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ABSTRACT

The information-bottleneck principle suggests that the foundation of learning lies
in the ability to create compact representations. In machine learning, this goal
can be formulated as a Lagrangian optimization problem, where the mutual infor-
mation between the input and latent representations must be minimized without
compromising the correctness of the model’s predictions. Unfortunately, mutual
information is difficult to compute in deterministic deep neural network classifiers,
which greatly limits the application of this approach to challenging scenarios. In
this paper, we tackle this problem from a different perspective that does not in-
volve direct computation of the mutual information. We develop a method that
induces the collapse of latent representations belonging to the same class into a
single point. This point collapse not only significantly reduces the entropy of the
latent distribution, thereby creating an information bottleneck that correlates with
improved generalization, but also makes the network Lipschitz, offering guarantees
for enhanced robustness. Our method is straightforward to implement. We demon-
strate that it substantially improves the network’s robustness, provides a small
yet statistically significant increase in generalization, and enhances the network’s
ability to detect misclassifications.

1 INTRODUCTION

Information-Bottleneck (IB) theory provides a theoretical framework for representation learning in
deep neural networks (DNNs) Tishby et al. (2000); Tishby & Zaslavsky (2015). The underlying
idea of IB is that, to promote more generalizable and robust learning, DNNs must discard irrelevant
information. This concept is formalized by minimizing the mutual information between the input
and latent representations while still retaining the information necessary for accurate prediction.
This principle leads to a Lagrangian optimization problem, which has been shown to enhance the
network’s generalization and robustness Alemi et al. (2019). The connection between generalization
and robustness is in fact well-established in the literature Xu & Mannor (2010); Szegedy et al. (2014);
Achille & Soatto (2018); Novak et al. (2018). Furthermore, empirical evidence supports that IB
improves network performance Hu et al. (2024), and recent theoretical work provides rigorous
arguments for IB’s role in controlling generalization errors Kawaguchi et al. (2023).

The IB principle suggests that DNNs aim to transform high-dimensional input data into more compact
yet sufficiently informative latent representations. In fact, this transformation is automatically
enforced within DNNs, as demonstrated in Shwartz-Ziv & Tishby (2017). Their findings primarily
identify two dynamic phases: empirical error minimization (ERM) and compression. During the
ERM phase, which occurs over a limited number of epochs, the mutual information between the
layers and the input/output increases; this phase is also referred to as the fitting phase. This is followed
by the compression phase, which extends over a much greater number of epochs. In this phase, the
mutual information between the layers and the input decreases. During the compression phase, the
network progressively constructs more compact embeddings of the input data layer by layer. In
DNN classifiers, this process can be expressed as a data separation law, which demonstrates that
each layer improves the separation of different classes at a constant geometric rate He & Su (2023).
Such evolving separation results in the fascinating phenomenon of Neural Collapse (NC) Papyan
et al. (2020); Han et al. (2022), which can be observed in the latent space of DNN classifiers. NC

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

spontaneously occurs in the penultimate layer of overparameterized DNNs during the terminal phase
of training (TPT), i.e., when training continues beyond the point of zero training error. Interestingly,
it has been documented that during the TPT, the network improves its generalization and robustness,
implicitly suggesting a connection with the IB principle. During this terminal phase, the network
continues to find more compact representations by increasing the relative distance between latent
representations belonging to different classes, eventually developing a highly symmetric structure.
In practice, this entails that the class means in the penultimate layer collapse to the vertices of an
equiangular tight-frame simplex (ETFS).

The occurrence of NC has been widely investigated theoretically in the context of unconstrained
feature models, that is when the topmost layers of the classifiers are treated as free optimization
variables Mixon et al. (2020); Fang et al. (2021); Zhu et al. (2021); Graf et al. (2021); Ji et al. (2022);
Tirer & Bruna (2022); Ergen & Pilanci (2020); Zhou et al. (2022a). In these idealized models, the
ETFS are shown to be the only global minimizers. Nonetheless, in practical applications, perfect
convergence to an ETFS is not always observed, as highlighted in Tirer et al. (2023), indicating a
discrepancy between theoretical models and real-world neural networks. The phenomenon of NC has
also been recently explored using information-theoretic metrics such as matrix mutual information
ratio and matrix entropy difference ratio Zhang et al. (2024); Song et al. (2024b;a).

Besides improved generalization and robustness, subsequent research has revealed additional benefits
of NC. For instance, in Galanti et al. (2021; 2022); Li et al. (2024) NC has been linked to transfer
learning. In these works it is shown that the NC properties also emerge for classes not seen during
training, provided these come from the same distribution as the training set. This implies that
only a few examples are needed to train a linear classifier on these new classes. Following this
trajectory, other works Wang et al. (2023); Yang et al. (2023) utilize NC-based metrics to enhance the
transferability of models. Another application has been in connecting NC with out-of-distribution
(OOD) detection. Haas et al. (2023) show that the appearance of NC facilitates OOD detection and
subsequently Ammar et al. (2023) developed a method that leverages the NC geometric properties to
enhance OOD detection.

1.1 CONTRIBUTIONS

In this paper, we present a method to induce the formation of an information bottleneck in DNN
classifiers. Rather than directly solving the IB Lagrangian optimization problem, we achieve this by
inducing a collapse of all same-class latent representations into a single point, thereby reducing the
entropy of the latent representations. This collapse is accomplished through the implementation of a
penultimate layer with the following properties:

1. The layer is linear.
2. A loss function that compresses the layer’s latent representations is added.
3. The dimensionality of the layer is kept low to create an information bottleneck.

A penultimate layer incorporating the three mentioned properties is referred here as IB layer.

An IB layer creates an information bottleneck and induces a type of collapse that substantially
differs from the traditional concept of NC, which emerges spontaneously as observed in Papyan et al.
(2020). Using our method, data points belonging to the same class precisely converge to a single
point, and each class-specific point is located at a different vertex of a hypercube, thus developing a
binary structure. This differs from NC, where such single-point convergence does not manifest, and
convergence occurs toward an ETFS.

To our knowledge, this represents the first technique that forces the collapse of all latent representa-
tions of a given class into a single point, significantly enhancing class separability in the latent space.
The point collapse induced by our method ensures that the network satisfies a Lipschitz condition
while significantly reducing the entropy of the latent distributions, thereby enforcing an information
bottleneck. Our method has practical applications, combining the benefits of Lipschitz continuity
and the information bottleneck, such as improved robustness and generalization. Additionally, as
demonstrated by our experiments, it enhances the network’s capability to detect misclassifications.

The primary innovation of this work lies in the use of a loss function to compress the latent represen-
tations in the penultimate layer, specifically applied to a linear layer. Notably, a penalization on latent
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features was already employed in the unconstrained feature model in Zhu et al. (2021) to analyze
the global optimization landscape of the cross-entropy loss function, which also included penalties
on both the weights and features of the layer-peeled model. However, in that theoretical study the
feature penalty was used as a condition to derive a global optimizer and does not address the network
enhancements that arise only under a significant penalty applied to a linear layer. We emphasize that
the use of a linear layer is essential for applying a significant penalty; without it, all representations
would collapse to zero, rendering them indistinguishable. In contrast, the linear layer enables the
formation of binary encoding and latent point collapse—a phenomenon documented and explained
with principled arguments for the first time in this work. We also demonstrate the utilization of a
bottleneck layer as a penultimate layer, which has a lower dimensionality than the final classifier and
the previous layer.

1.2 RELATED WORKS

The idea of utilizing an IB optimization in DNNs was first outlined in Tishby & Zaslavsky (2015).
In the context of DNN classification, this concept has been implemented using variational approx-
imations Alemi et al. (2019); Kolchinsky et al. (2019); Chalk et al. (2016), through injection of
multiplicative noise Achille & Soatto (2017), and with efficient mutual information estimators Bel-
ghazi et al. (2021); Butakov et al. (2024); Gabrié et al. (2019); Goldfeld et al. (2019). However,
minimization of the IB functional in deterministic DNNs remains ill-posed for most optimization
problems Amjad & Geiger (2020). In contrast, we do not aim to minimize mutual information
directly; instead, we induce the collapse of latent representations into a single point, which in turn
lowers the entropy of the latent distribution and consequently the mutual information.

Sparse coding methods in deep neural networks, such as L0 regularization Louizos et al. (2018), aim
to sparsify the network by removing some weights or nodes Bellec et al. (2017), or input features
via L1 regularization (LASSO) Lemhadri et al. (2021), thereby reducing complexity and enhancing
computational efficiency. These approaches, including network pruning Han et al. (2015), focus
on permanently minimizing the number of active parameters to prevent overfitting and improve
generalization. A conceptually different regularization technique is dropout Srivastava et al. (2014),
which temporarily disables nodes during training to avoid overspecialization, but does not result in a
sparse network at inference time. In contrast, our method compresses latent representations without
altering the network’s architecture during either training or evaluation.

The implementation of loss functions on intermediate layers of DNNs has already been utilized in
the context of deep supervision Lee et al. (2014); Li et al. (2022). However, in these cases, the loss
function provides additional intermediate supervision to guide representations towards the correct
solution, whereas in our case, the loss function is used to compress the volume occupied by latent
representations.

In the context of the NC phenomenon, the work of Haas et al. (2023) imposes L2 normalization on the
latent representations, projecting them onto the surface of a hypersphere. This method has been shown
to accelerate convergence to NC, but it does not induce the collapse of all latent representations into a
single point. Furthermore, no performance enhancement of the trained networks was documented,
aside from improved OOD detection.

2 METHOD

Given a labeled dataset {xi, yi} , i = 1 . . . N , where N is the number of data points, we address the
problem of predicting the labels using a classifier. We utilize a deep neural network that produces a
nonlinear mapping of the input f(x), aiming to approximate the distribution represented by the data.
Deep neural networks comprise multiple layers stacked together. Each layer produces an internal
latent representation. The final output of the network can be expressed as a composition of the
functions represented by these layers f(x) = f (M) ◦ f (M−1) ◦ . . .f (1)(x) where M denotes the
number of layers in the network.

For an input vector x, the process of generating the neural network’s output can be divided, for the
sake of this exposition, into two main steps. Firstly, the nonlinear components of the neural network
transform the input into a latent representation, denoted as h(x). This representation is the output
of the last hidden layer before classification. The final output is then obtained by applying a linear
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classifier to this latent representation: f(x) = Wh(x) + b where W and b are the weight matrix
and bias vector of the linear classifier, respectively. The predicted label y is computed by applying
a softmax function to the network’s output. The softmax function transforms the linear classifier’s
output into a probability distribution over classes, indicating the likelihood that the input vector x
belongs to each class. The neural network is trained by minimizing the cross-entropy loss function
LCE(f(x), y) = − log efy(x)∑

i e
fi(x) which quantifies the discrepancy between the network’s predicted

probabilities and the true labels.

2.1 LATENT POINT TO COLLAPSE AND INFORMATION BOTTLENECK

Our objective is to design a loss function that promotes the collapse of all same-class latent represen-
tations into a single point, thereby enforcing an information bottleneck. To achieve this, we begin by
formulating the optimization of the IB Lagrangian, which aims to maximize the following objective:

LIB = I(z; y)− βI(z;x), (1)

where I(z; y) denotes the mutual information between the latent representation z and the labels y
and I(z;x) represents the mutual information between z and the input data x. The parameter β
controls the trade-off between compression and predictive accuracy. In App. B, we demonstrate
that minimizing this quantity in deterministic DNN classification is equivalent to minimizing the
following quantity:

LIB = LCE(f(x), y)− βH(z), (2)

where H(z) is the entropy associated with the latent distribution z. Minimizing the cross-entropy
loss function is a canonical approach for optimizing DNN classifiers. What remains is to minimize
the entropy H(z), which we propose to achieve indirectly by inducing the collapse of all same-class
latent representations into a single point. To this end, we introduce an additional linear layer prior to
the classifier, defined as z = WH h(x) + bH. This layer serves as the penultimate step in the network
architecture, with classification being subsequently determined through another linear operation,
f(x) = Wz+b. In addition to the cross-entropy loss applied to the network’s output, we incorporate
an L2 loss function into the penultimate layer defined as: LH(z) = ∥z∥2, where ∥ · ∥ is the Eucledian
norm. The resulting loss function is thus composed of two terms L = LCE + γ LH, where γ is a
positive scalar. The latent point collapse emerges as a result of balancing two conflicting tendencies
coming from the two components of the loss function

L = − log
e(Wz+b)y∑
i e

(Wz+b)i
+ γ∥z∥2. (3)

The squared loss function encourages latent representations to be closer to zero, whereas the cross-
entropy loss necessitates that the latent representations of different classes be linearly separable in the
penultimate layer. This configuration generates two opposing tensions: on the one hand, the squared
loss drives representations towards each other, potentially making them numerically inseparable or
even overlapping; on the other hand, the cross-entropy loss enhances separability and increases the
relative distance between latent representations of different classes.

In App A we provide principled arguments that describe how the interplay between these opposing
tensions induce the collapse of same-class latent representations into a single point, where all collapse
points are located at the same distance from the origin. Single point collapse of latent representations
ensures Lipschitz continuity of the network defined as

∥f(x1)− f(x2)∥ ≤ L∥x1 − x2∥. (4)

Considering that the final output representations are obtained as a linear combination of the latent
representations z which are located in the sorrounding of the origin, we can conclude that latent point
collapse renders networks Lipschitz. More specifically, in Zhang et al. (2022); Li et al. (2019), it is
shown that the minimum amount of perturbation required to induce misclassification in a Lipschitz
network is proportional to the Lipschitz constant L, and inversely proportional to the margin of
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f(x), i.e., the distance from the decision boundary. In the limit of a latent point collapse, L and the
margin of f(x) are both proportional to distance of the collapse points from the origin. Thus, it is
possible to set a minimum amount of perturbation that is necessary to trigger a misclassification. The
same reasoning cannot be done in case of networks whose penultimate latent representations are not
bounded close to the origin.

As shown in App. B, minimizing I(z;x) reduces to minimizing the entropy H(z) of the latent
representations. In order to understand how our method effectively minimizes the entropy associated
with the probability distributions that generate the latent representations z, we approximate the
differential entropy with a discrete Shannon entropy and take the limit for an infinitesimally small
quantization.

H∆ = −
∑
i

pi log pi (5)

Our method induces the collapse of all same-class latent representations into a single point. As a
result, all elements of a specific class are confined to a unique bin, even in the limit of a very small
bin size. In case of K classes where each class contains the same number of elements, the entropy
reduces to:

H∆ = − log
1

K
. (6)

This represents the minimum possible value of entropy that still permits discrimination among
classes. If the latent representations do not collapse into a single point, the distribution will be spread
across multiple bins, resulting in a higher entropy. Therefore, we conclude that adding a term to the
cross-entropy loss function to constrain the latent representations within a small volume enables the
solution of the IB Lagrangian optimization problem.

2.2 BINARY ENCODING

The collapse points are located on a hypersphere, and our experiments demonstrate that they align
with the vertices of a hypercube inscribed within this hypersphere. More precisely, we find that at
each node of an IB layer, latent representations can approximately assume one of two values, thereby
forming a binary encoding. However, we do not provide an explanation for why these collapse
points specifically correspond to the vertices of a hypercube. One possible argument is that as latent
representations approach the origin, it becomes increasingly difficult for the network to accurately
position all representations within such a confined space without mistakenly placing a representation
at a vertex associated with a different class. A practical solution to this challenge, potentially
discovered by the optimizer, is to maximize the relative distance between different collapse points in
each dimension of the latent space. This can be achieved by arranging opposing groups of collapse
points symmetrically around the origin, as illustrated in Fig. 1. We note that such a symmetric
arrangement can be realized using a linear layer, which allows for the symmetric displacement of
latent representations relative to the origin. However, if non-linearities such as ReLU are introduced,
the symmetric configuration becomes infeasible. In this case, the compression term would drive all
representations toward the origin, rendering them indistinguishable.

3 EXPERIMENTS

The aim of the experiments is to empirically demonstrate that our method promotes a latent point
collapse on the penultimate layer of DNN classifiers and to show how this is beneficial for the
network’s overall performance. To assess the impact of an IB layer, we conducted an ablation
study using eight different network architectures. We began with a network that incorporates an
IB layer, experimenting with three different dimensionalities for this layer: the lowest possible
dimensionality, an intermediate dimensionality, and the same dimensionality as the previous layer.
We also created three variations by individually removing each characteristic element of the IB layer.
Additionally, we included two architectures that implement different regularization techniques. The
first incorporates dropout on the penultimate layer before the classifier, while the second applies L1
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Figure 1: Graphical illustration of the dynamics leading to the emergence of a latent binary encoding.
The three images give a qualitative representation of the outcome of a training where the scalar γ, as
defined in Eq. equation 3, is progressively increased - from left to right - during training. Plots in the
images represent histograms of the latent representations in a specific node of the linear penultimate
layer. In the first image, the relatively low value of γ constrains all values close to the origin, but the
volume is still large enough for the network to differentiate between different classes in the volume.
As the magnitude of γ is increased, all latent values are drawn closer to the origin, as depicted
in the second image, and it becomes increasingly more difficult for the network to discriminate
between elements of different classes. Consequently, the network is forced to find, through numerical
optimization, a more stable solution by placing all elements belonging to the same class in the
neighborhood of one of two points. In the two distributions shown in the third figure, we observe
that each of the two peaks contains elements from different classes, but all elements belonging to a
specific class are confined to only one of the peaks. Through numerical optimization, these two peaks
ultimately converge to a single point. This binary differentiation enables the distinction between
different classes while achieving the minimum possible entropy associated with the distribution, that
is what creates an information bottleneck. These points are positioned opposite to each other with
respect to the origin, as illustrated in the third image, which is indeed possible with the utilization of
a linear layer. The red (green) arrow represents the net effects of the binary encoding (cross-entropy)
loss.

regularization to the weights of the penultimate non-linear layer with intermediate dimensionality.
The use of the L1 regularizer is intended to promote sparsity in the penultimate layer, aiming to
emulate the sparsification effects of our method on this layer. All architectures share a common
backbone that generates the latent representation h(x), but differ in their subsequent processes for
final classification. All architectures were tested on the same datasets.

The architecture with the IB layer of intermediate dimensionality is referred to as IB, while the
model with the lowest dimensionality is referred to as NARROWIB, and the model with the same
dimensionality as the previous layer—thus, no dimensional bottleneck—is referred to as WIDEIB.
The linear penultimate (LINPEN) architecture features a linear penultimate layer with the same dimen-
sionality as the intermediate IB layer, but is trained using only the cross-entropy loss function. The
non-linear penultimate (NONLINPEN) architecture implements a non-linear penultimate layer with
the same dimensionality as the other penultimate layers. The no penultimate (NOPEN) architecture
performs linear classification directly on the h(x) latent representation. The (NOPENDROPOUT)
architecture implements dropout on the penultimate layer of the baseline, while (NONLINPENL1)
applies L1 regularization on the penultimate linear layer, that is implemented with an intermediate
dimensionality.

We note that the IB, LINPEN, NONLINPEN, and NONLINPENL1 architectures have the same
number of layers and parameters but differ in activation and loss functions. The WIDEIB and
NARROWIB architectures have wide and narrow penultimate layers, respectively. The NOPEN
and NOPENDROPOUT architectures have one fewer layer compared to the others. Only the IB,
NARROWIB and WIDEIB architectures add a LH quadratic loss to the cross-entropy loss LCE as in
Eq. 3, while the others are trained exclusively with the cross entropy loss LCE .

The only architecture among all possible combinations that was not considered in our study is one
that implements a non-linear penultimate layer with a quadratic loss function. In Zhu et al. (2021), a
light penalization on latent features was employed in their unconstrained feature model, primarily to
support the theoretical derivations provided during their analysis of the global optimization landscape.
In their work, they introduced a small penalty on the penultimate feature layer, which did not induce
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Table 1: All values in the table represent the means and standard deviations obtained from different
experiments. Left column: within-class covariance as defined in Eq. 7; Central column: coefficient
of variation, defined as the ratio of the standard deviation to the mean, of the norm of the latent
distributions; Right column: estimation of entropy of the latent distribution computed with the
Kozachenko-Leonenko k-nearest neighbors method with k fixed to 100.

DATASET: CIFAR100

MODEL ΣW COEFF. OF VAR. ENTROPY

IB 3.176× 10−12 ± 9.552× 10−13 0.085± 0.005 −648.814± 5.158
WIDEIB 2.468× 10−13 ± 4.089× 10−13 0.071± 0.015 −19645.291± 197.479
NARROWIB 6.599× 10−11 ± 1.276× 10−10 0.063± 0.017 −85.406± 3.225
NOPEN 0.022± 0.009 0.102± 0.071 3562.544± 272.490
NOPENDROPOUT 0.017± 0.009 0.139± 0.099 3097.512± 143.066
LINPEN 0.671± 0.037 0.151± 0.094 237.878± 0.385
NONLINPEN 2.039± 0.969 0.176± 0.097 218.545± 9.091
NONLINPENL1 0.001± 0.0002 0.217± 0.006 34.439± 8.9

DATASET: CIFAR10

MODEL ΣW COEFF. OF VAR. ENTROPY

IB 1.234× 10−12 ± 4.811× 10−13 0.033± 0.009 −87.598± 1.706
WIDEIB 7.890× 10−15 ± 4.946× 10−15 0.033± 0.008 −5970.017± 99.443
NARROWIB 1.564× 10−12 ± 4.882× 10−13 0.045± 0.018 −43.731± 1.192
NOPEN 0.029± 0.005 0.120± 0.138 467.171± 69.201
NOPENDROPOUT 0.016± 0.009 0.158± 0.146 391.265± 41.978
LINPEN 6.909± 1.361 0.176± 0.140 29.177± 1.034
NONLINPEN 17.825± 7.792 0.208± 0.138 26.799± 3.044
NONLINPENL1 0.003± 7.792 0.174± 0.025 −4.178± 1.87

DATASET: SVHN

MODEL ΣW COEFF. OF VAR. ENTROPY

IB 7.705× 10−11 ± 1.862× 10−11 0.115± 0.006 −74.339± 0.339
WIDEIB 2.833× 10−13 ± 8.077× 10−14 0.114± 0.007 −5124.554± 72.215
NARROWIB 9.142× 10−11 ± 1.921× 10−11 0.117± 0.009 −55.332± 0.329
NOPEN 0.007± 0.004 0.141± 0.042 186.138± 75.137
NOPENDROPOUT 0.009± 0.005 0.162± 0.057 143.337± 62.343
LINPEN 3.062± 0.416 0.165± 0.052 25.620± 0.712
NONLINPEN 5.409± 1.891 0.185± 0.061 23.094± 2.632
NONLINPENL1 0.004± 0.002 0.268± 0.044 −4.037± 1.559

any measurable change in network performance. This penalization was used strictly in the context of
theoretical analysis, rather than to achieve latent point collapse or enforce an information bottleneck
as documented in this paper. To induce the phenomenon we describe, a strong penalization is required
to counteract the natural tendency of cross-entropy to increase the magnitude of latent representations.
However, applying such a strong penalty to layers with non-linear activations (e.g., SiLU, ReLU, or
LeakyReLU) prevents the network from converging, as demonstrated by our tests. The issue arises
because all latent representations are pushed close to the origin. Without access to the negative semi-
axis—since the activation functions produce outputs equal to or near zero for negative inputs—the
network cannot distinguish between different classes and develop binary encodings. For this reason,
we exclude this specific architecture from our ablation study.

Experiments were performed on the SVHN Netzer et al. (2011), CIFAR10 and CIFAR100 datasets
Krizhevsky et al. (2009) utilizing the ResNet architectures He et al. (2016). Code to reproduce the
results presented in this work is available online in the linked repository 1. All experimental details,
alongside a summary with the different architectures employed, are provided in Appendix C. We
remark that L2 regularization was always used during training for all architectures.

1https://anonymous.4open.science/r/latent_point_collapse-A0B4
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3.1 LATENT POINT COLLAPSE

In order to test whether a latent point collapse manifests in the penultimate layer, we study the
within-class covariance, defined as:

ΣW =
1

NP

N−1∑
i=0

P−1∑
p=0

(
z(i,p) − µ(p)

)(
z(i,p) − µ(p)

)⊤
(7)

where z(i,p) is the i-th latent representation with label p, and µ(p) is the mean of all representations
with label p. We also test whether all latent point collapses are located at the same distance from the
origin, as discussed in Sec. A. Additionally, we estimate the entropy of the latent distribution on the
penultimate layer using the Kozachenko-Leonenko k-nearest neighbors method.

In Table 1, we present the values of the quantities defined above at the final epoch of training for
the different architectural models considered. Notably, the value of ΣW converges to zero only for
architectures implementing an IB layer, indicating that all same-class latent representations collapse
to a single point. Furthermore, we analyze the coefficient of variation for the distance of the collapse
points from the origin, and observe that the collapse points consistently remains at an approximately
constant distance from the origin. Lastly, we notice a sharp decrease in the entropy of the distribution
due to the point collapse, which constrains all points into a small volume.

In our experiments, we demonstrate that the collapse points are located at the vertices of a hypercube,
as discussed in Appendix D. Additionally, in Appendix E, we compare the latent single point collapse
with the NC phenomenon. In particular, we note that our trainings were largely performed in the TPT,
thus ensuring that network enhancements that we document are in addition to the ones typical of NC.

3.2 ROBUSTNESS, GENERALIZATION, AND RELIABILITY

In our experiments, we observe that the induction of a latent point collapse correlates with several sig-
nificant benefits, including increased robustness, enhanced misclassification detection and improved
generalization, as evidenced by the results presented in Table 2.

The most remarkable result is the dramatic improvement in the network’s robustness. Results in Table
2 provide the magnitude of the minimal perturbation on the input data sufficient to trigger a change in
the label classification. To obtain this value, we employed the DeepFool algorithm Moosavi-Dezfooli
et al. (2016). Interestingly, we note that the intermediate number of nodes employed in the IB
architecture provides the best results. We can explain the improved robustness with the fact that
networks implementing an IB layer are Lipschitz.

The best accuracy results on the testing set at the last epoch are obtained using an IB layer, as shown
in Table 2. More specifically, the best results are achieved with the architecture IB, featuring an
intermediate number of nodes, that is in line with the robustness results. We can note that the addition
of a penultimate layer with low dimensionality, as in the LINPEN and NONLINPEN architectures,
tends to decrease the network’s accuracy, and that the implementation of dropout or L1 does not
provide significant improvements. This suggests that the performance improvement observed with the
IB architecture is not due to an increase in the network’s number of parameters nor to a regularization
effect, but rather is attributed to the formation of an information bottleneck.

In order to assess the reliability of the different neural network architectures, we study the networks’
confidence when making predictions. Most methods developed for assessing network predictions are
focused on OOD and anomaly detection. Recently, several methods have been developed that utilize
the network’s latent representations Lee et al. (2018); Sastry & Oore (2019); Sun et al. (2022); Ammar
et al. (2023) for OOD and anomaly detection. These methods are shown to be competitive and even
the state of the art in the field Yang et al. (2022). The basic assumption is that the latent representations,
specifically those of the penultimate layer, are informative about the network’s understanding of
the input data. By taking the latent representations of well-classified points in the training set as a
reference, it is possible to construct a metric to assess the distance from those reference points. Based
on this metric, we can evaluate the network’s confidence. The farther a point is from other points
with the same label, the less confident the network is considered to be. We perform tests employing
the Mahalanobis distance method Lee et al. (2018), developed for OOD detection, but also used for
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Table 2: All values in the table represent the means and standard deviations obtained from different
experiments. Left column: Classification accuracy on the testing set at the last epoch. Central column:
Robustness of the network computed as the norm of the minimal amount of perturbation, divided
by the norm of the input, to cause a prediction change. The algorithm describing the method to
produce the perturbation is in Moosavi-Dezfooli et al. (2016). We present in this table the average
results across the different experiments, where in each experiment the algorithm method was tested
on 100 inputs sampled from the testing set. Right column: AUROC values to assess reliability
of the network on predictions over the entire testing set using Mahalanobis distance as score Lee
et al. (2018) (left) and the ODIN method Liang et al. (2020)(right) to compute the confidence of the
network. Temperature in the ODIN method was set to 100; in both methods no perturbation was
added to the input.

DATASET: CIFAR100

MODEL ROBUSTNESS ACCURACY AUROC

IB 0.247 ± 0.011 77.9 ± 0.34 0.86 ± 0.0 / 0.86 ± 0.01
WIDEIB 0.114 ± 0.013 75.87 ± 0.15 0.86 ± 0.0 / 0.87 ± 0.0
NARROWIB 0.195 ± 0.011 74.9 ± 0.47 0.87 ± 0.0 / 0.81 ± 0.01
NOPEN 0.008 ± 0.0 77.02 ± 0.16 0.76 ± 0.01 / 0.8 ± 0.01
NOPENDROPOUT 0.008 ± 0.0 77.13 ± 0.09 0.77 ± 0.0 / 0.83 ± 0.01
LINPEN 0.007 ± 0.0 76.51 ± 0.24 0.71 ± 0.01 / 0.78 ± 0.01
NONLINPEN 0.007 ± 0.0 76.26 ± 0.14 0.73 ± 0.01 / 0.76 ± 0.01
NONLINPENL1 0.011 ± 0.001 76.76 ± 0.18 0.85 ± 0.0 / 0.86 ± 0.0

DATASET: CIFAR10

MODEL ROBUSTNESS ACCURACY AUROC

IB 0.725 ± 0.067 94.86 ± 0.09 0.91 ± 0.01 / 0.84 ± 0.01
WIDEIB 0.336 ± 0.119 94.85 ± 0.06 0.92 ± 0.01 / 0.92 ± 0.01
NARROWIB 0.526 ± 0.083 94.54 ± 0.08 0.9 ± 0.01 / 0.77 ± 0.02
NOPEN 0.014 ± 0.001 94.54 ± 0.04 0.85 ± 0.02 / 0.69 ± 0.03
NOPENDROPOUT 0.016 ± 0.001 94.54 ± 0.06 0.87 ± 0.01 / 0.73 ± 0.02
LINPEN 0.014 ± 0.0 94.53 ± 0.05 0.77 ± 0.04 / 0.68 ± 0.07
NONLINPEN 0.016 ± 0.001 94.42 ± 0.04 0.88 ± 0.01 / 0.73 ± 0.05
NONLINPENL1 0.032 ± 0.003 94.6 ± 0.1 0.91 ± 0.0 / 0.87 ± 0.02

DATASET: SVHN

MODEL ROBUSTNESS ACCURACY AUROC

IB 0.847 ± 0.142 96.69 ± 0.05 0.91 ± 0.0 / 0.82 ± 0.02
WIDEIB 0.228 ± 0.021 96.65 ± 0.03 0.91 ± 0.01 / 0.89 ± 0.0
NARROWIB 0.675 ± 0.068 96.65 ± 0.06 0.91 ± 0.0 / 0.84 ± 0.01
NOPEN 0.029 ± 0.001 96.4 ± 0.03 0.89 ± 0.0 / 0.71 ± 0.01
NOPENDROPOUT 0.033 ± 0.001 96.44 ± 0.03 0.9 ± 0.0 / 0.73 ± 0.01
LINPEN 0.03 ± 0.001 96.38 ± 0.04 0.88 ± 0.0 / 0.69 ± 0.03
NONLINPEN 0.032 ± 0.001 96.34 ± 0.04 0.88 ± 0.01 / 0.67 ± 0.05
NONLINPENL1 0.06 ± 0.004 96.44 ± 0.11 0.9 ± 0.0 / 0.82 ± 0.05

misclassification detection Granese et al. (2021). The basic idea is that we fit a different multivariate
Gaussian on each class of the train set. We then employ the mean and covariance obtained from the fit
to compute the Mahalanobis distance of a new sample from the class mean. The Mahalanobis distance
between a sample and the different class means can then be used to compute the probability that a
sample belongs to a specific class. We compute the Mahalanobis distance from the mean of the class
predicted by the network, and employ varying threshold values to accept or reject the classification
prediction. In addition, we perform reliability tests using another method that employs the network
output representations rather than the penultimate layer representations to assess confidence. The
basic assumption is that higher values in the logits correspond to higher confidence of the network
about the prediction. We employ the ODIN method Liang et al. (2020), which performs a temperature
rescaling on the softmax function, with the output being the network’s confidence. This confidence
is then used to accept or reject predictions. The area under the receiver operating characteristic
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curve (AUROC) values obtained using these two algorithms are shown in Table 2. A remarkable
improvement in the network’s reliability is evident when the methods are applied to a binary encoding
layer. In fact, there are improvements of up to 10% compared to the NOPEN architecture, which is
used as a baseline for comparison. We note that for this application, a wide penultimate layer, as in
the WIDEIB architecture, yields the best results.

4 DISCUSSION

The implementation of an IB layer assists the network in finding a compact geometry that enhances
overall performance. According to the IB principle, DNNs autonomously seek progressively compact
representations layer by layer to facilitate classification, eventually developing NC. However, this
behavior is not consistently observed, particularly before the TPT. Following the IB principles, we
design a loss function comprising two terms: one that maximizes the information about the input’s
label and another that encourages compression of the latent representations on the penultimate layer.
The critical use of a low-dimensional linear layer enables the development of highly symmetric and
compact representations, leading to the collapse of same-class latent representations into single points
located at the vertices of a hypercube.

Latent point collapse renders the network Lipschitz, which proves the observed improvements in
robustness. Additionally, it reduces the entropy of the latent distribution, effectively creating an
information bottleneck. This phenomenon is well-documented in the literature as being associated
with improved generalization, that is also evidenced in this work. These enhancements in robustness
and generalization are also present in the TPT and are associated with the NC phenomenon. However,
our experimental design ensures that a significant portion of the training are conducted in the
TPT, ensuring that our documented benefits are supplementary to those naturally arising from NC.
Beyond robustness and generalization, we also observe an improved ability of the network to detect
misclassifications.

The phenomenon of single-point collapse that we have demonstrated results from the interplay be-
tween the cross-entropy loss and L2 regularization on the penultimate layer. The differing asymptotic
behaviors of these two functions give rise to an equilibrium point, leading to the emergence of point
collapse. As NC has been shown to develop with various types of loss functions beyond cross-entropy
Han et al. (2022); Zhou et al. (2022b), it would be interesting to study this type of interplay with
these other loss functions.

4.1 CONCLUSION

In this paper, we have introduced a straightforward method for inducing a point collapse of latent
representations into the vertices of a hypercube. We have shown that this method dramatically
enhances the robustness of the network, while also providing a small, but statistically significant,
improvement of the generalization and reliability of the network. The simplicity of implementing this
method is particularly striking, as it requires only the addition of an additional layer to an existing
backbone architecture and an additional loss function. Given the ease of implementation and the
significant benefits it brings to the network, we expect that this methodology will find widespread
applications.
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A ANALYSIS OF LATENT POINT COLLAPSE

To understand how our method induces the collapse of same-class latent representations into a single
point, we analyze the behavior of the latent representations z in the penultimate layer under the effect
of the cross-entropy loss and the compression term.

The cross-entropy loss is defined as:

LCE = − log
e(Wz+b)y∑K
i=1 e

(Wz+b)i
, (8)

where z ∈ Rd is the latent representation, W ∈ RK×d is the weight matrix of the classifier, b ∈ RK

is the bias vector, y is the true class index, and K is the number of classes.

In the terminal phase of training, where all training samples are already well-classified, the latent
representation z is closer to the weight vector of the true label, Wy, than to the weight vectors of
other classes. Minimizing LCE encourages the logit corresponding to the true class, (Wz + b)y, to
increase relative to other logits. Since the logits are computed as a linear transformation of z, this
process implicitly drives z to adopt larger magnitudes and align more closely with the weight vector
Wy. When z is already well-aligned with Wy, an increase in magnitude ∥z∥ has a larger relative
effect on the projection onto Wy than on projections onto other weight vectors. This is because the
change in projection scales with cos θ, where θ is the angle between z and the respective weight
vector. As cos θ is largest for Wy in this phase, increasing ∥z∥ further amplifies the true class logit
more significantly than the logits for other classes. This results in a sharper separation of classes in
the softmax probabilities and a reduction in the cross-entropy loss.

Geometrically, the term W⊤
y z can be expressed as:

W⊤
y z = ∥Wy∥∥z∥ cos θ,

where θ is the angle between z and Wy . Minimizing LCE involves increasing both ∥z∥ and cos θ to
maximize this term. However, perfect alignment with Wy (θ = 0) is not strictly necessary. A small
angular deviation ∆θ can be compensated by increasing ∥z∥, thereby maintaining or reducing the
loss.

For small ∆θ, we approximate:

cos(θ +∆θ) ≈ cos θ −∆θ sin θ. (9)

Thus, the term W⊤
y z after the angular deviation becomes:

W⊤
y z ≈ ∥Wy∥∥z∥ (cos θ −∆θ sin θ) . (10)

In the overtraining regime, where z is already well-aligned with Wy, we assume that the true label
logit dominates the softmax behavior. Consequently, we only consider the terms corresponding to
the true label in the exponential sum, as these dominate in the numerator and denominator. In our
simplified analysis, we assume that any deviations due to other logits are exponentially suppressed
and have negligible effects.

To maintain or reduce the cross-entropy loss, the softmax numerator (true label logit) must dominate
the denominator. This requires the magnitude ∥z∥ (denoted r′) to increase to offset the deviation. Let
r0 = ∥z∥ before the deviation and r′ after. Substituting the dominant term in the softmax probability
and comparing the exponential arguments, we obtain:

r′∥Wy∥(cos θ −∆θ sin θ) ≥ r0∥Wy∥ cos θ. (11)

Rearranging gives:

r′ ≥ r0 cos θ

cos θ −∆θ sin θ
. (12)

This condition ensures that the increase in ∥z∥ compensates for both the reduction in the true label
logit and the increase in the incorrect class logit due to the angular deviation ∆θ. For small ∆θ,
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the denominator cos θ −∆θ sin θ remains close to cos θ, and the required increase in r′ is modest.
This means the optimization process can reduce the cross-entropy loss by slightly increasing the
magnitude ∥z∥ to compensate for the angular deviation ∆θ, without enforcing a strict collapse of
z to the exact direction of Wy. Thus, small angular deviations from alignment do not prevent loss
minimization, as the network can leverage the flexibility of increasing ∥z∥. This explains why, in
the absence of additional constraints, latent representations do not necessarily collapse to the exact
weight vector Wy .

To constrain z to a specific region, a compression term is added to the loss:

LH = γ∥z∥2, (13)

where γ > 0 is a regularization parameter. This term exerts a radially inward force on z, counteracting
the magnitude-increasing effect of the cross-entropy gradient. The total loss becomes:

L = LCE + LH, (14)

with the combined gradient:

∂L
∂z

= −Wy +

K∑
i=1

piWi + 2γz, (15)

where pi = e(Wz+b)i∑K
j=1 e(Wz+b)j

. The behavior of the total loss L depends on the magnitude of ∥z∥: on the

one hand, for large values of ∥z∥, the compression term LH dominates, discouraging large deviations
from the origin; on the other hand, for small values of ∥z∥, the cross-entropy loss LCE dominates, as
the gradients from the logits (Wz + b)i increase with the magnitude of ∥z∥, driving z outward. At
equilibrium, these opposing forces balance, constrain z to lie on a hypersphere of radius ∆, where:

∥z∥ = ∆ =⇒ ∥−Wy +

K∑
i=1

piWi∥ = 2γ∆. (16)

The constraint ∥zi∥ = ∆ ensures that latent points are constrained to the hypersphere. However, the
magnitude of γ must be large enough to counteract the natural deviations that arise during stochastic
optimization. Optimization in this setting is inherently stochastic and can be represented as a diffusive
process that does not necessarily converge directly to the global minimum. Without sufficient inward
pull from the compression term, such deviations may result in non-collapsed solutions where z
increases in magnitude and deviates angularly, even if the network is well-trained.

Thus, the collapse of same-class representations into a unique point is only guaranteed when a pulling
force, such as the compression term LH, dominates sufficiently to overcome the angular deviation
offset. Without this force, optimization may find alternative solutions involving increased magnitude
and slight angular deviation.

B INFORMATION BOTTLENECK IN DETERMINISTIC DNN CLASSIFIERS

The IB objective can be formulated as an optimization problem Tishby et al. (2000), aiming to
maximize the following function:

LIB = I(z; y)− βI(z;x), (17)

where I(z; y) denotes the mutual information between the latent representation z and the labels y,
while I(z;x) represents the mutual information between z and the input data x. The parameter β
controls the trade-off between compression and predictive accuracy. Our goal is to maximize the
mutual information between the latent representations and the labels, I(z; y). This mutual information
can be expressed in terms of entropy:

I(z; y) = H(y)−H(y|z), (18)
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where H(y) is the entropy of the labels and H(y|z) is the conditional entropy of the labels given the
latent representations. Since H(y) is constant with respect to the model parameters (as it depends
solely on the distribution of the labels), maximizing I(z; y) is equivalent to minimizing the conditional
entropy H(y|z):

max I(z; y) ⇔ minH(y|z). (19)

The conditional entropy H(y|z) can be estimated empirically using the dataset. Assuming that the
data points (x(n), y(n)) are sampled from the joint distribution p(x, y) and that z(n) = f(x(n)), we
approximate H(y|z) as:

H(y|z) ≈ − 1

N

N∑
n=1

K∑
k=1

p(yk|z(n)) log p(yk|z(n)), (20)

where K is the number of classes and p(yk|z(n)) is the probability of label yk given latent representa-
tion z(n). In practice, since we have the true labels y(n), this simplifies to:

H(y|z) ≈ − 1

N

N∑
n=1

log p(y(n)|z(n)). (21)

This expression corresponds to the cross-entropy loss commonly used in training classifiers. In a
DNN classifier, the probability p(y|z) is modeled using the softmax function applied to the output
logits:

p(yk|z) =
exp ((Wz+ b)k)∑K
i=1 exp ((Wz+ b)i)

, (22)

where W and b are the weights and biases of the final layer, and (Wz + b)k denotes the logit
corresponding to class yk. By minimizing H(y|z), we encourage the model to produce latent repre-
sentations that are informative about the labels, aligning with the objective of accurate classification.

The second term in the IB objective, I(z;x), quantifies the mutual information between the latent
representations and the inputs. To achieve compression, we aim to minimize this term. Expressing
I(z;x) in terms of entropy:

I(z;x) = H(z)−H(z|x). (23)

In the case of deterministic mappings where z = f(x), the differntial conditional entropy H(z|x) is
ill-defined, therefore we focus solely on minimizing H(z) as explained in the InfoMax seminal paper
Bell AJ (1995).

min I(z;x) ⇔ minH(z). (24)

C TRAINING AND ARCHITECTURE DETAILS.

To generate the latent representation h(x), two distinct ResNet He et al. (2016) backbone architec-
tures, of increasing complexity, were employed for three different datasets, also chosen of increasing
complexity. A ResNet18 architecture was utilized for the SVHN Netzer et al. (2011) and CIFAR10
Krizhevsky et al. (2009) datasets; a ResNet50 architectures was utilized for CIFAR100 dataset
Krizhevsky et al. (2009). The ResNet architectures implemented batch normalization, and the swish
activation function Ramachandran et al. (2017) was employed in all non-linear layer. The IB, LINPEN,
NONLINPENL1, and NONLINPEN architectures included an additional fully connected penultimate
layer consisting of 8 nodes when trained on CIFAR10 and SVHN, and 64 nodes when trained
on CIFAR100. The WIDEIB architecture implemented an additional fully connected penultimate
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Table 3: Summary of the features implemented in all architectures used in our ablation study. The
H loss refers to the inclusion or exclusion of a compressing term, LH, in the loss function on the
penultimate representation z. The Nodes Add. Layer feature indicates the presence of an additional
layer between the backbone and the classification layer. If this layer is present, its dimensionality
is categorized as one of three possible values: "wide," "intermediate," or "narrow." The exact
dimensionality for these categories is a hyperparameter that varies across different datasets. Linear
indicates whether the penultimate layer is linear, without a non-linear activation function. Dropout
indicates whether dropout is applied to the penultimate layer before classification.

MODEL H LOSS LINEAR DROPOUT L1 NODES ADD. LAYER

IB ✓ ✓ ✗ ✗ INTERMEDIATE
WIDEIB ✓ ✓ ✗ ✗ WIDE
NARROWIB ✓ ✓ ✗ ✗ NARROW

NOPEN ✗ ✗ ✗ ✗ ✗
NOPENDROPOUT ✗ ✗ ✓ ✗ ✗
LINPEN ✗ ✓ ✗ ✗ INTERMEDIATE
NONLINPEN ✗ ✗ ✗ ✗ INTERMEDIATE
NONLINPENL1 ✗ ✗ ✗ ✓ INTERMEDIATE

layer, with the same dimensionality as the previous layer, and thus consisting of 512 nodes when
trained on SVHH and CIFAR10, and 2048 nodes when trained on CIFAR100. The NARROWIB
architecture included an additional fully connected penultimate layer consisting of 6 nodes when
trained on SVHH, 4 nodes when trained on CIFAR10 and 8 nodes when trained on CIFAR100. The
NOPENDROPOUT architecture implemented dropout on the penultimate - non linear - layer, with
probability of elements to be zeroed always set to 0.5. The NONLINPENL1 architecture implemented
dropout on the penultimate - non linear - layer, with penalty set to 10−4. A summary of the different
architectures employed is provided in Table 3.

The training process utilized the AdamW Kingma & Ba (2017); Loshchilov & Hutter (2019) optimizer
with default settings, as specified in the PyTorch implementation, and a weight decay set to 0.5×10−4.
Data were augmented during training using random horizontal flips, random cropping with padding
set to 4, and the addition of Gaussian noise with a fixed standard deviation of 0.01. Each experiment
consisted of conducting different training sessions with varying learning rates. The session that
yielded the best value on the validation set in the last epoch was selected. The set of learning rates
was chosen from a geometric sequence, starting from an initial value of 10−4. Each subsequent value
was obtained by multiplying the previous one by a factor of 2. A total of 5 different initial learning
rates were employed, spanning one order of magnitude. The learning rates are halved every 50 epochs
starting from epoch 250 during training. However, the parameters of the last linear classifier are not
affected by this scheduled optimization.

All training sessions were conducted for 800 epochs, and performance metrics were recorded every
50 epochs. We opted for extended simulations to ensure that the majority of the training occurs during
the terminal phase of training (TPT). The TPT is defined as the period when the network has already
achieved convergence in terms of accuracy on the training set. The onset of the TPT is marked by the
epoch at which the accuracy on the training set reaches 99.9% Papyan et al. (2020).

The loss function employed for the IB, WIDEIB and NARROWIB architectures followed Eq. equa-
tion 3, with the value of γ starting from a low value and increasing at each epoch. For all datasets,
the initial value of γ was set to 10−2. This value was then multiplied by a factor, γstep, at each
epoch, up until it reached the value of γmax. Once this maximum value, γmax, was reached, γ was
no longer increased. For the SVHN dataset, γstep = 1.03 and γmax = 105. For both the CIFAR-10
and CIFAR-100 datasets, γstep = 1.05 and γmax = 106.

For each network architecture and dataset, 5 independent experiments were performed. Each model
is trained independently from a different random weight initialization in every experiment. The
quantities displayed in the plots represent the averages and standard deviations of these outcomes.
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Figure 2: Log-likelihood scores, standard deviations and weighted peak distance of bimodal Gaussian
mixture models fitted on each dimension of the penultimate layer using all values of the train set.
From top to bottom, the quantities described as ℓ, σ, and µ in Eqs. 25, 26, 27 are computed for the
IB, WIDEIB, NARROWIB, LINPEN, and LINPENDROPOUT architectures. We can see that the latent
representations in the binary encoding layer, including its wide version, are well represented by two
Gaussians with increasingly small standard deviations, while this is not observed for the LINPEN and
LINPENDROPOUT architectures.

D BINARITY HYPOTHESIS

Our assumption is that each dimension on the penultimate latent representation can assume ap-
proximately only one of two values. In order to verify this assumption, we fit a Gaussian mixture

model (GMM) with 2 modes on each set of latent representations zi ∼ N
(
µ
(1,2)
i ;σ

(1,2)
i

2)
. For each

dimension i, we build a histogram with the values of all latent representations of the train set. We
then fit a bimodal GMM model on this histogram. Assuming that P is the dimensionality of the
latent representation and the dataset contains N datapoints, the following quantities are collected:
The average log-likelihood score

ℓ =
1

NP

N−1∑
n=0

P−1∑
i=0

logN
(
z
(n)
i

∣∣∣µ(1,2)
i ;σ

(1,2)
i

2)
; (25)

the average standard deviation of the two posterior distributions

σ =
1

P

P∑
i=0

(
σ
(1)
i + σ

(2)
i

2

)
; (26)

and the mean relative distance of the two peaks reweighted with the standard deviation

µ =
1

P

P∑
i=0

∥∥∥µ(2)
i − µ

(1)
i

∥∥∥(
σ
(1)
i + σ

(2)
i

)
/2

. (27)

These values are plotted in Fig. 2, where we can see that during training the log-likelihood score
increases while the standard deviation decreases. We also note that relative distance of the two
modes of the GMM models increases. These three metrics clearly indicate that during training all
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latent representations are collapsing into two distinct points, forming two distinct clusters with a
clear separation between them. This observation supports our binarity hypothesis, that each latent
representation can assume only one of two values. The same analysis is performed for the LINPEN
architecture as it also features a linear layer before classification. However, we can see that in this
architecture the binarity hypothesis does not hold.

The emergence of binary encoding is made possible because all latent representations collapse into
one of two possible points. This collapse reflects a natural tendency of DNNs to seek increasingly
compact embeddings of latent representations. The phenomenon of NC can also be viewed as an
expression of this inclination, though it significantly differs from the binary encoding induced by
our method. More specifically, NC involves the convergence of class means to the vertices of an
ETFS, but this is not possible in a low-dimensional manifold. In fact, an ETFS constructed in a
P dimensional space contains P + 1 vertices, thus if the number of classes is equal to K, it is not
possible to assign each class to a different vertex when P < K − 1. In this case of large number of
classes, NC converges to a structure where class means are at equidistant points on the surface of a
hypersphere Jiang et al. (2024); Liu et al. (2023). In our experiments, this condition was always met.
More specifically, for the CIFAR10 dataset, the embedding utilized with NARROWIB had the lowest
possible dimensionality to preserve information about different classes using a binary encoding, i.e.,
P = ⌈ log2 K ⌉. We also note that, a hypercube constructed in a P -dimensional space contains 2P
distinct vertices, with each of the K different classes occupying one of those vertices. All other
2P −K vertices remain unoccupied, suggesting that they could potentially be utilized to learn new
classes in a transfer-learning setting.

Collapse into the vertices of a hypercube creates a latent binary encoding of the input representations
onto the penultimate layer. In a classification task that includes K different classes, a dimensionality
of ⌈log2 K⌉ is required in the penultimate layer to create the minimum amount of information for a
binary encoding to encode the input signal. Thus, if the penultimate layer has a larger dimensionality,
in a number of nodes all representations could collapse to zero to minimize the compressing term
in the loss function while maintaining the same accuracy. However, this scenario is never verified
in our case studies where a binary structure is observed in each node, even when a redundant
penultimate layer (i.e., with a dimensionality larger than ⌈log2 K⌉) is utilized. We could explain this
with the consideration that through gradient-based optimization methods, such a dramatic change
of configuration—i.e., all latent representations in one node collapsing to zero without altering
classification performance of the network—cannot be reached in practice. Still, in our case studies,
we note that more performant networks, in terms of generalization, implement a dimensionality of
the penultimate layer that is larger than the minimum value that would be required only considering
the total number of classes. In these cases some nodes are redundant for a basic encoding of the class.
One possible reason for utilizing more dimensions than necessary in the penultimate layer could be
that, during training, the network progressively learns to employ each dimension in the penultimate
layer for signaling specific features that are extracted from the input data, thus overcoming the idea
that the binary encoding is only meant to differentiate between the different classes. According to
this hypothesis, the binary encoding would entail that each dimension in the penultimate layer signals
the presence or absence of a specific feature that is identified by the network in the different classes.
This hypothesis, if verified, would then pave the way for future applications of binary encoding for
explainability in deep neural networks.

E NEURAL COLLAPSE

In this appendix, we present all metrics related to NC as defined in in Papyan et al. (2020). The entire
NC phenomenon can be summarized into four distinct components: (1) the variability of samples
within the same class diminishes as they converge to the class mean (NC1); (2) the class means in
the penultimate layer tend towards an ETFS (NC2); (3) the last layer classifier weights align with
the ETFS in their dual space (NC3); and (4) classification can effectively be reduced to selecting the
closest class mean (NC4).

The first property of interest is NC1, which asserts that the variability of samples within the same
class decreases in the terminal phase of training. This property is characterized by the equation
Tr
(
ΣWΣ†

B/K
)

, where ΣW is defined as
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Figure 3: Metrics used to evaluate convergence towards Neural Collapse (NC). In the upper figure,
we examine a renormalized version of the NC1 property. This normalization process is conducted
based on the number of nodes in the penultimate layer to ensure a fair comparison across models with
varying dimensions of the penultimate layer. The dashed lines are drawn at the average epoch when
training reaches convergence, that demonstrates that most of the training was performed in the TPT.
Below, we present metrics demonstrating convergence to an ETFS, utilizing the same parameters as
those outlined in Papyan et al. (2020).

ΣW =
1

NP

N−1∑
i=0

P−1∑
p=0

(
z(i,p) − µ(p)

)(
z(i,p) − µ(p)

)⊤
(28)

where z(i,p) is the i-th latent representation with label p and, µ(p) is the mean of all representation
with label p; and ΣB is defined as:

ΣB =
1

P

P−1∑
p=0

(
µ(p) − µG

)(
µ(p) − µG

)⊤
. (29)

The trace operation sums over all diagonal elements, the dimensionality of which is equal to that
of the penultimate layer, P . Given the use of different architectures with varying numbers of
nodes in the penultimate layers in our study, we examine a renormalized version of this quantity,
Tr
(
ΣWΣ†

B/K/P
)

. In Fig 3, the top image presents this value, showing that it is at least an order of
magnitude lower in the IB architecture compared to the baseline architecture. This demonstrates that
only the implementation of a binary encdoding layer ensures convergence of all representations of
the same class to a unique point, even when considered relative to the distances between class means.

The other three images below demonstrate convergence of the class means towards ETFS, also
known as the NC2 property. These images show that all values reach a plateau in the terminal phase,
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indicating convergence to their optimal values. It is evident that architectures with a dimensional
bottleneck in the penultimate layer tend to exhibit higher values for convergence to the angular values
(maximum angle and equiangularity) compared to the baseline. This is because geometrically, it
is impossible to construct an ETFS with a number of vertices equal to the total number of classes
in such a dimensional bottleneck. However, this limitation changes in the case of the CIFAR-100
dataset, where the bottleneck is less pronounced. In this case, even when dimensionality is low,
a good approximation of the ETFS can still be found. Interestingly, we note that the WIDEIB
architecture, which is the only architecture with a compression loss on a penultimate layer that is not
a dimensional bottleneck, has the stronger convergence towards an ETFS. In fact, this is consistent
with the observation that single point collapse is a stronger manifestation of NC.
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