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Abstract—In high-dimensional classification tasks, data from
different classes often lie in a union of lower-dimensional sub-
spaces. Identifying the basis vectors for each subspace that effec-
tively differentiates between classes can enhance the explainabil-
ity and accuracy of classification methods. This study proposes a
novel approach that uses singular value decomposition to identify
class-specific basis vectors that maximize the separability of
classes. Instead of selecting the most significant n number of basis
vectors using traditional heuristics for basis selection, the mean
average precision for each basis vector is calculated, and the top-
performing n basis vectors are selected. Furthermore, this study
extends the methodology by integrating feature vector outputs
from two different pre-trained deep learning models, as input
for classification evaluation in two different cases. The proposed
methodology is validated through simulations, demonstrating its
potential for improving classification in high-dimensional spaces.

Index Terms—Subspace clustering, subspace segmentation,
multidimensional classification, dimensionality reduction.

I. INTRODUCTION

According to the Manifold Hypothesis, data in high-
dimensional classification tasks often come from a union of
lower-dimensional subspaces. Identifying these subspaces is
fundamentally equivalent to solving the classification problem,
as it enables a more structured and interpretable separation of
classes. For example, in facial expression recognition, images
of the same person under different expressions form a smooth
low-dimensional manifold within the high-dimensional image
space [1]. Similarly, in motion segmentation, the trajectories of
different moving objects in a video typically reside in distinct
subspaces [2].

Singular Value Decomposition (SVD) is a widely used
mathematical tool for determining the dimension of lower-
dimensional subspaces and extracting a corresponding set
of basis vectors. Given a data matrix X ∈ Rm×n, SVD
decomposes it as X = UΣV T , where U ∈ Rm×m and
V ∈ Rn×n contain orthonormal basis vectors for the column
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and row spaces of X , respectively, and Σ ∈ Rm×n is a
diagonal matrix containing the singular values. The rank of
X , determined by the number of nonzero singular values in Σ,
provides an estimate of the intrinsic dimension of the subspace,
while the corresponding left and right singular vectors in U
and V span the basis of that subspace. However, selecting the
most informative basis vectors for optimal class differentiation
remains an open research problem.

This paper introduces a method for selecting differentiating
bases by using projections and mean average precision (mAP)
analysis. Additionally, it explores how feature vector outputs
from pre-trained ResNet-18 [3] and ViT-L/16 [4] can be used
to evaluate the classification performance of the proposed
method.

A. Related Work

SVD is a foundational matrix factorization technique that is
applicable in dimensionality reduction and data compression
[5]. One common application of SVD is Principal Component
Analysis (PCA), which identifies the directions of maximum
variance in high-dimensional data [6]. PCA is mathematically
equivalent to SVD applied to the covariance matrix of the data
and is extensively used in feature selection and noise reduction
[7], [8]. Several extensions of SVD have been introduced
to address computational challenges. Skinny SVD reduces
complexity by selecting the top k singular values [9], while
Incremental SVD updates the decomposition dynamically for
streaming data [10]. Robust PCA (RPCA) handles outliers by
decomposing data into low-rank and sparse components [11],
and Randomized SVD efficiently approximates SVD for large-
scale datasets [12].

SVD and PCA are applied in image compression [13],
recommender systems [14], natural language processing (NLP)
through Latent Semantic Analysis (LSA) [15], and bioinfor-
matics for genomic data clustering [16]. While SVD remains
computationally intensive for large datasets, modern adapta-
tions such as Randomized SVD and Incremental PCA improve



efficiency, making these methods highly relevant for large-
scale and real-time data processing.

Subspace analysis techniques have been extensively studied
in machine learning and signal processing [17]–[19]. SVD has
been employed for dimensionality reduction, with applications
ranging from PCA to subspace clustering [5], [20]. Previous
studies have explored the use of subspaces for classification,
such as in [21], which analyzes geometric relationships be-
tween subspaces. Feature selection methods, including filter,
wrapper, and embedded approaches, aim to identify discrim-
inative features but often lack a direct connection to the
underlying subspace structure [20].

Recent advancements in deep learning, particularly with
convolutional neural networks (CNNs) and transformer-based
architectures, have demonstrated the effectiveness of feature
extraction using pre-trained models such as ResNet-18 [3]
and ViT-L/16 [4]. Feature vectors obtained from these net-
works have been successfully used for transfer learning and
classification tasks [22]. This study extends these findings
by evaluating how SVD-based basis selection interacts with
feature vectors extracted from both CNN-based (ResNet-18)
and transformer-based (ViT-L/16) architectures.

Linear Discriminant Analysis (LDA), originally introduced
by Fisher [23], is a well-established method for dimensionality
reduction and classification. It optimizes class separability by
projecting high-dimensional data onto a lower-dimensional
space while maximizing the ratio of between-class to within-
class scatter. Traditional LDA assumes normally distributed
classes with equal covariance, which limits its applicability. To
address these constraints, several extensions have been devel-
oped, including Regularized LDA (RLDA) [24] for handling
singular scatter matrices, Kernel LDA (KLDA) [25] for non-
linear separability, and Incremental LDA [26] for real-time
data updates.

Recent studies have focused on selecting discrimina-
tive bases for multi-class classification problems. Sun et
al. [27] proposed the Sparse Softmax Feature Selection (S2FS)
method, which enhances multi-class classification by com-
bining ℓ2,0-norm regularization with the Softmax model to
enforce sparsity while preserving discriminative power. Zhu
et al. [28] introduced a feature selection approach integrating
Fisher’s Linear Discriminant Analysis (FLDA) and Locality
Preserving Projection (LPP) to select class-discriminative and
noise-resistant features, notably applied in Alzheimer’s disease
classification. Aguilar-Ruiz [29] presented a class-specific fea-
ture selection technique using a deep one-versus-each strategy,
enhancing classification explainability by selecting features
most relevant to each individual class.

B. Paper Contributions

• A novel methodology for selecting class-specific basis
vectors that maximize class separability, using projection-
based discriminative basis selection.

• The integration SVD and mean average precision (mAP)
analysis to evaluate and rank basis vectors based on their
discriminative power.

• A systematic approach to selecting the most informative
basis vectors, improving classification performance over
traditional heuristic-based selection methods.

• Validation of the proposed methodology through simula-
tions and feature vectors extracted from pre-trained deep
learning models (ResNet-18 and ViT-L/16).

• Experimental comparisons showing significant improve-
ments in true positive rates (TPR) and false positive rates
(FPR), particularly in cases where class subspaces exhibit
overlap.

II. METHOD

Selecting the most representative bases from the subspace
of a given class is a crucial step in classification tasks. This
section outlines the approach for obtaining basis vectors using
SVD and further refining the selection using mAP analysis.
The methodology involves decomposing class-specific data
matrices, selecting discriminative basis vectors, and utilizing
projection-based classification.

A. Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a fundamental tech-
nique used to extract basis vectors representing the subspace
in which a set of data points reside. By decomposing a matrix
into orthonormal components, SVD reveals the underlying
structure of the data in a ranked order, where the most
significant basis vectors capture the greatest variance.

For a given class i, feature vectors belonging to that
class, Ci, are stacked into a matrix Mi, where each column
corresponds to an individual data point:

Mi = horizontalStack(Ci) (1)

Applying SVD to this matrix results in:

UiΣiV
T
i = Mi (2)

where:

• Ui contains the left singular vectors, representing an
orthonormal basis for the subspace.

• Σi is a diagonal matrix with singular values, ranking the
significance of each basis vector.

• VT
i provides the right singular vectors, which represent

the data points in the transformed space.

The columns of Ui serve as basis vectors of the subspace
in which class i resides. If the feature vectors are arranged as
rows instead of columns, the rows of VT

i provide an equivalent
basis.

This decomposition facilitates the selection of a subset of
basis vectors to represent the class while maintaining essential
information. Traditional selection methods choose the first
n most significant basis vectors based on singular values.
However, this approach does not necessarily optimize class
separability.



B. Selecting the Most Differentiating Bases

SVD provides an ordered set of basis vectors, but these
vectors do not necessarily correspond to the most discrimi-
native features for class separation. While traditional methods
select the first n singular vectors, this approach may include
bases that represent intra-class variance rather than inter-class
separability. To address this limitation, a selection strategy
based on mAP is introduced.

The mAP-based selection process ensures that only the most
class-distinguishing bases are chosen. Instead of relying on
singular value magnitude, each basis vector is evaluated based
on its ability to differentiate between data points belonging
to the target class and those from other classes. This process
starts by grouping vectors corresponding to the target class
as shown previously in Equation (1). Moreover, vectors of all
other non-target classes, C̃i, are similarly stacked into M̃i

matrix as in Equation (3):

M̃i = horizontalStack(C̃i) (3)

As a result of the SVD analysis shown in Equation (2), each
basis vector ui,k obtained from the columns of Ui is used to
project data points from both the target class and non-target
classes. However, instead of directly using the projections, we
normalize them by the ℓ2 norm of each feature vector. The
modified projections are given in Equations (4) and (5) for
r number of target class vectors and s number of non-target
class vectors:

Xi,k =

[
uT
i,kc1

∥c1∥2
,
uT
i,kc2

∥c2∥2
, . . . ,

uT
i,kcr

∥cr∥2

]
(4)

X̃i,k =

[
uT
i,k c̃1

∥c̃1∥2
,
uT
i,k c̃2

∥c̃2∥2
, . . . ,

uT
i,k c̃s

∥c̃s∥2

]
(5)

The mAP score of each basis vector is then computed
by treating the normalized projections of the target class
as positive instances and those of the non-target classes as
negative instances as shown in Equation (6):

mAPi,k = mAP
(
Xi,k : X̃i,k

)
(6)

Then, the basis vectors are sorted in descending order based
on their mAP scores. Now, instead of selecting the first n
singular vectors, the n basis vectors with the highest mAP
scores are chosen.

This method prioritizes bases that maximize inter-class sep-
arability while preserving computational efficiency. By select-
ing bases based on discriminative power rather than variance
alone, classification performance is improved significantly.

C. Calculation of Projection Matrix

As the projection matrix of the base method, the most
significant n number of columns of Ui are selected, forming
the matrix shown in Equation (7)

Ui,base =
[
u1 u2 . . . un

]
(7)

Using these basis vectors, the projection matrix Pi for the
n-dimensional subspace of class i is computed as shown in
Equation (8):

Pi,base = Ui,baseU
T
i,base (8)

Similarly, basis vectors sorted by their mAP scores are also
used to form a basis matrix as shown in Equation (9)

Ui,mAP =
[
u1,mAP u2,mAP . . . un,mAP

]
(9)

As shown previously, using the matrix composed by the
selected base vector, the projection matrix for the selected
subspace based on mAP scores is calculated as shown in
Equation (10):

Pi,mAP = Ui,mAPU
T
i,mAP (10)

D. Classification of a Given Test Point

After computing the projection matrix for a class, a given
test point is analyzed to determine its class membership. The
classification process involves projecting the test vector z onto
each class subspace and measuring its alignment with the class
representation. The projection ratio, defined in Equation (11),
is used as a similarity measure:

di,z =
∥Piz∥2
∥z∥2

(11)

A test vector is assigned to a class if its projection ratio
exceeds a predefined threshold. The determination of this
threshold relies on analyzing the projection ratios of both
in-class and out-of-class data points. The projection ratios
for a given projection matrix Pi are computed as shown in
Equations (12) and (13):

Xi =

[
∥PT

i c1∥2
∥c1∥2

,
∥PT

i c2∥2
∥c2∥2

, . . . ,
∥PT

i cr∥2
∥cr∥2

]
(12)

X̃i =

[
∥PT

i c̃1∥2
∥c̃1∥2

,
∥PT

i c̃2∥2
∥c̃2∥2

, . . . ,
∥PT

i c̃s∥2
∥c̃s∥2

]
(13)

The optimal threshold value should ideally be lower than
the smallest value in Xi and greater than the largest value
in X̃i. However, this condition is not always met. To find
a suitable threshold value, using True Positive (TP), False
Negative (FN), False Positive (FP), and True Negative (TN)
values, True Positive Rate (TPR) and False Positive Rate
(FPR) are calculated for each threshold value ranging from
0 to 1. These metrics are defined in Equations (14) and (15):

TPR =
TP

TP + FN
(14)

FPR =
FP

FP + TN
(15)

To ensure an optimal balance between classification sensi-
tivity and specificity, a threshold score ts is computed using
Equation (16):



ts =
√
(1− TPR)2 + FPR2 (16)

The value of ts measures the proximity of a given threshold
to the ideal classification point, where TPR = 1 and FPR =
0. The threshold value that minimizes ts is selected as the
optimal threshold for each class projection matrix.

III. EXPERIMENTAL SETUP

The proposed classification approach is evaluated using both
synthetic data and feature vectors extracted from pre-trained
ResNet-18 and ViT/L-16 networks.

A. Synthetic Data Experiments

The synthetic data experiments are structured into two
stages:

1) Stage 1: Distinct Subspaces: In the first stage, data
points are generated from two distinct subspaces of a high-
dimensional ambient space. The classification accuracy is
evaluated using both the proposed basis selection method and
a standard approach that selects the top n singular vectors
using SVD.

2) Stage 2: Overlapping Bases: In the second stage, syn-
thetic data is generated such that the two subspaces share
a subset of principal components. This setup is designed
to highlight the advantages of the proposed method, which
prioritizes discriminative basis selection over purely ranking
singular vectors by magnitude. The classification performance
in this scenario is expected to demonstrate the superiority
of the proposed approach in handling overlapping feature
distributions.

B. Feature Vector Experiment Using a Pre-Trained Network

The feature vectors extracted from pre-trained ResNet-18
[3] and ViT/L-16 [4] trained on ImageNet [30] are further
analyzed to assess classification performance. The dataset used
for this evaluation is the ”A Large Scale Multi-View RGBD
Visual Affordance Learning Dataset” [31], which consists of
23,605 images across 37 object categories with 15 affordance
labels.

Only RGB images are processed through the pre-trained
networks, with the fully connected layers removed. The feature
vectors extracted from the final convolutional layers before
classification are used as input for the proposed basis selection
method. Due to the multi-label nature of affordance classifi-
cation, overlapping class regions exist, making the proposed
method particularly advantageous in distinguishing between
multiple affordances.

IV. RESULTS AND DISCUSSION

In Stage 1 of the synthetic data experiments, the parameter
n varies from 1 to 8 in a two-class classification scenario.
The ambient space has a dimensionality of 175, with each
class represented by a 28-dimensional subspace. Each class
contains 10,000 data points, with 5,000 used for training
(projection matrix and threshold computation) and 5,000 used

for validation. The same data split is maintained for all
subsequent experiments.

Synthetic data results are averaged over 100 independent
trials, and the mean performance is reported in Table I. In
Stage 2, all parameters remain the same, except that the
two classes share a 10-dimensional subspace over their 28-
dimensional subspaces. Results for ResNet-18 and ViT/L-16
feature vectors are also included.

TABLE I
RESULTS OF THE BASE METHOD AND PROPOSED METHOD

Base Method Proposed Method
Dataset TPR(%) FPR(%) TPR(%) FPR(%)

Synthetic Stage 1 83.71 9.33 88.65 6.80
Synthetic Stage 2 62.26 30.28 87.73 7.82

ResNet-18 Feature Output 80.36 4.16 86.47 4.26
ViT/L-16 Feature Output 88.77 2.15 92.17 1.67

As expected, the proposed method demonstrates a signifi-
cant improvement in Stage 2, where the classes share over-
lapping subspaces. In Stage 1, the proposed method achieves
a 4.94% increase in TPR and a 2.53% reduction in FPR.
However, in Stage 2, where overlapping bases exist, the
improvements are significantly more pronounced: a 25.47%
increase in TPR and a 22.46% reduction in FPR.

For real-world data, the proposed method improves TPR by
6.11% for ResNet-18 feature vectors and 3.40% for ViT/L-
16 feature vectors. These results, observed consistently across
both synthetic and real-world datasets, confirm the robustness
and effectiveness of the proposed basis selection method.

V. CONCLUSION

This study proposed a novel basis selection method for
subspace classification, addressing challenges in overlapping
subspaces where traditional SVD-based selection fails to
capture discriminative features effectively. The classification
approach involved projecting test vectors onto class-specific
subspaces and determining class membership based on an
optimized projection threshold.

Experimental validation was performed using synthetic data
and feature vectors from pre-trained deep-learning models.
In synthetic experiments, the proposed method achieved a
25.47% increase in TPR and a 22.46% reduction in FPR when
class subspaces exhibited overlap. On real-world data, using
ResNet-18 and ViT/L-16 feature vectors, the method improved
TPR by 6.11% and 3.40%, respectively, over the base method.

These results confirm the robustness of the proposed ap-
proach in handling complex class structures. Unlike conven-
tional methods that prioritize global variance, the proposed
technique selects bases that maximize class separability. Future
work may explore its extension to non-linear subspaces and
evaluate its applicability to other multi-label classification
tasks.

ACKNOWLEDGMENT

The authors thank the Center for Robotics and Artificial
Intelligence (ROMER) of Middle East Technical University
for its continuous support to this research.



REFERENCES

[1] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few
to many: Illumination cone models for face recognition under variable
lighting and pose.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 6, pp. 643–660, 2001.

[2] K. Kanatani, “Motion segmentation by subspace separation and model
selection,” in 8th International Conference on Computer Vision, vol. 2,
pp. 301–306, 7 2001.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778, 2016.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” in International Conference on Learning Representations, 2021.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins
University Press, 4th ed., 2013.

[6] I. T. Jolliffe, Principal Component Analysis. Springer, 2nd ed., 2002.
[7] K. Pearson, “On lines and planes of closest fit to systems of points in

space,” Philosophical Magazine, vol. 2, no. 11, pp. 559–572, 1901.
[8] H. Hotelling, “Analysis of a complex of statistical variables into prin-

cipal components,” Journal of Educational Psychology, vol. 24, no. 6,
pp. 417–441, 1933.

[9] P. C. Hansen, “The truncated svd as a method for regularization,” BIT
Numerical Mathematics, vol. 27, no. 4, pp. 534–553, 1987.

[10] M. Brand, “Incremental singular value decomposition of uncertain data
with missing values,” in European Conference on Computer Vision,
pp. 707–720, Springer, 2002.

[11] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?,” Journal of the ACM, vol. 58, no. 3, pp. 1–37, 2011.

[12] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate ma-
trix decompositions,” SIAM Review, vol. 53, no. 2, pp. 217–288, 2011.

[13] H. C. Andrews and C. L. Patterson, “Singular value decomposition (svd)
image coding,” IEEE Transactions on Communications, vol. 24, no. 4,
pp. 425–432, 1976.

[14] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[15] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society for Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[16] M. Ringnér, “What is principal component analysis?,” Nature Biotech-
nology, vol. 26, pp. 303–304, 2008.

[17] A. Aldroubi, A. Sekmen, A. B. Koku, and A. F. Cakmak, “Similarity
matrix framework for data from union of subspaces,” Applied and
Computational Harmonic Analysis, 2017.

[18] A. Aldroubi and A. Sekmen, “Reduced row echelon form and non-
linear approximation for subspace segmentation and high-dimensional
data clustering,” Applied and Computational Harmonic Analysis, vol. 37,
no. 2, pp. 271–287, 2014.

[19] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2013.

[20] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[21] S. Watanabe, “Karhunen–loeve expansion and factor analysis theorems,”
in Proc. Fourth Symposium on System Theory, pp. 283–318, 1965.

[22] R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington, and J. Sohl-Dickstein,
“Sensitivity and generalization in neural networks: An empirical study,”
in International Conference on Learning Representations, 2018.

[23] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of Eugenics, vol. 7, pp. 179–188, 1936.

[24] J. H. Friedman, “Regularized discriminant analysis,” Journal of the
American Statistical Association, vol. 84, no. 405, pp. 165–175, 1989.

[25] S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and K.-R. Müller, “Fisher
discriminant analysis with kernels,” in Neural Networks for Signal
Processing IX, pp. 41–48, IEEE, 1999.

[26] S. Pang, S. Ozawa, and N. Kasabov, “Incremental linear discriminant
analysis for classification of data streams,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 35, no. 5,
pp. 905–914, 2005.

[27] Z. Sun, Z. Chen, J. Liu, and Y. Yu, “Multi-class feature selection via
sparse softmax with a discriminative regularization,” [Journal Name],
2021.

[28] X. Zhu, H.-I. Suk, and D. Shen, “Sparse discriminative feature selection
for multi-class alzheimer’s disease classification,” [Journal Name], 2020.

[29] J. S. Aguilar-Ruiz, “Class-specific feature selection for classification
explainability,” [Journal Name], 2022.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211–252, 2015.

[31] Z. Khalifa and S. A. A. Shah, “A large scale multi-view rgbd visual
affordance learning dataset,” pp. 1325–1329, 2023.


