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Abstract

Latent stochastic differential equation (SDE) models are important tools for the
unsupervised discovery of dynamical systems from data, with applications ranging
from engineering to neuroscience. In these complex domains, exact posterior
inference of the latent state path is typically intractable, motivating the use of
approximate methods such as variational inference (VI). However, existing VI
methods for inference in latent SDEs often suffer from slow convergence and
numerical instability. Here, we propose SDE Inference via Natural Gradients
(SING), a method that leverages natural gradient VI to efficiently exploit the un-
derlying geometry of the model and variational posterior. SING enables fast and
reliable inference in latent SDE models by approximating intractable integrals
and parallelizing computations in time. We provide theoretical guarantees that
SING approximately optimizes the intractable, continuous-time objective of inter-
est. Moreover, we demonstrate that better state inference enables more accurate
estimation of nonlinear drift functions using, for example, Gaussian process SDE
models. SING outperforms prior methods in state inference and drift estimation
on a variety of datasets, including a challenging application to modeling neural
dynamics in freely behaving animals. Altogether, our results illustrate the potential
of SING as a tool for accurate inference in complex dynamical systems, especially
those characterized by limited prior knowledge and non-conjugate structure.1

1 Introduction

Stochastic differential equations (SDEs) are powerful tools for modeling complex, time-varying
systems in scientific domains such as physics, engineering, and neuroscience [1, 2]. In many real-
world settings, we do not observe the state of the system directly, but instead must infer it from
noisy measurements. For example, in neuroscience, we often wish to uncover continuously evolving
internal brain states underlying high-dimensional neural recordings [3]. Latent SDE models address
this problem by positing a continuous-time stochastic latent process that generates observations
through a measurement model.

A key challenge in latent SDE modeling is posterior inference over the latent state trajectory. Accurate
inference enables principled understanding and prediction of the underlying state, but it is often
computationally intractable to perform analytically due to non-conjugate model structure. Methods
for approximating the intractable posterior include Markov chain Monte Carlo [4, 5], approximate
Bayesian smoothing [2, 6], and variational inference (VI) [7–11]. In particular, VI offers a flexible
and scalable framework for approximate inference in latent SDE models. In their seminal work,
Archambeau et al. [7, 8] formulate the VI problem for latent SDEs as constrained optimization over
the family of linear, time-varying SDEs. While variants of this approach have been widely employed
[9, 12–15], they often suffer from slow convergence and numerical instability. These shortcomings
motivate the need for more efficient and robust VI methods in this setting.
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In this work, we introduce SING: SDE Inference via Natural Gradients, a method that leverages natural
gradient variational inference (NGVI) for latent SDE models. SING exploits the underlying geometry
of the prior process and variational posterior, which leads to fast and stable latent state inference, even
in challenging models with highly nonlinear dynamics and/or non-conjugate observation models.
Our contributions are as follows:

(i) We derive natural gradient updates for latent SDE models and introduce methods for
computing them efficiently;

(ii) We show how SING can be parallelized over time, enabling scalability to long sequences;
(iii) We provide theoretical guarantees that SING approximately optimizes the continuous-time

objective of interest; and
(iv) We demonstrate that improved inference with SING enables more accurate drift estimation,

including in models with Gaussian process drifts.

2 Background and problem statement

2.1 Latent stochastic differential equation models

We consider the class of models in which the latent states evolve according a stochastic differential
equation (SDE) and give rise to conditionally independent observations. The prior on the latent states
x ∈ RD takes the form

p(x) : dx(t) = f(x(t))dt+Σ
1
2 dw(t), x(0) ∼ N (ν,V ), 0 ≤ t ≤ Tmax (1)

where f : RD → RD is the drift function describing the system dynamics, Σ is a time-homogeneous
noise covariance matrix, and (w(t))0≤t≤Tmax is a standardD-dimensional Brownian motion. ν and V
are the mean and covariance of the initial state. For our exposition, we will model f as a deterministic
drift function with parameters θ. We will subsequently expand our scope in Section 3.5 to the case of
a Gaussian process prior on f . For simplicity of presentation, we assume f is time-homogeneous;
however, our framework can be readily extended to the time-inhomogeneous case as well.

While the latent trajectory (x(t))0≤t≤Tmax is unobserved, we observe data D = {ti,y(ti)}ni=1, where
ti ∈ [0, Tmax] are observation times and y(ti) ∈ RN are corresponding observations modeled as

E[y(ti) | x] = g (Cx(ti) + d) . (2)

Here, g(·) is a pre-determined inverse link function and {C,d} are learnable hyperparameters
defining an affine mapping from latent to observed space. Of particular interest is the setting D ≪ N ,
where the latent space is much lower-dimensional than the observations. We provide a schematic of
the generative model in Figure 1A.

For the latent SDE model, we aim to solve two problems: (i) inferring a posterior over the latent
trajectories x, conditional on the data D and (ii) learning the prior and output hyperparameters,
collectively denoted by Θ = {θ,C,d}.

2.2 Natural gradient variational inference for exponential family models

SING leverages natural gradient variational inference (NGVI) to perform approximate posterior
inference in latent SDE models. Before presenting our method, we first provide relevant background
on NGVI for exponential families. In this section, we will consider the general VI problem in which
we have a variational posterior q̄(z|η) with parameters η ∈ Rp. The goal of VI is to maximize a
lower bound L(η) to the marginal log likelihood [16, 17].

One way to maximize L(η) is via natural gradient ascent [18] with respect to η, which adjusts the
standard gradient update to account for the geometry of the distribution space. In practice, this
corresponds to the update rule

η(j+1) = argmin
η

−η⊤∇ηL(η(j)) +
1

ρ
· 1
2
(η − η(j))⊤F(η(j))(η − η(j))︸ ︷︷ ︸

≈DKL(q̄(z|η(j)) ∥ q̄(z|η))

(3)

=⇒ η(j+1) = η(j) + ρ[F(η(j))]−1∇ηL(η(j)), (4)
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Figure 1: A schematic figure describing SING. A: In the generative model, a low-dimensional latent
SDE gives rise to noisy, conditionally independent observations at timestamps {ti}ni=1. B: SING
leverages NGVI to perform fast and reliable approximate posterior inference in latent SDE models.
NGVI exploits the geometry of the model by effectively preconditioning updates by an inverse
Fisher information matrix, often leading to faster convergence than vanilla gradient ascent. C: On a
discretized time grid τ , the variational posterior is a multivariate Gaussian distribution with a block
tridiagonal precision matrix.

where η(j) denotes the variational parameter at iteration j, ρ is the step size, and F(η) =
Eq̄(z|η)

[
∇η log q̄(z|η)∇η log q̄(z|η)⊤

]
is the Fisher information matrix. The key idea of natu-

ral gradient methods [17–21] is to perform an update that both increases the ELBO and remains
close to the current variational distribution (in KL divergence). This interpretation relies upon a
second-order Taylor expansion of the KL divergence, as denoted in eq. (3); we provide a derivation
in Appendix B.1. See Figure 1B for a geometric interpretation of natural gradient ascent.

However, the inverse Fisher information in the update eq. (4) is intractable to compute when η is
high-dimensional. This is common in models with temporal structure, including the latent SDE
model presented in Section 2.1. The key insight behind NGVI [22–27] is that eq. (4) can be computed
efficiently when q̄(z|η) constitutes a minimal exponential family:

q̄(z|η) = h(z) exp (⟨η,T (z)⟩ −A(η)) , A(η) = log

(∫
h(z) exp (⟨η,T (z)⟩) dz

)
. (5)

Here, η are called the natural parameters of the exponential family, T (z) are the sufficient statistics,
µ = Eq̄(z|η)[T (z)] are the mean parameters, and A(η) is the log normalizer. The exponential family
density eq. (5) is defined for all η for which A(η) <∞. We refer the reader to Appendix B for an
overview of exponential families. Let µ(η) := Eq̄(z|η)[T (z)] be the bijective mapping from natural
to mean parameters. In Appendix B, we show that the Fisher information is equal to the Jacobian of
the mapping µ(η) i.e., F(η) = ∇ηµ(η). As a result, eq. (4) can be rewritten as

η(j+1) = η(j) + ρ∇µL(µ(j)). (6)
This reparametrization avoids the need to compute or invert a large Fisher information matrix,
allowing for tractable updates even for high-dimensional parameter spaces.

2.3 Variational inference in latent SDE models

In the latent SDE model in Section 2.1, one can show that the true posterior p(x|D) is a time-varying
SDE with the same diffusion coefficient as the prior:

p(x | D) : dx(t) = f̃(x(t), t|D)dt+Σ
1
2 dw(t), x(0) ∼ pD, 0 ≤ t ≤ Tmax.

The drift f̃ of the posterior SDE is the solution to a linear partial differential equation (PDE) [28–31].
In the case where the prior eq. (1) is a linear SDE and the observation model eq. (2) is linear and
Gaussian, both f̃ and the marginal density of the posterior p(x(t)|D) can be computed via a Kalman-
Bucy smoother [32]. However, in non-conjugate settings, neither quantity admits a closed-form, and
solving for them numerically using PDE solvers can be computationally expensive.

We propose a VI method for approximate inference on the latent trajectories (x(t))0≤t≤Tmax . As in
prior works [7, 8], we posit a variational family q(x) of linear time-varying SDEs,

q(x) : dx(t) = (A(t)x(t) + b(t))dt+Σ
1
2 dw(t), x(0) ∼ N (m0,S0), 0 ≤ t ≤ Tmax, (7)
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where the variational parameters are (A(t))0≤t≤Tmax and (b(t))0≤t≤Tmax . In other words, we approxi-
mate the posterior drift f̃ with a linear function fq(x(t), t) := A(t)x(t) + b(t) at each time.

In the setting where we have multiple independent trials ℓ sampled from the generative model
(x(ℓ)(t))0≤t≤Tmax , {y(ℓ)(ti)}ni=1, the true posterior factorizes across trials. Hence, we choose our
variational approximation to also factorize across trials. In other words, we approximate the posterior
for each trial p(x(ℓ)|D) with a linear, time-varying SDE as in eq. (7), where the variational parameters
are allowed to differ across trials. In practice, we find that this variational family is highly flexible
(see Section 5) and is capable of accurately inferring latents sampled according to SDEs with highly
nonlinear (e.g., bifurcating) dynamics.

Our choice of variational family (7) yields the following evidence lower bound (ELBO) to the
marginal log likelihood:

Lcont(q,Θ) := Eq[log p(y|x,Θ)]− DKL (q(x) ∥ p(x|Θ)) . (8)

Our goal is to maximize Lcont(q,Θ) with respect to q, given Θ fixed. However, this objective is
typically intractable to optimize directly. In practice, a common approach is to instead perform
inference over a finite-dimensional distribution q(x0:T ), where xi := x(τi) and τ = {τi}Ti=0 ⊆
[0, Tmax], τ0 = 0, τT = Tmax is a set of time points that includes observation times {ti}ni=1.

When the prior SDE p(x) is nonlinear, the transition distribution p(x0:T ) does not have a closed-form
expression. Therefore, we approximate p with its Euler–Maruyama discretization, which we call p̃.
Since both p̃ and q have Gaussian transition densities, this leads to a tractable approximation to the
continuous-time ELBO Lcont(q,Θ),

Lapprox(q,Θ) := Eq[log p(y|x,Θ)]− DKL (q(x0:T ) ∥ p(x0:T |Θ)) . (9)

For derivations of the ELBOs Lcont and Lapprox, see Appendix C.

3 SING: SDE Inference via Natural Gradients

3.1 NGVI for latent SDE models

We propose SING, a method that uses NGVI to optimize the ELBO Lapprox in the latent SDE
model. SING can be applied to any combination of prior drift and likelihood model and enjoys fast
convergence by exploiting the geometry of the natural parameter space. SING builds upon recent
work from Verma et al. [33]; however, it has several notable differences that we detail in Appendix I.

We begin by recognizing that since eq. (7) is Gaussian and Markovian, its marginalized distribution
q(x0:T ) can be written as a minimal exponential family,

q(x0:T |η) = exp

(
−1

2

T∑
i=0

x⊤
i Jixi −

T−1∑
i=0

x⊤
i+1Lixi +

T∑
i=0

h⊤
i xi −A(η)

)
. (10)

In eq. (10), the natural parameters are η =
[
{hi,− 1

2Ji}Ti=0, {−L⊤
i }

T−1
i=0

]
and the corresponding

sufficient statistics are T (x0:T ) =
[
{xi,xix

⊤
i }Ti=0, {xi+1x

⊤
i }

T−1
i=0

]
. Since q(x0:T ) is Markovian,

its full precision matrix is block tridiagonal, as depicted in Figure 1C.

To apply the NGVI update eq. (6) to Lapprox, we must first consider q(x0:T ) in terms of its mean
parameters, which are simply the expectations of T (x0:T ) under q. We denote these together as
µ :=

[
{µi,1,µi,2}Ti=0, {µi,3}T−1

i=0

]
. From here, eq. (6) simplifies to the following updates on the

natural parameters, which decompose over time steps i = 0, . . . , T :

(h
(j+1)
i ,J

(j+1)
i ) = (1− ρ)(h(j)

i ,J
(j)
i ) + ρ∇(µi,1,µi,2)Eq(j) [log p(yi|xi)δi + log p̃(xi+1,xi|xi−1)]

L
(j+1)
i = (1− ρ)L(j)

i + ρ∇µi,3
Eq(j) [log p̃(xi+1|xi)].

(11)
In eq. (11), q(j) := q(x0:T |η(j)) is the variational posterior at iteration j and δi is an indicator
denoting whether there is an observation at time τi. We provide a derivation in Appendix D.

As written, the updates in eq. (11) are challenging to compute because they involve (i) approximating
intractable expectations and (ii) converting from natural to mean parameters between iterations. In
the subsequent sections, we propose computational methods to address each of these problems.
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3.2 ELBO approximation guarantee

Prior to detailing how we compute the SING updates eq. (11), we provide theoretical justification
that maximizing the ELBO Lapprox will approximately maximize the true, continuous-time ELBO
of interest Lcont. Moreover, on a subset of the variational parameter space, the approximation error
tends to zero uniformly as the size of the grid τ tends to zero.

Theorem 1: Under mild regularity conditions (see Appendix E), there exists a constant C such that
for any mesh size ∆t := maxT−1

i=0 ∆i, ∆i = τi+1− τi of the time grid, |Lcont−Lapprox| ≤ C(∆t)1/2.

Proof sketch. One compares the continuous- and discrete-time log-densities and applies error bounds
on the Euler–Maruyama approximation. The full statement and proof can be found in Appendix E.

To the best of our knowledge, our work is the first in the topic of variational inference for latent
SDE models to provide an explicit rate of convergence for the discrete time ELBO to its continuous
counterpart.

3.3 Computing expectations of prior transition densities

The updates in eq. (11) rely on computing expectations of the form Eq[log p̃(xi+1|xi)]. This is
difficult in general because the prior drift f(x(t)) can be nonlinear and the expectation is taken over
the pairwise distribution q(xi,xi+1), which has total dimension R2D. In the following proposition,
we show using Stein’s lemma that we can rewrite the expectation over just q(xi), which reduces the
integration dimensionality to RD. The proof can be found in Appendix F.

Proposition 1: The term Eq[log p̃(xi+1|xi)] can equivalently be written in terms of the mean
parameters µi, µi+1 and the expectations Eq [f(xi)] ,Eq

[
f(xi)

⊤Σ−1f(xi)
]
, and Eq [Jf (xi)],

where Jf (xi) denotes the Jacobian of f(·) at xi.

The key implication of Proposition 1 is that the difficult expectations over the nonlinear prior
transition terms can be reduced in dimensionality from R2D to RD. This makes these terms in
SING’s updates significantly more tractable. In practice, there are many methods to compute these
expectations, including Gauss-Hermite quadrature in low-dimensional systems or Monte Carlo in
higher-dimensional systems. Empirically, we observe that even with a single Monte Carlo sample,
SING performs accurate approximate inference over the latent trajectories in up to 50-dimensional
latent spaces (Section 5.1).

3.4 Parallelizing SING

In many real-world settings, sequential inference on long time series can be computationally chal-
lenging. In this section, we show how SING can be fully parallelized, yielding efficient inference that
scales logarithmically with the number of time steps.

The computational bottleneck of Section 3.1 is converting from natural parameters η to mean
parameters µ for the updates in eq. (11). By the identity ∇ηA(η) = µ, we can perform this
conversion by first computing A(η) and then applying autodifferentiation with respect to η. However,
existing algorithms for this problem take O(D3T ) time (see Appendix G.1 for further details). While
D is typically small in our setting, the linear scaling in T may be prohibitive for long sequences.

Our key insight is that the log normalizer A(η) of eq. (10) can be computed in parallel time by using
associative scans [34]. Given a binary associative operator • and a sequence (a1, a2, . . . , an), the
associative scan computes the prefix sum (a1, (a1 • a2), . . . , (a1 • a2 • · · · • an)) in logarithmic time
using a divide-and-conquer approach. By recognizing the log normalizer as

A(η) = log

∫
exp

(
−1

2
x⊤
0 J0x0 + h⊤

0 x0

)
︸ ︷︷ ︸

:= a−1,0

T∏
i=1

exp

(
−1

2
x⊤
i Jixi − x⊤

i Li−1xi−1 + h⊤
i xi

)
︸ ︷︷ ︸

:= ai−1,i

dx0:T (12)

we can apply the associative scan to compute A(η). We define the unnormalized Gaussian potentials
in eq. (12) as the sequence elements ai−1,i and marginalize out one variable at a time via the binary
associative operator ai,j • aj,k =

∫
ai,jaj,kdxj := ai,k. To marginalize out the variable xT , we also

define the dummy element aT,T+1 = 1. As a result, the log of the full scan (a−1,0•a0,1•· · ·•aT,T+1)
evaluates exactly to A(η). This algorithm has time complexity O(D3 log T ), resulting in significant

5



speedups as sequence length increases (Figure 5). In Appendix G.2, we derive the analytical
expression for the Gaussian marginalization operator and analyze our algorithm’s time complexity.

3.5 SING-GP: Drift estimation with Gaussian process priors

So far, we have assumed that the drift function f(x(t)|Θ) is deterministic with learnable hyperpa-
rameters θ. However, in practice, we often have limited prior knowledge about the functional form of
the drift but would still like to learn or infer its structure. A natural approach for this problem is to
place a Gaussian process (GP) [35] prior over the drift,

fd(·)
iid∼ GP(0, κθ(·, ·)), for d = 1, . . . , D,

where f(·) = [f1(·), . . . , fD(·)]⊤, κθ(·, ·) is a kernel function, and θ are kernel hyperparameters.
This results in a well-studied model called the GP-SDE [13, 14], which is appealing for its ability to
encode rich prior structure in dynamics and provide posterior uncertainty estimates. However, the
practical utility of GP-SDEs has been limited by the inference methods used to fit them [7, 8], which
we show in Section 5.2 often exhibit slow convergence and numerical instability.

Here, we extend SING to enable accurate and reliable inference in GP-SDE models, resulting in a new
method called SING-GP. While we defer technical details to Appendix K, we outline the key ideas
here. Following Duncker et al. [13], we introduce an augmented variational posterior of the form
q(x0:T ,f) and use sparse GP techniques with inducing points [36] to perform approximate inference
over q(f). This leads to convenient closed-form updates on q(f). In Section 5.2, we illustrate that
SING-GP performs competitively to flexible parametric drift functions in low-data regimes, while
also directly providing posterior uncertainty estimates on the drift. In Section 5.4, we use SING-GP
on a challenging application of modeling latent neural dynamics in freely moving animals.

4 Related work

VI for latent SDE models A number of VI methods for latent SDEs posit larger variational
families than eq. (7), consisting of non-Gaussian diffusion processes [10, 11, 37–41]. Ryder et al.
[10] parameterize the variational family as the collection of diffusion processes with neural network
drift and diffusion coefficients. Hereafter, we refer to the probability distributions belonging to this
variational family as neural stochastic differential equations, or ‘neural-SDEs’. Li et al. [11] also
consider a neural-SDE variational family and introduce a stochastic adjoint method to optimize the
continuous-time ELBO. While memory efficient, the stochastic adjoint method requires sampling
from the variational posterior at each gradient step. Most recently, Bartosh et al. [41] introduce a
simulation-free variational inference algorithm, ‘SDE Matching’, for neural-SDE variational families.
In Appendix L.2, we compare SING to SDE Matching on a Lorenz attractor benchmark from [11].
We find that, although SING learns a Gaussian process approximation to the posterior, it outperforms
SDE Matching on recovery of the ground truth latents and achieves competitive, albeit slightly worse,
performance on drift recovery.

In settings where statistical and computational efficiency are critical, many works have studied
Gaussian diffusion process variational families of the form eq. (7). In their seminal work, Archambeau
et al. [7, 8] propose an algorithm ‘VI for Diffusion Processes’ (VDP), which optimizes the continuous-
time ELBO in eq. (8) via Lagrange multipliers by incorporating the evolution of the marginal mean
and covariance of q(x(t)) as constraints. A detailed overview of VDP is provided in Appendix H.
Duncker et al. [13] use sparse GP approximations to extend VDP to GP-SDE models, a method we
refer to as ‘VDP-GP’. Related to VDP, Course and Nair [9, 12] express the continuous-time ELBO
entirely in terms of the marginal mean and covariance and then approximate these functions using a
neural network encoder architecture.

Most relevant to our work, Verma et al. [33] propose applying NGVI to the discrete-time ELBO from
eq. (9) in the case of a deterministic drift. Unlike SING, Verma et al. [33] do not address how to
tractably compute Lapprox, and they do not suggest how to efficiently convert from natural to mean
parameters. Moreover, no theoretical guarantees are given as to how well Lapprox approximates Ltrue.
A complete comparison is given in Appendix I.

Connection to GP regression problems Several works have applied NGVI for efficient inference
in GP regression problems by exploiting the fact that many GPs admit equivalent representations as
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Figure 2: (Top row) We apply SING to a LDS with Gaussian observations. A: True latents are
sampled from a LDS characterized by a stable spiral. B: Observations are 10-dimensional Gaussian
variables. C: True vs. inferred latents on an example trial, with 95% posterior credible intervals. D:
Comparison between SING and several baselines over iterations. (Bottom row) We apply SING to
simulated place cell activity, where both the prior and observation models are nonlinear. E: True
latents are sampled from a Van der Pol oscillator and represent trajectories through 2D space. Tuning
curves modeled by radial basis functions represent expected firing rates at each location in latent
space. F: Observations are Poisson spike counts for 8 neurons. G, H: See C, D.

linear time-invariant SDEs [2, 42]. For instance, Chang et al. [43] and Dowling et al. [44] consider
GP regression problems with non-Gaussian likelihoods. To avoid cubic scaling in the number of
data points, they reformulate the GP as a linear SDE and then apply NGVI to perform approximate
inference in this non-conjugate model. Hamelijnck et al. [45] combine this approach with sparse
GP approximations to perform inference in a spatio-temporal setting. While these works focus on
linear SDE representations of GPs in regression problems, SING targets estimation of both the latent
process and drift and applies to the broader class of nonlinear SDE priors.

Parallelizing sequential models Associative scans have been successfully applied to parallelize
inherently sequential computations in areas such as classical Bayesian inference and deep sequence
modeling [45–50]. Särkkä and García-Fernández [46] and Hassan et al. [47] derived associative
scans for parallelizing Bayesian filtering and smoothing algorithms, and Hamelijnck et al. [45]
extended these algorithms to inference in non-conjugate GP regression. We note that our associative
scan in Section 3.4 is reminiscent of the one in Hassan et al. [47], which operates on potentials for
inference in the hidden Markov model. However, SING differs in that it leverages these techniques to
compute the log normalizer in a Gaussian Markov chain with no observations, which enables efficient
parameter conversion in its natural gradient-based updates.

5 Experiments

5.1 Inference on synthetic data

We begin by applying SING to perform latent state inference in three synthetic datasets. Throughout
this section, we assume that all hyperparameters Θ are fixed to their true values during model fitting,
allowing us to directly assess the quality of latent state inference of SING compared to several
baseline methods. We provide full experimental details for this section in Appendix L.1.

Linear dynamics, Gaussian observations First, we simulate 30 trials of a 2D latent SDE with
linear drift exhibiting a counter-clockwise stable spiral using Euler–Maruyama discretization (Fig-
ure 2A). Then, we generate 10D Gaussian observations conditional on the latents (Figure 2B). We fit
SING for 20 iterations and find that it is able to accurately recover the true latent states (Figure 2C).

We evaluate the inference quality of SING using root mean-squared error (RMSE) between the
true and inferred latent states over iterations (Figure 2D). We compare SING to three baselines: (1)
Kalman smoothing (KS) [51], (2) VDP [7], and (3) direct optimization of Lapprox(η) using Adam
[52]. Since this is a linear Gaussian model, exact posterior inference of q(x0:T ) is tractable and can
be obtained via KS. In Figure 2D, we find that SING recovers the true posterior in a single iteration,
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consistent with the known result that NGVI performs one-step exact inference in conjugate models
(see derivation in Appendix J). In contrast, VDP takes several iterations to converge in this setting; we
provide theoretical justification for this finding in Appendix J. Finally, while Adam uses momentum
and adaptive step sizes, it is outperformed by both SING and VDP in this experiment.

𝑥!

𝑥"

𝑥#

𝐷 = 50

D
latents RMSE

Monte Carlo quadrature
3 0.1419 0.1417
5 0.1870 0.1869

10 0.2726 ✗
20 0.3978 ✗
50 0.6778 ✗

Figure 4: (Top) Recovered
latent trajectories in the first 3
dimensions of a 50-dimensional
embedded Lorenz attractor.
(Bottom) Comparison of latents
RMSE between Monte Carlo-
and quadrature-based approxi-
mations of expectations. Monte
Carlo results are averaged over
5 random seeds, with negligible
standard errors (omitted).

Place cell model Next, we simulate a dataset inspired by place
cells in the hippocampus [53]. Place cells fire selectively when an
animal occupies specific locations in space, and are often modeled
using location-dependent tuning curves. We simulate 30 trials
of latent states from a Van der Pol oscillator to represent animal
trajectories through 2D space. We then construct tuning curves for
N = 8 neurons using radial basis functions with centers placed
along the latent trajectories (Figure 2E). Finally, we simulate spike
counts for neuron n in time bin τi as yn(τi) ∼ Pois(fn(x(τi)))
(Figure 2F).

This setup is particularly challenging due to the non-conjugacy
between the nonlinear dynamics and Poisson observations. Nev-
ertheless, SING accurately infers the underlying latent states (Fig-
ure 2G). We compare SING to several baselines, including VDP
and Adam on the natural parameters as in the previous experiment
(Figure 2H). Since KS does not apply in this non-conjugate setting,
we instead use the discrete-time conditional moments Gaussian
smoother (CMGS) [54] as a third baseline, which assumes linear
Gaussian approximations of the dynamics and observation models.
Altogether, we find that SING outperforms all baselines in both
convergence speed and final accuracy. In contrast, VDP requires
careful tuning of its learning rate for stability and CMGS relies on
linear approximations that incur error in highly nonlinear models
like this one. These results highlight SING’s robustness in settings
with nonlinear dynamics and observation models, while existing
methods struggle.

Embedded Lorenz attractor We next demonstrate that SING
can perform accurate inference in high-dimensional latent dynam-
ical systems. To do so, we embed the Lorenz attractor into latent
spaces of dimension D = 3, 5, 10, 20, 50 by sampling the first
three coordinates according an SDE with Lorenz drift and the
remaining dimensions according to a random walk. For each D, we simulate 30 trials and generate
100-dimensional Gaussian observations. We fit SING for 1000 iterations using a single Monte Carlo
sample per expectation, while the quadrature baseline uses 6 nodes per latent dimension (Section 3.3).
Full experimental details can be found in Appendix L.1.3.

Figure 4 (top) shows that SING accurately recovers the underlying attractor even in a 50-dimensional
latent space. The table in Figure 4 (bottom) further shows that Monte Carlo-based expectations
match the accuracy of quadrature for low latent dimensions (D ≤ 5), while remaining tractable as D
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increases. This demonstrates that Monte Carlo enables scalable and memory-efficient inference and
does not sacrifice accuracy in the low-dimensional regime where both methods are feasible.

5.2 Drift estimation on synthetic data
Next, we demonstrate that the fast, stable latent state inference enabled by SING results in improve-
ments to drift estimation and parameter learning. We will seek to learn the drift parameters θ together
with the output parameters {C,d}. All experimental details can be found in Appendix L.3.

Our synthetic data example consists of a 2D latent nonlinear dynamical system evolving according to
the Duffing equation, which has two stable fixed points at (±

√
2, 0) in addition to an unstable fixed

point at the origin (Figure 3A). We sample four trials starting near the rightmost fixed point with 10D
Gaussian observations at 30% of the grid points. This example is challenging insofar as observations
are sparse and the true latent trajectories do not cover the entire latent space.

We consider three classes of prior drift functions for our experiments: (i) a Gaussian process drift
with radial basis function (RBF) kernel (Section 3.5); (ii) a neural network drift; and (iii) a linear
combination of polynomial basis functions up to order three. We perform 50 variational EM iterations,
alternating between performing inference and learning the hyperparameters Θ. During the learning
step, we optimize the drift parameters θ using Adam on the ELBO. The updates for the output
parameters {C,d} can be performed in closed form (see Appendix L.1).

Our results demonstrate that SING facilitates accurate and efficient parameter learning for diverse
classes of prior drift. Although the GP prior constitutes a nonparametric family of drift functions, it
performs comparably to flexible parametric drift classes, both in terms of latents RMSE (Figure 3C)
and RMSE between the learned and true dynamics (Figure 3D). Unlike the parametric drift classes,
though, SING-GP quantifies the uncertainty in the inferred dynamics about the leftmost fixed point
(Figure 3B). Whereas SING recovers the true latents and dynamics in fewer than 25 iterations, VDP
results in worse performance on both metrics in 50 vEM iterations. In Figure 3E, we observe that for
both SING and VDP, decreasing ∆t results in more faithful approximation to the continuous-time
ELBO Lcont, and hence more accurate recovery of the dynamics.

5.3 Runtime comparisons
Here, we demonstrate the computational speedups enabled by using associative scans to parallelize the
natural to mean parameter conversion in SING (Section 3.4). Recall that while the standard sequential
method of performing this conversion takes O(D3T ), our parallelized version takes O(D3 log T ).
In Figure 5, we compare the wall clock time of these two approaches for inference in a LDS with
Gaussian observations. For different values ofD and T , we fit SING for 20 iterations over 5 randomly
sampled datasets from this model and report the average runtime on an NVIDIA A100 GPU.

On single trials, parallel SING achieves nearly constant runtime scaling with sequence length, and
is roughly 100× faster than sequential SING for T = 4096. This improvement holds across all
tested values of D. Even for batches of 100 trials, where parallel resource constraints become more
significant, parallel SING maintains favorable scaling compared to the sequential baseline. We
provide experiment details and additional results over different batch sizes in Appendix L.4.

5.4 Application to modeling neural dynamics during aggression

Finally, we apply SING-GP to the challenging task of modeling latent neural dynamics of aggressive
behavior in freely moving mice. Prior work identified approximate line attractors governing neural
dynamics in this setting [55, 56]. More recently, Hu et al. [14] fit GP-SDE models (see Section 3.5)
with a smooth, piecewise linear kernel to uncover such dynamics. However, they relied on VDP-GP
for inference, which we demonstrated can be slow to converge and may do so to suboptimal solutions.
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Figure 6: Results on modeling neural dynamics during aggression. A: Experimental setup, adapted
from Vinograd et al. [55]. The data consists of calcium imaging from a mouse interacting with two
intruders. We model intruder effects using step function inputs. B: Reconstructed neural activity
from a SING-GP model fit. C: Inferred neural latents and dynamics from SING-GP, with high-
probability slow point regions shown in purple. D: Comparison between SING-GP and VDP-GP on
final expected log-likelihood and convergence speed for different discretizations. Error bars are ±
2SE over 5 initializations of Θ. E: Comparison of a forward simulation R2 metric (see Appendix L.5
for details) to assess the goodness of fit for latents and dynamics.

We revisit these analyses using a dataset from Vinograd et al. [55], which consists of calcium imaging
of ventromedial hypothalamus neurons from a mouse interacting with two intruders (Figure 6A).
We model this data using GP-SDEs that incorporate external inputs to capture intruder effects (see
Appendix K.5 for more details), and we choose the same kernel from Hu et al. [14] to encode
interpretable structure into the drift. We fit these models both using SING-GP and VDP-GP for 100
variational EM iterations. Full experimental details can be found in Appendix L.5.

Our SING-GP model captures variance in observed neural activity (Figure 6B) and uncovers low-
dimensional representations consistent with prior findings (Figure 6C). Moreover, the GP-SDE
enables posterior inference over slow points; we use this to verify that SING-GP indeed finds an
approximate line attractor (Figure 6C, purple). In Figure 6D, we assess the effect of discretization
in each method on final expected log-likelihood and convergence speed. SING-GP is robust to ∆t
in both metrics, while VDP-GP’s performance suffers for large ∆t values. This highlights a key
advantage of the SING framework: robustness to ∆t enables accurate, memory-efficient inference at
coarse discretizations. Finally, we evaluate the quality of model fit via a forward simulation metric
(Figure 6E). While SING-GP maintains high predictive R2 for trajectories simulated up to 15 seconds
forward, VDP-GP’s predictive performance degrades more rapidly and is again sensitive to the choice
of ∆t.

6 Discussion

We introduced SING, a method for approximate posterior inference in latent SDE models that har-
nesses the exponential family structure of the variational posterior to achieve rapid, stable convergence.
By deriving tractable NGVI updates and parallelizing the natural-to-mean parameter conversion
via associative scans, SING scales to long time series and handles nonlinear dynamics along with
complex observation models with ease. Although we optimize a discrete-time ELBO, our theoretical
bound (Theorem 1) ensures that SING closely approximates the continuous-time objective. We show
via extensive experiments, including an application to real neural data, that SING outperforms prior
methods in inference accuracy, drift estimation, and robustness to discretization.

However, SING makes simplifying assumptions that suggest several directions for future work. First,
rather than fixing a discretization τ of [0, Tmax] a priori, one could consider adaptively learning
locations at which to discretize inference in order to better approximate rapidly changing dynamics.
Second, future work should explore incorporating learnable locations of inducing points in SING-GP
to allow for more flexible and scale-aware GP priors on the drift. Nevertheless, our results already
demonstrate SING’s effectiveness in a range of challenging practical settings. Altogether, SING is
positioned to be a reliable and broadly applicable tool for facilitating scientific discovery in complex
dynamical systems.
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A Technical assumptions

Throughout our paper, we consider probability measures defined on the measurable space
(C[0, Tmax]

D,BC[0,Tmax]D ), where C[0, Tmax]
D is the Banach space of continuous functions endowed

with the supremum norm.

In order to ensure the SDEs eq. (1) and eq. (7) admit unique, strong solutions, we will assume f and
fq satisfy the standard Lipschitz and linear growth conditions:

Assumption (Drift Regularity): There exist constants C1, C2 ≥ 0 such that for all x,y ∈ RD and
t, s ∈ [0, Tmax]:

∥f(x, t)− f(y, s)∥ ≤ C1

(
∥x− y∥+ |t− s|

)
, ∥f(x, t)∥ ≤ C2

(
1 + ∥x∥

)
,

and the same bounds hold for fq .

In addition, we will assume all SDEs are sufficiently regular such that Girsanov’s Theorem (Ok-
sendal [1], Theorem 8.6.4) can be applied. See, for example, Novikov’s criterion. For the sake of
completeness, we restate this result below:

Theorem 2 (Girsanov’s Theorem for SDEs): Suppose the SDEs

ν1 : dx(t) = b1(x(t), t)dt+Σ1/2dw(t), 0 ≤ t ≤ Tmax (13)

ν2 : dx(t) = (b1(x(t), t) + b2(x(t), t))dt+Σ1/2dw(t), 0 ≤ t ≤ Tmax (14)

have the same initial law ν1(x(0)) = ν2(x(0)) and admit unique, strong solutions. Then ν2 is
absolutely continuous with respect to ν1 and the Radon-Nikodym density is

ZTmax(ν1||ν2) := exp

{∫ Tmax

0

⟨Σ−1/2b2(x(t), t), dw
ν1(t)⟩ − 1

2

∫ Tmax

0

∥Σ−1/2b2(x(t), t)∥2dt

}
.

where (wν1(t))0≤t≤Tmax is a ν1-Brownian motion. In particular, for any bounded functional Φ defined
on C[0, Tmax]

D,

Eν2
[Φ(x)] = Eν1

[Φ(x)ZTmax(ν1||ν2)] .

In particular, Theorem 2 implies that the KL divergence between eq. (1) and eq. (7) is given by

DKL (q ∥ p) = Eq

[
log

(
q(x(0))

p(x(0))
ZTmax(p||q)

)]
= DKL (q(x(0)) ∥ p(x(0))) +

1

2

∫ Tmax

0

Eq∥f(x(t), t)− fq(x(t), t)∥Σ−1dt.

Here, and throughout the appendix, we adopt the notation ∥z∥M := z⊤Mz for M ∈ Rp×p

symmetric, positive semi-definite.

B Exponential families and natural gradients

B.1 Overview of exponential families

Consider the collection of probability densities indexed by η ∈ Rp

q̄(z|η) = h(z) exp(⟨η,T (z)⟩ −A(η)), A(η) = log

(∫
h(z) exp(⟨η,T (z)⟩)ν(dz)

)
with respect to ν, which we consider to be either (i) p-dimensional volume (i.e., Lebesgue measure)
or (ii) counting tuples of p integers (i.e., counting measure).2 q̄(z|η) is a well-defined probability
density whenever A(η) < ∞. The set Ξ = {η ∈ Rp : A(η) < ∞} is the natural parameter
space of the exponential family, and η are its natural parameters. We assume Ξ is an open set, in
which case the exponential family is said to be “regular”. We call h(z) the base measure of the

2Exponential families can be defined for an arbitrary measure ν, but these are the two most common instances.
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exponential family; T (z) ∈ Rp are its sufficient statistics; and A(η) is its log normalizer or log
partition function. Corresponding to the sufficient statistics are the mean parameters µ ∈ Rp of the
exponential family, which are simply the expectations of the sufficient statistics under the exponential
family, µ := Eq[T (z)].

As an example, consider the p-dimensional multivariate normal distributionN (z|ξ,Λ) with unknown
mean ξ and unknown, positive-definite covariance Λ. Then we can write this family in exponential
family form as follows:

q̄(z|ξ,Λ) = (2π)−p/2|Λ|−1/2 exp

(
−1

2
∥z − ξ∥2Λ−1

)
= (2π)−p/2 exp

(
−1

2
tr
(
Λ−1zz⊤)+ z⊤Λ−1ξ − 1

2
{log |Λ|+ ξ⊤Λ−1ξ}

)
.

Let us identify η = (η1,η2) = (vec(Λ−1),Λ−1ξ) as well as h(z) = (2π)−p/2, where
vec(M),M ∈ Rp×p represents the p2-dimensional vector representation of the matrix M . The
natural parameter space is Ξ = {vec(M) : M ∈ Rp×p symmetric, positive-definite} × Rp. The
sufficient statistics of the exponential family are T (z) = (− 1

2vec(zz⊤), z) and the mean parameters
are µ = (− 1

2vec(Λ+ ξξ⊤), ξ). It remains to compute the log normalizer A(η). In particular,

log |Λ| = − log |Λ−1| = − log |η1|
ξ⊤Λ−1ξ = η⊤

2 (η1)
−1η2

which implies A(η) = 1
2 (η

⊤
2 (η1)

−1η2 − log |η1|). Here we slightly abuse notation by treating η1

interchangeably as a matrix and a vector.

Our definition of the exponential family q̄(z|η) leads us to two important results regarding the log
normalizer.

Lemma 1: The log normalizer A(η) is infinitely differentiable on the natural parameter space Ξ.
Moreover, the log normalizer satisfies

∇ηA(η) = Eq̄[T (z)] = µ, ∇2
ηA(η) = Covq̄[T (z)]. (15)

Proof. A proof of the first statement can be found in Lehmann and Romano [57, Theorem 2.7.1]. For
the second, differentiate the log normalizer twice

∇ηA(η) = ∇η log

(∫
h(z) exp(⟨η,T (z)⟩)ν(dz)

)
=

∫
T (z)h(z) exp(⟨η,T (z))ν(dz)∫
h(z) exp(⟨η,T (z)⟩)ν(dz)

=

∫
T (z)h(z) exp(⟨η,T (z)⟩ −A(η))ν(dz)

= Eq̄[T (z)]

∇2
ηA(η) =

∫
∇η {T (z)h(z) exp(⟨η,T (z)⟩ −A(η))} ν(dz)

= Eq̄[T (z)T (z)⊤]− (Eq̄[T (z)])(Eq̄[T (z)])⊤

= Covq̄[T (z)].

As an immediate consequence of the identities in eq. (15), we can give an equivalent expression for
the Fisher information matrix of the exponential family q̄(z|η).

Lemma 2: Consider q̄(z|η) constituting an exponential family. And let dµ(η)
dη = ∇2

ηA(η) be the
Jacobian of the mapping from natural to mean parameters. Then the following are equivalent:

∇2
ηA(η) = Covq̄(z|η)[T (z)] = F(η),

where F(η) denotes the Fisher information of the exponential family.
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Proof. The first identity is exactly the second statement in Lemma 1. For the second, recall the
identity

F(η) = Covq̄(z|η)[∇η log q̄(z|η)]

for the Fisher information. Plugging in the density of the exponential family, we get

F(η) = Covq̄(z|η)[∇η⟨η,T (z)⟩] = Covq̄(z|η)[T (z)].

Define the set of mean parameters attainable by some probability density with respect to ν

M :=
{
µ ∈ Rp | µ = Eq̃(z)[T (z)], q̃ a probability density wrt ν

}
.

Note that, in this definition, q̃(z) does not necessarily belong to the exponential family q̄(z|η).
Proposition 1 demonstrates that ∇ηA(η) maps from the interior of the natural parameter space Ξ to
the mean parameter spaceM. In fact, this mapping is surjective onto relint(M), the relative interior
ofM (see Wainwright et al. [58, Theorem 3.3]). Recall that for a convex set C,

relint(C) = {c ∈ C | for every c′ ̸= c, there exists d ∈ C, λ ∈ (0, 1) such that c = λc′ + (1− λ)d}.

A question of considerable interest is when, in addition, ∇ηA(η) will be one-to-one. In other words,
when can each mean parameter µ be identified with a unique member of the exponential family.

An exponential family is said to be minimal if its sufficient statistics do not satisfy any linear
constraints. If a p-dimensional exponential family is not minimal, it can be reduced to a (p − 1)-
dimensional exponential family by rewriting one sufficient statistic as a linear combination of
the others. In the multivariate normal family example, the exponential family as written is not
minimal, since zz⊤ is symmetric, and hence there are duplicate statistics along the off-diagonal. To
reparameterize this exponential family in minimal form, one can define the symmetric vectorization
operator svec(M) := (M11,

√
2M21,M22,

√
2M31,

√
2M32,M33, . . . ,Mpp) ∈ Rp(p+1)/2 for

M ∈ Rp×p symmetric and then rewrite the multivariate normal density as

q̄(z|ξ,Λ) = (2π)−p/2 exp

(
−1

2
svec(Λ−1)⊤svec(zz⊤) + z⊤Λ−1ξ − 1

2
{log |Λ|+ ξ⊤Λ−1ξ}

)
.

The natural parameters of the minimal exponential family are η = (η1,η2) = (svec(Λ−1),Λ−1ξ).
Note that in minimal exponential family form, the natural parameter space has dimension p(p +
1)/2 + p, whereas in the non-minimal form it has dimension p2 + p.

It is a classical result (see Wainwright et al. [58, Proposition 3.2]) that when q̄(z|η) constitutes
a minimal exponential family, then ∇ηA(η) is also one-to-one. Moreover, the mean parameter
spaceM is full-dimensional, meaning int(M) = relint(M). Observe that since ∇ηA(η) is then
both surjective and one-to-one, the inverse mapping [∇A]−1 : int(M) → Ξ is well-defined. As a
consequence of the Inverse Function Theorem, we have that for minimal exponential families, the
inverse mapping [∇A]−1(µ) has Jacobian [Covq̄(z|η(µ))[T (z)]]−1 = F (η(µ))−1.

Lastly, we give an expression for the KL divergence in an exponential family.

Lemma 3: Suppose q̄(z|η1) and q̄(z|η2) belong to the same p-dimensional exponential family with
natural parameters η1 and η2, respectively. Then

DKL (q̄(z|η1) ∥ q̄(z|η2)) = ⟨η1 − η2,µ1⟩ −A(η1) +A(η2).

Proof. Write out the difference between the log densities of q̄(z|η1) and q̄(z|η2). Then recognize
that the contribution of the base measure h(z) cancels and that Eq(z|η1)T (z) = µ1.

Recall that in Section 2.2, we motivated natural gradient VI by claiming

DKL (q̄(z|η1) ∥ q̄(z|η2)) ≈
1

2
(η2 − η1)

⊤F(η1)(η2 − η1).
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We are now equipped to justify this claim by Taylor expanding A(η2) about η1 and invoking
Lemma 3:

A(η2) = A(η1) + ⟨η2 − η1,µ1⟩+
1

2
(η2 − η1)

⊤F(η1)(η2 − η1) +O(∥η2 − η1∥3)

=⇒ ⟨η1 − η2,µ1⟩ −A(η1) +A(η2)︸ ︷︷ ︸
=DKL(q̄(z|η1) ∥ q̄(z|η2))

=
1

2
(η2 − η1)

⊤F(η1)(η2 − η1) +O(∥η2 − η1∥3).

In the first line, we used the result∇ηA(η1) = µ1 from Lemma 1 as well as the result∇2
ηA(η1) =

F(η1) from Lemma 2.

B.2 Natural gradients and exponential families

Next, we discuss why the natural gradient VI update eq. (4) simplifies to a gradient update of the
ELBO L(η) with respect to the mean parameters µ, rather than the natural parameters η, when the
variational posterior constitutes a minimal exponential family.

Recall eq. (4) that the natural gradient VI update is

η(j+1) = η(j) + ρ[F(η(j))]−1∇ηL(η(j)).

From Lemma 2, we have that in a minimal exponential family the Jacobian of the change-of-variable
from natural to mean parameters is the Fisher information matrix F(η). This implies, by the Inverse
Function Theorem, that the inverse Fisher information matrix is the Jacobian of the change-of-variable
from mean to natural parameters. This allows us to rewrite the NGVI update as

η(j+1) = η(j) + ρ[F(η(j))]−1∇ηL(η(j))

= η(j) + ρ

(
dη(µ)

dµ
(µ(j))

)
∇ηL(η(j))

= η(j) + ρ∇µL(η(j)).

In the final line, we used the chain rule. The equivalence between these two updates boils down to
the fact that, in minimal exponential families, one can change between natural and mean parameters
by multiplying by the Fisher information matrix.

Prior to concluding this section, we provide some helpful natural gradient identities that will enable
us to compute our SING natural gradient VI updates.

Lemma 4: Suppose q̄(z|η1) and q̄(z|η2) belong to the same p-dimensional exponential family with
natural parameters η1 and η2, respectively. Then

∇µ1
DKL (q̄(z|η1) ∥ q̄(z|η2)) = η1 − η2

∇µ1
Eq̄(z|η1) log q̄(z|η1) = η1.

Proof. Differentiating the expression for the KL divergence Lemma 3, we obtain

∇µ1
DKL (q̄(z|η1) ∥ q̄(z|η2)) = ∇µ1

(⟨η1 − η2,µ1⟩ −A(η1) +A(η2))

=

(
dη(µ)

dµ
(µ1)

)
µ1 + (η1 − η2)−

(
dη(µ)

dµ
(µ1)

)
d

dη
A(η1)︸ ︷︷ ︸
=µ1

= η1 − η2,

as claimed. As for the gradient of the negative entropy of an exponential family, we have by a nearly
identical argument

∇µ1
Eq̄(z|η1) log q̄(z|η1) = ∇µ1

(⟨η1,µ1⟩ −A(η1))

=

(
dη(µ)

dµ
(µ1)

)
µ1 + η1 −

(
dη(µ)

dµ
(µ1)

)
d

dη
A(η1)︸ ︷︷ ︸
=µ1

= η1.
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An important point is that while the natural gradient of the KL divergence and entropy admit simple,
closed forms in an exponential family, the same is not true for the gradient with respect to the natural
parameters. Differentiating the expression for the KL divergence from Lemma 3, we obtain

∇η1DKL (q̄(z|η1) ∥ q̄(z|η2)) = ∇η1(⟨η1 − η2,µ1⟩ −A(η1) +A(η2))

= µ1 +

(
dµ(η)

dη
(η1)

)
(η1 − η2)− µ1

= F (η1)(η1 − η2).

Notably, this expression requires multiplication by the Fisher information matrix, which, as we
pointed out in Section 3.1, is intractable in high-dimensional exponential families.

C ELBO derivation

We first provide a derivation of the continuous-time ELBO, Lcont. Using the notation from Theorem
2, we have

log p(y|Θ) = log

∫
p(y|x,Θ)p(x|Θ)dx

(i)
= log

∫
p(y|x,Θ)ZTmax(q||p)

p(x(0))

q(x(0))
q(x)dx

(ii)

≥
∫

log

(
p(y|x,Θ)ZTmax(q||p)

p(x(0))

q(x(0))

)
q(x)dx

= Eq[log p(y|x,Θ)]− DKL (q(x) ∥ p(x|Θ))

= Eq[log p(y|x,Θ)]− DKL (q(x(0)) ∥ p(x(0)))−
1

2

∫ Tmax

0

Eq∥f(x(t)|Θ)− fq(x(t), t)∥2Σ−1dt︸ ︷︷ ︸
=DKL(q(x|x(0)) ∥ p(x|x(0),Θ))

.

Equality (i) follows from Girsanov’s Theorem and inequality (ii) follows from Jensen’s inequality.
Here, the notation p(x|Θ)dx is adopted for readability. Formally, p(x|Θ)dx denotes integration
with respect to the probability measure p(x|Θ) over paths C[0, Tmax]

D.

Note that if the parameters of p(x(0)) = N (ν,V ) are learned, then during the learning step one will
set p(x(0)) = q(x(0)), and the second term of the ELBO disappears.

Next, for the discrete-time ELBO, replacing the path measures q(x) and p(x) with q(x0:T ) and
p(x0:T ), respectively, and following an identical argument yields the lower bound on the marginal
log likelihood

log p(y|Θ) ≥ Eq[log p(y|x,Θ)]− Eq

[
log

q(x0:T )

p(x0:T |Θ)

]
︸ ︷︷ ︸

DKL(q(x0:T ) ∥ p(x0:T |Θ))

.

Substituting p̃(x0:T |Θ) for p(x0:T |Θ) in the denominator of the second term yields Lapprox.

D Derivation of SING updates

In this section we derive the SING updates eq. (11) as the natural gradient ascent update eq. (4)
performed the approximate ELBO Lapprox.

Prior to computing the gradient, we first define mi = Eq[xi] and Si = Covq[xi], 0 ≤ i ≤ T to be
the marginal mean and covariance of xi under q as well as Si+1,i = Covq[xi+1,xi], 0 ≤ i ≤ T − 1
to be the pairwise covariance of xi+1 and xi under q. We shall adopt this notation throughout the
remainder of the appendix. By our definition of the mean parameters from Section 3.1, we have
µi,1 = mi, µi,2 = Si +mim

⊤
i , µi,3 = Si+1,i +mi+1m

⊤
i .

Now, to compute the NGVI update step eq. (4), we first invoke the exponential family identity for
the negative entropy from Appendix B.2, Lemma 4: ∇µEq log q(x0:T ) = η. Consequently, eq. (4)
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simplifies to

η(j+1) = η(j) + ρ∇µL(µ(j))

= (1− ρ)η(j) + ρ∇µEq[log p̃(x0:T |Θ)p(y|x,Θ)]

= (1− ρ)η(j) + ρ∇µ

{ T−1∑
i=0

{Eq[log p̃(xi+1|xi,Θ)] + Eq[log p(yi|xi,Θ)δi]}

+ Eq[log p̃(x0|Θ)] + Eq[log p(yT |xT ,Θ)δT ]

}
.

From here, we consider the gradient with respect to µi,1, µi,2, µi,3 separately. Looking at our
expression for Eq[log p̃(xi+1|xi,Θ)] in Appendix F, Proposition 1 we see that Eq[log p̃(xi+1|xi,Θ)]
depends only on (mi,mi+1,Si,Si+1,Si+1,i), and hence only on (µi,1,µi+1,1,µi,2,µi+1,2,µi,3).
Likewise, Eq[log p(yi|xi,Θ)] depends only on the marginal parameters of q at time τi, (mi,Si),
and hence only on (µi,1,µi,2). Eq[log p̃(x0|Θ)], depends only on (m0,S0), and hence only on
(µ0,1,µ0,2). Separating out the contributions of µi,1, µi,2, µi,3, we recover the local updates eq. (11).

In order to compute the gradients with respect to µi = (µi,1,µi,2,µi,3), we perform a lo-
cal change-of-variable for each i = 0, . . . , T − 1. Specifically, we use the bijective map
(µi,mi+1,Si+1) 7→ (mi,mi+1,Si,Si+1,Si+1,i) in order to first compute gradients with respect
to (mi,mi+1,Si,Si+1,Si+1,i) and subsequently multiply the result by the Jacobian of this map.
Note that the Jacobian is of dimension D(2 + 3D)×D(2 + 3D), which importantly does not scale
with the size T of the grid τ .

E Proofs for continuous-time approximation

Theorem 1 (Precise Statement): Assume f is globally Lipschitz, jointly in (x, t)

∥f(x, t)− f(y, s)∥ ≤ Lf (∥x− y∥+ |t− s|)

in addition to

sup
0≤t≤Tmax

∥A(t)∥, sup
0≤t≤Tmax

∥b(t)∥ ≤M, ∥A(t)−A(s)∥, ∥b(t)− b(s)∥ ≤M |t− s|, 0 ≤ s ≤ t ≤ Tmax.

Suppose further that A(t) is differentiable on 0 < t < Tmax.

Then the error between the continuous and approximate ELBO satisfies

|Lcont(q,Θ)− Lapprox(q,Θ)| ≤ (∆t)1/2 · C(Eq∥x(0)∥2, Tmax,M,D,Lf , ∥Σ−1/2∥, ∥Σ1/2∥)

where ∆t = maxT−1
i=0 ∆i is the mesh of the grid τ . The constant C(Eq∥x(0)∥2, Tmax,M,D,Lf )

does not depend on (A(t))0≤t≤Tmax or (b(t))0≤t≤Tmax , except through M .

Proof of Theorem 1. For ease of notation, we will drop the dependence of f on Θ. And without loss
of generality, we will assume Σ1/2 = I . This is because the ELBO is invariant under invertible
transformations, and so applying the change-of-variable x 7→ v := Σ−1/2x reduces the diffusion co-
efficient to identity and changes the prior drift to Σ−1/2 ◦f ◦Σ1/2. The variational posterior drift also
transforms in the same way. The transformed prior drift has Lipschitz constant ∥Σ−1/2∥∥Σ1/2∥Lf .

Recall that we defined the difference between subsequent grid points to be ∆i = τi+1 − τi, and
let us define γ(x(u), u) = fq(x(u), u) − f(x(u), u). Then we decompose the error between the
continuous and approximate ELBO as

|Lcont(q,Θ)− Lapprox(q,Θ)| ≤

∣∣∣∣∣12
∫ Tmax

0

Eq∥f(x, t)− fq(x, t)∥2dt−
∆i

2

T−1∑
i=0

Eq ∥γ(xi, τi)∥2
∣∣∣∣∣

+

∣∣∣∣∣∆i

2

T−1∑
i=0

Eq ∥γ(xi, τi)∥2 − Eq log

T−1∏
i=0

q(xi+1|xi)

p̃(xi+1|xi)

∣∣∣∣∣ . (16)
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We will proceed by bounding each of these two terms individually. To do so, we first state and prove
the following three :

Lemma 5:

sup
0≤t≤Tmax

Eq∥x(t)∥2 ≤ (Eq∥x(0)∥2 +DTmax +M2) exp{(2M + 1)Tmax} := C0(Eq∥x(0)∥2, Tmax,M,D)

Proof. By our assumptions on (A(u))0≤u≤Tmax and (b(u))0≤u≤Tmax , the SDE q admits a unique
strong solution that satisfies

∫ 1

0
Eq∥x(t)∥2dt <∞. By Ito’s Lemma,

d∥x(t)∥2 = 2⟨x(t),fq(x(t), t)⟩dt+ 2⟨x(t), dw(t)⟩+Ddt.

Taking the expectation of both sides and recognizing that the Ito integral is a bona fide martingale,

Eq∥x(t)∥2 = Eq∥x(0)∥2 +
∫ t

0

{2Eq⟨x(u),fq(x(u), u)⟩+D}du

≤ Eq∥x(0)∥2 +
∫ t

0

{2Eq{∥x(u)∥(M∥x(u)∥+M)}+D}du

≤ Eq∥x(0)∥2 +D · t+M2t+

∫ t

0

(2M + 1)Eq∥x(u)∥2du.

Grönwall’s inequality yields the desired inequality,

sup
0≤t≤Tmax

Eq∥x(t)∥2 ≤ (Eq∥x(0)∥2 +DTmax +M2) exp{(2M + 1)Tmax}.

Lemma 6: For all 0 ≤ s ≤ t ≤ Tmax, we have the following bound

Eq∥x(t)− x(s)∥2 ≤ C1(Eq∥x(0)∥2, Tmax,M,D) · (t− s)

for C1(Eq∥x0∥2, Tmax,M,D) not depending on s, t.

Proof. We start by rewriting the squared norm difference between x(t) and x(s)

∥x(t)− x(s)∥2 =

∥∥∥∥∫ t

s

dwq(u) +

∫ t

s

fq(x(u), u)du

∥∥∥∥2
=

∥∥∥∥ ∫ t

s

dwq(u) +

∫ t

s

A(u)(x(u)− x(s))du+

∫ t

s

({A(u)−A(s)}x(s) + {b(u)− b(s)})du

+ (t− s)fq(x(s), s)

∥∥∥∥2
≤ 4

{∥∥∥∥∫ t

s

dwq(u)

∥∥∥∥2 + ∥∥∥∥∫ t

s

A(u)(x(u)− x(s))du

∥∥∥∥2
+

∥∥∥∥∫ t

s

({A(u)−A(s)}x(s) + {b(u)− b(s)})du
∥∥∥∥2 + (t− s)2∥A(s)x(s) + b(s)∥2

}
,

where we use the bound (
∑L

ℓ=1 aℓ)
2 ≤ L(

∑L
ℓ=1 a

2
ℓ). We take the expectation of both sides to obtain

Eq∥x(t)− x(s)∥2

≤ 4

{
D(t− s) + (t− s)2 sup

0≤u≤Tmax

Eq∥fq(x(u), u)∥2 + Eq

∥∥∥∥∫ t

s

A(u)(x(u)− x(s))du

∥∥∥∥2
+ Eq

∥∥∥∥∫ t

s

({A(u)−A(s)}xs + {b(u)− b(s)})du
∥∥∥∥2}.
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By applying Cauchy-Schwarz to each of the final two terms, we get

Eq

∥∥∥∥∫ t

s

A(u)(x(u)− x(s))du

∥∥∥∥2 ≤ (t− s)
∫ t

s

Eq∥A(u)(x(u)− x(s))∥2du

≤M2(t− s)
∫ t

s

Eq∥x(u)− x(s)∥2du

as well as

Eq

∥∥∥∥∫ t

s

({A(u)−A(s)}x(s) + {b(u)− b(s)})du
∥∥∥∥2

≤ (t− s)

∫ t

s

Eq∥{A(u)−A(s)}x(s) + {b(u)− b(s)}∥2du

≤ 2(t− s)

∫ t

s

Eq(∥{A(u)−A(s)}x(s)∥2 + ∥b(u)− b(s)∥2)du

≤ 2(t− s)3M2

∫ t

s

(Eq∥x(s)∥2 + 1)du

≤ 2(t− s)4M2

(
sup

0≤u≤Tmax

Eq∥x(u)∥2 + 1

)
.

Combining our above bounds and invoking Grönwall’s inequality, we get

Eq∥x(t)− x(s)∥2 ≤ 4

{
D(t− s) + (t− s)2 sup

0≤u≤Tmax

Eq∥fq(x(u), u)∥2

+ 2(t− s)4M2

(
sup

0≤u≤Tmax

Eq∥x(u)∥2 + 1

)}
exp

{
M2(t− s)2

}
.

Recognizing the leading term as (t− s) and invoking the bound on sup0≤u≤Tmax
Eq∥x(u)∥2 from

Lemma 5 we obtain the result

Eq∥x(t)− x(s)∥2 ≤ C1(Eq∥x(0)∥2, Tmax,M,D) · (t− s).

Lemma 7: Under q, the mean mi,i+1 and covariance Si,i+1 of q(xi+1|xi) satisfy

mi,i+1 = xi +∆ifq(xi, τi) + (∆i)
2(r

(1)
i xi + r

(2)
i )

Si,i+1 = ∆iI +
(∆i)

2

2
(A(τi) +A(τi)

⊤) + (∆i)
3Ri

where ∥r(1)i ∥, ∥r
(2)
i ∥, ∥Ri∥ ≤ C2(M) are independent of 0 ≤ i ≤ T .

Proof. Since q is the (strong) solution to the linear SDE eq. (7), then q(xi+1|xi) is Gaussian with
mean and covariance

mi,i+1 := Ψ(τi+1, τi)xi +

∫ ∆i

0

Ψ(τi +∆i, τi + u)b(u)du

Si,i+1 :=

∫ ∆i

0

Ψ(τi +∆i, τi + u)Ψ(τi +∆i, τi + u)⊤du,

Ψ(t, s) := I +

∞∑
k=1

∫ t

s

∫ u1

s

· · ·
∫ uk−1

s

A(u1) · · ·A(uk)du1 · · · duk, 0 ≤ s ≤ t ≤ Tmax (17)

where the series form of the state transition matrix is known as the Peano-Baker series [59]. Truncation
of the Peano-Baker series at its second term yields

Ψ(t, s) := I +

∫ t

s

A(u)du+R(1)(t, s)
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where

∥R(1)(t, s)∥ =

∥∥∥∥∥
∞∑
k=2

∫ t

s

∫ u1

s

· · ·
∫ uk−1

s

A(u1) · · ·A(uk)du1 · · · duk

∥∥∥∥∥
(i)

≤
∞∑
k=2

∥∥∥∥∫ t

s

∫ u1

s

· · ·
∫ uk−1

s

A(u1) · · ·A(uk)du1 · · · duk
∥∥∥∥

(ii)

≤
∞∑
k=2

(t− s)kMk

k!

= exp((t− s)M)− 1− (t− s) ≤ M2(t− s)2

2
exp(M(t− s)).

In inequality (i) we used the fact that the series converges absolutely and for equality (ii) we used∫ t

s

∫ u1

s
· · ·
∫ uk−1

s
du1 · · · duk = (t− s)k/k! as well as our assumption ∥A(t)∥ ≤M . Moreover, by

the Mean-Value Theorem,∫ t

s

A(u)du = (t− s)A(s) +R(2)(t, s), ∥R(2)(t, s)∥ ≤M(t− s)2 (18)

where we used our assumption that A(t) is M -Lipschitz on [0, Tmax], and hence its derivative is
bounded in operator norm by M . Plugging this into our expression eq. (17) for the mean and
covariance matrix,

mi,i+1 = xi +∆ifq(xi, τi) + (∆i)
2(r

(1)
i xi + r

(2)
i )

Si,i+1 = ∆iI +
(∆i)

2

2
(A(τi) +A(τi)

⊤) + (∆i)
3Ri

where ∥r(1)i ∥, ∥r
(2)
i ∥, ∥Ri∥ ≤ C2(M) are independent of the index i.

As an immediate consequence of Lemmas 5 and 6, we have for any 0 ≤ s ≤ t ≤ Tmax,

Eq∥fq(x(t), t)− fq(x(s), s)∥2

≤ 3Eq

{
∥A(t)∥2∥x(t)− x(s)∥2 + ∥A(t)−A(s)∥2∥x(s)∥2 + ∥b(t)− b(s)∥2

}
≤ 3M2Eq∥x(t)− x(s)∥2 + (t− s)2M2

{
1 + sup

0≤u≤Tmax

Eq∥x(u)∥2
}

≤ C3(Eq∥x(0)∥2, Tmax,M,D) · (t− s).

We also have that for any 0 ≤ t ≤ Tmax,

Eq∥γ(x(t), t)∥2 ≤ 2

(
M2

{
1 + sup

0≤u≤Tmax

Eq∥x(u)∥2
}
+ sup

0≤u≤Tmax

Eq∥f(x(u), u)∥2
)

≤ C4(Eq∥x(0)∥2, Tmax,M,D).

For the second inequality we invoke the linear growth condition on f and Lemma 5.

Equipped with these results, we are finally prepared to handle the two terms in the decomposition
eq. (16). For the first term,

1

2

∣∣∣∣∣
∫ Tmax

0

Eq∥f(x(u), u)− fq(x(u), u)∥2du−
T−1∑
i=0

∆iEq ∥γ(xi, τi)∥2
∣∣∣∣∣

=
1

2

∣∣∣∣∣
T−1∑
i=0

∫ τi+1

τi

{
Eq

∥∥∥γ(1)(xi, τi)
∥∥∥2 − Eq∥γ(1)(x(u), u)∥2

}
du

∣∣∣∣∣
≤1

2

T−1∑
i=0

∫ τi+1

τi

Eq

{
(∥γ(1)(xi, τi)∥+ ∥γ(1)(x(u), u)∥)∥γ(1)(xi, τi)− γ(1)(x(u), u)∥

}
du
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≤1

2

T−1∑
i=0

∫ τi+1

τi

2
√
C4

√
Eq∥γ(1)(xi, τi)− γ(1)(x(u), u)∥2du

≤1

2

T−1∑
i=0

∫ τi+1

τi

2
√
2C4

√
(2L2

f + C3)Eq∥xi − x(u)∥2 + 2L2
f (t− u)2du

≤
T−1∑
i=0

∆
3/2
t C5(Eq∥x0∥2, Tmax,M,D,Lf )

≤(∆t)1/2C5(Eq∥x0∥2, Tmax,M,D,Lf ).

Altogether, we have proven that the first term in eq. (16) is O((∆t)1/2).
For the second term, we know that the strong solution q to the linear SDE eq. (7) has Gaussian
transition densities q(xi+1|xi). By the KL formula for two Gaussian distributions

Eq log
q(xi+1|xi)

p̃(xi+1|xi)
=

1

2
Eq

(
1

∆i
tr(Si+1,i)−D +D log∆i − log |Si,i+1|+

1

∆i
∥mi,i+1 − (xi +∆if(xi, τi))∥22

)
where mi,i+1 and Si,i+1 are defined as in Lemma 7. By Lemma 7, the mean term is

1

2∆i
Eq∥mi,i+1 − (xi +∆if(xi, τi))∥22

=
∆i

2
Eq∥fq(xi, τi)− f(xi, τi)∥2 +∆2

iC6(Eq∥x0∥2,M,D,Lf )

=
∆i

2
Eq∥γ(xi, τi)∥2 +∆2

iC6(Eq∥x0∥2,M,D,Lf )

In the second line, we expand the square and invoke the bound on sup0≤t≤Tmax
Eq∥x(t)∥2 from

Lemma 5. Also by Lemma 7, the covariance term satisfies

1

∆i
tr(Si,i+1) = D +∆itr(A(τi) +A(τi)

⊤) + ∆2
i tr(Ri)

log |Si,i+1| = D log∆i +∆itr(A(τi) +A(τi)
⊤) + ∆2

iC7(M).

Altogether, we have shown

∆i

2
Eq∥γ(xi, τi)∥2 − Eq log

q(xi+1|xi)

p̃(xi+1|xi)
= ∆2

iC8(Eq∥x0∥2, Tmax,M,D,Lf ).

Summing across time steps yields∣∣∣∣∣∆i

2

T−1∑
i=0

Eq ∥γ(xi, τi)∥2 − Eq log

T−1∏
i=0

q(xi+1|xi)

p̃(xi+1|xi)

∣∣∣∣∣ ≤ (∆t)C8(Eq∥x0∥2, Tmax,M,D,Lf ).

F Computing expectations of prior transition densities

Here, we provide a proof of Proposition 1 from Section 3.3, which says that Eq(x)[log p̃(xi+1|xi,Θ)]
can be written as an expectation with respect to q(xi) only. To do this, we first prove the following
statement, which is a consequence of Stein’s lemma.

Lemma 8: Suppose
[

xi

xi+1

]
∼ N

([
mi

mi+1

]
,

[
Si S⊤

i+1,i

Si+1,i Si+1

])
where xi,xi+1 ∈ RD. Then, for

any f : RD → RD, E
[
f(xi)(xi+1 −mi+1)

⊤] = E [Jf (xi)]S
⊤
i+1,i, where Jf (xi) is the Jacobian

of f evaluated at xi.

Proof. First, for notational simplicity, we denote

x̃ :=

[
xi

xi+1

]
, g(x̃) :=

[
f(xi)

f(xi+1)

]
, m̃ =

[
mi

mi+1

]
, S̃ =

[
Si S⊤

i+1,i

Si+1,i Si+1

]
.
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Next, we apply Stein’s lemma to the Gaussian random vector x̃ and function g(·). This yields the
identity,

Eq(x̃)

[
g(x̃)(x̃− m̃)⊤

]
= Eq(x̃) [Jg(x̃)] S̃, (19)

where Jg(x̃) is the Jacobian of g evaluated at x̃:

Jg(x̃) =

[
Jf (xi) 0

0 Jf (xi+1)

]
.

Reading off the bottom right block of matrices in eq. (19) gives,

E
[
f(xi)(xi+1 −mi+1)

⊤] = E [Jf (xi)]S
⊤
i+1,i.

Using this lemma, we can now prove Proposition 1.

Proposition 1: The term Eq[log p̃(xi+1|xi,Θ)] can equivalently be written in terms of the
mean parameters (µi, µi+1) and the expectations Eq [f(xi|Θ)] ,Eq

[
f(xi|Θ)⊤Σ−1f(xi|Θ)

]
, and

Eq

[
Jf(·|Θ)(xi)

]
, thereby reducing the dimensionality of integration from R2D to RD.

Proof. Expanding the transition expectation term, we have
Eq[log p̃(xi+1 | xi,Θ)] = Eq[logN (xi+1 | xi +∆if(xi|Θ),∆iΣ)]

= −D
2
log(2π∆i)−

1

2∆i
Eq

[
∥xi+1 − xi −∆if(xi|Θ)∥2Σ−1

]
.

We can rewrite the expectation in the above line as
Eq

[
∥xi+1 − xi −∆if(xi|Θ)∥2Σ−1

]
= Eq[∥xi+1∥2Σ−1 + ∥xi∥2Σ−1 +∆2

i ∥f(xi|Θ)∥2Σ−1 − 2x⊤
i+1Σ

−1xi − 2∆ix
⊤
i+1Σ

−1f(xi|Θ)

+ 2∆ix
⊤
i Σ

−1f(xi|Θ)]

= tr(Σ−1(Si+1 +mi+1m
⊤
i+1)) + tr(Σ−1(Si +mim

⊤
i )) + ∆2

iEq[f(xi|Θ)⊤Σ−1f(xi|Θ)]

− 2tr(Σ−1(S⊤
i+1,i +mim

⊤
i+1))− 2∆iEq

[
x⊤
i+1Σ

−1f(xi|Θ)
]
+ 2∆iEq

[
x⊤
i Σ

−1f(xi|Θ)
]

Now, applying Lemma 8 to the second to last term, we have

Eq

[
x⊤
i+1Σ

−1f(xi|Θ)
]
= tr(Σ−1(Eq[f(xi|Θ)]m⊤

i+1 + Eq

[
Jf(·|Θ)(xi)

]
S⊤
i+1,i)).

Applying Stein’s lemma to the last term, we have

Eq

[
x⊤
i Σ

−1f(xi|Θ)
]
= tr(Σ−1(Eq[(f(xi|Θ)]m⊤

i + Jf(·|Θ)(xi)Si)).

Thus, we have shown that Eq[log p̃(xi+1|xi,Θ)] can be written in terms of µi, µi+1, and the
expectations Eq [f(xi|Θ)] ,Eq

[
f(xi|Θ)⊤Σ−1f(xi|Θ)

]
, and Eq

[
Jf(·|Θ)(xi)

]
.

G Parallelizing SING

G.1 Sequential computation of log normalizer

Here, we describe the naive sequential approach of converting from natural parameters η to mean
parameters µ of q(x0:T ). The idea is to marginalize out one variable at a time in eq. (12), starting
from x0 and ending at xT .

We’ll first show how to marginalize out x0 and x1, and then use this to derive a general recursive
update for this sequential approach. To marginalize out x0, we focus on the following integral which
contains all terms depending on x0.∫

exp

(
−1

2
x⊤
0 J0x0 + (h0 −L⊤

0 x1)
⊤x0

)
dx0

= (2π)
K
2 |J0|−

1
2 exp

(
1

2
h⊤
0 J

−1
0 h0

)
︸ ︷︷ ︸

:=Z0

exp

(
h
(p)⊤
1 x1 −

1

2
x⊤
1 J

(p)
1 x1

)
,
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where Z0 is the contribution to the log normalizer from marginalizing out x0, and

J
(p)
1 = −L0J

−1
0 L⊤

0 , h
(p)
1 = −L0J

−1
0 h0.

Next, when marginalizing out x1, we should integrate the potential exp
(
h
(p)⊤
1 x1 − 1

2x
⊤
1 J

(p)
1 x1

)
from the previous step multiplied by the rest of the terms in A(η) that depend on x1. This gives the
following integral,∫

exp

(
h
(p)⊤
1 x1 −

1

2
x⊤
1 J

(p)
1 x1

)
exp

(
−1

2
x⊤
1 J1x1 − x⊤

2 L1x1 + h⊤
1 x1

)
dx1

=

∫
exp

−1

2
x⊤
1 (J1 + J

(p)
1︸ ︷︷ ︸

:=J
(c)
1

)x1 + (h1 + h
(p)
1︸ ︷︷ ︸

:=h
(c)
1

−L⊤
1 x2)

⊤x1

 dx1

= (2π)
K
2 |J1|−

1
2 exp

(
1

2
h⊤
1 J

−1
1 h1

)
︸ ︷︷ ︸

:=Z1

exp

(
h
(p)⊤
2 x2 −

1

2
x⊤
2 J

(p)
2 x2

)

where Z1 is the contribution to the log normalizer from marginalizing out x1, and

J
(p)
2 = −L1J

(c)−1
1 L⊤

1 , h
(p)
2 = −L1J

(c)−1
1 h

(c)
1 .

Generalizing these recursions leads to the following sequential algorithm:

1. Initialize J
(p)
0 = 0, h(p)

0 = 0, and logZ = 0.
2. For i = 0, . . . , T :

(a) Update J
(c)
i ← Ji + J

(p)
i and h

(c)
i ← hi + h

(p)
i .

(b) Update logZ ← logZ + logZi.

(c) Update J
(p)
i+1 ← −LiJ

(c)−1
i L⊤

i and h
(p)
i+1 ← −LiJ

(c)−1
i h

(c)
i .

3. Return A(η) = logZ.

Time complexity In each iteration i, this sequential algorithm has time complexity O(D3) which
comes from the matrix inversion and multiplication in −LiJ

(c)−1
i L⊤

i . Since each iteration relies on
values computed in the previous iteration, this algorithm must be implemented sequentially, leading
to a total time complexity of O(D3T ).

G.2 Parallelized computation of log normalizer

Here, we present our new method of converting from natural to mean parameters in parallel time
using associative scans, leading to substantial computational speedups on modern parallel hardware.
As discussed in Section 3.4, we accomplish this by defining elements in the scan as unnormalized
Gaussian potentials ai,j and combine them using the binary associative operator,

ai,j • aj,k =

∫
ai,jaj,kdxj . (20)

Note that eq. (20) is indeed a binary associative operator, as it satisfies the identity:

(ai,j • aj,k) • ak,l =
∫ (∫

ai,jaj,kdxj

)
ak,ldxk

=

∫
ai,j

(∫
aj,kak,ldxk

)
dxj

= ai,j • (aj,k • ak,l).

In the following calculation, we show how to compute the binary associative operator between two
potentials analytically. We will start with computing the operator between two consecutive potentials,
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and use this calculation to generalize to computing any pair of potentials with a shared variable to be
marginalized.

Let ai−1,i and ai,i+1 be two consecutive potentials. Then,
ai−1,i • ai,i+1

=

∫
exp

(
−1

2
x⊤

i Jixi − x⊤
i−1L

⊤
i−1xi + h⊤

i xi

)
exp

(
−1

2
x⊤

i+1Ji+1xi+1 − x⊤
i L

⊤
i xi+1 + h⊤

i+1xi+1

)
dxi

= exp

(
−1

2
x⊤

i+1Ji+1xi+1 + h⊤
i+1xi+1

)∫
exp

(
−1

2
x⊤

i Jixi + (hi −Li−1xi−1 −L⊤
i xi+1)

⊤xi

)
dxi

= (2π)
D
2 |Ji|−

1
2︸ ︷︷ ︸

:=Zlocal

exp

(
−1

2

(
xi−1

xi+1

)⊤
(
J

(p)
1 L(p)⊤

L(p) J
(p)
2

)(
xi−1

xi+1

)
+

(
xi−1

xi+1

)⊤
(
h

(p)
1

h
(p)
2

))

= ai−1,i+1

where Zlocal is the contribution to the log normalizer from this operation, and

J
(p)
1 = −L⊤

i−1J
−1
i Li−1, J

(p)
2 = Ji+1 −LiJ

−1
i L⊤

i ,

h
(p)
1 = −L⊤

i−1J
−1
i hi, h

(p)
2 = hi+1 −LiJ

−1
i hi,

L(p) = LiJ
−1
i Li−1.

From the calculation above, we observe that the element ai,j , where i and j are not necessarily
consecutive, takes the general form

ai,j = Zlocal exp

(
−1

2

(
xi

xj

)⊤(
J1 L⊤

L J2

)(
xi

xj

)
+

(
xi

xj

)⊤(
h1

h2

))
.

Using this form, we now derive the analytical result of the binary associative operator between any
two Gaussian potentials with a shared marginalization variable.

ai,j • aj,k

=

∫
Zlocal exp

(
−1

2

(
xi

xj

)⊤(
J1 L⊤

L J2

)(
xi

xj

)
+

(
xi

xj

)⊤(
h1

h2

))

· Z̃local exp

(
−1

2

(
xj

xk

)⊤(
J̃1 L̃⊤

L̃ J̃2

)(
xj

xk

)
+

(
xj

xk

)⊤(
h̃1

h̃2

))
dxj

= ZlocalZ̃local exp

(
−1

2
x⊤
i J1xi + x⊤

i h1 −
1

2
x⊤
k J̃2xk + x⊤

k h̃2

)

·
∫

exp

−1

2
x⊤
j (J2 + J̃1︸ ︷︷ ︸

:=J(c)

)xj + x⊤
j (−L(p)xi − L̃(p)⊤xk + h2 + h̃1︸ ︷︷ ︸

:=h(c)

)

 dxj

= Z
(p)
local exp

(
−1

2

(
xi

xk

)⊤
(
J

(p)
1 L(p)⊤

L(p) J
(p)
2

)(
xi

xk

)
+

(
xi

xk

)⊤
(
h
(p)
1

h
(p)
2

))
= ai,k

where
J

(p)
1 = J1 −L⊤J (c)−1L, J

(p)
2 = J̃2 − L̃J (c)−1L̃⊤

h
(p)
1 = h1 −L⊤J (c)−1h(c), h

(p)
2 = h̃1 − L̃J (c)−1h(c)

L(p) = −L̃J (c)−1L,

Z
(p)
local = Z localZ̃ local(2π)

D
2 |J (c)|− 1

2 exp

(
1

2
h(c)⊤J (c)−1h(c)

)
In practice, instead of computing Z(p)

local we instead compute logZ
(p)
local. Since each binary operation

marginalizes out one variable, the final result of the associative scan,
a−1,0 • a0,1 • · · · • aT,T+1,

will be the result of accumulating all logZlocal terms, and will hence be equal to the desired log
normalizer A(η).
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Time complexity The time complexity of the associative scan, assuming T processors, is
O(C log T ) where C represents the cost of matrix operations within each application of the op-
erator [34, 48]. By the derivation above, C = O(D3) which comes from the matrix inversion
and multiplication in L⊤J (c)−1L and analogous terms. Therefore, the parallel time complexity is
O(D3 log T ).

H Background on Archambeau et al., 2007 (VDP)

In this section, we describe the variational diffusion process (VDP) smoothing algorithm proposed by
Archambeau et al. [7]. The namesake for this algorithm is adopted from Verma et al. [33].

Rather than first approximating the continuous-time ELBO Lcont, eq. (8) with Lapprox, eq. (9) and
then maximizing with respect to the variational parameters, the VDP algorithm directly maximizes
Lcont. In particular, the VDP algorithm involves iteratively solving (continuous-time) ODEs. When
implemented numerically, though, these ODEs are solved using a discrete-time scheme, such as
Euler’s method. Therefore, like Verma et al. [33] and SING, VDP only approximately maximizes the
true, continuous-time ELBO.

Archambeau et al. [7] rewrite the ELBO Lcont in terms of (A(t), b(t))0≤t≤Tmax as well as
(m(t),S(t))0≤t≤Tmax the marginal mean and covariance of q(x) at each time 0 ≤ t ≤ Tmax. These
parameters are related by the Fokker-Planck equations for linear SDEs

dm(t)

dt
= A(t)m(t) + b(t) (21)

dS(t)

dt
= A(t)S(t) + S(t)A(t)⊤ +Σ. (22)

To ensure that, at the optimum, equations eq. (21) and eq. (22) are satisfied, VDP introduces the
Lagrange multipliers (λ(t))0≤t≤Tmax and (Ψ(t))0≤t≤Tmax and incorporate eq. (21) and eq. (22) into
the objective

Lcont((A(t), b(t),m(t),S(t))0≤t≤Tmax ,Θ) +

∫ Tmax

0

λ(t)⊤
(
dm(t)

dt
−A(t)m(t)− b(t)

)
dt

+

∫ Tmax

0

tr
(
Ψ(t)⊤

{
dS(t)

dt
−A(t)S(t)− S(t)A(t)−Σ

})
dt.

Performing an integration by parts yields

Lcont((A(t), b(t),m(t),S(t))0≤t≤Tmax ,Θ)−
∫ Tmax

0

λ(t)⊤ (A(t)m(t) + b(t)) dt

−
∫ Tmax

0

tr
(
Ψ(t)⊤ {A(t)S(t) + S(t)A(t) +Σ}

)
dt−

∫ Tmax

0

(
tr

{
dΨ(t)

dt

⊤
S(t)

}
+
dλ(t)

dt

⊤
m(t)

)
dt

+ tr(Ψ(Tmax)
⊤S(Tmax))− tr(Ψ(0)⊤S(0)) + λ(Tmax)

⊤m(Tmax)− λ(0)⊤m(0). (23)

The authors proceed by performing coordinate ascent on this objective with respect to
(A(t), b(t),m(t),S(t),λ(t),Ψ(t))0≤t≤Tmax . However, when taking the (variational) derivatives
with respect to the functions A(t), b(t), m(t), and S(t), the dependence of A(t) and b(t) on m(t)
and S(t), and vice versa, is ignored.

Taking the derivative of eq. (23) with respect to m(t) and S(t) yields the updates for the Lagrange
multipliers

dΨ(t)

dt
= −Ψ(t)A(t)− (A(t))⊤Ψ(t) +

d

dS(t)
(−DKL (q ∥ p)), Ψ(Tmax) = 0 (24)

dλ(t)

dt
= −A(t)⊤λ(t) +

d

dm(t)
(−DKL (q ∥ p)), λ(Tmax) = 0 (25)
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subject to the jump conditions at observation times {ti}Ti=1

Ψ(t+i ) = Ψ(ti) +
d

dS(ti)
Eq log p(y(ti)|x(ti)) (26)

λ(t+i ) = λ(ti) +
d

dm(ti)
Eq log p(y(ti)|x(ti)). (27)

Taking the derivative of eq. (23) with respect to A(t) and b(t) yields the updates

A(t) = Eq(x(t))

[
df(x|Θ)

dx

]
− 2ΣΨ(t) (28)

b(t) = Eq(x(t))[f(x|Θ)]−A(t)m(t)−Σλ(t). (29)
Finally, for p(x(0)) = N (ν,V ), taking the derivative of eq. (23) with respect to ν and V yields

m(0) = ν − V λ(0) (30)

S(0) = (2Ψ(0) + V −1)−1. (31)

Altogether, the VDP variational inference algorithm alternates between the following steps, until
convergence

1. Solve for (m(t),S(t))0≤t≤Tmax according to eq. (21) and eq. (22).
2. Update (λ(t),Ψ(t))0≤t≤Tmax , starting from λ(Tmax) = 0 and Ψ(Tmax) = 0, according to

eq. (25) and eq. (24) and taking into account the jump conditions eq. (27) and eq. (26) at
observation times {ti}Ti=1.

3. Update (A(t), b(t))0≤t≤Tmax according to eq. (28) and eq. (29).
4. Update m(0) and S(0) according to eq. (30) and eq. (31).

For stability, Archambeau et al. [7, 8] propose replacing the update for (A(t), b(t))0≤t≤Tmax at
iteration ℓ with the “soft” updates

A(ℓ+1)(t) = A(ℓ)(t) + ω(Ã(ℓ)(t)−A(ℓ)(t))

b(ℓ+1)(t) = b(ℓ)(t) + ω(b̃(ℓ)(t)− b(ℓ)(t)),
(32)

where Ã(ℓ)(t) and b̃(ℓ)(t) are defined as in eq. (28) and eq. (29). In our experiments, we observe that
choosing ω to be small (e.g., 10−3) is often necessary to ensure convergence of VDP.

Unlike Verma et al. [33] and SING, VDP does not benefit from convergence guarantees. Indeed in
Appendix J, we show that even in the setting where the prior SDE is linear and the observation model
is Gaussian, VDP will not recover the true posterior in one step.

I Comparison of SING to Verma et al., 2024

I.1 Overview of Verma et al., 2024

In this section, we outline Verma et al. [33], the work upon which SING is built, and discuss key
differences between the two variational EM algorithms.

Like SING, Verma et al. [33] maximizes the approximate ELBO Lapprox from eq. (9) with respect the
variational parameters (A(t), b(t))0≤t≤Tmax as well as the model parameters Θ. To accomplish this,
they perform a change-of-measure

p̃(x0:T |Θ) = pL(x0:T )
p̃(x0:T |Θ)

pL(x0:T )
,

where pL(x0:T ) = q(x0:T |ηL) belongs to the same exponential family as the variational posterior
and has natural parameters ηL = (hL,JL,LL). Suppose q(x0:T |η) is initialized at η(0) = ηL.
Then the corresponding NGVI update steps can be written as

h̃
(j+1)
i = (1− ρ)h̃

(j)
i + ρ∇µi,1Eq(j) [log p(yi|xi)δi +∆iV (xi,xi+1) + ∆iV (xi−1,xi)]

J̃
(j+1)
i = (1− ρ)J̃

(j)
i + ρ∇µi,2Eq(j) [log p(yi|xi)δi +∆iV (xi,xi+1) + ∆iV (xi−1,xi)]

L̃
(j+1)
i = (1− ρ)L̃

(t)
i + ρ∇µi,3Eq(j) [∆iV (xi,xi+1)]

h
(j+1)
i = h̃

(j+1)
i + hL, J

(j+1)
i = J̃

(j+1)
i + JL, L

(j+1)
i = L̃

(j+1)
i +LL

(33)
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Here, ∆iV (xi,xi+1) = log (p̃(xi+1|xi,Θ)/pL(xi+1|xi)), 0 ≤ i ≤ T − 1 is the log ratio of the
transition probabilities from xi to xi+1 under p̃ and pL. The NGVI updates that appear in Verma
et al. [33] are written in this unusual form to separate the contribution of pL, which belongs to the
same family as q, from the other terms that appear in the ELBO.

The authors propose alternating between (i) performing numerous NGVI updates (33) and (ii) updat-
ing pL at iteration j according to a statistical linearization step. Specifically, statistical linearization
of the prior drift computes the best linear approximation to the nonlinear prior drift under the current
variational posterior according to

AL
i , b

L
i = argminEq(xi|η(j))∥A

L
i xi + bLi − f(xi|Θ)∥22

=⇒ AL
i = Eq(xi|η(ℓ))

[
df(xi|Θ)

dx

]
, bLi = Eq(xi|η(j))[f(xi|Θ)]−AL

i mi, i = 0, . . . T − 1.
(34)

By the log normalizer computation discussed in Appendix G, one can use (AL
i , b

L
i )

T−1
i=1 to obtain

a new set of natural parameters ηL,new = (hL,new,JL,new,LL,new). One then updates the natural
parameters by setting

h̃
(j)
i ← h̃

(j)
i + (hL

i − hL,new
i ), J̃

(j)
i ← J̃

(j)
i + (JL

i − JL,new
i ), L̃

(j)
i ← L̃

(j)
i + (LL

i −LL,new
i )

(35)

and lastly ηL ← ηL,new. The updates eq. (35) ensure that updating the parameters ηL of pL does not
change the parameters of the q.

Importantly, the statistical linearization step appearing in Verma et al. [33] does not matter for
inference, since it is apparent that by “undoing” the change-of-measure, one can rewrite the NGVI
update (33) to exactly match the SING update (11). In fact, we point out that repeatedly performing
statistical linearization, as is suggested by Verma et al. [33], is unnecessary: one will obtain the same
ηL by performing only a single statistical linearization step at the end of inference.

The reason for introducing pL is that the authors contend that it aids in hyperparameter learning,
insofar as it allows one to couple the E and M-steps via ηL, which from eq. (34), evidently depends
on Θ. In other words, during the M-step Verma et al. [33] solve

argmax
Θ

L(ηL(Θ) + η̃,Θ), η̃ = (h̃, J̃ , L̃).

This idea is adopted from Adam et al. [60]. One can imagine there are many functions ϑ : R|Θ| → Ξ
that couple the E and M-steps by writing η = ϑ(Θ) + (η − ϑ(Θ)). The authors argue that defining
ϑ as in eq. (34) is desirable insofar as optimizing η − ϑ(Θ) with respect to η for Θ fixed is less
dependent on Θ than for alternate ϑ. One issue with this argument is that, unlike Verma et al. [33], we
are also optimizing the parameters of the likelihood p(y|x,Θ), and so it is not evident that statistical
linearization of the prior eq. (34) best couples the E and M-steps.

I.2 Differences between SING and Verma et al., 2024

SING aims to simplify and improve upon the algorithm presented by Verma et al. [33]. First, Verma
et al. [33] does not address how to compute the term

EqV (xi,xi+1) =
1

∆i
Eq log

p(xi+1|xi,Θ)

pL(xi+1|xi)
= Eq

{
− 1

2
∥AL

t xi + bLi − f(xi|Θ)∥2Σ−1

+

〈
xi+1 − xi

∆i
− (AL

t xi + bLi ),f(xi|Θ)− (AL
t xi + bLi )

〉
Σ−1

}
,

which, a priori, requires approximating expectations in 2D dimensions. In Appendix F, we explicitly
discuss how to compute analogous quantities for SING using D-dimensional expectations, which
makes our proposed inference algorithm both faster and more memory-efficient. Moreover, as we
previously discussed, changing the base measure from p to pL is unnecessary for inference, and so
we remove it. We do not explore coupling the E and M-steps with SING.

Additionally, the inference algorithm proposed by Verma et al. [33] requires, for each NGVI step,
sequentially converting between natural and mean parameters, which has linear time complexity and
can be computationally expensive when the number of steps is large. In Appendix G.2, we propose
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a parallelized algorithm for computing the log normalizer of the variational family, which leads to
significant speedup in the runtime for inference (Figure 5).

Using the sparse variational GP framework from Titsias [36], we propose an extension of SING,
SING-GP, to the Bayesian model that includes a Gaussian process prior on the latent SDE drift.
Previous works that perform approximate inference in GP-SDE models, including Duncker et al. [13]
and Hu et al. [14], perform inference on the latent variables (x(t))0≤t≤Tmax using VDP, and hence are
inherently slow to converge and unstable for large step sizes ∆i (Figure 2 and Figure 3).

J VDP and SING in the conjugate setting

Proposition 2: Suppose f(x, t|Θ) = Aprior(t)x(t)+bprior(t) and p(y(ti)|x(ti),Θ) = N (Cx(ti)+
d,R). Then, when replacing p̃ with p in Lapprox, SING performs exact inference on τ when ρ = 1.
Specifically, after one full natural gradient step, q(x0:T |η(1)) = p(x0:T |D,Θ).

Proof. First, we point out that we are able to replace p̃ with p in Lapprox since f is linear.

From here, we write
p(x0:T )p(y|x0:T )

∝ exp

(
−1

2

T∑
i=0

x⊤
i J

prior
i xi −

T−1∑
i=0

x⊤
i+1L

prior
i xi +

T∑
i=0

(hprior
i )⊤xi −

1

2

n∑
i=0

∥y(ti)−Cx(ti)− d∥2R−1

)

∝ exp

(
−1

2

T∑
i=0

x⊤
i (J

prior
i + δiC

⊤R−1C)xi −
T−1∑
i=0

x⊤
i+1L

prior
i xi +

T∑
i=0

(hprior
i + δiC

⊤R−1{y(τi)− d})⊤xi

)
where δi is the indicator denoting whether an observation occurs at τi. It is straightfor-
ward to see that this coincides with the posterior over paths p(x|D), marginalized to the
grid τ , written p(x0:T |D). Hence, p(x0:T |D) is Gaussian with natural parameters ηtrue =[
{hprior

i + δiC
⊤R−1(y(τi)− d),− 1

2 (J
prior
i + δiC

⊤R−1C)}Ti=0, {−L
prior
i }T−1

i=0

]
.

If we write Lapprox with p substituted for p̃ as

Lapprox(η,Θ) = Eq log
p(x1:T )p(y|x1:T )

q(x1:T )

then the NGVI update eq. (11) with ρ = 1 becomes

η(1) = η(0) +∇µLapprox(η
(0),Θ)

(i)
= η(0) + (ηtrue − η(0)) = ηtrue.

In equality (i), we used the identity from Appendix B.2, Lemma 4 for the natural gradient of the KL
divergence between two distributions belonging to the same exponential family.

Proposition 3: Consider the same setting as in Proposition 2. Then VDP algorithm described in
Appendix H does not recover p(x|D) in one step.

Proof. For simplicity of presentation, we will assume Σ = I .

Suppose we have (m(t),S(t))0≤t≤Tmax , the marginal means of covariances of the variational posterior
q, as well as (A(t), b(t))0≤t≤Tmax that specify the drift of the variational posterior. After the first step
of the Archambeau et al. [7] VDP algorithm, these are consistent.

In order to analyze VDP in this setting, we first compute the (variational) derivative of each term in
the ELBO Lcont with respect to m(t) and S(t). To this end,
1

2
Eq∥{Aprior(t)x(t) + bprior(t)} − {A(t)x(t) + b(t)}∥22

=Eq

{
1

2
x(t)⊤(Aprior(t)−A(t))⊤(Aprior(t)−A(t))x(t) + x(t)⊤(Aprior(t)−A(t))⊤(bprior(t)− b(t))

}
+ const

=
1

2
tr
(
(Aprior(t)−A(t))⊤(Aprior(t)−A(t)){S(t) +m(t)m(t)⊤}

)
+m(t)⊤(Aprior(t)−A(t))⊤(bprior(t)− b(t)) + const
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as well as

Eq logN (y(ti)|Cx(ti) + d,R)

=Eq

{
−1

2
(y(ti)− {Cx(ti) + d})⊤R−1(y(ti)− {Cx(ti) + d)})

}
+ const

=Eq

{
−1

2
x(ti)

⊤C⊤R−1Cx(ti) + x(ti)
⊤C⊤R−1y(ti)− x(ti)

⊤C⊤R−1d

}
+ const

=− 1

2
tr
(
C⊤R−1C(S(ti) +m(ti)m(ti)

⊤)
)
+m(ti)

⊤C⊤R−1(y(ti)− d) + const

where const represents a generic constant with respect to (m(t),S(t))0≤t≤Tmax .

From Appendix H, these imply the following updates for the Lagrange multipliers

dλ(t)

dt
= −A(t)⊤λ(t)− (Aprior(t)−A(t))⊤(Aprior(t)−A(t))m(t)

− (Aprior(t)−A(t))⊤(bprior(t)− b(t))

dΨ(t)

dt
= −A(t)⊤Ψ(t)−Ψ(t)A(t)− 1

2
(Aprior(t)−A(t))⊤(Aprior(t)−A(t))

with the jump conditions at times {ti}ni=1

λ(t+i ) = λ(ti) +C⊤R−1(y(ti)− d)−C⊤R−1Cm(ti)

Ψ(t+i ) = Ψ(ti)−
1

2
C⊤R−1C.

WLOG, we assume ti < Tmax for 1 ≤ i ≤ n and set λ(Tmax) = 0, Ψ(Tmax) = 0 (otherwise, the
terminal condition is the same as the jump condition at time Tmax). One can check these match the
updates appearing on Archambeau et al. [7], page 7. The last step in the VDP algorithm is to update
the variational parameters according to

A(t) = Aprior(t)− 2Ψ(t)

b(t) = Aprior(t)m(t) + bprior(t)−A(t)m(t)− λ(t) = (Aprior(t)−A(t))m(t) + bprior(t)− λ(t)

Next, we determine the analytical form of the posterior drift in this setting. In particular, the Kushner-
Stratonovich-Pardoux equations [29–31] give a closed-form expression for the SDE satisfied by the
posterior path measure

q : dx(t) =
{
Apriorxt + bprior +∇x log p(y≥t|x(t))

}
dt+ dw(t).

where p(y≥t|x(t)) represents the conditional probability of observations y(ti), ti ≥ t conditioned
on x(t) = x. Observe also that p(y≥t|x(t)) will have jumps occurring at observation times.

In general, we cannot compute p(y≥t|x(t)) in closed-form, and hence do not have an analytical
expression for the posterior drift. In the linear case, though, we can compute this explicitly. In order
to do so, we make a couple of observations. First, for ti−1 < t ≤ ti, we see that by the Markov
property

p(y≥t|x(t)) ∝ p(x(ti)|x(t))

(
n−1∏
k=i

p(x(tk+1)|x(tk))p(y(tk)|x(tk))

)
p(y(tn)|x(tn)).

Since each of these factors is Gaussian, p(y≥t|x(t)) will again be Gaussian. Let us write

p(y≥t|x(t)) = exp

{
−1

2
x(t)⊤G(t)x(t) + g(t)⊤x(t) + c(t)

}
, ti−1 < t ≤ ti.

Second, ψ(x, t) = p(y≥t|x(t)) satisfies the Backward Kolmogorov Equation (BKE)

∂

∂t
ψ(x, t) + (Aprior(t)x(t) + bprior(t))⊤∇xψ(x, t) +

1

2
∆xψ(x, t) = 0
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in between observation times ti−1 < t ≤ ti. Plugging

ψ(x, t) = exp

{
−1

2
x⊤G(t)x+ g(t)⊤x+ c(t)

}
into the BKE, we get

ψ(x, t)(Aprior(t)x+ bprior(t))⊤(g(t)−G(t)x) + ψ(x, t)
1

2

{
(g(t)−G(t)x)⊤(g(t)−G(t)x)− tr(G(t))

}
=− ψ(x, t)

(
−1

2
x⊤ d

dt
G(t)x+

d

dt
g(t)⊤x+

d

dt
c(t)

)
Simplifying,

(Aprior(t)x+ bprior(t))⊤(G(t)x− g(t)) +
1

2

{
(G(t)x− g(t))⊤(g(t)−G(t)x) + tr(G(t))

}
=

(
−1

2
x⊤ d

dt
G(t)x+

d

dt
g(t)⊤x+

d

dt
c(t)

)
=⇒ d

dt
G(t) = −(Aprior(t))⊤G(t)−G(t)Aprior(t) +G(t)⊤G(t)

=⇒ d

dt
g(t) = −(Aprior(t))⊤g(t) +G(t)⊤bprior(t) +G(t)⊤g(t)

where we used the facts that 2x⊤(Aprior(t))⊤G(t)x = x⊤(Aprior(t))⊤G(t)x+ x⊤G(t)⊤Apriorx
and that if G(Tmax) is symmetric, then (G(t))0≤t≤Tmax will be symmetric.

In other words, we have shown that p(y≥t|x(t)) satisfies the Riccati equation

d

dt
G(t) = −(Aprior(t))⊤G(t)−GtA

prior(t) +G(t)⊤G(t)

d

dt
g(t) = −(Aprior(t))⊤g(t) +G(t)⊤bprior +G(t)⊤g(t)

with jump conditions

G(ti) = G(t+i ) +C⊤R−1C

g(ti) = g(t+i ) +C⊤R−1(y(ti)− d)

and initial conditions G(Tmax) = 0, g(Tmax) = 0. The posterior drift is then given by

Aprior(t)x(t) + bprior(t) +∇x log p(y≥t|x(t)) = (Aprior(t)−G(t))x(t) + (bprior(t) + g(t)).

Now, though, we can directly compare 2Ψ(t) to G(t) and (Aprior(t)−A(t))m(t) +λ(t) to g(t). In
particular,

d(2Ψ(t))

dt
= −A(t)⊤(2Ψ(t))− (2Ψ(t))A(t)− (Aprior(t)−A(t))⊤(Aprior(t)−A(t)),

2Ψ(ti) = 2Ψ(t+i ) +C⊤R−1C,

which is not equivalent to the Riccati equation satisfied by (G(t))0≤t≤Tmax .

Suppose, for example, (A(t), b(t))0≤t≤Tmax are initialized to (Aprior(t), bprior(t))0≤t≤Tmax . Then

d(2Ψ(t))

dt
= −(Aprior(t))⊤(2Ψ(t))− (2Ψ(t))Aprior(t), 2Ψ(ti) = 2Ψ(t+i ) +C⊤R−1C.

K SING-GP: Drift estimation with Gaussian process priors

Here, we present the GP-SDE generative model and full inference algorithm using SING-GP from
Section 3.5. Our presentation of the GP-SDE model primarily follows that of Duncker et al. [13] and
Hu et al. [14].
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K.1 GP-SDE generative model

The GP-SDE model consists of the latent SDE model from Section 2.1 combined with Gaussian
process priors on the output dimensions of the drift function f(x(t)). More formally, we have

dx(t) = f(x(t))dt+Σ
1
2 dw(t), E[y(ti)|x] = g(Cx(ti) + d)

where

fd(·)
iid∼ GP(0, κθ(·, ·)), d = 1, . . . , D.

Here, f(·) = [f1(·), . . . , fD(·)]⊤, κθ is the kernel covariance function, and θ are kernel hyperparam-
eters. As in Section 2.1, we denote all model hyperparameters as Θ = {θ,C,d}. Throughout this
section, we assume Σ = I without loss of generality. In addition to our primary goal of performing
inference over x(t), we would also like to perform inference over f(·). In Appendix K.2, we outline
an approach from Duncker et al. [13] that uses sparse GP approximations for inference over f(·).

K.2 Sparse GP approximations for posterior drift inference

Following Duncker et al. [13], we augment the generative model from Appendix K.1 with sparse
inducing points [36], which enable tractable approximate inference of f(·). This technique allows
the computational complexity of inference of f(·) evaluated at a batch of L locations to be reduced
from O(L3) to O(LM2), where M ≪ L is the number of inducing points. Let us denote the
inducing locations as {zm}Mm=1 ⊂ RN and corresponding inducing values as {ud}Dd=1 ⊂ RM . After
introducing these variables, the full generative model from Appendix K.1 becomes

p(y,x,f ,u |Θ) = p(y | x,Θ)p(x | f)
D∏

d=1

p(fd | ud,Θ)p(ud |Θ).

Treating ud as pseudo-observations, we assume the following prior on inducing points which derives
from the GP kernel:

p(ud |Θ) = N (ud | 0,Kzz)

where Kzz is the Gram matrix corresponding to the batch of points {zm}Mm=1. By properties of
conditional Gaussian distributions, this implies that fd(·) | ud is another GP,

fd(·) | ud ∼ GP(µfd|ud
(·), κfd|ud

(·, ·))

where

µfd|ud
(x) = kxzK

−1
zz ud

κfd|ud
(x,x′) = κθ(x,x

′)− kxzK
−1
zz kzx.

Above, kxz := [κθ(x, z1), . . . , κθ(x, zM )] and kzx = k⊤
xz .

To perform VI in the GP-SDE model, we follow Duncker et al. [13] and define an augmented
variational family of the form

q(x,f ,u) = q(x)

D∏
d=1

p(fd | ud,Θ)q(ud).

For the variational family on inducing points, we choose

q(ud) = N (ud |md∗
u ,S

d∗
u )

so that md∗
u and Sd∗

u have convenient closed-form updates, as we describe in the next section.
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We use this augmented posterior to derive a continuous-time ELBO analogous to Lcont in eq. (8) of
the main text. By Jensen’s inequality,

log p(y |Θ)

= log

∫
p(y | x,Θ)p(x | f)p(f | u,Θ)p(u |Θ)dxdfdu

≥
∫
q(x,f ,u) log

p(y | x,Θ)p(x | f)p(f | u,Θ)p(u |Θ)

q(x,f ,u)
dxdfdu

=

∫
q(x,f ,u) log

p(y | x,Θ)p(x | f)
∏D

d=1 p(ud |Θ)

q(x)
∏D

d=1 q(ud)
dxdfdu

= Eq(x)[log p(y | x,Θ)]− Eq(f)[DKL (q(x) ∥ p(x | f))]−
D∑

d=1

DKL (q(ud) ∥ p(ud |Θ))

:= Lcont-GP(q(x), q(u),Θ),

where

q(f) =

D∏
d=1

∫
p(fd | ud,Θ)q(ud)dud. (36)

Since Lcont-GP(q(x), q(u),Θ) is intractable to compute directly, as we discuss in Section 2.3, we
introduce an approximation to the continuous-time ELBO that is analogous to Lcont in eq. (9). This
objective is

Lapprox-GP(q(x0:T ), q(u),Θ) :=

Eq(x)[log p(y | x,Θ)]− Eq(f)[DKL (q(x0:T ) ∥ p̃(x0:T | f ,Θ))]−
D∑

d=1

DKL (q(ud) ∥ p(ud |Θ)) .

(37)
In eq. (37), we use definitions from Section 2.3: q(x0:T ) is the finite-dimensional variational posterior
on time grid τ and p̃(x0:T ) is the corresponding prior process on the same time grid discretized using
Euler–Maruyama. We note that Lapprox-GP has two main differences from Lapprox: (1) the second term
now involves an expectation with respect to q(f), which comes from the Gaussian process prior on
the drift, and (2) Lapprox-GP has an additional third term regularizing the posterior on inducing points
towards its GP-derived prior.

K.3 Inference and learning using SING-GP

In a GP-SDE model, the two inference goals are (1) inferring a posterior over the latent states q(x0:T )
and (2) inferring a posterior over the drift function (i.e., dynamics) q(f). In SING-GP, we propose to
use SING as described in Section 3 to perform latent state inference, and we derive novel closed-form
updates for q(ud) based on Lapprox-GP. In the next section, we will show how Gaussian conjugacy
allows for straightforward inference of q(f) given q(ud).

To update q(ud), we would like to maximize Lapprox-GP(q(x0:T ), q(u),Θ) with respect to the varia-
tional parameters md∗

u ,S
d∗
u given the current estimates of q(x0:T ) and Θ. By direct differentiation

of Lapprox-GP(q(x0:T ), q(u),Θ) with respect to md∗
u and Sd∗

u , one can derive the following analytical
updates for md∗

u and Sd∗
u :

Sd∗
u = Kzz

(
Kzz +∆t

T∑
i=0

Eq(xi)[kzxikxiz]

)−1

Kzz

m∗
u = Sd∗

u K−1
zz

(
∆t

T−1∑
i=0

Eq(xi)[kzxi ]
(mi+1 −mi

∆t

)
+∆t

T−1∑
i=0

Eq(xi)

[
dkzx

dx

](
Si,i+1 − Si

∆t

))
.

(38)
In the above equation, m∗

u ∈ RM×D contains md∗
u in each column. The required kernel expectations

in eq. (38) have analytical expressions for, e.g., the commonly used radial basis function (RBF)
kernel, and otherwise can be approximated via Gaussian quadrature for specialized kernels. Moreover,
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observe that since the dependence on T only appears in sums, this update can be computed in parallel
across time steps.

Finally, the learning goal in the GP-SDE is to optimize the kernel hyperparameters θ. Prior work
using GP-SDEs with structured GP kernels [14] found that alternating between updating q(u) and
optimizing θ was prone to getting stuck in local maxima of the ELBO. Hence, we adopt the kernel
hyperpararmeter learning approach proposed by Hu et al. [14], which uses the update

θ∗ = argmax
θ

{
max
q(u)
Lapprox-GP(q(x0:T ), q(u),θ)

}
.

The inner maximization can be performed via the closed-form updates as discussed above. We
perform the outer maximization, which depends on both q(u) and Lapprox-GP(q(x0:T ), q(u),θ), via
Adam optimization. In practice, we find that this kernel hyperparameter learning method performs
well on both synthetic and real datasets.

K.4 Posterior inference of the drift at unseen points

The sparse approximation q(u) allows us to compute the posterior distribution f∗ := f(x∗) at any
unseen latent space location x∗ ∈ RD. Recall that

q(f∗) =

D∏
d=1

p(f∗d | ud,Θ)q(ud)dud.

Since q(ud) is Gaussian and p(f∗d | ud,Θ) is conditionally Gaussian, then q(f∗) is also a closed-form
Gaussian distribution. This takes the form,

q(f∗d ) = N (f∗d | kx∗zK
−1
zz md

u, κθ(x
∗,x∗)− kx∗zK

−1
zz kzx∗ + kx∗zK

−1
zz Sd

uK
−1
zz kzx∗).

K.5 Incorporating inputs

For our application of SING-GP to real neural data in Section 5.4, we incorporate external inputs that
may affect the underlying latent trajectories. Following Hu et al. [14], we model this as

dx(t) = (f(x(t)) +Bv(t))dt+Σ
1
2 dw(t)

where v(t) ∈ RI is a time-varying, known input signal and B ∈ RD×I is a linear transformation
of the input into the latent space. We denote vi := v(τi) where τi is a time point in the grid τ . We
derive the optimal update B∗ that maximizes Lapprox-GP as

B∗ =

(
T−1∑
i=0

(
mi+1 −mi −∆tEq(f),q(xi)[f(xi)]

)
v⊤
i

)(
∆t

T−1∑
i=0

viv
⊤
i

)−1

.

L Experiment details and additional results

For all experiments, we fit our models using either an NVIDIA A100 GPU or NVIDIA H100 GPU.

L.1 Inference on synthetic data

Here, we provide additional experimental details to supplement Section 5.1. For this section only, we
will abuse notation and use xi(t) to denote individual coordinates of x(t) ∈ RD, for 0 ≤ t ≤ Tmax.
This not to be confused with time steps of the grid τ , as introduced in Section 2.3.

L.1.1 Linear dynamics, Gaussian observations

Details on simulated data We generate 30 independent trials from an SDE with linear dynamics

f(x(t)) = Ax(t), A =
1

∆t

(
0.997

[
cos θ − sin θ
sin θ cos θ

]
− I

)
with θ = π/250. To simulate these trials, we use an Euler–Maruyama discretization with ∆t = 0.001
and Tmax = 1. Initial conditions are sampled uniformly in [−2, 2]2. We then simulate observations
yi ∼ N (Cxi + d,R) at every time point τi, where the entries of C,d are sampled as i.i.d. standard
normal variables and we set R = 0.35I .

38



Details on model fitting For our main result in Figure 2 (top row), we fit SING with 20 iterations
and step size ρ = 1, with hyperparameters Θ fixed to their true generative values. As expected,
convergence in this fully conjugate setting occurs after only 1 iteration. We use analogous settings
for VDP: 20 variational EM iterations, each consisting of a single forward/backward pass to update
variational parameters. For our Kalman smoothing baseline, we use the Dynamax package [54]. For
Adam-based optimization, we sweep over initial learning rates {10−4, 5 ·10−4, 10−3, 5 ·10−3, 10−2},
fit for 20 iterations, and choose the best fit according to the final ELBO value, which in this case
corresponded to learning rate 5 · 10−3.

Computing latents RMSE The latents RMSE metric from Figure 2D and H are computed as
follows:

latents RMSE =

(
1

T + 1

T∑
i=0

Eq(xi)[∥xi − xtrue
i ∥22]

)1/2

.

Since q(xi) = N (xi |mi,Si), this can be computed analytically using the identity

Eq(xi)[∥xi − xtrue
i ∥22] = tr(Si) + ∥mi − xtrue

i ∥22.

L.1.2 Place cell model

Details on simulated data We generate 30 independent trials from an SDE whose drift is charac-
terized by a Van der Pol oscillator,

f1(x(t)) = τµ

(
x1(t)−

1

3
x1(t)

3 − x2(t)

)
f2(x(t)) = τ

x1(t)

µ

with τ = 10 and µ = 2. To simulate these trials, we use an Euler–Maruyama discretization with
∆t = 0.001 and Tmax = 2. Initial conditions are sampled uniformly in [−3, 3]2.

For our observations, we use a Poisson count model inspired by spiking activity in place cells. To
model the tuning curves (i.e., expected firing rates) for this model, we use radial basis functions. For
N = 8 neurons, these take the form

rn(x) = a exp

(
− 1

2ℓ2
∥x− cn∥22

)
+ a0, n = 1, . . . , N

where {cn}Nn=1 ⊂ RD are centers placed along the latent trajectories, ℓ controls the width of the
curve, and a, a0 control the peak and background firing rates respectively. For our experiments, we
set ℓ = 0.5, a = 2.5, and a0 = 0.25. We then generate Poisson spike counts for each time bin τi
according to

yn(τi) ∼ Pois(rn(x(τi))).

In this likelihood model, the expected log-likelihood term Eq[log p(y|x)] is not available in closed
form, so we approximate it using Gauss-Hermite quadrature.

Details on model fitting For our main result in Figure 2 (bottom row), we fit SING for 500
iterations. We use the following step size schedule inspired by [25]: ρ is log-linearly increased from
10−3 to 10−1.5 for the first 10 iterations, and then kept at 10−1.5 for the rest of the iterations. We
fit VDP for 500 iterations and use the “soft" updates in eq. (32) to ensure numerical stability. After
manually tuning the learning rate, we find that VDP performs best with ω = 0.05. For the conditional
moments Gaussian smoother (CMGS), we use an implementation from Dynamax [54]. For Adam-
based optimization, we sweep over initial learning rates {10−4, 5 · 10−4, 10−3, 5 · 10−3, 10−2}, fit
for 500 iterations, and choose the best fit according to the final ELBO value, which in this case
corresponded to learning rate 10−2.
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L.1.3 Embedded Lorenz attractor

Details on simulated data We generate 30 independent trials from a D-dimensional latent SDE
whose first 3 dimensions evolve according to a Lorenz attractor drift, and the remaining dimensions
are a random walk. These drifts are characterized by

f1(x(t)) = α(x2(t)− x1(t))

f2(x(t)) = x1(t)(ρ− x3(t))− x2(t)

f3(x(t)) = x1(t)x2(t)− βx3(t)

fd(x(t)) = 0, d > 3.

(39)

where (α, ρ, β) = (10, 28, 8/3). To simulate these trials, we use an Euler–Maruyama discretization
with ∆t = 0.001 and Tmax = 1. Initial conditions are sampled from independent standard normal
distributions. We then simulate 100-dimensional observations yi ∼ N (Cxi + d,R), where the
entries of C and d are sampled i.i.d. from N (0, 0.01) and we set R = 0.05I .

Details on model fitting For our results in Figure 4, we fit SING for D = 3, 5, 10, 20, 50 using two
different methods of approximating transition expectations: (1) Monte Carlo and (2) Gauss-Hermite
quadrature. For each method, we fit SING for 1000 iterations, keeping output parameters and prior
drift parameters fixed to their true values. The step size ρ is log-linearly increased from 10−3 to 10−2

for the first 10 iterations, and then kept at 10−2 for the rest of the iterations. For the Monte Carlo
approach, we use a single Monte Carlo sample per expectation. For the quadrature approach, we
use 6 quadrature nodes per latent dimension for D = 3 and 5; beyond D = 5, quadrature results in
out-of-memory errors on a NVIDIA A100 GPU.

L.2 Comparison to neural-SDE variational posterior

Background on SDE Matching SDE Matching, proposed by Bartosh et al. [41], is an algorithm
for performing joint (approximate) inference and learning in the latent SDE model. The authors
approximate the intractable posterior distribution with a neural stochastic differential equation

q̃(x) : dx(t) = f̃(x(t)|ϕ)dt+Σ1/2dw(t), x(0) ∼ N (mϕ,Sϕ), 0 ≤ t ≤ Tmax,

where ϕ are the parameters of the variational posterior and f̃(·|ϕ) is a neural network drift function.
Unlike SING, SDE Matching also applies to models with state-dependent diffusion coefficient.
Compared to prior works that perform VI with neural-SDE variational families, SDE Matching is
advantageous since it does not require drawing samples from the variational posterior.

Also dissimilar from SING, SDE Matching is an amortized VI algorithm, meaning that the varia-
tional approximation is “shared” across samples (x(ℓ)(t))0≤t≤Tmax . In particular, the posterior drift
f̃(x(ℓ)(t)|ϕ) is modeled also as a function of the observations {y(ℓ)(ti)}ni=1.

Details on simulated data We compare SING to SDE Matching [41] on the three-dimensional
stochastic Lorenz attractor benchmark dataset as described in Li et al. [11]. In particular, we generate
latents according to the three-dimensional SDE on 0 ≤ t ≤ Tmax, Tmax = 1 with drift function

f1(x(t)) = α(x2(t)− x1(t))

f2(x(t)) = x1(t)(ρ− x3(t))− x2(t)

f3(x(t)) = x1(t)x2(t)− βx3(t)

(40)

for (α, ρ, β) = (10, 28, 8/3), diffusion coefficient σ = 0.15, and initial condition N (x(0)|0, I). We
sample the SDE according to the Euler–Maruyama discretization with ∆t = 0.00025. We observe
y(ti) according to N (y(ti)|Cx(ti) + d, (0.01)2I) on an evenly spaced grid of size 0.025, where C
and d are also chosen as in Li et al. [11]. We sample 1024 total trials.

Details on learning Following Bartosh et al. [41], we model the prior p(x) as a neural-SDE whose
neural network drift has a single softplus activation. However, unlike Li et al. [11], Bartosh et al. [41]
who consider a four-dimensional latent space, we consider a three-dimensional latent space so that
we can directly assess recovery of the ground truth Lorenz attractor dynamics.
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For SDE Matching, we use the authors’ publicly available codebase, which includes code for
evaluation on the same benchmark; we do not further tune any hyperparameters. For SING, we
perform 103 iterations (10 E-steps, 10 M-steps each), and for SDE Matching we perform 104

iterations; these choices ensure that the number of gradient updates is the same for both algorithms.

To perform the E-step of the vEM algorithm with SING, we define the time grid τ using evenly
spaced points with ∆t = 0.0025. We increase the NGVI step size ρ on a log-linear scale for 100
iterations from 10−5 to 10−3 and hold it constant for subsequent iterations. To perform the M-step,
we update both the output parameters and the drift parameters using Adam. We hold the learning
rate for the drift parameters constant at 10−3. And for learning the output parameters, we decay the
learning rate from 10−3 to 10−7 for 500 iterations and then hold it constant. To compute expectations
of the prior drift under the variational posterior, we use a single Monte Carlo sample.

# Samples Latents RMSE Dynamics RMSE
SING SDE Matching SING SDE Matching

10 .50 ± .05 .99 ± .07 .25 ± .04 .49 ± .05
30 .52 ± .05 .78 ± .03 .45 ± .38 .25 ± .04
50 .49 ± .05 .70 ± .02 .31 ± .06 .23 ± .03

100 .50 ± .04 .67 ± .03 .29 ± .14 .19 ± .01
300 .46 ± .05 .60 ± .01 .25 ± .05 .17 ± .01
500 .48 ± .05 .59 ± .01 .25 ± .06 .17 ± .01

1024 .58 ± .08 .57 ± .01 .56 ± .44 .17 ± .01

Figure 7: Comparison of SING and SDE Matching. A comparison of latents and dynamics
RMSE on the stochastic Lorenz attractor dataset for SING and SDE Matching. Errors represent 2SE
computed over 10 random initializations of the prior drift and output parameters and random seeds
for the algorithms.

Evaluation metrics We compare the performance of SING and SDE Matching using two metrics:
the latents and normalized dynamics root mean-squared error. We compute the latents RMSE exactly
as in Appendix L.1.1. And for the normalized dynamics RMSE, we 1024 draw independent samples
(x(j)(t))0≤t≤Tmax from the ground-truth stochastic Lorenz attractor and estimate

(∫ Tmax

0

E
[
∥f(x(t))− f(x(t)|Θ)∥2

∥f(x(t))∥2

])1/2

≈

 1

trials · T̄

T̄∑
i=1

∥f(x(τ̄i))− f(x(τ̄i)|Θ)∥2

∥f(x(τ̄i))∥2

1/2

.

where τ̄ = {τ̄i}T̄i=1 is the Euler–Maruyama sampling grid. Note that the samples on which the
normalized dynamics RMSE is computed are different from those used to perform joint inference
and learning (with either SING or SDE Matching).

Results Our experimental results, summarized in Figure 7, provide compelling evidence that the
structured Gaussian process variational approximation, combined with the fast and numerically stable
SING inference algorithm, leads to more accurate recovery of the ground truth latents compared to
SDE Matching. In particular, SDE Matching requires approximately 500 samples to match the latents
RMSE that SING achieves with only 10 trials. This is likely because at each iteration SDE Matching
updates the posterior using only a single time t in [0, Tmax], whereas SING updates the variational
posterior on the entire grid τ .

However, SDE Matching outperforms SING in recovering the ground truth Lorenz attractor dynamics.
In our experiments, we observe that while performing vEM with SING can achieve dynamics RMSE
comparable to that of SDE Matching, the dynamics RMSE varies greatly depending on the random
initialization of the prior neural network and output parameters. Improving learning with SING
remains a future research direction.
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L.3 Drift estimation on synthetic data

Details on simulated data The Duffing equation is a second-order ODE described by

d2v

dt2
+ γ

dv

dt
− αv + βv3 = 0, 0 ≤ t ≤ Tmax.

By setting x1 = v, x2 = dv
dt , we can convert the Duffing equation into a system of first-order

ODEs. Moreover, we add an independent Brownian motion with noise σ = 0.2 to each coordinate.
Altogether, this yields the two-dimensional SDE with drift

f1(x(t)) = x2(t)

f2(x(t)) = αx1(t)− βx1(t)
3 − γx2(t).

(41)

It is straightforward to verify that the Duffing equation has three fixed points when α/β > 0: one
at the origin and two at (±

√
α/β, 0). We generate four trajectories from the Duffing SDE eq. (41)

with parameters (α, β, γ) = (2, 1, 0.1) and initial condition x(0) = (
√
α/β − 0.1, 0.1), i.e., near the

rightmost fixed point. We sample the solution to the SDE using the Euler–Maruyama discretization
with Tmax = 15 and ∆t = 0.015. All 103 time steps are taken to define the grid τ . A visualization of
two of the sampled trajectories is provided in Figure 3A.

From the 103 total time steps, we sample 3×102 at random at which to include Gaussian observations
N (y(ti)|Cx(ti) + d,R). The true emissions parameters C ∈ RN×D and d ∈ RD are chosen by
sampling i.i.d. standard normal random variables. R is fixed to a diagonal matrix with entries 0.1.

Details on learning We simultaneously perform inference and learning in the latent SDE model
according to the variational EM (vEM) algorithm. For each variational EM step, we take 10 E-steps
(according to either VDP or SING) as well as 50 M-steps. In each M-step, we update both the drift
parameters θ as well as the output parameters {C,d}. We update the drift parameters by performing
Adam on the approximate ELBO Lapprox, and we use a closed-form update for the output parameters
(see next section). In the case of the GP prior drift, the only learnable parameters are the length-scale
and output scale of the RBF kernel. The updates to the posterior over inducing points p(u) are
performed during the E-step.

𝑥 !

𝑥"

𝑥 !

𝑥"

A B
Neural-SDE drift Polynomial basis drift

Figure 8: Prior drift functions learned via
vEM with SING and Adam. A: Learned neu-
ral network drift. B: Learned polynomial ba-
sis drift.

For the GP prior drift we use a 12× 12 grid of induc-
ing points on [−6, 6]2. To choose the size of this grid,
we looked at the first two principal component scores
of the observations {y(ti)}ni=1. For the neural-SDE,
we use a neural network with two hidden layers of
size 64 and ReLU activations. And for the polyno-
mial basis drift, we consider all polynomials up to
order three {1,x1,x2,x1x2,x

2
1,x

2
2, . . .}. Note that

by the form of the Duffing equation eq. (41), this
polynomial drift function can, in theory, perfectly
represent the true drift.

We initialize the output parameters C and d by taking
the first two principal components of the observations
and the mean of the observations, respectively. The
GP length scales and output scales are initialized to
one; the neural network weight matrices are initialized by i.i.d. draws from a truncated normal
distribution and the biases are initialized to zero; the coefficients on the polynomial basis are
initialized by i.i.d. draws from N (0, (0.1)2).

When using SING during the E-step, we increase ρ on a log-linear scale from 10−3 to 10−1 during
the first ten iterations, and we then fix it at 10−1 for the remaining 40 vEM iterations. We found this
procedure of starting with ρ small and subsequently increasing it on a log-linear scale during the first
k iterations to result in effective inference and learning [25]. As for VDP, we choose the soft update
parameter ω to be as large as possible while maintaining the stability of the algorithm. For the GP
prior and neural network drift classes, this selection procedure yielded ω = 0.05. For the polynomial
basis drift, we were not able to obtain convergence with any reasonable choice of ω (see Appendix H
for a discussion of the parameter ω). For this reason, it is omitted from Figure 3.
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In Figure 8, we visualize the learned dynamics corresponding to the neural network and polynomial
basis prior drift functions. The posterior mean and variance of the GP prior drift are visualized in
Figure 3B. When performing inference with SING, both parameteric drift functions, in addition to
the GP posterior mean, match the drift eq. (41) of the Duffing equation (Figure 3D). We measure the
discrepancy between the learned and true drift by computing the dynamics root mean-squared error

dynamics RMSE =

(∑
v∈V

w(v)∥f(v)− f(v|Θ)∥22

)1/2

. (42)

Here, we take a fine grid of cells, each with equal D-dimensional volume, covering the latent
space; we denote the collection of their centers by V . Then, we compute the proportion of true
latent trajectories that fall into the cell with center v, written w(v), such that

∑
v∈V w(v) = 1.

Mathematically, eq. (42) approximates

 1

trials · Tmax

trials∑
j=1

∫ Tmax

0

∥f(x(j)(t))− f(x(j)(t)|Θ)∥22dt

1/2

,

where trials represents the number of trials and (x(j)(t))0≤t≤Tmax is the true latent trajectory corre-
sponding to the jth trial.

Closed-form updates for output parameters Next, we derive closed-form updates for the output
parameters C ∈ RN×D,d ∈ RN ,R ∈ RN×N in the Gaussian observation model

p(y|x,Θ) =

n∏
i=1

N (y(ti)|Cx(ti) + d,R),

where R is assumed to be diagonal. These same update equations appear in Hu et al. [14]. Although
not directly mentioned in the main text, we can also learn the entries of the emissions covariance
matrix R.

Writing out the expected log-likelihood of p(y|x) under q(x), we have

Eq[log p(y|x,Θ)] = −n
2
log |R|+

n∑
i=1

Eq

[
−1

2
∥y(ti)−Cx(ti)− d∥2R−1

]
+ const

= −n
2
log |R| − n

2
d⊤R−1d+

n∑
i=1

(
y(ti)

⊤R−1(Cm(ti) + d)− 1

2
y(ti)

⊤R−1y(ti)

− 1

2
tr(C⊤R−1C

{
S(ti) +m(ti)m(ti)

⊤
}
)− d⊤R−1Cm(ti)

)
+ const,

where const represents a generic constant with respect to (C,d,R). Differentiating with respect to
C, d, and R−1 yields the update equations

C∗

(
n∑

i=1

(S(ti) +m(ti)m(ti)
⊤)

)
=

n∑
i=1

(y(ti)− d∗)m(ti)
⊤ (43)

d∗ =
1

n

n∑
i=1

(y(ti)−C∗m(ti)) (44)

R∗
j,j =

1

n

n∑
i=1

(
yj(ti)

2 − 2yj(ti)(C
∗
j )

⊤m(ti) + ((C∗
j )

⊤m(ti))
2 + (C∗

j )
⊤S(ti)(C

∗
j )
)
− (d∗

j )
2, 1 ≤ j ≤ D

where Rj,j is the jth diagonal entry of R and Cj is the jth row of C.
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By defining ȳ = n−1
∑n

i=1 y(ti) as well as m̄ = n−1
∑n

i=1 m(ti) and plugging eq. (44) into
eq. (43), we obtain

C∗

(
n∑

i=1

(S(ti) + (m(ti)− m̄)(m(ti)− m̄)⊤) + nm̄m̄⊤

)

=

n∑
i=1

(y(ti)− ȳ)(m(ti)− m̄)⊤ + nC∗m̄m̄⊤

=⇒ C∗ =

(
n∑

i=1

(y(ti)− ȳ)(m(ti)− m̄)⊤
)(

n∑
i=1

((m(ti)− m̄)(m(ti)− m̄)⊤ + S(ti))

)−1

.

From the equation for C∗, it is straightforward to solve for d∗ and R∗
j,j , 1 ≤ j ≤ D.

Discretization experiments In Figure 3E, we investigate the effect of the discretization size ∆t on
the performance of the vEM algorithm with SING and VDP. Recall that our true latent trajectories
are sampled with Euler–Maruyama step size 0.015, and so we would not expect Lapprox to better
approximate Lcont for smaller discretizations τ . In the case of VDP, though, we demonstrate that
taking ∆t smaller than 0.015 leads to improvements in the stability of the algorithm. Moreover, for
large ∆t, performing vEM with VDP is highly unstable and may diverge depending on the neural
network initialization. For this reason, we exclude the dynamics RMSE corresponding to ∆t > 0.15.

In order to coarsen i.e., downsample the original grid τ , we fill in grid points where observations
were not observed with zeros. Then, we consider each jth observation in τ . If that observation is
zero (i.e., there is not an observation at that grid point), we take the nearest observation, should there
exist an observation in the original grid that lies between consecutive points in the coarsened grid.
This procedure increases ∆t to j ·∆t. In order to make the original grid τ finer, i.e., upsample, we
add j zeros between the existing observations, again treating missing observations as zeros. This
procedure decreases ∆t to ∆t/(j + 1). Note that coarsening the grid may lead to fewer observations,
but making it finer will neither increase nor decrease the number of observations.

L.4 Runtime comparisons

Experiment details We perform runtime comparisons on simulated datasets consisting of a 2D
linear dynamical system (LDS) with Gaussian observations. Each point in Figures 5 and 9 represents
the average wall clock time (in seconds) over 5 runs of each method on randomly sampled dynamical
systems. All runtime comparisons were performed on an NVIDIA A100 GPU.

We compare two methods: (1) ‘parallel’ SING, which uses associative scans as described in Sec-
tion 3.4 to perform natural-to-mean parameter conversion, and (2) ‘sequential’ SING, which uses the
standard sequential algorithm to perform this conversion, as we detail in Appendix G.1.

For each run, we randomly generate the data as follows. We construct a linear drift function of the
form

f(x(t)) = Ax(t) + b

where A ∈ R2×2 is constrained to have negative real eigenvalues for stability and b ∈ R2 has small
non-zero entries. Using Euler–Maruyama discretization with ∆t = 0.001, we sample for T time
steps from this 2D linear SDE. Then, for each time step τi, we sample 10D Gaussian observations,

y(τi) ∼ N (Cx(τi) + d,R)

where C and d are randomly sampled with i.i.d. standard normal entries and R = 0.35I .

For each run, we fit the corresponding method (either ‘parallel’ or ‘sequential’) for 20 iterations,
keeping hyperparameters Θ fixed.

Additional results on different batch sizes In Figure 9, we provide additional results from runtime
experiments on varying batch sizes. Here, we show wall clock time for batch sizes of 1, 20, 50, and
100 for each method. We find that for a single trial, parallel SING exhibits nearly constant scaling
with sequence length, while sequential SING scales linearly in time, as expected.

For larger batch sizes, our implementations of parallel SING and sequential SING both parallelize
over the batch dimension. Thus, it is expected that parallel resources on a single GPU may be
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Figure 9: Runtime comparisons between parallel SING (using associative scans) and its sequential
counterpart on an NVIDIA A100 GPU. Parallel SING scales favorably with sequence length compared
to sequential SING on different latent dimensions D and batch sizes up to 100 trials.

constrained for models that operate on both large batch sizes and long sequences. In Figure 9, we
show that despite these constraints, parallel SING still scales favorably with respect to sequence
length compared to its sequential counterpart for batch size up to 100 trials. We also note that our
implementation of SING supports mini-batching on smaller batch sizes in order to maintain this
favorable scaling behavior, even on datasets with many (i.e., hundreds or thousands of) sequences.

L.5 Application to modeling neural dynamics during aggression

Dataset specifications We apply our method to a publicly available dataset from Vinograd et al.
[55], which can be found at: https://dandiarchive.org/dandiset/001037. We use the
dataset labeled as ‘sub-M0L’ which consists of neural activity from one trial of a mouse exhibiting
aggressive behavior towards two consecutive intruders. This dataset consists of calcium imaging
from ventromedial hypothalamus neurons. In total, 56 neurons were imaged over 420.1 seconds at 10
Hz, resulting in a data matrix with T = 4201 and N = 56. Before fitting models, we z-score the data
such that each neuron’s activity has mean 0 and standard deviation 1.

GP-SDE model details We fit GP-SDE models with kernel function chosen to be the “smoothly
switching linear” kernel from Hu et al. [14]. This kernel takes the form

κ(x,x′) =

J∑
j=1

((x− cj)
⊤M(x′ − cj) + σ2

0)︸ ︷︷ ︸
κ
(j)
lin (x,x′)

πj(x)πj(x
′)︸ ︷︷ ︸

κ
(j)
part (x,x

′)

where

πj(x) =
exp(w⊤

j ϕ(x)/τ)

1 +
∑J−1

j=1 exp(w⊤
j ϕ(x)/τ)

.
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Figure 10: Additional results for the same SING-GP model fit as in Figure 6C. A: Inferred latent
trajectory, dynamics, and learned input effect using SING-GP. The dynamics arrows are colored by
most likely linear dynamical state, as learned by the smoothly switching linear kernel from Hu et al.
[14]. The orange arrow represent the direction of learned inputs (i.e. columns of B) capturing the
effect of the intruders’ entrances in the mouse’s environment. As expected, these arrows explain the
fast change in latent trajectories during intruder entrances. B: Same inferred dynanics as panel A,
but the latent space is colored by inferred posterior variance of q(f) from SING-GP model fit. The
model expresses low uncertainty in regions with data and high uncertainty in regions without data.

Intuitively, this kernel encodes prior structure in the dynamics such that it “switches” between
different linear dynamical systems based on location in latent space, but maintains smooth dynamics
between different linear systems. This is enforced by the linear kernel κ(j)lin (x,x′) and partition kernel
κ
(j)
part(x,x

′) for each linear regime j. Above, J is the total number of discrete states that the function
switches between; we choose J = 4 and D = 2 to be consistent with prior work [56, 55, 14]. We
also choose ϕ(x) = [1 x1 x2]

⊤. The kernel hyperparameters are θ = {M , σ2
0 , {cj ,wj}, τ},

which we optimize via Adam [52] in variational EM. In particular, for learning we use the approach
proposed by Hu et al. [14], which optimizes hyperparameters jointly with the closed-form posterior
drift update. Finally, we model observations as

y(ti) ∼ N (Cx(ti) + d,R)

for every observation time ti. Unless otherwise specified, we fit models whose discretization matches
the imaging rate; i.e., ∆t = 0.1.

Model fitting details To fit GP-SDE models using both SING-GP and VDP-GP, we chose inducing
points to be a uniformly spaced 8 × 8 grid in [−8, 10] × [−4, 12]. These bounds were chosen by
examining two-dimensional latent trajectories obtained by principal component analysis (PCA) on
the neural data matrix. Similarly, we initialize C and d using PCA and keep them fixed during model
fitting. We initialize kernel hyperparameters randomly from i.i.d. standard Gaussian distributions.

For both SING-GP and VDP-GP, we perform variational EM for 30 iterations. In each E-step we
perform 15 updates (natural gradient steps for SING-GP and forward/backward passes for VDP-
GP). In each M-step we perform 50 Adam iterations with initial learning rate 1e-4 to learn kernel
hyperparameters.

For SING-GP, we again use a suggested learning rate schedule from [25]. In particular, we set the
learning rates for the first 10 iterations to be log-linearly spaced between 10−1 and 100. We then
keep the 100 learning rate for the rest of fitting. For VDP-GP, we use “soft updates” (eq. (32)) and
manually tune ω to the largest value which still maintains numerical stability; in this case ω = 0.005.

Since the smoothly-switching linear kernel from Hu et al. [14] has several hyperparameters, we
repeat our experiments for 5 different random initializations of Θ. In Figure 6D-E, we report average
metrics and 2-standard error bars across these 5 initializations.

Computing posterior probability of slow points In Figure 6C, we use the probabilistic formulation
of the drift in the GP-SDE to identify high-probability regions with slow points. To do this, we

46



compute a “posterior probability of slow point” metric for a fine grid of locations in latent space. For
a particular x∗ ∈ RD, we define this as:

P(x∗is a slow point) =
D∏

d=1

Pq(fd(x∗))[|fd(x∗)| < ϵ]

where ϵ > 0 is chosen to be a small threshold. Intuitively, this probability is large if the inferred
drift at x∗ is close to 0 in the posterior. Recall from Appendix K.4 that q(fd(x∗)) is a closed-form
Gaussian distribution, so this quantity can be easily computed.

Experiment details for Figure 6D In Figure 6D, we compare SING-GP and VDP-GP on two
metrics as a function of discretization ∆t ranging from 0.06 to 0.1. We fit both methods using 100
variational EM iterations.

The first metric for model comparison is final expected log-likelihood; precisely, this is
Eq[log p(y | x)] at iteration 100. We choose this metric to be able to directly compare the goodness-
of-fit for each model; in contrast, the ELBOs are not directly comparable due to their slightly different
formulations of the term DKL (q(x) ∥ p(x|f)).
The second metric for model comparison is the number of iterations until convergence. Here, we
say that the model has converged at iteration j if |L(q(j),Θ) − L(q(j−1),Θ)| < 200 nats, where
L(·) denotes each model’s respective ELBO function. We note that other choices of convergence
threshold yielded similar trends as the plot in Figure 6D.

Forward simulation experiment Here, we provide details on the forward simulation experiment
in Figure 6E. To compute the predictive R2 metric in Figure 6E, we carry out the following steps.

(a) For a given model fit and discretization ∆t, select 20 uniformly spaced time points t0 along
the inferred latent trajectory, as well as their corresponding marginal means, m(t0) :=
Eq[x(t0)].

(b) For each t0 and m(t0), use the posterior mean of inferred dynamics q(f) to simulate
forward the latent state for s seconds using discretization ∆t, where s = 1, 2, . . . , 15.

(c) Forward simulation will yield a predicted latent state, x̂(t0 + s). We compute the predictive
R2 for each choice of s as,

R2 = 1−
∑

t0
∥ŷ(t0 + s)− y(t0 + s))∥22∑

t0
∥y(t0 + s)− ȳ∥22

,

where ŷ(t0 + s) = Cx̂(t0 + s) + d, ȳ is the mean of all observations in the trial, and the
sums are taken over all 20 initial times t0.

Additional results In Figure 10, we present additional experimental results to supplement the
SING-GP inferred flow field and line attractor from the main text, Figure 6C. These results provide
new angles of analysis of the SING-GP model fit. Recall from above that the smoothly switching
linear kernel from Hu et al. [14] encourages smoothly switching linear dynamics to be inferred.

In Figure 10A, flow field arrows are colored by most likely linear state. That is, each set of colored
arrows represents a different linear dynamical system. Encoding this structure into the kernel allows
for convenient downstream analysis of these inferred dynamics, in particular using established
properties of linear systems. Moreover, the orange arrows in Figure 10 represent the columns of
the learned input effect matrix B ∈ RD×2. We find that these input directions correspond to the
direction of the latent trajectory at both timepoints at which an intruder enters.

In Figure 10B, we plot the inferred posterior variance of the same SING-GP model. We find that
model uncertainty is low in the regions traversed by the inferred latent trajectory and high otherwise.
In fact, this posterior variance is exactly the quantity that we use to compute posterior probability of
slow points in Figure 6C. This demonstrates how the probabilistic formulation of the GP-SDE, which
we can now perform reliable inference and learning in using SING-GP, allows us to better understand
and interpret inferred flow fields.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose SING, a practical method for inference in latent SDE models. We
describe our proposed method in Section 3, including our main theoretical result, and we
provide empirical results for our method in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clearly state all assumptions of our model and, in particular, the variational
approximation to the posterior in Section 2.3 and Section 3.1. Furthermore, we discuss
limitations and suggest directions for future work in Section 3.3 and Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the full set of assumptions and the proof for our main theoretical
result (Theorem 1) in Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of our experiments in Section 5 and Ap-
pendix L.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide details to reproduce our experiments in the supplemental material.
We also provide a link to our open-source codebase containing the implementation of the
method.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all experimental details in the main text (Section 5) and the
appendix (Appendix L).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we provide thorough quantitative comparisons with error bars for the
experiments in Section 5.3 and Section 5.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we provide information on the hardware used for all experiments and
perform runtime experiments in Section 5.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed and conducted research that conforms to the code
of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broad applicability of our method throughout the paper, and
focus on a particular application to neuroscience in Section 5.4. We do not expect negative
societal consequences.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All code used in this paper are owned by the authors. All datasets are either
generated by the authors or properly credited in Section 5.4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our open-source codebase linked in the paper is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The development of our method did not involve the use of LLMs in an original
way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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