gowda & May (2020).
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Table 1: Vocabulary size, BPE merge times, and joint vocabulary size for each pair of ISAs.

ISA Pair (src ↔ tgt) Vocab. Size (src) Vocab. Size (tgt) Merge Time Joint Vocab. Size
i386 ↔ X86-64 7, 135 7, 104 10, 000 9, 688

ARM32 ↔ X86-64 9, 416 9, 236 22, 000 17, 262
ARM64 ↔ X86-64 5, 142 4, 455 9, 000 7, 104
MIPS32 ↔ X86-64 10, 995 11, 620 14, 000 12, 685
s390x ↔ X86-64 7, 148 6, 484 9, 000 8, 386

Table 2: BLEU scores of MALTRANS and the baseline.
ISA Pair (src → tgt) MALTRANS (our work) UnsuperBinTrans (baseline)

i386 → X86-64 0.40 0.35
ARM32 → X86-64 0.32 0.28
ARM64 → X86-64 0.34 0.32
MIPS32 ↔ X86-64 0.35 0.27
s390x → X86-64 0.37 0.29

• The vocabulary size of each ISA should < 12k to balance capturing word semantics with
computational resource constraints. A large vocabulary sizes can negatively impact model
performance due to increased complexity and sparse token distributions Jean et al. (2014).

Table 1 shows the BPE merge times, vocabulary size of each ISA, and the joint vocabulary size of
each ISA pair. We can see that the vocabulary discrepancies across the three ISA pairs are small,
making them well-suited for training. Note that these principles are tailored to our specific scenarios.

Training Details. We first pre-train the encoder and decoder using the CLM and MLM tasks for the
initial 2000 epochs. This helps the model learn semantic properties and contextual representations
of a single ISA. Next, we train the model on the DAE and back-translation tasks, enabling it to
understand code semantics across ISAs. The training continues until the evaluation loss drops below
0.5. The encoder has 788, 190 parameters, while the source decoder and target decoder have 855, 262
parameters each. The training time takes around 23h, 22h, 25h, 23h, and 22h, for i385↔X86-64,
ARM32↔X86-64, ARM64↔X86-64, MIPS32↔X86-64, and s390x↔X86-64, respectively.

5.3 TESTING MALTRANS

We use the Bilingual Evaluation Understudy (BLEU) Papineni et al. (2002) score, which is commonly
used to evaluate the quality of machine-generated translations by measuring the n-gram overlap
between the translation and the reference. We set the tokenization of SacreBLEU Post (2018) to None,
apply add-one smoothing, and use the default settings to compute the BLEU score as the average
precision of unigrams, bigrams, trigrams, and 4-grams.

Mono-Arch Datasets for Testing MALTRANS. We use three packages, zlib-1.2.11, coreutils-9.0,
and diffutils-3.7, to test MALTRANS. Note that these packages are not included in the training dataset
of MALTRANS. We compile them on the six ISAs using GCC-11.4.0 with different optimization
levels (O0-O3) and use IDA Pro to disassemble them.

Translation Results. We consider five ISAs, i386, ARM32, ARM64, MIPS32, and s390x, as the
source ISAs, and X86-64 as the target ISA. For each binary B1 in the source ISA, there exists a
semantically equivalent binary B2 in X86-64, provided they stem from the same piece of source code.
We use MALTRANSto translate B1 into X86-64, resulting in a translated binary B3 in X86-64. The
BLEU score is then computed between the translated binary B3 and the reference X86-64 binary B2.
We report the average BLEU score for all binaries. The results are shown in Table 2.

We compare MALTRANS to the baseline UnsuperBinTrans. We use the open-source trained model
of UnsuperBinTrans for this comparison. Note that UnsuperBinTrans focuses solely on two ISAs
(X86-64 and ARM32). To ensure a comprehensive comparison, we train UnsuperBinTrans on the
same mono-architecture training datasets for the additional ISA pairs. We can see that MALTRANS
outperforms UnsuperBinTrans across all ISA pairs and demonstrates satisfactory performance. Thus,
MALTRANS has good translation quality and can effectively translate binaries across ISAs.

The average time to translate a basic block from one ISA to x86-64 is 10−4s, and the average number
of basic blocks in a binary is 12, 000. Therefore, translating a binary takes approximately 1.2s.
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Table 3: Malware detection results. We compare the detection performance by translating malware
using MALTRANS and UnsuperBinTrans, and evaluate it against the IR-based and optimal model.

(a) MALTRANS vs. Two baselines.

ISA Pair MALTRANS UnsuperBinTrans IR-based Model
(src → tgt) AUC F1 AUC F1 AUC F1

i386 → X86-64 0.996 0.996 0.723 0.649 0.819 0.805
ARM32 → X86-64 0.981 0.972 0.818 0.830 0.815 0.829
ARM64 → X86-64 0.915 0.904 0.638 0.594 0.825 0.749
MIPS32 → X86-64 0.920 0.917 0.725 0.733 0.791 0.785
s390x → X86-64 0.923 0.912 0.689 0.674 0.476 0.561

(b) The optimal model.

Train & Test on Optimal Model
the Same ISA AUC F1

i386 0.998 0.995
ARM32 0.986 0.983
ARM64 0.705 0.684
MIPS32 0.952 0.939
s390x 0.650 0.662

5.4 MALWARE DETECTION TASK

We apply MALTRANS to the malware detection task1. We first train a malware detection model on
X86-64. When handling a binary in a given ISA, we translate it to X86-64 using MALTRANS and
reuse the model trained on X86-64 to test the translated code.

Malware Detection Model. We use the Long Short Term Memory (LSTM) model proposed
in HaddadPajouh et al. (2018) to detect malware. We design LSTM as two layers. Appendix D
presents the details of the model. We first extract the token embeddings from MALTRANS, and
integrate the token embeddings into the input layer of LSTM. As a result, when feeding a binary into
LSTM, each input token is represented as its corresponding embedding. To further enrich the malware
detection task, we also apply a Convolutional Neural Network (CNN) model. In the following, we
focus on the results related to LSTM, while the results for CNN are provided in Appendix E.

Task-Specific Training Datasets. We first collect 2140, 1740, 1581, 58, 1430 and 2 malware samples
from VirusShare.com VirusShare (2020) for X86-64, i386, ARM32, ARM64, MIPS32, and s390x,
respectively. Since the optimal model trains and tests a malware detection model on the same ISA, it
requires task-specific training data in each ISA. We spend significant efforts in collecting malware,
particularly for ARM64 and s390x. It is worth noting that our approach only needs malware in a
high-resource ISA for training a detection model and can greatly save the efforts in data collection.

For each ISA, we build its training and testing dataset. We divide the malware samples in each
ISA into two parts: 80% are used for training and 20% for testing (for s390x, 1 malware sample is
used for training and 1 for testing). In each training and testing dataset, we also include an equal
number of benign programs. In the training dataset, the benign samples are randomly selected from
openssl-1.1.1p, binutils-2.34, findutils-4.8.0, and libgpg-error-1.45.

Task-Specific Testing Datasets. The testing dataset for each ISA includes equal numbers of malware
and benign samples. The benign samples are randomly selected from zlib-1.2.11, coreutils-9.0, and
diffutils-3.7. Note that these programs are not included in the dataset for training MALTRANS or the
dataset for training the malware detection model.

For s390x, due to the limited availability of malware, we create an imbalanced testing dataset
with 1 malware and 100 benign samples. Although the dataset is limited, it reflects the value of
MALTRANS: by translating code from a low-resource ISA to a high-resource ISA, we can leverage a
model trained on the high-resource ISA, addressing data scarcity that would otherwise hinder robust
detection for low-resource ISAs. We use AUC and F1-score as our evaluation metrics. We draw the
Receiver Operating Characteristic (ROC) Curve and calculate the Area Under ROC (AUC) score as
an evaluation metric. The F1-score is obtained by computing the harmonic mean of precision and
recall(particularly suited for imbalanced datasets)

Result Analysis. We first train LSTM on X86-64, and reuse the model to test binaries in the other
ISAs. The results are shown in Table 3. We can see that when the model trained on X86-64 is
transferred to i386, ARM32, ARM64, MIPS32, and s390x, it achieves AUC = 0.996, 0.981, 0.915,
0.920 and 0.923, respectively. The high accuracies demonstrate the superior translation quality
of MALTRANS. It should be noted that the s390x results primarily demonstrate MALTRANS’s
adaptability in low-resource conditions. Future work will focus on including a larger s390x dataset

1Malware packing is used to hide malicious code within benign files. In this work, we do not consider
malware packing as it falls outside the scope. All malware samples are unpacked and can be analyzed by
reverse-engineered tools. Appendix H discusses how to handle packed malware.
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for a more comprehensive evaluation. Appendix F presents the results where the LSTM model is
trained on X86-64 and tested on all malware samples in the other ISAs.
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Figure 3: Visualization of opcode embeddings.

We then analyze how MALTRANS is able to
preserve the code semantics through transla-
tion. Specifically, we visualize the embed-
dings of opcode tokens from different ISAs.
We take the X86-64 and ARM32 pair as an
example. Opcodes, which determine the op-
eration to be performed, capture more seman-
tics compared to operands, so we focus on
opcodes for this demonstration. We extract
the embeddings of 138 X86-64 opcodes and
247 ARM32 opcodes from MALTRANS, and
visualize them using t-SNE, as shown in Fig-
ure 3. Four categories of opcodes are selected
for demonstration. We can see that opcodes
performing similar operations, regardless of their ISAs, are close together. Thus, MALTRANS can
successfully capture semantic relationships of opcodes across ISAs and preserve code semantics.

5.5 MODEL COMPARISON

We compare MALTRANS to the two baselines and optimal model (as described in Section 5.1).

Comparison with Baseline Methods. The results are shown in Table 3(a). The first baseline
is UnsuperBinTrans. As UnsuperBinTrans focuses solely on two ISAs, we train it on the same
training datasets for the additional ISA pairs. We use UnsuperBinTrans to translate binaries from
the other ISAs to X86-64, and use LSTM to test the translated binaries. The results show that
MALTRANS achieves better translation quality, leading to improved malware detection performance.

The second baseline analyzes IR code. We assess whether a model trained on X86-64 IR code can be
reused to test IR code in other ISAs. We use angr angr (2024) to lift binaries into IR code. We train
LSTM using the same task-specific training dataset in X86-64, and apply the model to test the same
task-specific datasets in the other ISAs. The AUC scores are 0.819, 0.815, 0.825, 0.791, and 0.476
for i386, ARM32, ARM64, MIPS32, and s390x, respectively. This indicates that IR alone does not
magically allow a model trained on one ISA to be effectively reused across different ISAs.

Comparison with Optimal Model. The results of the optimal model are shown in Table 3(b). When
the LSTM model is trained and tested on the same ISA, it achieves AUC of 0.998, 0.986, 0.705,
0.952, and 0.650 for i386, ARM32, ARM64, MIPS32, and s390x, respectively. Comparing the
results to those of our model in Table 3(a), we observe: (1) our model achieves performance very
close to the optimal model for testing malware in i386, ARM32, and MIPS32, and (2) our model
significantly outperforms the optimal model for ARM64 and s390x.

For i386, ARM32, and MIPS32, the results align with expectations: the optimal model trained and
tested on the same ISA outperforms our model, which is trained on X86-64 and tested on other
ISAs (through translation). However, for ARM64 and s390x, our model outperforms the optimal
model, due to the insufficient malware samples used to train the optimal model. For ARM64, only
80% of 58 ARM64 malware samples are used for training, while for s390x, only 1 out of 2 malware
samples is used. This highlights the importance of a sufficiently large training dataset to achieve
desirable performance. While increasing the dataset size could enhance the model’s performance,
collecting malware samples for certain ISAs can be challenging. Our approach—translating binaries
to x86-64—addresses this data collection challenge effectively. In an extreme case, if only one binary
in a given ISA is available, we can still detect whether it is malware using the X86-64-trained model.

5.6 HYPERPARAMETER AND ABLATION STUDY

Normalization Rules. Each instruction in the datasets is normalized by applying the three rules
(R1, R2, and R3) discussed in Section 4.1. Normalization is a vital step in our approach. In this
experiment, we conduct ablation study by removing certain rules and evaluating their influence on
malware detection. We consider these cases:
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Table 4: Impacts of normalization rules.

Case i386→X86-64 ARM32→X86-64 ARM64→X86-64 MIPS32→X86-64 s390x→X86-64
AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

C1 0.996 0.996 0.981 0.972 0.915 0.904 0.920 0.917 0.923 0.912
C2 0.862 0.851 0.416 0.375 0.543 0.521 0.624 0.617 0.623 0.617
C3 0.883 0.849 0.422 0.360 0.566 0.575 0.617 0.601 0.570 0.503
C4 0.827 0.774 0.591 0.472 0.526 0.533 0.613 0.591 0.422 0.451
C5 0.793 0.751 0.339 0.342 0.436 0.453 0.523 0.510 0.422 0.473

Table 5: AUC values when varying embedding dimension.
ISA Pair (src → tgt) Dimension: 32 Dimension: 64 Dimension: 128

i386→X86-64 0.995 0.996 0.994
ARM32→X86-64 0.978 0.981 0.972
MIPS32→X86-64 0.912 0.920 0.869
ARM64→X86-64 0.857 0.915 0.860
s390x→X86-64 0.832 0.923 0.917

• (C1): Applying all rules to the data.
• (C2): Removing R1, and applying R2 and R3 to the data.
• (C3): Removing R2, and applying R1 and R3 to the data.
• (C4): Removing R3, and applying R1 and R2 to the data.
• (C5): Not applying any rules to the data.

Table 4 shows the results. We can observe that: (1) When all normalization rules are applied (C1),
we achieve the best performance. (2) When a subset of normalization rules is applied (C2-4), the
AUC values are lower than in C1, indicating that each normalization rule mitigates the OOV issue
and has an impact on translation quality, thereby influencing malware detection performance. (3)
When no normalization rule is applied (C5), the results are the lowest.

Embedding Dimension. We evaluate the impacts of the embedding dimension. We test different
dimension sizes, including 32, 64, and 128, to train MALTRANS. We then apply MALTRANS to
translate binaries from the source ISA to X86-64 for malware detection. The results are shown in
Table 5. We observe that when the dimension is set to 64, the AUC values are higher compared to
other dimensions. Moreover, as the dimension increases, the training time also increases. We thus
choose a dimension of 64, considering both the translation quality and training efficiency.

Summary. These results highlight the significant advantages of MALTRANS in malware detection.
(1) It eliminates the need for task-specific data (i.e., malware samples) in the source ISA to train a
malware detection model, thereby reducing the burden of data collection. (2) It enables malware
detection in the source ISA using a model trained on the target ISA and achieves high detection
accuracies. (3) Training the binary translation model MALTRANS does not require malware samples.
Instead, it only requires mono-architecture datasets, which can be easily and conveniently created by
cross-compiling open-source programs using cross-compilation tools like QEMU QEMU (2023) and
LLVM LLVM (2023). Thus, our approach is highly convenient and feasible.

6 CONCLUSION

Applying deep learning to malware detection has drawn great attention. The limited availability of
malware in certain ISAs, however, hinders deep learning-based malware detection. In this work, we
proposed MALTRANS, which translates binaries across ISAs. The training of MALTRANS does not
require malware and relies only on mono-architecture datasets created from open-source programs.
We apply MALTRANS to malware detection across six ISAs. Considering that X86-64 is the most
data-rich ISA, we train MALTRANS to translate binaries from the other five ISAs to X86-64, and reuse
a malware detection model trained on X86-64 to test the translated code. Our approach effectively
reduces the burden of data collection. Compared to UnsuperBinTrans, MALTRANSachieves better
malware detection across ISAs, thanks to its improved model architecture and tailored normalization
schemes, contributing to its superior translation capability. Furthermore, we expanded the evaluation
to cover more ISAs, showcasing MALTRANS’s broader applicability and improved performance.
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A APPLYING INSTRUCTION NORMALIZATION RULES

In Section 4.1, we outlines the instruction normalizing rules (R1)-(R3). Below, we provide examples
demonstrating how these rules are applied to assembly code from six ISAs, as shown in Table 6. For
each ISA, the assembly code on the left side of the sub-table represents the original code, while the
code on the right side represents the normalized version.

Table 6: Comparison of original and normalized assembly code.

call _gpgrt_log_info call <FUNC>
sbb al 0 sbb al <VALUE>
mov esi 0ACh+_bss_start mov esi <HEX>+<TAG>
lea rdi str_LogWithPid lea rdi <STR>
sub rdx buffer sub rdx <TAG>

(a) X86-64

add esp 0Ch add esp <HEX>
call _dcgettext call <FUNC>
lea eax [ebx-5D40h] lea eax [ebx-<HEX>]
jmp short loc_37C3 jmp short <LOC>
mov eax [150h+domainname] mov eax [<HEX>+<TAG>]

(b) i386

ADD R12 R12 0x1B000 ADD R12 R12 <HEX>
LDR PC memcpy-0x2B7C LDR PC <FUNC>-<HEX>
BEQ.W loc_109B4 BEQ.W <LOC>
BL gz_uncompress BL <FUNC>
CMP R2 0 CMP R2 <VALUE>

(c) ARM32

LDR X0 [SP #0xC0+stream_68] LDR X0 [SP <HEX>+<TAG>]
TBZ W0 #0 loc_AF38 TBZ W0 <HEX> <LOC>
ADRL X1 str_ErrorInitia ADRL X1 <STR>
B _gmon_start_ B <FUNC>
MOV X19 #0 MOV X19 <HEX>

(d) ARM64

lw $fp 0x40+var_20 lw $fp <HEX>+<VAR>
bal usage bal <FUNC>
beqz $v0 loc_1358 beqz $v0 <LOC>
move $a2 $s3+1 move $a2 $s3+<VALUE>
sw $s0 0x40+path($sp) sw $s0 <HEX>+<TAG>($sp)

(e) MIPS32

lgf %r1 0xC(%r1) lgf %r1 <HEX>(%r1)
larl %r1 _ctype_b_loc_ptr larl %r1 <TAG>
jne LOC_E84 jne <LOC>
stg %r1 arg_190 stg %r1 <ARG>
sllg %r1 %r1 1 sllg %r1 %r1 <VALUE>

(f) s390x

B DATASET ADEQUACY

In NLP, it is widely recognized that a comprehensive dataset, which ensures that the vocabulary
covers a wide range of words, is crucial for training effective code translation models. We assess
the adequacy of our mono-architecture datasets. Specifically, we study the vocabulary growth as
we incrementally include programs. Our findings indicate that while the vocabulary size initially
increases with the inclusion of more programs, it eventually stabilizes. Take x86-64 as an example,
including openssl-1.1.1p results in a vocabulary size of 23, 029. The size increases to 36, 770 (a 60%
growth) when binutils-2.34 is added, and then increases to 39, 499 (a 7.4% growth) and 39, 892 (a
0.9% growth) when findutils-4.8.0, libpgp-error-1.45 are included, respectively. The growth trend is
similar for other ISAs. It shows that the vocabulary barely grows in the end when more programs
are added. According to the vocabulary growth trend as well as the high performance achieved, our
mono-architecture datasets are adequate to cover instructions and enable effective code translation.

C MODEL PARAMETERS OF MALTRANS MODEL

The shared encoder and separate decoders of MALTRANS are implemented using the Transformer
model. Table 7 shows the details of the parameters.

D MODEL PARAMETERS OF MALWARE DETECTION LSTM MODEL

We use the LSTM model to detect malware. Table 8 shows the parameters details of the LSTM model.

E MALWARE DETECTION USING A CNN MODEL

We use a 1-dimensional Convolutional Neural Network (CNN) model to detect malware. The
parameter details of the CNN model are presented in Table 9.

We use the same task-specific training and testing datasets described in Section 5.4. Moreover, we
compare our results against two baseline methods and the optimal model. Table 10 presents the
results of the malware detection task using the CNN model.
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Table 7: Parameter Details of MALTRANS.

Parameter Value Description
Emb. Dimension 32/64/128 Embedding layer size for tokens

Hidden Dimension 4* Emb. Dimension Transformer FFN hidden dimension
Num. Layers 4 Number of transformer layers
Num. Heads 4 Number of attention heads per layer

Regu. Dropout 0.1 Dropout rate for regularization
Attn. Dropout 0.1 Dropout rate in attention layers

Batch Size 256 Number of sentences per batch
Max. Length 512 Maximum length of one sentence after BPE

Optimizer Adam Adam optimizer with sqrt decay
Clip Grad. Norm 5 Maximum gradient norm for clipping

Act. Function ReLU Use ReLU for activation
Pooling Mean Use mean pooling for sentence embeddings

Accumulate Grad. 8 Accumulate gradients over N iterations

Table 8: Parameter Details of the malware detection LSTM model.

Parameter Value Description
Emb. Dimension 32/64/128 Input feature dimension for sequence embedding
Num. of Layers 3 Number of stacked LSTM layers in the network

Hidden Units 16 Number of hidden units in each LSTM layer
Output Units 1 Dimension of the output layer
Batch Size 36 Number of samples processed in one batch
Optimizer Adam Adaptive optimization algorithm with momentum

Loss Function BCEWithLogitsLoss Binary cross-entropy with logits
Pooling Max Maximum value across temporal dimension

Table 9: Parameter Details of the malware detection CNN model.

Parameter Value Description
Emb. Dimension 64 Input feature dimension for sequence embedding

Conv. Layers 2 Number of convolutional layers in the CNN network
Conv. Kernel 3 Kernel size of the convolutional layers
Output Units 1 Dimension of the output layer
Batch Size 64 Number of samples processed in one batch
Optimizer Adam Adam optimizer with a learning rate of 0.001

Loss Function BCEWithLogitsLoss Binary cross-entropy with logits
Pooling Max Maximum pooling to reduce spatial dimensions

Table 10: Malware detection results using the CNN model. We compare the detection performance by
translating malware using MALTRANS and UnsuperBinTrans, and evaluate it against the IR-based
model and the optimal model.

(a) MALTRANS vs. Two baselines.

ISA Pair MALTRANS UnsuperBinTrans IR-based Model
(src → tgt) AUC F1 AUC F1 AUC F1

i386 → X86-64 0.992 0.989 0.693 0.630 0.724 0.706
ARM32 → X86-64 0.973 0.962 0.769 0.726 0.718 0.730
ARM64 → X86-64 0.919 0.902 0.645 0.674 0.725 0.789
MIPS32 → X86-64 0.924 0.917 0.805 0.673 0.761 0.745
s390x → X86-64 0.922 0.910 0.606 0.648 0.486 0.507

(b) The optimal model.

Train & Test on Optimal Model
the Same ISA AUC F1

i386 0.995 0.963
ARM32 0.976 0.940
ARM64 0.738 0.691
MIPS32 0.955 0.941
s390x 0.570 0.630

When the CNN model trained on X86-64 is transferred to i386, ARM32, ARM64, MIPS32, and s390x,
it achieves AUC values of 0.992, 0.973, 0.919, 0.924, and 0.922, respectively. These high accuracies
highlight the superior translation quality of MALTRANS, outperforming both UnsuperBinTrans and
the IR-based model. Compared to the optimal model, we have the following observation. (1) First,
our model achieves performance close to the optimal model when testing malware on i386, ARM32,
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and MIPS32. This outcome is expected, as the optimal model is trained and tested on the same ISA,
while our model is trained on X86-64 and tested on other ISAs through translation. (2) Second, our
model significantly outperforms the optimal model on ARM64 and s390x. This is due to the limited
malware samples available for training the optimal model on the two ISAs, highlighting the value of
our approach. By reusing a model trained on a high-resource ISA, we enable robust detection for
low-resource ISAs that would otherwise face significant challenges.

F MALWARE DETECTION USING ALL MALWARE SAMPLES FOR TESTING

We train the LSTM model exclusively on X86-64, and reuse the trained model to test binaries in
other ISAs, including i386, ARM32, ARM64, MIPS32, and s390x. It is important to note the key
difference between the experiment described in this Appendix and that in Section 5.4. Here, we use
all malware samples from i386, ARM32, ARM64, MIPS32, and s390x for testing. In contrast, in
Section 5.4, only 20% of the malware samples from these ISAs are used for testing, as the remaining
80% are reserved for training the optimal model.

Task-Specific Training Dataset. We first build the training dataset containing an equal num-
ber of malware and benign samples in X86-64. We collect 2140 malware samples from
VirusShare.com (VirusShare, 2020), where 80% (=1712) are used for training and 20% (=428) for
testing. The benign samples are randomly selected from openssl-1.1.1p, binutils-2.34, findutils-4.8.0,
and libgpg-error-1.45.

Task-Specific Testing Datasets. We build a testing dataset for each ISA. The benign samples are
randomly selected from three packages: zlib-1.2.11, coreutils-9.0, and diffutils-3.7. Note that these
packages are not included in the dataset for training MALTRANS or the task-specific dataset for
training the malware detection LSTM model.

For X86-64, the testing dataset contains 428 malware samples and 428 benign samples. For the other
ISAs, we collect 1740, 1581, 58, 1430, and 2 malware samples from VirusShare.com VirusShare
(2020) for i386, ARM32, ARM64, MIPS32, and s390x, respectively. The testing datasets for i386,
ARM32, ARM64, and MIPS32 contain equal numbers of malware and benign samples. However,
due to the limited availability of malware for s390x, we create an imbalanced testing dataset with
2 malware samples and 100 benign samples. We report both AUC and F-1 score as the evaluation
metrics.

Table 11: Malware detection results. We use all the malware samples in i386, ARM32, ARM64,
MIPS32, and s390x for testing. We compare the detection performance by translating malware using
MALTRANS and UnsuperBinTrans, and evaluate it against the IR-based model.

ISA Pair MALTRANS UnsuperBinTrans IR-based Model
(src → tgt) AUC F1 AUC F1 AUC F1

i386 → X86-64 0.998 0.997 0.742 0.670 0.804 0.832
ARM32 → X86-64 0.978 0.974 0.813 0.820 0.819 0.830
ARM64 → X86-64 0.917 0.909 0.620 0.589 0.820 0.743
MIPS32 → X86-64 0.951 0.937 0.730 0.729 0.789 0.783
s390x → X86-64 0.921 0.931 0.681 0.672 0.428 0.548

Result Analysis. We first train LSTM on X86-64, and reuse the model to test binaries in the other
ISAs. The results are shown in Table 11. We can see that when the model trained on X86-64 is
transferred to i386, ARM32, ARM64, MIPS32 and s390x, it achieves AUC = 0.998, 0.978, 0.913,
0.923 and 0.938, respectively. The high accuracies demonstrates the superior translation quality of
MALTRANS.

G TRANSLATION DEMONSTRATION

Table 12 and Table 13 shows some randomly selected examples. In each example, (1) the source ISA
is the original basic block in the source ISA, which could be i386, ARM32, ARM64, MIPS32, or
s390x; (2) the target ISA is the basic block in the target ISA, X86-64, that is similar to the original
basic block in the source ISA; and (3) the translated ISA is the X86-64 basic block translated from
the original basic block in the source ISA by our model MALTRANS.
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By comparing the translated X86-64 block with the target X86-64 block, we observe that MALTRANS
(1) accurately predicts almost all opcodes, and (2) while a few operands are predicted incorrectly,
these errors are reasonable. Note that an instruction consists of an opcode (which specifies the
operation) and zero or more operands (which specifies registers, memory locations, or literal data).
Thus, opcodes, which determine the operation to be performed, capture more semantic information
compared to operands. On the other hand, different registers or memory locations can be used to
store data while preserving code functionality, which reduces the significance of operands.

Consider the first example of the ISA pair i386→X86-64. In the target X86-64 basic block, the second
instruction is: add rbp [state+<HEX>], whereas in the translated X86-64 basic block, the predicted
instruction is: add rdx [s+<HEX>]. Here, MALTRANS successfully predicts the opcode add, and
predicts a different register and memory cell for the operands, while preserving the functionality of
the code.

Table 12: Examples for code translation.

Source i386
sub esp <VALUE> add edx [s+<HEX>] mov ebx esi push len push edx
push [esp+<HEX>+dictionary] call <FUNC> add esp <HEX> jmp <LOC>

1 Translated X86-64
sub rsp <VALUE> add rdx [s+<HEX>] mov rbx rbp push len

mov r8 [rsp+<HEX>+datalen] mov rcx len call <FUNC> jmp <ADDR>

Target X86-64
sub rsp <VALUE> add rbp [state+<HEX>] mov eax <HEX> push <TAG>
mov [state+<HEX>] rdi mov rdi state call <FUNC> jmp short <TAG>

Source i386
mov edx [edi+<VALUE>] mov edp <VALUE> cmp edx <HEX> lea ecx [edx-<HEX>]

setnz al and ecx <HEX> lea ecx [edx-<HEX>]

i386 2 Translated X86-64
mov rdx [abfd+<VALUE>] mov ebp <VALUE> cmp rdx <HEX> lea rcx [r1+rax+<VALUE>]

setnz al and ecx <HEX> lea rcx [r1+rax+<VALUE>]

Target X86-64
mov rdx rsp mov rsp <HEX> cmp rax rdx lea r8 <TAG>

setnz a1 and ecx <TAG> lea rcx [rax+<HEX>]

Source i386
sub esp <VALUE> lea eax [esi+<VALUE>] push eax push [esp+<HEX>+buf]

call <FUNC> mov edi eax mov c [esp+<HEX>+<TAG>]

3 Translated X86-64
sub rsp <VALUE> lea rax <TAG>+<HEX> mov cs:<TAG> rax mov rax [abfd+<VALUE>]

call <FUNC> mov rsi rsp mov rdi abfd call <FUNC> add rsp <VALUE>

Target X86-64
sub rsp <HEX> lea eax <HEX> mov rax rs:<HEX> mov [rsp+<HEX>+<VAR>]
call <FUNC> mov rcx rsp mov rsi <VALUE> call <FUNC> add eax <HEX>

Source ARM32
XOR R0 R2 MOV R1 R1 <VALUE> SUBS R3 R0 R3

LDP R6 R6 have BNE <TAG> CMP copy R7

1 Translated X86-64
xor edi edi mov rcx rdx and esi <VALUE> sub <TAG> <VALUE>

mov [rax+rdx-<VALUE>] cl mov ecx <VALUE>

Target X86-64
xor edi edi mov [rax+rcx-<VALUE>] di and edi <TAG> sub init curr

mov [s+<HEX>] rdx mov rsp <VALUE>

Source ARM32
LDR R2 [R3] MOVS R0 <VALUE> BNE <LOC>
LDR R0 [R2+<TAG>] MOV R1 <TAG> BL <FUNC>

ARM32 2 Translated X86-64
mov rsi [rsp+<HEX>+p] movsxd rdi eax
lea rcx [rsp+<HEX>+id] call <FUNC>

Target X86-64
mov rdi in movsxd rdi file

lea rax [rsi+<VALUE>] call <FUNC>

Source ARM32
MOV R0 strm MOVS R1 <VALUE> BL <FUNC> ADDS err <VALUE>

MOVS R2 <TAG> LDR R1 <HEX> BNE <ADDR>

3 Translated X86-64
mov edi ebx lea rcx <TAG> movsxd rax ds:<TAG> call <FUNC>

add rax rcx lea rdx <TAG> jmp <ADDR>

Target X86-64
mov edi ebx lea rsi <HEX> movzx rax <TAG> call <FUNC>

add eax ecx lea rbp <LOC> jmp <TAG>

Source ARM64
MOV W2 <VALUE> MOV W0 W2 LDP X2 <VALUE> [SP+<HEX>+<TAG>]

LDR X2 [SP+<HEX>+<TAG>] LDP X2 X3 [SP+<HEX>+<TAG>]

1 Translated X86-64
mov qword ptr [rax] <VALUE> mov rax [rbp+p]

mov rdi rax call <FUNC> test eax eax jnz <ADDR>

Target X86-64
mov qword ptr [rcx+<HEX>] <VALUE> mov [rdx+<HEX>] <VALUE>
mov [rdx+<HEX>] rcx call <FUNC> test rax rax jnz <TAG>

Source ARM64
ADD W2 W2 <VALUE> ADD X3 X0 X3 SUB W2 W2 <VALUE>

MOV W0 <VALUE> STRB W0 [X1+<HEX>] MOV X0 X2 <VALUE>

ARM64 2 Translated X86-64
mov r1 q mov rsi p movzx ri byte ptr [p]

sub r1 <VALUE> add p <HEX> mov rax [p] jmp short <LOC>

Target X86-64
mov r14 rsp mov rsip movzx rax <HEX>

sub r10 <VALUE> add q <HEX> mov r11 <VALUE> jmp <TAG>

Source ARM64
LDR W5 <VALUE> LDR X9 <HEX> SUB W0 W5 W0 ADD W1 W0 <VALUE> LDP W1 <VALUE>

SUB W0 W5 W0 ADD W1 W0 <VALUE> LDP W1 <VALUE> LDRB W2 <TAG>

3 Translated X86-64
mov rdx <HEX> mov [rsp+<HEX>+n] rdx movzx edx [r1+<HEX>]

mov esi edx mov r9 [r1+<HEX>] lea r1 [rdx+<TAG>]

Target X86-64
mov rdx [rbp+mode] mov ecx [rbp+fd] movzx rax [rbp+path] mov esi ecx

mov rdi rax mov [rbp+gz] rax lea r1 [rax+<VALUE>]
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Table 13: Examples for code translation.

Source MIPS32
li $t9 <VALUE> lw $ra <HEX>+<VAR> ($sp)
addiu $t9 <FUNC> b <FUNC> addiu $sp <HEX>

1 Translated X86-64
mov r8 <VALUE> mov rbx rsp+<HEX>+<TAG>

lea r10 r8+<ADDR> call <FUNC> add rbp <VALUE>

Target X86-64
mov r10 <VALUE> mov rax rsp+<HEX>+<VAR>

lea r10 r10+<TAG> jmp <FUNC> add rsp <HEX>

Source MIPS32
li $a1 <VALUE> addiu $a1 <STR> move $a0 $s0

la $t9 <FUNC> jalr $t9 lw $gp <HEX>+<VAR> ($sp)

MIPS32 2 Translated X86-64
mov rsi <HEX> lea rbp rbp+<ADDR> mov rdi rax

mov r11 <FUNC> call <FUNC> mov rap rsp

Target X86-64
mov rsi <VALUE> lea rsi rsi+<STR> mov rdi, rbx

mov r10 <ADDR> call <FUNC> mov rbp rsp

Source MIPS32
li $a2 <VALUE> li $a1 <VALUE> addiu $a1 <STR> move $a0 $zero la $t9 <FUNC>

jalr $t9 lw $gp <HEX+<VAR> ($sp) move $a1 $s1 move $a0 $v0

3 Translated X86-64
mov rbx <HEX> mov rsi <ADDR> lea rsi rsi+<TAG> xor rsi rsi

mov r10 r9 call <FUNC> mov rbp rap mov rsi r14+<TAG>+<HEX> mov rdi rax

Reference X86-64
mov rdx <VALUE> mov rsi <VALUE> lea rsi rsi+<STR> xor rdi rdi

mov r10 r11 call <FUNC> mov rbp rsp+<HEX>+<VAR> mov rsi r14 mov rdi rax

Source s390x
lg %r1 <TAG> (%r11) ag %r1 <TAG> stg %r1 <TAG> (%r11) lg %r1 <TAG>

br %r1 jg <FUNC> basr %r1 %r0 lgf %r1 <HEX>

1 Translated X86-64
mov rdi at1 mov rsp [<HEX>+<VAR>] mov rbx rdx lea [r14 r12+r13]

mov rdi [rsp+<HEX>] call <FUNC> test rbx rbx jnz <LOC>

Target X86-64
mov rsi <TAG> mov rbp <VALUE> lea [rdx+<HEX>]

mov rdi [rax+<VALUE>] call <FUNC> test rax rax jnz <TAG>

Source s390x
basr %r0 %r1 lgf %r0 <VALUE> (%r1) jg <FUNC>

lalr %r1 <TAG> lg %r1 (%r1) br %r1 lghi %r8 <LOC>

s390x 2 Translated X86-64
mov r1 r3 mov rdi <HEX> lea <FUNC>

movsx rax <TAG> mov rbx rdx push rbp jmp short <LOC>

Target X86-64
mov r14 rsp mov rsip movsx rbx <VAR> lea <TAG>

mov r2 r4 mov rbp (<TAG>+<HEX>) mov r11 <VALUE> jmp <TAG>

Source s390x
xc %r5 <VALUE>+<VAR> stmg %r14 %r15 sgr %r1 %r2 lay %r15+<HEX> (%r15)
lglr %r3 <VALUE> <LOC> ahi %r11 <VALUE>+<TAG> lgfr %r4 (<HEX>+<TAG>)

3 Translated X86-64
mov rax <VAR>+<HEX> mov rcx rbx mov ebx [ecx+<VALUE>]

mov ebi ecx mov r9 [r1+<HEX>] lea r1 [rdx+<TAG>]

Reference X86-64
mov rax [<VALUE>+<HEX>] mov eax <VAR> mov rbp [rsi+<VALUE>] mov eax ebx

mov rsi rbx mov rax (rax+<TAG>) lea rsi [r2+<VAR>]

H DISCUSSION

Uniqueness of Our Work. We propose an entirely different approach compared to the works
in Wang et al. (2023b; 2024), which also aims to reuse models across ISAs. While their approach
achieves this by learning cross-architecture instruction embeddings, our method focuses on translating
binary code across ISAs. By translating code to a high-resource ISA, our approach offers several
advantages. First, it allows the direct application of existing downstream models—trained on the
high-resource ISA—to other ISAs through testing the translated code. In contrast, the works in Wang
et al. (2023b; 2024) require retraining the model using cross-architecture instruction embeddings.
Furthermore, translating code from one ISA to another assists human analysts in understanding code
from unfamiliar ISAs, supporting broader applications in code comprehension.

InnerEye Zuo et al. (2018) applies neural machine translation techniques for binary code similarity
comparison but does not perform binary code translation across ISAs. It uses two encoders from
neural machine translation models, where each encoder generates an embedding for a piece of binary
code of a given pairs, and measures similarity based on embedding distance. In contrast, our approach
focuses on translating binary code across ISAs.

Packed or Obfuscated Malware. To address packed malware, we can incorporate advanced
unpacking tools, such as PEiD PEiD (2008) and OllyDbg OllyDbg (2000), to first unpack the
malware and then analyze the unpacked content.

The malware samples used in our study were from VirusShare.com VirusShare (2020), a repository
that collects malware observed in the wild. It is widely recognized that such malware often employs
obfuscation techniques to evade detection by antivirus systems. However, we lack ground truth
regarding the specific obfuscation techniques applied to each malware sample, making it difficult to
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assess resilience to specific obfuscation techniques. Identifying the obfuscation techniques used in a
given malware sample is a challenging and open research problem in its own right.

Our study primarily addresses the challenge of data scarcity in low-resource ISAs by translating
binaries from these ISAs to a high-resource ISA using MALTRANS. Future work could systematically
explore the impact of obfuscation techniques on detection performance. A key challenge is the
absence of a high-fidelity dataset mapping malware samples to their specific obfuscation techniques.
Filling this gap will be a focus of our future research.
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