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Abstract. For a voting ensemble that selects an odd-sized subset of
the ensemble classifiers at random for each example, applies them to the
example, and returns the majority vote, we show that any number of
voters may minimize the error rate over an out-of-sample distribution.
The optimal number of voters depends on the out-of-sample distribution
of the number of classifiers in error. We show that to select a number of
voters to use, estimating that distribution then inferring error rates for
numbers of voters gives lower-variance estimates than directly estimating
those error rates.

Keywords: voting ensemble, machine learning, ensemble classifier, Gibbs
ensemble

1 Introduction

Voting ensembles of classifiers are a staple of machine learning, including bagging
[1], boosting [2, 3], forests of decision trees [4–6], and stacking [7]. Comparative
studies show that ensemble classifiers are often the best types of out-of-the-
box classifiers [8], they win many machine learning competitions [9, 10], and
they continue to solve practical problems [11, 12]. For a compelling explanation
why ensemble classifiers produce good performance, refer to [13]. For more on
selecting ensemble classifiers and ensemble size, refer to [14–28].

This paper focuses on equally-weighted voting. One extreme is to use all
classifiers as voters for every classification. The other is to select a single classifier
at random for each classifier. This is sometimes called Gibbs classification. PAC-
Bayes error bounds [29–31] indicate why Gibbs classification can be effective:
selecting a Gibbs ensemble that includes 1% of the hypothesis classifiers produces
error bounds that are similar to selecting a classifier from a hypothesis set with
only 100 classifiers, even if the actual hypothesis set has an arbitrarily large
number of classifiers.

Similar to Esposito and Saitta [32], this paper explores how to select a num-
ber of voters for a majority-vote ensemble classifier. That paper shows that the
distribution of the number of classifier errors can vary widely over examples in
empirical datasets, motivating our analysis of the influence of ensemble size on
error rates in such situations. That paper focuses on ensembles of classifiers se-
lected with replacement, allowing a potentially unlimited number of voters. In
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contrast, this paper focuses on ensembles of classifiers selected without replace-
ment, leading to a different conclusion about the optimal ensemble size, and a
statistical method to select the ensemble size based on simultaneous bounds on
frequencies of the numbers of classifiers in error.

The next section shows that selecting a single classifier at random for each
example can outperform voting over all ensemble classifiers. In Section 3, we
show how the distribution of number of ensemble classifiers in error impacts
the optimal number of voters, by considering the error curves over numbers of
voters for each number of classifier errors as a basis for all possible distribution
error curves over numbers of voters. In Section 4, we prove that any number
of voters may be optimal. Section 5 discusses methods to select the number of
voters, showing that an out-of-sample error estimate based on inference has less
variance than direct estimates. Then Section 6 outlines methods to compute
out-of-sample error bounds based on inference estimates, including a discussion
of challenges for the future.

2 Does voting always help?

To begin, compare worst-case error rate for majority voting over all classifiers to
selecting a single classifier at random for each example. Let m be the number of
classifiers in the ensemble, and let p be their average error rate. Then the single-
classifier strategy has error rate p, by linearity of expectations. For the all-voting
strategy, the out-of-sample error rate depends on patterns of agreement among
the classifiers as well as their out-of-sample error rates. For example, suppose
three classifiers each have a 10% error rate. Then, for each pair of classifiers, it
is possible that they err together (and the classifier outside the pair is correct)
with probability 5%, producing a 15% voting error rate. In general,

Theorem 1. For m classifiers in an ensemble, with m odd, if the average out-
of-sample classifier error rate is p, with p < 1

2 , then the maximum possible
all-voting error rate is

2p

(
1− 1

m+ 1

)
. (1)

Proof. All-voting error is maximized by having the smallest possible majority of
voters in error be as probable as the average error bound allows, and otherwise
having zero errors. Maximize the probability (call it p̂) of the slimmest major-
ity, m+1

2 , being incorrect, given the constraint that the sum of error rates over
classifiers is mp:

p̂

(
m+ 1

2

)
= mp, (2)

and solve for p̂:

p̂ = 2p

(
1− 1

m+ 1

)
. (3)

If m+1
2 are incorrect with probability p̂ and zero are incorrect with probability

1− p̂, then p̂ is the all-voting error rate. 2
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As m increases, all-voting error rate can approach twice the error rate of
selecting a classifier at random, because a voting classifier can have nearly half
its classifiers correct and still be incorrect. Discretization can favor the individual.

3 A basis to analyze voting

Now consider ensemble classifiers with (odd) m classifiers, average classifier error
rate p, and an (odd) number of voters v from one to m. Setting v = 1 gives the
single-voter strategy, and v = m gives the all-voting strategy. In this section,
we analyze error rate curves over numbers of voters, given numbers of ensemble
classifiers incorrect. Those curves form a basis for error rate curves over num-
bers of voters, in the sense that the weighted sums of those basis curves (with
nonnegative weights that sum to one) are all the possible error rate curves over
numbers of voters:

Theorem 2. For an ensemble with m classifiers, for each i ∈ {0, . . . ,m}, let wi
be the probability that exactly i of the m classifiers are in error for an example
drawn at random from an out-of-sample distribution. Then, for subset voting
with v classifiers, the average error rate over the out-of-sample distribution is

m∑
i=0

wir(m, i, v), (4)

where

r(m, i, v) =

v∑
j= v+1

2

(
i
j

)(
m−i
v−j
)(

m
v

) (5)

is the expected voting error rate given that i of m classifiers are in error.

Proof. Voting has average error rate

m∑
i=0

wiPr {voting error|i} , (6)

where i is the number of the m classifiers that are in error. Voting error requires
a majority of voters to be in error, so

Pr {voting error|i} =

v∑
j= v+1

2

Pr {j voters are in error|i} , (7)

and

Pr {j voters are in error|i} =

(
i
j

)(
m−i
v−j
)(

m
v

) , (8)

since this is the number of ways to select j voters from the i incorrect ones and
v− j voters from the m− i correct ones, divided by the number of ways to select
v voters from the m classifiers. 2



4 E. Bax

Fig. 1. Average error rates r(m, i, v), for v voters, if i ∈ {0, . . . , 101} of m = 101
classifiers are incorrect. The line for i = 0 is at the bottom of the figure – a flat line
of average error rate zero, since if all classifiers are correct, then any number of voters
gives correct classification. Similarly, the line for i = 101 is at the top, and successive
curves are for successive i-values. (Only the middle four are labeled, to avoid cluttering
the figure.).
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Figure 1 shows how the probability of error for a voting classifier, r(m, i, v)
varies with the number of voters v, given that i of m classifiers are in error. The
plot is for m = 101, with a curve for each number of errors i ∈ {0, . . . , 101},
connecting r(m, i, v) values for odd v from one to 101. Think of the curves as a
basis. The set of weighted averages of the curves is the set of all possible error
curves with respect to number of voters v for ensembles of m = 101 classifiers.

From Figure 1, notice that if more than half the classifiers are in error (i ≥
51), then using more voters increases the out-of-sample error rate (except for
i = 101 since it always gives a 100% error rate). To see why consider i = 51. If
51 of 101 classifiers are in error, then selecting a single one and using it gives
expected error rate 51

101 , but using all 101 always results in an error, because 51
is a (slight) majority of the 101 voters. Between 1 and 101, using more voters
increases the error rate, by making it more likely that the majority of voters will
be incorrect. Also, notice that as i increases above 51, the increase in error rate
with number of voters goes from concave up to nearly linear to concave down,
showing that the loss in accuracy due to using a few voters rather than a single
classifier increases with i.

The following theorem shows that some things we can observe in Figure 1
are true in general: adding voters strengthens classification for examples with
fewer than half the ensemble classifiers in error, and it weakens classification
for examples with more than half the ensemble classifiers in error. These effects
only cease when there are so many voters that the minority among the ensemble
(correct or incorrect) is too small to be a majority of the voters.

Theorem 3. Let r(m, i, v) be the voting ensemble error rate if i of m ensemble
classifiers are in error, v voters are selected at random without replacement from
the ensemble, and their majority vote is returned. (Assume v is odd.) Define the
error rate difference due to increasing the number of voters by two:

∆v(m, i, v) ≡ r(m, i, v + 2)− r(m, i, v). (9)

Then:

– If i < v+1
2 then r(m, i, v) = 0 and ∆v(m, i, v) = 0.

– If i < m
2 and i ≥ v+1

2 , then ∆v(m, i, v) < 0.
– If i > m

2 and m− i ≥ v+1
2 , then ∆v(m, i, v) > 0.

– If m− i < v+1
2 then r(m, i, v) = 1 and ∆v(m, i, v) = 0.

Proof. The first and last bullet points in the theorem are straightforward. For
the others, suppose v voters have been selected from m classifiers. How can
adding two voters make an incorrect decision correct? There is only one way:
the v voters must contain the maximum number of incorrect voters to still be
correct: v−12 , and both added voters must be incorrect. That makes the number
of incorrect voters

v − 1

2
+ 2 =

v + 3

2
=

(v + 2) + 1

2
, (10)

out of v + 2 voters. Since this is the minimum possible majority, starting with
fewer than v−1

2 incorrect voters or adding fewer than two incorrect voters will
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not work. Similarly, to go from incorrect with v voters to correct with v + 2
voters, it is necessary to start with v+1

2 incorrect voters and add two correct
voters.

Note that ∆v(m, i, v) is the difference between the probability of going from
correct to incorrect and the probability of going from incorrect to correct. The
probability of going from incorrect to correct is the probability of selecting v−1

2 of
the i incorrect voters when selecting v of the m classifiers without replacement,
times the probability of getting two incorrect classifiers when selecting two of
the remaining m− v classifiers as voters:(

i
v−1
2

)(m−i
v+1
2

)(
m
v

) (
i− v−1

2

m− v

)(
i− v−1

2 − 1

m− v − 1

)
. (11)

Similarly, the probability of going from incorrect to correct is:(
i

v+1
2

)(m−i
v−1
2

)(
m
v

) (
m− i− v−1

2

m− v

)(
m− i− v−1

2 − 1

m− v − 1

)
. (12)

To find the difference, ∆v(m, i, v), note that(
i

v−1
2

)
=

i(i− 1)!(
v−1
2

)
!
(
i− v−1

2

) (
i− 1− v−1

2

)
!

(13)

= i

(
i− 1
v−1
2

)(
1

i− v−1
2

)
, (14)

and (
i

v+1
2

)
=

i(i− 1)!(
v+1
2

) (
v−1
2

)
!
(
i− v+1

2

)
!

(15)

=
i(i− 1)!(

v+1
2

) (
v−1
2

)
!
(
i− 1− v−1

2

)
!

(16)

= i

(
i− 1
v−1
2

)(
1
v+1
2

)
. (17)

Similarly, (
m− i
v+1
2

)
= (m− i)

(
m− i− 1

v−1
2

)(
1
v+1
2

)
, (18)

and (
m− i
v−1
2

)
= (m− i)

(
m− i− 1

v−1
2

)(
1

m− i− v−1
2

)
. (19)

Use these equalities to factor out some common terms:

∆v(m, i, v) =

(
m

v

)−1
i

(
i− 1
v−1
2

)
(m− i)

(
m− i− 1

v−1
2

)
(20)
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(
i− v−1

2

m−v

)(
i− v−1

2 −1
m−v−1

)
(
i− v−1

2

) (
v+1
2

) (21)

−

(
m−i− v−1

2

m−v

)(
m−i− v−1

2 −1
m−v−1

)
(
v+1
2

) (
m− i− v−1

2

)
 . (22)

For both terms in brackets, cancel one denominator factor with a numerator
factor, and factor out the other denominator factors:

∆v(m, i, v) =

(
m

v

)−1
i

(
i− 1
v−1
2

)
(m− i)

(
m− i− 1

v−1
2

)
(23)

[(
i− v−1

2 − 1
)
−
(
m− i− v−1

2 − 1
)](

v+1
2

)
(m− v) (m− v − 1)

. (24)

Then cancel in brackets:

∆v(m, i, v) =

(
m

v

)−1
i

(
i− 1
v−1
2

)
(m− i)

(
m− i− 1

v−1
2

)
(25)

[2i−m](
v+1
2

)
(m− v) (m− v − 1)

. (26)

Only the term 2i −m may be negative. It is negative if i < m
2 and positive if

i > m
2 . Based on the second through fifth factors, ∆v(m, i, v) = 0 if at least

one of the following conditions holds: i = 0, i = m, i − 1 < v−1
2 (equivalently:

i < v+1
2 ), or m− i < v+1

2 . 2

4 Optimal numbers of voters

Any (odd) number of voters may be optimal. For each v∗ ∈ {1, 3, . . . , 99}, with
m = 101, Figure 2 shows a voting error rate curve for a distribution (w0, . . . , wm)
for which v∗ is an error-minimizing number of voters. For each curve, the distri-
bution (w0, . . . , wm) is produced by a linear program that maximizes difference
in error rates between using 101 and using v∗ voters, subject to constraints:

– voting error rate with v∗ classifiers is no more than that for a single voter,
for v∗ − 2 voters, or for v∗ + 2 voters,

– voting error rate with all classifiers voting is at most 0.5 (otherwise, it is
possible to just use the opposite of its output to get a lower error rate), and

– average error rate over classifiers is 0.3.

The figure shows that any odd number of voters up to 99 can minimize
error rate for m = 101. The figure does not show this for v∗ = 101, since
the linear program optimizes the difference between using v∗ and using 101
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Fig. 2. Any (odd) number of voters may be optimal. For m = 101, error curves for
which each v∗ ∈ {1, 3, . . . , 99} is an error-minimizing number of voters. (Each curve is
based on a different distribution over number of ensemble classifiers incorrect. Average
ensemble classifier error rate is 0.3.)
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Fig. 3. Distributions wi for i ∈ {0, . . . , 101} that produce curves for which v = v∗ is
an error-minimizing number of voters.
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voters. However, Figure 1 shows that 101 is the optimal number of voters for
the distribution w50 = 1 and all other wi = 0.

Figure 3 shows the distributions of weights for each v∗ curve in Figure 2. For
most v∗ values, the error count distributions (w0, . . . , wm) that give the largest
gap between using v∗ voters and the full set of m = 101 voters have some weight
on w0, some on w51, and some on one or two intermediate numbers of errors.
The curve for each v∗ is the weighted sum of the ”basis” curves for i = 0, i = 51,
and the intermediate value or values from Figure 1. The weight on w0 lowers
error rates, helping enforce the constraint on average error rate over classifiers
and the constraint on error rate for 101 voters. The weight on w51 ensures that
the curve for v∗ goes up on the right, increasing the difference in error rates
between v∗ voters and 101 voters as well as helping to ensure that v∗ voters is
locally optimal compared to v∗+2 voters. Any weights on intermediate values can
contribute to the curvature, ensuring that v∗ voters is locally optimal compared
to v∗ − 2 voters. These weights can give us insight into how to prove that any
(odd) number of voters can be optimal for any number m of classifiers:

Theorem 4. For m > 0 and any v∗ ∈ {1, 3, . . . ,m}, there is a distribution
(w0, . . . , wm), where wi is the probability that i of m classifiers are in error,
such that v∗ voters achieves the minimum voting error rate.

Proof. First consider the boundary cases: v∗ = 1 and v∗ = m (or v∗ = m− 1 if
m is even). If v∗ = 1, then set wm−1 = 1. That gives a m−1

m error rate for v = 1,
since there is one correct classifier, and error rate one for v ≥ 3, since the single
correct classifier cannot form a majority. Similarly, if v∗ = m or v∗ = m−1, then
set wi = 1 for i = v∗−1

2 . That produces error rate zero for v∗ voters, because the
incorrect voters cannot form a majority, but the error rate for smaller v values
is positive since the incorrect voters can form a majority for those values.

Now consider intermediate values: 1 < v∗ < m − 1. Let a = v∗−1
2 and

b = m− v∗+1
2 . For a errors among m classifiers, the voting error rate is zero for

v ≥ v∗. For b errors, it is one for v > v∗, but less than one for v = v∗, because the
v∗+1

2 can form a majority among v∗ voters. As a result, any weighted average
(with positive weights) of error curves for a and b has voting error rate greater
than v∗ for all v > v∗. So set wa = θ, wb = 1 − θ, and wi = 0 for all other i
values.

Then select θ ∈ (0, 1) to ensure that the linear combination of curves has
voting error rates less than the rate for v∗ for all v < v∗. It is possible to do this
by taking θ sufficiently close to one, because doing so makes the combined curve
resemble the curve for a errors more and the curve for b errors less. (This requires
that the error rates on the curve for b be bounded, so that multiplying by 1− θ
can reduce their influence as 1 − θ approaches zero, but they are bounded by
one since they are error rates.) By Theorem 3, the curve for a errors is strictly
decreasing in v for v < v∗, since i = a = v∗−1

2 < m
2 and i = a = v∗−1

2 ≥ v+1
2 . 2
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5 Selecting the number of voters

Assume we have n validation examples, drawn i.i.d. from the out-of-sample dis-
tribution, and not used to train or select classifiers for the ensemble, and we want
to use them to select the number of voters for the ensemble. A straightforward
method is to apply the voting classifier for each odd number of voters v in one to
m to all the validation examples, selecting voters at random for each number of
voters and validation example. Then calculate the error rate over the validation
examples for each number of voters, and select the number of voters with the
lowest validation error rate.

To get error bounds, for each number of voters v, let kv be the number
of errors over the validation examples. Let u(n, k, δ) be a PAC (probably ap-
proximately correct) upper bound and t(n, k, δ) be a PAC lower bound for the
probability that produces k events in n samples with bound failure probability δ.
Since we simultaneously validate error rates for m+1

2 different numbers of voters
and use two-sided bounds, for δ > 0, with probability at least 1−δ, each number
of voters has out-of-sample distribution error rate in the range t(n, kv,

δ
m+1 ) to

u(n, kv,
δ

m+1 ). For example, using Hoeffding bounds [33], the range is:

kv
n
±
√

ln(m+ 1)− ln δ

2n
. (27)

In practice, use a binomial inversion bound [34, 35], to get a tighter bound range.
Selecting voters at random for each example introduces some variance. To

produce lower-variance estimates of voting error rates, instead compute for each
validation example j the number of ensemble classifiers in error ij . Recall from
Equation 5 that r(m, i, v) is the expected voting error rate for v voters, given i
ensemble classifiers in error. Then, for each number of voters v, an estimate of
out-of-sample error rate is:

1

n

n∑
j=1

r(m, ij , v). (28)

Let ŵi be the fraction of validation examples for which there are i classifiers in
error (ij = i). Then the estimate is

=

m∑
i=0

ŵir(m, i, v). (29)

Refer to these estimates as the inference estimates, since they use estimates of the
rates of numbers of errors in the ensemble to infer a estimates of out-of-sample
error rates for different numbers of voters.

Theorem 5. For each number of voters v, the out-of-sample error rate estimate
from using validation data to compute estimates ŵi and using them to infer
average voting error rate has variance less than or equal to the estimate from
applying randomly-selected voters to validation examples.
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Proof. For inference, the estimate is the mean of r(m, i, v) over validation ex-
amples, where i is the number of ensemble classifiers in error. For brevity, call
r(m, i, v) simply ri. The direct estimate is the mean over validation examples of
one if voting errs and zero otherwise. For both, the variance sums over examples,
since the validation examples are independent samples. So we can focus on the
variances for a single validation example.

For direct estimation, the single-example error estimate is one with proba-
bility p, where p is the out-of-sample distribution error rate for using v voters,
and zero with probability 1 − p. Since it is a Bernoulli random variable, it has
variance p(1− p) = p− p2.

For inference, the single-example error estimate is r(m, i, v), with probability
wi for each value of i. The variance is the difference between the expectation of
the square and the square of the expectation:

∑
i

wir
2
i −

[∑
i

wiri

]2
. (30)

But
p =

∑
i

wiri, (31)

so the variance is ∑
i

wir
2
i − p2. (32)

Recall that the variance for direct estimation is p−p2. So the difference between
variances is

p−
∑
i

wir
2
i =

∑
i

wiri −
∑
i

wir
2
i =

∑
i

wi
[
ri − r2i

]
. (33)

Since each ri is a probability (of voting error given i ensemble errors), ri ∈ [0, 1].
So r2i ≤ ri. 2

6 Error Bounds and Inference

6.1 Error Bounds

Now consider how to compute error bounds based on the inference estimates.
One way is to apply simultaneous Hoeffding bounds:

Theorem 6. With probability at least 1 − δ, the out-of-sample error rates for
all numbers of voters v are within√

ln(m+ 1)− ln δ

2n
(34)

of the inference estimates from Expressions 28 and 29.
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Proof. From Expression 28, the inference estimate for each v is

1

n

n∑
j=1

r(m, ij , v). (35)

This is the average of n i.i.d. random variables r(m, ij , v) ∈ [0, 1], one for each
validation example j. The estimate’s mean (over draws of validation examples)
is the out-of-sample error rate for v, since r(m, i, v) is the average error rate for v
voters, averaged over all sets of v voters. So Hoeffding bounds apply [33]. There
are m+1

2 numbers of voters, and two-sided bounds, making m+ 1 simultaneous

validations. So set δ to δ
m+1 in the Hoeffding bound. 2

6.2 Validation by Inference

Alternatively, we could first bound out-of-sample rates of i errors among the
ensemble classifiers, then use those bounds to infer bounds on ensemble error
rates. (This strategy is called validation by inference [36].) As before, let wi be
the out-of-sample rate of i errors among the m ensemble classifiers, and let ŵi
be the in-sample rate over n validation examples. Also as before, let u(n, k, δ)
and t(n, k, δ) be PAC upper and lower bounds on the out-of-sample probability
that produces k events in n samples, with bound failure probability δ.

Then, using simultaneous validation for 2(m + 1) bounds (2 for upper and
lower bounds, and m + 1 for zero to m errors among the ensemble classifiers),
with probability at least 1− δ,

∀i∈{1,...,m}wi ∈
[
t(n, ŵin,

δ

2(m+ 1)
), u(n, ŵin,

δ

2(m+ 1)
)

]
. (36)

(Dividing δ to get simultaneous bounds is known as the Bonferroni correction
[37, 38].)

To derive out-of-sample error bounds for each number of voters v, use linear
programming to optimize

m∑
i=0

wir(m, i, v) (37)

over the set of feasible out-of-sample rates of numbers of errors given by Expres-
sion 36, with the additional constraints

m∑
i=0

wi = 1 and ∀i : wi ≥ 0, (38)

minimizing for lower bounds and maximizing for upper bounds.
Compare these bounds to the bounds from Theorem 6. These bounds allow

binomial inversion for each ti and ui, since each ŵi has a binomial distribution,
and these tend to be tighter than Hoeffding bounds and other derived bounds.
(Binomial inversion gives sharp bounds.) However, these bounds divide δ by
2(m + 1) rather than m + 1, doubling the bound failure probability allocated
to each probability bound, because we use m+ 1 estimated rates of numbers of
errors among classifiers to infer error bounds for only m+1

2 numbers of voters v.
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6.3 Using the Multinomial Distribution – Future Work

Together, the ŵi values are a sample from a multinomial distribution with prob-
abilities wi. We should be able to use this information to get tighter bounds
on the wi values from multinomial bounds, instead of using simultaneous bi-
nomial bounds over all ŵi. Let L(ŵ, δ) be the set of probability vectors w =
(w0, . . . , wm) that have probability at least 1− δ of generating a sample vector
that is more likely than ŵ = (ŵ0, . . . , ŵm). Call L(ŵ, δ) the likely set. (Infor-
mally, w is in the likely set unless ŵ is in the δ-tail of the multinomial distribution
generated by probabilities w.)

To compute an upper bound on out-of-sample error rate for each number of
voters v, solve:

max
w∈L(ŵ,δ)

m∑
i=0

wir(m, i, v). (39)

(For lower bounds, minimize instead of maximizing.) This produces valid upper
and lower bounds for all numbers of voters, with probability at least 1− δ.

Constraining w to the likely set based on the multinomial distribution allows
validation by inference without using a Bonferroni correction to divide δ by
2(m + 1) as was required for the constraints in Expression 36. This produces
tighter constraints, so the resulting bounds are at least as strong.

The challenge lies in computing the error bounds. We want to optimize a
linear function over the likely set. But the likely set may have a challenging
shape for optimization, because the tails of multinomial distributions are not
continuous in w. To see why, suppose that for some w some other sample vector
is equally as likely as ŵ. Then perturbing w can change the ordering of those
likelihoods, so that the likelihood of the other sample vector becomes greater
than that of ŵ, shifting the other sample vector’s full probability out of the tail
in a discontinuous jump.

So one goal for future research is to identify a superset of the likely set that
is amenable to optimization and does not contain distributions w outside the
likely set that would significantly weaken the resulting error bounds. There are
approximations to the likely set that make optimization easier. For example,
consider Pearson’s X2 statistic [39–41]:

X2(w, ŵ) = (m+ 1)

m∑
i=0

(ŵi − wi)2

wi
, (40)

with term i zero if wi = ŵi = 0. Asymptotically, X2 has a chi-squared distribu-
tion with m degrees of freedom. So if we let Cδ be the value for which the cdf
of that distribution is δ, then we can define an approximate likely set:

L̃(ŵ, δ) ≡
{
w
∣∣X2(w, ŵ) ≤ Cδ

}
. (41)

This set has smooth boundaries. However, it is not a superset of the likely set.
To identify a suitable superset of the likely set, perhaps we can apply bounds

on the difference between X2 (or similar statistics) and the chi-squared distri-
bution [42–47] to expand an approximate likely set, for example by increasing
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the constraint Cδ on X2 to ensure that all w in the likely set are enclosed in
the region of the approximate set while keeping the set small enough to yield
effective error bounds. It may also be possible to extend bounds on L1 distance
between ŵ and w [48, 49] to derive a superset of the likely set that gives linear
constraints instead of a feasible region with curved boundaries.

Within optimization procedures, computing tail probabilities (the cdf of ŵ
given w) directly is infeasible for even moderate-sized ensembles, because the
number of ways for n samples to fall into m + 1 categories is

(
n+m
m

)
. Monte

Carlo methods [50, 51] can estimate the tail probability to arbitrary accuracy
with arbitrarily high probability. Also, there are evolving methods to cleverly
collect terms for exact tail computation [52–54].

The problem of identifying a worst likely generator for multinomial samples
is an interesting statistical problem, with applications beyond ensemble valida-
tion. It is not clear whether approaches based on the multinomial tail can be
more effective in practice than approaches that split δ and perform simultaneous
validation over individual categories. (In our case, each number of errors i among
the ensemble classifiers is a category.) The simpler approach of simultaneous val-
idation can use sharp binomial inversion bounds within each category, and it can
also benefit from the freedom to split δ non-uniformly. Finally, both approaches
could benefit from tuning the constraints to the weights (the r(m, i, v) values
in our case) used to evaluate the generating distributions. For example, it is
possible to merge categories that have similar weights to reduce the problem’s
dimensionality.

7 Conclusion

We have shown that any (odd) number of voters may yield the minimum out-
of-sample error rate for a classifier that selects voters at random without re-
placement for each example from a set of classifiers. And we have shown that,
when using validation data to select a number of voters for a set of classifiers, an
indirect method gives lower-variance estimates of out-of-sample error rate than
simply applying the classifier to each validation example. The indirect method is
to first use the validation data to estimate the frequencies of numbers of classi-
fiers in error over the out-of-sample distribution, then use validation by inference:
estimate out-of-sample error rates for the different numbers of voters based on
the frequencies of numbers of classifiers in error. To support these conclusions,
we have shown how frequencies of numbers of classifiers in error form a basis to
analyze voting error rates.

For future work, we have outlined how using multivariate bounds for the
multinomial distribution could improve the error bounds based on validation by
inference. Geometrically, a separate lower and upper bound for the frequency
of each number of errors bounds the out-of-sample set of frequencies to a rect-
angular prism in the space that has a dimension for each of those frequencies.
Multivariate bounds on frequencies have the potential to produce stronger infer-
ence bounds by removing the sharp corners and edges of the rectangular prism
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that correspond to near-bound values for multiple frequencies, to yield a feasible
set that has a shape more like an ellipsoid.
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