
Published in Transactions on Machine Learning Research (07/2025)

Agreement-Based Cascading for Efficient Inference

Steven Kolawole∗∗ skolawol@andrew.cmu.edu
Carnegie Mellon University

Don Dennis∗ dondennis@cmu.edu
Carnegie Mellon University

Ameet Talwalkar talwalkar@cmu.edu
Carnegie Mellon University

Virginia Smith smithv@cmu.edu
Carnegie Mellon University

Reviewed on OpenReview: https: // openreview. net/ forum? id= jn9B7LMlzk

Abstract

Adaptive inference schemes reduce the cost of machine learning inference by assigning smaller
models to easier examples, attempting to avoid invocation of larger models when possible.
In this work we explore a simple, effective adaptive inference technique we term Agreement-
Based Cascading (ABC). ABC builds a cascade of models of increasing size/complexity and
uses agreement between ensembles of models at each level of the cascade as a basis for
data-dependent routing. Although ensemble execution introduces additional expense, we
show that these costs can be easily offset in practice due to large expected differences in
model sizes, parallel inference execution capabilities, and accuracy benefits of ensembling.
We examine ABC theoretically and empirically in terms of these parameters, showing that
the approach can reliably act as a drop-in replacement for existing models and surpass the
best single model it aims to replace in terms of both efficiency and accuracy. Additionally,
we explore the performance of ABC relative to existing cascading methods in three common
scenarios: (1) edge-to-cloud inference, where ABC reduces communication costs by up to
14×; (2) cloud-based model serving, where it achieves a 3× reduction in rental costs; and (3)
inference via model API services, where ABC achieves a 2-25× reduction in average price per
token/request relative to state-of-the-art LLM cascades.

1 Introduction

The high cost of inference associated with deploying large machine learning (ML) models presents a significant
barrier to their adoption (Strubell et al., 2020; Kaplan et al., 2020). As models continue to increase in size,
practitioners are often faced with investing substantial resources in updating existing deployments or settling
for lower-performing alternatives. However, for many applications, it has been shown that a considerable
portion of the data seen during inference can be effectively evaluated using small models rather than large,
state-of-the-art models (Chen et al., 2020; Jitkrittum et al., 2023). This means that if we can identify the
subset of data samples that can be accurately evaluated by more inexpensive models, average inference costs
can be reduced. This problem is often referred to as adaptive inference, where the cost of inference adapts to
some notion of ‘difficulty’ of each example seen at inference time.

A natural approach for adaptive inference is to cascade over a set of potential models, starting from the least
expensive and moving to more expensive models based on some deferral rule (Rowley et al., 1998; Viola &
Jones, 2001; Soo, 2014). A common cascade construction is to use a Pareto-efficient set of models and an

∗Equal contribution.

1

https://openreview.net/forum?id=jn9B7LMlzk

Published in Transactions on Machine Learning Research (07/2025)

ABC0

ABCn
prediction

ABC1
largest model

ABCn

ABC1
prediction

yes

no

ᐧ ᐧ ᐧtest data
point, x

is vote
consistent?

no

ABC0
prediction

yes

is vote
consistent?

(a)

316M 1B 3B 10B 32B 100B 316B
FLOPs (log-scale)

0

20

40

60

80

100

Ac
cu

ra
cy

 (\
%

)

ImageNet1K: Accuracy Scaling vs FLOPs

Private repo.
TorchVision
HuggingFace
Open-CLiP
Pareto frontier

(b)
Figure 1: (a) Agreement-Based Cascading (ABC): ABC introduces a data-dependent routing scheme that uses agreement
amongst an ensemble of models to determine whether to cascade to larger models. If the predictions of smaller
ensembles do not align, the cascade moves to the next tier of larger models, continuing until agreement is reached or
the largest model(s) are used. This can reduce cost by limiting the use of the largest models to cases where smaller
models cannot reach consensus. (b) ABC is a natural baseline for adaptive inference due to (i) the vast number of
pretrained models available to ML practitioners today; (ii) the fact that even small accuracy gains often require an
order-of-magnitude increase in FLOPs, mirroring proposed scaling laws and resulting in large differences in model
sizes between cascade tiers (Hestness et al., 2017; Henighan et al., 2020; Madaan et al., 2023). The pink dashed
line represents the Pareto-optimal frontier, showing the models with the highest accuracy for a given computational
budget. We show that ABC can effectively improve this frontier—allowing practitioners to achieve high accuracy
without incurring the full computational cost of the largest models by invoking smaller models for ‘easier’ samples.

easy-to-compute deferral rule such as the confidence scores of the models predictions (Viola & Jones, 2004;
Wang et al., 2018a; 2021). Recently, cascading has seen renewed interest in the ML community with the
advent of large language models (LLMs) and vision foundation models (e.g., Chen et al., 2023; Gupta et al.,
2024). Recent approaches consider a variety of techniques to construct model cascades, including designing
novel model architectures that have built-in cascading capabilities (Cai et al., 2019; Devvrit et al., 2023;
Khare et al., 2023), or learning routing schemes/deferral rules that require data-dependent training for every
task considered (Chen et al., 2023; Ding et al., 2024). While these approaches can improve accuracy/efficiency
trade-offs, they may also introduce significant computational overhead in setup and training/finetuning costs.

In this work, we instead investigate a simple, training-free cascade scheme that uses the agreement among
an ensemble of existing models at each cascade level as its deferral rule. We refer to this approach as
Agreement-Based Cascading (ABC). Intuitively, when the outputs of the ensemble at a particular cascade-level
do not align, ABC triggers cascading, and inference is attempted at the next tier of (larger) models (see
Figure 1). This scheme has been explored historically for specialized applications such as face detection (Zuo
& de With, 2005; 2008; Susnjak et al., 2012), where ensembles of binary face detectors focus on subregions
of the face and combine their output using decision networks. However, to the best of our knowledge, our
work is the first to study the use of ensemble agreement as a deferral mechanism for more general, modern
machine learning workloads.

We point to a few trends in ML that make ABC a particularly attractive approach for model cascading. In
particular, while using an ensemble of models at each level may initially appear to increase overall inference
costs, it is natural to believe this simple baseline could excel in real-world applications due to: (1) the growing
ease of obtaining pretrained models of various sizes and accuracies due to the rise of model registries (Wolf
et al., 2019) as well as flexible compression schemes (Zhu et al., 2023; Dennis et al., 2023); (2) scaling laws
that predict a large increase in inference cost for every marginal increase in accuracy (Hestness et al., 2017)
(Figure 1); and (3) an increased ability to execute ensembles of relatively small models in parallel, with
minimal additional costs (Fern & Givan, 2003; Kim et al., 2023; Miao et al., 2023) (Figure 3).

With these motivations in mind, we rigorously study ABC as a baseline for adaptive inference in modern ML
workloads. Overall, we make the following contributions:

• We propose ABC as a training-free, deferral-based cascading approach that leverages agreement among
ensembles of existing models, removing the need for additional routing networks or specialized architectures.

• We theoretically characterize cases where ABC can replace an existing model deployment without affecting
the accuracy, and define safe deferral rules as sufficiency conditions for their existence. We further
characterize the expected accuracy and inference costs in this setting.

• We empirically evaluate ABC on a wide range of image and language tasks and find that ABC not only
improves efficiency, but also accuracy, compared to the model that it aims to replace. We then consider

2

Published in Transactions on Machine Learning Research (07/2025)

the performance of ABC relative to existing cascading methods in common inference scenarios, including
(1) edge-to-cloud inference where ABC reduces communication costs by up to 14×, (2) model-serving on
heterogeneous GPUs, where ABC reduces rental costs by up to 3× and (3) inference using black-box access
to model API services, where ABC shows up to a 25× reduction in average price per token.

2 Related Work

Adaptive inference schemes have been a topic of interest in machine learning for many years. This section
discusses three main approaches to cascading and adaptive inference: score-based methods, trained routers,
and dynamic networks. We highlight how ABC’s approach relates to and differs from these existing methods.

2.1 Cascading using Score-based Deferrals

Traditional cascading methods often rely on simple score-based metrics for deferral decisions. We compare to
the recent Wisdom-of-Committees method of Wang et al. (2021) as a general, representative method in this
category but note that specialized instantiations of this approach have been applied across various domains in
prior work, for instance, in object detection (Rowley et al., 1998; Viola & Jones, 2004; Wang et al., 2011; Cai
et al., 2015; Angelova et al., 2015; Streeter, 2018), image classification (Wang et al., 2018a; 2021), and text
classification (Li et al., 2021b; Mamou et al., 2022; Varshney & Baral, 2022; Lebovitz et al., 2023). In these
settings, deferrals within cascading systems use metrics such as confidence scores, entropy, and probabilities
(Gangrade et al., 2021; Geifman & El-Yaniv, 2019; Narasimhan et al., 2022). While using confidence scores
of existing models is inexpensive, these scores are required to be well-calibrated, which is less common for
off-the-shelf models (Guo et al., 2017; Enomoro & Eda, 2021). Recent methods have thus considered a variety
of techniques to enhance score-based deferrals, such as explicitly adding deferrals as a prediction (Wang
et al., 2018a), difficulty-aware regularization (Li et al., 2021b), temperature scaling (Wang et al., 2023), and
calibration mechanisms (Nie et al., 2024).

Recently, Jitkrittum et al. (2023) explored the specific practical settings under which confidence-based deferral
in cascades could suffer; these settings include: scenarios where downstream models are specialists (the error
probability of the downstream model is highly non-uniform across samples), when samples are subject to label
noise, and in the presence of a distribution shift between the train and test set. Notably, in all these failure
modes, where confidence-based cascades tend to be inadequate, our approach is likely to offer improvements,
as ensembles are known to help induce diversity, enable robustness to noise, and mitigate issues of distribution
shift (Gontijo-Lopes et al., 2022; Sharkey, 1996; Dietterich, 2000; Džeroski & Ženko, 2004).

2.2 Cascades with Routing Procedures

Other methods avoid confidence scores entirely by training procedures independent of the model set to
route instances as needed. This trend has gained prominence with the rise of black-box model API services
for LLMs, where prediction scores are often unavailable. Guan et al. (2018) developed a selection module
trained to determine the best-fit classifiers for data instances. Yue et al. (2024) (MoT LLM Cascade) used
sampling and consistency checking to determine when to defer to a high-cost model. AutoMix (Madaan
et al., 2023) proposed a few-shot self-verification mechanism, similar to Yue et al. (2024), but also introduced
a Markov-based meta-verifier for cascading in context-grounded tasks. FrugalGPT (Chen et al., 2023)
leveraged a cascade strategy that triages incoming queries using a DistilBERT router and scoring function.
HybridLLM (Ding et al., 2024) used a fine-tuned DeBERTa (He et al., 2020) to route queries to models based
on the predicted query difficulty and the desired quality level. On the same note, OrchestraLLM (Lee et al.,
2023)—using hand-labeled data to create expert model pools—selects model to query based on embedding
distances between the pools’ instances and the test instances. Other methods also used some form of trained
router, including RouteLLM (Ong et al., 2024), ‘Fly-swat or cannon’ (Šakota et al., 2024), and Shnitzer et al.
(2023).

As we further discuss in Section 5.2.3 (where we empirically compare to FrugalGPT, AutoMix, and MoT
LLM Cascade), these more sophisticated methods involve complex setups, data-dependent training, and
increased computational overhead. They often require retraining routers for each new task, dataset, or model,

3

Published in Transactions on Machine Learning Research (07/2025)

limiting adaptability to unseen data distributions or new models without incurring further costs. In contrast,
ABC provides a simpler, flexible, widely applicable alternative at no additional training or setup cost.

2.3 Dynamic and Adaptive Networks

Routing procedures typically train an independent routing mechanism, keeping the Pareto-set of models
untouched. However, for many medium-scale applications, methods have been explored that learn a Pareto-set
of models and stopping criterion together. For example, early exit methods of Bolukbasi et al. (2017); Huang
et al. (2018); Shafiee et al. (2018); Wang et al. (2018b); Hu et al. (2020); Xin et al. (2020); Geng et al.
(2021); Zhou et al. (2020); Liu et al. (2020); Schuster et al. (2022), subnetworks extraction methods (Yu
et al., 2018; Yu & Huang, 2019; Chen et al., 2021; Hou et al., 2020; Han et al., 2022; Devvrit et al., 2023),
composition-based methods (Suggala et al., 2020; Dennis et al., 2023; Du & Kaelbling, 2024) are some of
the more recent examples. While these methods achieve impressive efficiency gains, they require training
specialized architectures from scratch with adaptive capabilities.

Our approach diverges from these methods, as it does not involve altering model architectures or retraining
from scratch. Instead, ABC leverages existing models as they are, utilizing ensemble agreement as a deferral
condition, which can be applied directly to these models without any need for fine-tuning or specialized
training.

3 Agreement-Based Cascading (ABC)

In this section, we present a high-level overview of the Agreement-Based Cascading (ABC) approach, providing
the essential concepts and insights needed to understand ABC ’s effectiveness in the experiments (§5). Readers
interested in the formalizations and technical details can refer to §4 for a more comprehensive treatment.

3.1 Overview of ABC Approach

As outlined in Section 1, the goal of adaptive inference is to identify data samples that can be evaluated
accurately by a relatively inexpensive model. This way, we can reduce the inference cost based on whether a
sample is ‘easy’ or ‘hard’. A common approach to this problem is deferral-based cascading, where we cascade
over a sequence of models, starting from the least expensive and using a ‘deferral rule’ to determine if a
higher tier model must be used. These deferral rules are typically significantly cheaper to evaluate (e.g. a
small neural network), and add very little additional cost on top of model execution. This approach makes
it so that ‘simpler’ cases are managed by smaller, faster models, while only the complex cases cascade up
multiple tiers and to more resource-intensive models.

Agreement-Based Cascading (ABC), described in Algorithm 1, is one such deferral based cascading approach.
ABC maintains a set of ensembles {H1, . . . , HnE

} that starts from an ensemble of inexpensive models in H1
to expensive, state-of-the-art models in HnE

. Similar to other cascading techniques, given a sample x, we
start inference from the lowest (cheapest) tier in the cascade and use a deferral rule, ri(x), to determine
if a higher tier model is needed. A core distinction between ABC and existing cascading approaches is its
agreement-based deferral rule. Instead of training a small additional deferral network or post-hoc deferral
rules, we use a notion of agreement between models within each ensemble as a confidence measure. When a
(configurable) fraction of models in a tier agree, it signals that they likely have the right answer. Conversely,
if they disagree, the uncertainty triggers a deferral to the next, more powerful ensemble. Additionally, we
focus on cases where we wish to maintain accuracy of the overall prediction and only improve inference cost
when accuracy does not suffer. This is different from existing approaches that prioritize a fixed inference
budget, potentially at the cost of accuracy.

3.2 ABC in Modern ML Environments

In recent years, obtaining trained models has become much easier, thanks to the rise of public and private
model repositories (Wolf et al., 2019), where a wide variety of pre-trained models are readily available. This
abundance of accessible models of various sizes and performance levels makes the practical application of

4

Published in Transactions on Machine Learning Research (07/2025)

Algorithm 1 Agreement-Based Cascading (ABC)
Require: Set of ensembles {H1, H2, . . . , HnE

}, deferral rule ri for each ensemble i ∈ [nE] as in Equation 3
or 4

Require: A new inference data point x.
1: Current cascade level, i← 1
2: Cascaded prediction, y ← ∅
3: for i ∈ {1, . . . , nE} do
4: y ← Hi(x)
5: if ri(x) = 0 then
6: break {Models in ensemble ‘agree’}
7: end if
8: end for
9: return y

ABC especially appealing. Unlike methods that require additional task-specific training or fine-tuning, ABC
can leverage these existing models, making it suitable for direct deployment as a “drop-in” replacement for
high-cost models. This adaptability, combined with minimal setup and training requirements, can allow
ABC to fit seamlessly into many existing ML workflows.

Strictly speaking, evaluating agreement between multiple models in an ensemble is expensive when compared
to the small router models that are used in many existing approaches. However, two key aspects of modern
ML workloads can help to mitigate this additional cost in practice. First, in many cases some degree of
parallelization is available that can reduce the impact on inference cost metrics such as latency. We use ρ to
smoothly interpolate between the fully sequential case (ρ = 0) to the fully parallel case, (ρ = 1) as detailed in
§4.3. Second, in many use-cases the difference in cost between models in successive tiers of cascades is so
large that the impact of lower tier models on the overall cost of inference is negligible, even with the added
cost of constructing ensembles (see Figure 3). We use γ to denote the relative cost of the models — the ratio
of the cost of the smaller model to the larger model.

In §5, we evaluate ABC ’s performance across several real-world scenarios (resulting in varying settings of ρ
and γ), demonstrating its competitiveness and efficiency. We first show that ABC’s ensemble-based deferral
mechanism preserves and often improves on the accuracy of models it aims to replace. We also show that
when the lower tier models are small enough compared to the higher tier models, ABC ’s ensemble-based
deferral rule operates with negligible impact on the overall cost.

We then evaluate cases in real-world workloads where such large relative costs between various tiers of ABC is
natural. In edge-to-cloud setups, ABC enables substantial reductions in communication costs by processing
simple tasks locally on the edge. This minimizes the need to transfer data to the cloud, reducing both
latency and data transfer expenses. When serving models on heterogeneous GPU resources in the cloud, ABC
significantly reduces inference costs. By selecting models based on task complexity, ABC makes efficient use
of available GPU resources, optimizing for both accuracy and rental cost. In black-box API-based model
deployments, where the user is billed per request or token, ABC offers substantial savings by reducing the
average cost per request. By deferring to high-cost models only when necessary, ABC achieves notable economic
savings compared to standard inference approaches.

4 Formalization and Theoretical Details

In this section, we formalize our problem setup by first outlining the standard statistical learning framework,
which serves to define the concepts of models, ensembles, the learning performance (e.g., accuracy) and the
inference cost associated with ensembles (§4.1). Next, we describe deferral rule-based cascades and formulate
the specific case of drop-in cascades, cascades which prioritise accuracy over inference cost savings (§4.2). We
introduce safe deferral rules as a sufficiency condition for constructing drop-in cascades and define our deferral
rule based on agreement between models in an ensemble (§4.3). We conclude this section by formalizing the
test-time accuracy-inference cost behaviour of drop-in cascades (§4.4).

5

Published in Transactions on Machine Learning Research (07/2025)

4.1 Problem Setup and Notation

Consider the standard statistical learning settting where X denotes an instance space and Y denotes the
label or response space. Let h(x) be a model taking inputs from X and producing outputs in Y. We assume
that the models are from some hypothesis class H. In this setup, we typically characterize the learning
performance of various models using its risk with respect to some data distribution D over X × Y and a loss
function l, given by,

Rl(h) = E(x,y)∼D[l(h(x), y)].

As a concrete example, in the classification setup, where we use the mis-classification error as a loss function,
the risk is given by R(h) = E(y ̸= h(x)).

Assume that each model h ∈ H has a cost of inference, denoted by C : H → R+; for instance, for cases where
we are concerned about inference latency, the cost can be the latency of the model on the target hardware.
Let h1 and h2 be two models with h2 being the more expensive of the two. We denote the relative cost of the
models by γ := C(h1)

C(h2) , satisfying 0 < γ ≤ 1.

Let Hk : X → Y denote an ensemble of k models from the same hypothesis class H. Similarly to before,
the learning performance of various ensembles can be characterized by their risk; let R(Hk) denote the risk
of an ensemble Hk. Compared to a single member model, the cost of evaluating the entire ensemble of
models depends on the various factors, including the degree of parallelization. Assuming that the models
in an ensemble are of similar cost, say c0, we model the cost of the ensemble using a parallelism coefficient
0 ≤ ρ ≤ 1 as,

C(Hk) = c0k1−ρ. (1)

Here, when ρ = 1, the ensemble suffers the same cost as a single model and corresponds to the case where
models can be fully parallelized. On the other extreme, at ρ = 0, the cost of the ensemble of k models is kc0,
corresponding to no parallelization (sequential evaluation).

4.2 Deferral Rule-Based Drop-in Cascade

A deferral-based cascade consists of a finite set of models and a deferral rule. Here, the idea is to start with
the most resource-efficient model and use the deferral rule to determine if a better-performing model with a
higher resource cost should be used for the current sample. The deferral rules themselves are designed to have
negligible inference cost given the models inference outputs. For this exposition, we will restrict ourselves
to cascades with only two levels, though the discussion in this section can be readily generalized to larger
cascades. Let the cascade consist of an ensemble Hk

1 at the lower level, and the larger model h2 at the higher
level; M = {Hk

1 , h2}. Let r(x) denote a deferral rule;

r(x) =
{

1 defer to h2

0 use Hk
1 .

In this work, we focus on deployment scenarios where a decrease in model performance is a critical concern.
This is particularly relevant when cascades are intended to function as a drop-in replacement for an existing
deployment of an expensive model. This notion can be formulated as maximizing the number of calls to the
smaller model while retaining the accuracy of the larger model. With a slight abuse of notation, let Mr(x)
denote the prediction of the cascade withM = {Hk

1 , h2} and deferral rule r. Then we desire that for a choice
of a small error budget ξ > 0,

max
r

P(r(x) = 0)

s.t. P(y ̸=Mr(x)) ≤ P(y ̸= h2(x)) + ξ, (2)

The constant function r(x) = 1, which defers for every x, is feasible and attains the objective value of 0.
Moreover, every feasible deferral rule leads to a cascade with competitive accuracy as h2. Instead of picking

6

Published in Transactions on Machine Learning Research (07/2025)

an error budget ξ, a complimentary (dual) approach is to consider a fixed inference budget and aim to attain
the best accuracy within the budget. In this view, drops in accuracy (compared to the existing large model)
are permissible, provided the inference budget is met. Jitkrittum et al. (2023) examine this perspective,
which we recommend to interested readers.

4.3 Deferral using Ensemble Agreement

Ensemble agreement is an instantiation of score based deferral rules (Jitkrittum et al., 2023). In its simplest
form, we associate a score to the prediction output of an ensemble model and interpret this score as a measure
of confidence in that particular prediction. We can then defer to a larger model when the confidence is below
a predetermined threshold. For a model Hk

1 (x) and a scoring function s(x), the deferral rule is defined as

r(x) = I[s(x) ≤ θ],

where I is the indicator function. In general, such score based deferral rules can sometimes be misleading. For
instance, in multi-class classification, rules that map the outputs of a classifier to a probability distribution
over labels can produce confidently incorrect predictions when an unperceivable amount of perturbation
is added to the data sample (Szegedy, 2013). However, such rules have been shown to be effective in
practice (Wang et al., 2018a; Gangrade et al., 2021; Mamou et al., 2022; Gupta et al., 2024) implying that
such adversarial data is rare in many cases. Motivated by this observation, we propose the following property
of scoring functions (and by extension the corresponding deferral rule).
Definition 4.1 (Safe deferral rule). Let Hk : X → Y, k ≥ 1 be a classifier and let s : X → [0, 1] be a scoring
function. The scoring function s is referred to as a safe scoring function for Hk if there exists θ ∈ [0, 1] such
that, for some small ϵ > 0,

P(s(x) ≥ θ, Hk(x) ̸= y) ≤ ϵ.

The corresponding deferral rule r(x) = I[s(x) ≤ θ], is referred to as a safe deferral rule, and satisfies
P(r(x) = 0, Hk(x) ̸= y) ≤ ϵ.

We define safe deferral with respect to classification tasks for simplicity. The definition can be extended to
other cases with appropriate choice of loss function. Intuitively, this formalizes the notion that the deferral
rule can probabilistically identify a subset of X × Y for which Hk

1 (x) is correct. Alternatively, we can think
of the deferral rule as a one sided classifier, similar to the problem studied in Goyal et al. (2020), where the
class to be identified is the subset of X × Y where Hk

1 (x) is correct. In general, such a safe deferral rule need
not exist for a given model Hk

1 (x). However, in §5 we demonstrate empirically that such rules can in-fact be
constructed without additional training for many real world tasks with appropriate choice of θ (Figure 7).
These rules lead to selection rates as high as 90% of the data in cases such as ImageNet-1K.

Assuming access to a safe deferral rule, observe that for ξ ≥ ϵ > 0, such rules are feasible for the program in
Equation 2 (see Proposition 4.1). This implies that every cascade, M = {Hk

1 , h2} using a safe deferral rule r,
is competitive with the larger model h2 in terms of accuracy. We empirically evaluate these drop-in cascades
in §5. Note that the optimal safe deferral rule can lead to an improvement in the accuracy of ABC in theory
(see, Appendix A), and we see accuracy improvements in our experiments (§5).

Agreement-based deferral rule. We evaluate two flavors of deferral rules that capture the notion of
agreement between models. In cases where we have direct access to the models, we directly use the outputs
produced by models in the ensemble. However, in certain cases, for instance when interfacing through a
third-party provider’s inference API, we only have black box access to models. For such cases, we use a voting
scheme between the models in an ensemble to construct our scoring function. Concretely, for an ensemble
Hk consisting of k ≥ 1 models, let s(x; Hk) denote the average score of the majority prediction on x and let
vote(x; Hk) = 1

k

∑
h∈Hk I[Hk(x) = h(x)] denote the fraction of votes received by the prediction, where,

rv(x; θv) =
{

1 vote(x; Hk
1) ≤ θv

0 otherwise.
(3)

rs(x; θs) =
{

1 s(x; Hk
1) ≤ θs

0 otherwise.
(4)

7

Published in Transactions on Machine Learning Research (07/2025)

 3M 10M 32M 100M 316M 1B
FLOPs (log-scale)

88

90

92

94

To
p-

1
Ac

c

Comparison on CIFAR-10

ABC
WoC
Best single models

62

63

64

65

66

 3B 4B 4B

61

FLOPs (log-scale)

To
p-

1
Ac

c

Comparison on Imagenet-1K

 10B 16B 25B 40B 63B 100B
FLOPs (log-scale)

80

82

84

86

To
p-

1
Ac

c

Comparison on SWAG

92

94

96

 4B 6B 10B 16B

86

FLOPs (log-scale)

To
p-

1
Ac

c

Comparison on SST-2

Figure 2: Pareto curves of ABC vs. confidence-based cascades (WoC) (Wang et al., 2021) and best single models
on diverse tasks. For WoC, we tune its cascade configurations across the best four of its confidence thresholds and
generate results from their most performant cascades. ABC maintains a Pareto-optimal curve, which consistently
outperforms both methods in accuracy with lower FLOPs costs.

4.4 Inference Cost Savings and Competitiveness

Since we do not impose an inference cost budget on the cascade, it is possible for the cascade to incur a
higher cost than simply using the larger model h2. Intuitively, if majority of the samples seen during test
time are ‘hard’, the cascade pays the cost of evaluating both Hk

1 (x) and h2(x).
Proposition 4.1. Let M = {Hk

1 , h2} be two classifiers and r a deferral rule such that r is a safe deferral
rule for Hk

1 according to Definition 4.1, for a distribution P over X × Y. Then for every ξ ≥ ϵ > 0, the
agreement based cascading (ABC) classifier Mr(x) is such that,

1. The ABC classifier is competitive with the large classifier h2 in terms of accuracy (zero-one loss),

R(Mr) ≤ R(h2) + ϵ,

2. The ABC classifier enjoys an average inference cost of,

E[C(Mr)] = (kργ + P(r(x) = 1))C(h2).

The proof follows directly from Definition 4.1 and basic probability (see Appendix A). Safe deferral rules
can be constructed with minimal cost: our threshold estimation requires only ∼100 validation samples and
simple voting computations, avoiding expensive router training. Thus, the cost savings we can expect with
a drop-in cascade depend on three key factors: the relative cost γ, the degree of parallelization ρ and the
deferral rate P (r(x) = 1), or equivalently, the selection rate P (r(x) = 0). In particular, for every feasible
deferral rule r, in the best case scenario where the cost of the smaller model is negligible (i.e., γ = 0), the
cost of inference reduces by the selection rate, P (r(x) = 0). Conversely, in the worst-case scenarios, the cost
can be (k + 1) times the cost of the larger model. In the next section, we demonstrate real world scenarios
where the favorable interplay of these three quantities lead to significant improvements in inference cost. See
Appendix C and Figure 7 for information on selection rates for various models and datasets considered here.

5 Experiments

This section evaluates our training-free Agreement-Based Cascading (ABC) approach across a variety of
language and vision tasks, focusing on accuracy and inference cost. First, in §5.1.1, we examine ABC’s
accuracy-cost tradeoff against state-of-the-art models under full parallelization, setting the parallelization
factor (ρ) to ρ = 1.0 for optimal tradeoff. Next, in §5.1.2, we show that using ensembles at lower tiers has
minimal impact on inference cost when lower-tier models are at least 50× cheaper than the largest model. In
such cases, the relative cost (γ) satisfies γ ≤ 1

50 , making ABC effective without parallelization. Finally, §5.2
explores practical scenarios where low relative costs make ABC is naturally suited for real-world deployments.

Estimating Voting Threshold: ABC’s deferral rule uses a configurable voting threshold, θ (see Equations 3
and 4) at each cascading tier. We estimate θ empirically on a small set of unseen data; see App. B for details.

8

Published in Transactions on Machine Learning Research (07/2025)

Datasets: To evaluate ABC, we use a range of benchmark datasets for image and language tasks, as shown in
Table 2 in the Appendix. Additional datasets are used in §5.2.3 to align with those explored by state-of-the-art
baselines.

Models: We select diverse models for both image and language tasks, summarized in Appendix’s Table 3.
For BERT-based models, we use the BASE and LARGE, and for image models, we tier by FLOPs count. All
models are sourced from HuggingFace Zoo for inference without any additional training effort on our end.
§5.2.3 uses models from LLaMA 3, Gemma 2, and Qwen 2 families via the Together API. We detail this
section’s experimental setup in App. D.2.

Evaluation: For the generation tasks we consider in §5.2.3, the datasets each consist of a fixed set of
possible outputs akin to the classification tasks, and we apply our deferral rule on the final output at each
tier. Certain cases don’t have a fixed set of output labels (while still not being open-ended generation), like
(1) GSM8K, where there is a final numeric answer at the end of the generated output to the math word
problems, and (2) CoQA, where we used F1-score to capture overlaps between predictions and ground-truth
answers. We do not discuss open-ended generation tasks in this work as the deferral rule we consider—and
the baseline methods that we compare to—is not directly applicable to such cases.

5.1 When is ABC Practical?

5.1.1 When Parallelization is Cheap

We first consider the case where the inference cost of an ensemble of models is the same as the cost of a
single model. This idealistic scenario could happen, for instance, in offline batch inference (Jetty et al.,
2021), when GPUs are available for parallelization, or the models are small enough that existing resources
are under-utilized and an ensemble adds no additional cost. More importantly, this setting establishes
best-case accuracy and inference cost values for ABC. We consider total floating-point operations (FLOPs) as
a representative inference cost metric here, and discuss other metrics such as communication cost, latency, or
cloud rental costs in subsequent subsections.

1
2

1
5

1
10

1
20

1
100

1
200

1
500

Relative Costs ()

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

. c
os

t s
av

ed

P(r(x) = 0)
sequential/parallel
 at 1

50

ImageNet1K: Cost savings vs Relative Cost

Parallel (= 1.0)
Sequential (= 0.0)

= 0.25
= 0.5
= 0.75

Figure 3: Fraction of inference cost saved as a function of
relative cost of models (γ), assuming a fixed selection rate
P(r(x) = 0). As parallelization decreases from fully parallel
(ρ = 1) to sequential (ρ = 0), cost of evaluating ensembles
increase and the cost savings decrease. When models across
tiers are of similar size (e.g., smaller model is at most 5×
smaller, γ ≥ 1

5), some parallelization is needed for ABC to
reduce costs effectively. However, for lower relative costs (e.g.,
smaller model is at least 50× smaller, γ ≤ 1

50), sequential and
parallel settings achieve meaningful savings, showing ABC ’s
efficiency even with the added cost of using ensembles.

The accuracy vs. FLOPs for ABC is shown in Fig-
ure 2. As a point of comparison, we also include
Wisdom-of-Committees (WoC) (Wang et al.,
2021), a popular and representative confidence-
based model cascading method. In most cases,
we observe that ABC is able to improve the Pareto
frontiers, as it usually sees a 1–2 point increase in
accuracy. We attribute this to a combination of
(a) the improvement ensembles can have on accu-
racy that is widely noted in literature (Gontijo-
Lopes et al., 2022; Jiang et al., 2023) and (2) the
improvement agreement-based rules can cause in
cascading (Appendix A). Overall, in terms of ac-
curacy, ABC either exceeds—or at least matches—
the accuracy of the best models at a fixed FLOPs
budget, and is a practical drop-in replacement for
these models.

5.1.2 Disparity in Relative Cost is High

Of course, in many real-world scenarios, the cost
of evaluating ensembles is not negligible. For
instance, in the edge-to-cloud inference scenario
discussed in §5.2.1, models in an ensemble often
are evaluated sequentially. However, even in such scenarios, if the relative cost of models across each level of
the cascade, γ, is small enough, this additional cost becomes negligible compared to the overall cost.

9

Published in Transactions on Machine Learning Research (07/2025)

CIFAR
ImageNet

SWAG SST-2 Twitter

Dataset

0

250

500

750

1000

La
te

nc
y

(m
s)

Average Latency Costs

ABC
Best Single Model

CIFAR
ImageNet

SWAG SST-2 Twitter

Dataset

0

1

2

G
PU

 C
os

t (
$/

ho
ur

)

Total GPU Usage Cost Comparison

ABC
Best Single Model

Figure 4: (a) ABC for edge-to-cloud inference: We simulate a single-instance inference setup, as seen in real-time
applications where predictions may need to be made as new data becomes available. ABC can enable small models to be
served at the edge without sacrificing accuracy—leading to large savings in communication costs over the alternative
of using only the highest accuracy/largest model residing in the cloud, or a single small and low-performing model on
the edge. (b) Total GPU usage costs of ABC vs. using the best model. Agreement-Based Cascading, at reduced costs
of GPU usage, exceeds the accuracy of the single best models in all task categories.

In Figure 3, we demonstrate the impact of using ensembles at various relative costs on the overall inference
cost. As shown in the first plot, as we move away from the ideal, fully parallel setting with ρ = 1 towards
the sequential setting with ρ = 0, the fraction of inference cost saved decreases. In fact, when the models in
the cascade are of similar size—for example, when γ ≥ 1

5 —a certain degree of parallelization is required for
ABC to reduce inference cost. However, observe that when the relative costs are small enough (e.g., γ ≤ 1

10),
the need for parallelization diminishes. This is evident in Figure 3 (right); for γ ≤ 1

50 , the sequential execution
curve (ρ = 0) approaches the curve with full parallelization (ρ = 1).

Takeaway #1:

• Although ensembling requires additional inference costs, these costs can be mitigated when (1)
models can be parallelized or (2) smaller models are several magnitudes cheaper than larger ones. In
such scenarios, ABC can achieve substantial accuracy improvements while reducing inference costs.

5.2 Real-world Use-cases

As noted in the previous two subsections, ABC either improves on, or is at least competitive with, the single
best model in terms of accuracy. Moreover, whenever the relative cost is small enough, ABC suffers negligible
additional penalty for using an ensemble of models. As noted in Figure 1, accuracy vs inference cost scaling
for ML models already imply that the relative cost of models that only differ a few points in accuracy is
small. For instance, the state-of-the-art model performance on the ImageNet-1K dataset attains about 83%
top-1 accuracy with 70B FLOPs. A Pareto-optimal model that achieves 63% accuracy requires only about
1B flops, and thus a two-level ABC with ensembles of these two models has a relative cost of γ = 1

70 .

In many real world scenarios, this disparity in relative cost is further amplified due to deployment considerations
— for instance, in an edge-to-cloud inference setting, local inter-process communication (IPC) latency is
typically two orders smaller than remote (cloud) IPC latency (γ ≈ 10−2). Moreover, the ability of models
in ABC to be placed on multiple, distributed devices with negligible synchronization overhead adds more
opportunities for inference cost reduction. We consider three such scenarios, their respective cost models, and
the benefits of ABC in these cases here. These include edge-to-cloud inference (§5.2.1), cloud-based model
serving on heterogeneous GPUs (§5.2.2), and black-box inference access to model API services (§5.2.3).

10

Published in Transactions on Machine Learning Research (07/2025)

5.2.1 Communication Cost in Edge-to-Cloud Inference

An advantage of ABC is that it allows a single large model to be split into multiple, potentially much smaller
models, with only a simple reduce operation required to compute agreement. This allows us to tune device
placement at various levels of ABC to improve inference costs. One use-case where this is beneficial is edge-to-
cloud inference (Forooghifar et al., 2019); here, inference requests are generated on user-facing edge devices
like mobile phones or smart devices, which are sent over the network to a cloud service for evaluation. Given
an inference request generated by a user interaction, the time-to-response or response latency in such case is
dominated by communication overheads (network speed, serialization overhead, network congestion, etc.)
beyond our control. By using ABC for such applications, we are able to distribute the inference load between
tiny, on-device models and the cloud models, allowing us to avoid communication costs for a significant
portion of requests.

To understand the effectiveness of ABC in such a scenario, we consider a communication cost model previously
studied in Zhu et al. (2021); Lai et al. (2022) in a setup of edge devices (i.e., Raspberry Pis and smartphones)
and cloud servers. The delay parameters adopted range from small, medium, to large [1 us, 10 ms, 100 ms,
1000 ms], where near-instantaneous local communication (< 1 microsecond) can be expected to occur with
base cascade tiers performing inference on-device, and substantial network delays might occur (> 1 second)
in a worst-case edge-to-cloud transmission (γ = 10−6).We simulate this by considering a two-level cascade,
with the smaller level placed on the edge-device. We apply the delay to the cascade exit points on the edge
device to capturing the time cost of transitioning between edge-to-cloud.

Our results, as shown in Figure 4, show that the flexibility that ABC affords in terms of model placement
allows significant latency reductions, while providing superior accuracy compared to a single cloud model.
In particular, we see that cascading in these scenarios provides an 14× reduction in communication cost
for language tasks like SST-2; and for image datasets, we see a 5× reduction for ImageNet-1K and a 8×
reduction in CIFAR10.

Takeaway #2:
• ABC enables model placement flexibility where small models run locally and large models in the

cloud. Communication delays can make relative costs significant, resulting in ABC achieving 5-14×
reductions in communication costs while maintaining superior accuracy.

5.2.2 Monetary Cost for Model Serving on Heterogeneous Hardware

Another use-case which can take advantage of the model placement flexibility of ABC is using heterogeneous
hardware for model serving on the cloud (Crago & Walters, 2015; Li et al., 2021a; 2023; Mo et al., 2023).
GPU/Accelerator hardware typically has a disproportionately large difference in hardware costs compared to
their throughput difference. For instance, based on the current pricing model offered by Lambda (Lambda,
2024), a popular cloud rental platform, the rental pricing of a single A100 is $1.40/hour and a V100 node is
$0.06/hour (γ ≈ 4× 10−2), while the rated 32-bit tensor core throughput is 312 TFLOPs for A100 and 125
TFLOPS for V100. In this scenario, a simple placement strategy for a 2-level ABC that reduces inference
cost may place the smaller model on V100 nodes and larger models on A100 nodes. Since the lower level
models are—at least—an order of magnitude cheaper than the larger one in terms of FLOPs, this offsets the
throughput loss we incur when switching from A100 to V100; and as a result, the ABC implementation incurs
a much lower average cost.

To concretely evaluate ABC under such a cost model, we retrieve the costs of GPU usage by hour from Lambda
Cloud’s pricing (see, Table 4 in the appendix for details). For simplicity, we assume that each ensemble tier
is set up on a distinct GPU in increasing order of GPU sophistication, and serves a uniform inference request
rate. We also assume that the nodes are co-located and communication cost between them is negligible. We
show a summary in Figure 4 and present the detailed results in Table 5, in the Appendix. We can see at least
a 3× reduction in inference cost in terms of $/hour for image tasks, and a more moderate 10-30% reduction
in language tasks.

11

Published in Transactions on Machine Learning Research (07/2025)

0 1000 2000 3000 4000 5000 6000 7000
Total cost ($ per 1K tokens)

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

API-Based Inference: GSM8K

ABC
FrugalGPT
AutoMix+T
AutoMix+P
MoT-LLM Cascade

0 500 1000 1500 2000 2500 3000 3500
Total cost ($ per 1K tokens)

0.60

0.61

0.62

0.63

Ac
cu

ra
cy

API-Based Inference: HEADLINES

0 250 500 750 1000 1250 1500
Total cost ($ per 1K tokens)

0.92

0.93

0.94

0.95

0.96

Ac
cu

ra
cy

API-Based Inference: OVERRULING

500 1000 1500 2000 2500 3000 3500
Total cost ($ per 1K tokens)

0.46

0.48

0.50

0.52

F1
-S

co
re

API-Based Inference: COQA

Figure 5: Comparison of ABC against state-of-the-art cascade baselines for black-box API-based inference. The faded,
hatched-patterned variants represent budget-friendly, 2-level cascade instances where we do not include the costly
Tier 3. Most of these methods show competitive performance, but ABC matches their accuracy at significantly lower
costs in all tasks. Note that all these methods (aside from the MoT-LLM cascade) incur additional setup costs not
reflected in our plots.

Takeaway #3:
• GPU rental cost differences significantly exceed throughput differences. ABC optimally places models

across hardware tiers, achieving 3× cost reductions for image tasks and 10-30% savings for text
tasks.

5.2.3 Monetary Cost for Black-box API-Based Inference

Tier Model Price

Tier 1
LlaMA 3.1 8B-Instruct Turbo 0.18

Gemma 2 9B IT 0.30
LlaMA 3 8B Instruct Lite 0.10

Tier 2
LlaMA 3.1 70B Instruct Turbo 0.88

Gemma 2 27B Instruct 0.8
Qwen 2 72B-Instruct 0.9

Tier 3 LlaMA 3.1 405B Instruct Turbo 5.0

Table 1: The cascade tiers, their models, and as-
sociated costs, in dollar per million tokens, for the
API-based experiments; all API services are pro-
vided by together.ai. We use the tiers and models
as they are for ABC inference system. However, for
the single-model cascade baselines, we use the tiers’
best models for their systems.

Finally, in the current landscape dominated by LLMs, many
providers offer black-box API access to their proprietary
LLMs (Abdalla et al., 2023; Sun et al., 2022; Hadi et al.,
2024). Similarly to the large cost difference between GPU
generations discussed in the previous subsection, we also ob-
serve a large cost disparity between various generations/tiers
of API calls. For example, using Together.ai—one of the
lowest-cost serverless endpoint providers for LLMs1—as a
case study, we find that models within the 7B-8B range cost
$0.20 per million tokens, while LlaMA3.1-405B costs $5.00.
This translates to the larger model costing 25× more than
the smaller model range (γ = 1

25 , ρ = 1). If we consider
GPT-4 as the gold standard, the cost of usage quickly scales
to 150× of our reference smaller model’s costs.2.

Since we only have black-box access to these models, we
cannot employ a score-based deferral rule. However, we
demonstrate that using ABC’s voting-based rule defined in §4
is also effective in such scenarios. For baseline comparison,

1together.ai/pricing as of September 2024.
2GPT-4-1106-preview costs $30 as of September 2024.

12

https://api.together.ai/models
https://www.together.ai/pricing
https://openai.com/api/pricing/

Published in Transactions on Machine Learning Research (07/2025)

we use FrugalGPT, 2 variants of AutoMix, and MoT LLM Cascade. These state-of-the-art cascading methods
are specifically designed for scenarios where we make API calls to black-box model endpoints, in contrast to
our more generally applicable ABC method. We access the models from Together.ai—described in Table 1—for
these experiments, and consider a setting that is advantageous to the baselines, by selecting the best singular
model from each performance tier in their respective approaches.

All the baseline methods considered here are significantly more complex and involved to set up than ABC;
both AutoMix and FrugalGPT involve training a router or deferral rule at each cascade level which has
to be repeated for every new task or model change. Unlike AutoMix, FrugalGPT requires training a
DistilBERT-based scorer, which would require the user’s possession of GPU resources. MoT LLM Cascade
generates multiple results and varies the randomness in the LLM’s responses via sampling, while using
in-context demonstrations and reasoning techniques (e.g., Chain-of-Thought (Wei et al., 2022)) to influence
how the model generates answers. In contrast, ABC uses a much simpler voting-based safe deferral rule,
without involving additional training or complex routing strategies. Further method-specific details for these
experiments as well as additional results can be found in Appendix D.2.

Our results, as shown in Figure 5, demonstrate that ABC is a more reliable deferral rule, and thus, offers
a more favorable trade-off between accuracy and cost compared to existing methods—despite their more
sophisticated routing mechanisms, and even without considering the additional setup costs incurred by some
of the baseline methods. For instance, while FrugalGPT’s scorer struggles on harder tasks and tends to
take the safer route by deferring more frequently, ABC aggressively leverages cheaper models for a significant
portion of inputs, reserving higher-cost models only when necessary. AutoMix, on the other hand, uses a
few-shot self-verification system that is sampled k times where k is >1 (in the authors’ codebase and ours,
k = 8); hence, the additional API calls add significantly to its cost of usage. In contrast, ABC easily maintains
and often improves on accuracy while being a training-free, simple approach.

Takeaway #4:
• LLM API pricing creates extreme cost ratios. ABC’s simple voting mechanism achieves 2-25× cost

reductions compared to SOTA cascading methods without requiring complex router training.

5.3 Ablation Studies and Sensitivity Analysis

We conduct comprehensive ablation studies to validate ABC’s design choices and analyze sensitivity to key
deployment parameters:

Impact of Parallelization §5.1.1 and Figure 8 (in Appendix E.1) analyze ABC under different parallelization
scenarios. With full parallelization (ρ = 1), ABC achieves optimal accuracy-FLOPs trade-offs, consistently
outperforming single models. Even under sequential execution (ρ = 0), ABC maintains substantial advantages
when relative costs are sufficiently disparate (e.g., γ ≤ 1

50), demonstrating robustness to deployment
constraints.

Relative Cost Sensitivity §5.1.2 and Figure 3 examine how ABC depends on the relative cost γ between
cascade tiers. When models have similar costs (γ ≥ 1

5), some parallelization may be required for cost savings.
However, when smaller models are at least 50× cheaper (γ ≤ 1

50), ABC provides meaningful savings even with
sequential execution, validating our theoretical analysis.

Threshold Estimation Robustness Appendix B and Figure 6 demonstrate that agreement threshold
θ estimation is stable across different model accuracy levels (37.6% to 86.0%) and converges with minimal
validation data. Using only 100 samples yields threshold estimates that remain stable when evaluated on
10× more data, confirming the effectiveness of the calibration procedure.

Safe Deferral Rule Existence Appendix C and Figure 7 characterize selection rates under different error
tolerances (1%, 3%, 5%) across model accuracies and computational budgets. Higher-accuracy models achieve

13

Published in Transactions on Machine Learning Research (07/2025)

selection rates up to 60% even with strict 1% error tolerance, empirically validating the practical existence of
safe deferral rules predicted by our theory.

Cost Breakdown Analysis Tables 4 & 5 (Appendix E.2) provide detailed analysis across cascade tiers,
showing that most samples (52 to 93%) are processed at cheaper early tiers. This validates ABC’s ability
to concentrate expensive computation on truly difficult samples while handling the majority of requests
efficiently.

Cascade Configuration Effects Figure 8 explores different cascade lengths (2-4 levels) and ensemble
sizes (2-5 models per tier). The results show diminishing returns for larger ensembles, with 2-3 models per
tier typically providing optimal accuracy-cost tradeoffs.

These ablations collectively demonstrate that ABC’s core design principles are empirically sound, with
performance gracefully degrading under suboptimal deployment conditions while maintaining substantial
benefits when key assumptions (e.g., large relative cost disparities) hold.

Takeaway #5:
• Ablation studies confirm that ABC’s benefits stem from the synergy of parallelization and cost

disparities. Safe deferral rules exist across diverse settings, and threshold estimation requires minimal
validation data (≈100 samples) while remaining robust across model accuracies.

6 Conclusion

In this work, we introduce Agreement-Based Cascading (ABC) as a straightforward approach for adaptive
inference that utilizes existing models for constructing cascades and makes deferral decisions based on their
mutual agreement. We define safe deferral rules, ensuring ABC can serve as a drop-in replacement for models
while improving accuracy.

Although using an ensemble of models can provide a powerful deferral rule for cascading, the additional
costs required to compute such an ensemble may not lead to savings in all inference scenarios. Despite this,
our work shows that this simple approach is surprisingly effective given the large differences in model sizes
that reach state-of-the-art accuracy in recent ML tasks. We demonstrate improvements via a number of
real-world case studies, including a study on communication costs in edge-to-cloud inference, rental costs in
cloud-based settings, and the cost of black-box API services. Overall, our results demonstrate ABC’s capacity
to improve the efficiency of adaptive inference systems without the complexities associated with traditional
cascade frameworks, making it a compelling option for practitioners focused on reducing inference latency.

Future Work. Several promising directions emerge from this work. First, extending ABC to open-ended
generation tasks would significantly broaden its applicability, particularly given the growing prominence
of LLM-based applications. Second, exploring more efficient ensemble methods could further enhance
ABC’s benefits in scenarios with limited parallelization capabilities, potentially through techniques that
reduce ensemble overhead while maintaining agreement quality. Finally, investigating bias-aware agreement
mechanisms or construction strategies that promote diversity in decision-making patterns across demographic
groups could address potential bias propagation concerns inherent in majority-based voting systems.

14

Published in Transactions on Machine Learning Research (07/2025)

References
Mohamed Abdalla, Jan Philip Wahle, Terry Lima Ruas, Aurélie Névéol, Fanny Ducel, Saif M Mohammad, and

Karen Fort. The elephant in the room: Analyzing the presence of big tech in natural language processing
research. In The 61st Annual Meeting Of The Association For Computational Linguistics, 2023.

Anelia Angelova, Alex Krizhevsky, Vincent Vanhoucke, Abhijit S. Ogale, and Dave Ferguson. Real-time
pedestrian detection with deep network cascades. volume 2, pp. 4, 2015.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks for efficient
inference. In International Conference on Machine Learning, pp. 527–536. PMLR, 2017.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-All: Train One Network and
Specialize it for Efficient Deployment, April 2019.

Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. Learning Complexity-Aware Cascades for Deep
Pedestrian Detection. pp. 3361–3369, 2015.

Lingjiao Chen, Matei Zaharia, and James Y Zou. FrugalML: How to use ML Prediction APIs more accurately
and cheaply. In Advances in Neural Information Processing Systems, 2020.

Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to use large language models while reducing
cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers for
visual recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
12270–12280, October 2021.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Stephen P Crago and John Paul Walters. Heterogeneous cloud computing: The way forward. Computer, 48
(01):59–61, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009.

Don Dennis, Abhishek Shetty, Anish Prasad Sevekari, Kazuhito Koishida, and Virginia Smith. Progressive
ensemble distillation: Building ensembles for efficient inference. Advances in Neural Information Processing
Systems, 36, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In North American Chapter of the Association for Computational
Linguistics, 2019.

Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yulia Tsvetkov,
Hannaneh Hajishirzi, Sham Kakade, Ali Farhadi, and Prateek Jain. MatFormer: Nested Transformer for
Elastic Inference, October 2023.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on multiple classifier
systems, pp. 1–15. Springer, 2000.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query routing.
In The Twelfth International Conference on Learning Representations, 2024.

15

Published in Transactions on Machine Learning Research (07/2025)

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Yilun Du and Leslie Kaelbling. Compositional Generative Modeling: A Single Model is Not All You Need,
February 2024. arXiv:2402.01103 [cs].

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Saso Džeroski and Bernard Ženko. Is combining classifiers with stacking better than selecting the best one?
Machine learning, 54:255–273, 2004.

Shohei Enomoro and Takeharu Eda. Learning to cascade: Confidence calibration for improving the accuracy
and computational cost of cascade inference systems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 7331–7339, 2021.

Alan Fern and Robert Givan. Online ensemble learning: An empirical study. Machine Learning, 53:71–109,
2003.

Farnaz Forooghifar, Amir Aminifar, and David Atienza. Resource-aware distributed epilepsy monitoring
using self-awareness from edge to cloud. IEEE transactions on biomedical circuits and systems, 2019.

Aditya Gangrade, Anil Kag, and Venkatesh Saligrama. Selective Classification via One-Sided Prediction. In
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, pp. 2179–2187.
PMLR, March 2021. ISSN: 2640-3498.

Yonatan Geifman and Ran El-Yaniv. SelectiveNet: A Deep Neural Network with an Integrated Reject Option.
In Proceedings of the 36th International Conference on Machine Learning, pp. 2151–2159. PMLR, May
2019. ISSN: 2640-3498.

Shijie Geng, Peng Gao, Zuohui Fu, and Yongfeng Zhang. Romebert: Robust training of multi-exit bert.
arXiv preprint arXiv:2101.09755, 2021.

Raphael Gontijo-Lopes, Yann Dauphin, and Ekin D. Cubuk. No One Representation to Rule Them All:
Overlapping Features of Training Methods, April 2022. arXiv:2110.12899 [cs].

Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, and Prateek Jain. Drocc: Deep
robust one-class classification. In International conference on machine learning. PMLR, 2020.

Jiaqi Guan, Yang Liu, Qiang Liu, and Jian Peng. Energy-efficient Amortized Inference with Cascaded Deep
Classifiers. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
pp. 2184–2190, Stockholm, Sweden, July 2018. International Joint Conferences on Artificial Intelligence
Organization. ISBN 978-0-9992411-2-7.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks. In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1321–1330. PMLR, 06–11 Aug 2017.

Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna Menon, and
Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond. In International Conference
on Learning Representations, 2024.

Muhammad Usman Hadi, Qasem Al Tashi, Abbas Shah, Rizwan Qureshi, Amgad Muneer, Muhammad
Irfan, Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, et al. Large language models: a
comprehensive survey of its applications, challenges, limitations, and future prospects. Authorea Preprints,
2024.

16

Published in Transactions on Machine Learning Research (07/2025)

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic Neural Networks:
A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7436–7456, November
2022. ISSN 1939-3539.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert with
disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B
Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative modeling. arXiv
preprint arXiv:2010.14701, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable, empiri-
cally. arXiv preprint arXiv:1712.00409, 2017.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. DynaBERT: Dynamic BERT
with Adaptive Width and Depth. In Advances in Neural Information Processing Systems, volume 33, pp.
9782–9793. Curran Associates, Inc., 2020.

Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. Triple wins: Boosting accuracy,
robustness and efficiency together by enabling input-adaptive inference. In International Conference on
Learning Representations, 2020.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q. Weinberger.
Multi-Scale Dense Networks for Resource Efficient Image Classification, June 2018. arXiv:1703.09844.

Ramesh Jetty, Indy Sawhney, and Simon Zamarin. Batch Inference at Scale with Amazon SageMaker
| AWS Architecture Blog, November 2021. URL https://aws.amazon.com/blogs/architecture/
batch-inference-at-scale-with-amazon-sagemaker/.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-Blender: Ensembling Large Language Models with
Pairwise Ranking and Generative Fusion, June 2023.

Wittawat Jitkrittum, Neha Gupta, Aditya K. Menon, Harikrishna Narasimhan, Ankit Rawat, and Sanjiv
Kumar. When Does Confidence-Based Cascade Deferral Suffice? Advances in Neural Information Processing
Systems, 36:9891–9906, December 2023.

Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language models. ArXiv, abs/2001.08361,
2020.

Alind Khare, Dhruv Garg, Sukrit Kalra, Snigdha Grandhi, Ion Stoica, and Alexey Tumanov. SuperServe:
Fine-Grained Inference Serving for Unpredictable Workloads, December 2023. arXiv:2312.16733 [cs].

Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W. Mahoney, Kurt Keutzer, and Amir
Gholami. An llm compiler for parallel function calling. ArXiv, abs/2312.04511, 2023.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha Madhyastha, and Mosharaf
Chowdhury. Fedscale: Benchmarking model and system performance of federated learning at scale. In
International conference on machine learning, pp. 11814–11827. PMLR, 2022.

Lambda. GPU Cloud - VMs for Deep Learning | Lambda, 2024. URL https://lambdalabs.com/service/
gpu-cloud.

17

https://aws.amazon.com/blogs/architecture/batch-inference-at-scale-with-amazon-sagemaker/
https://aws.amazon.com/blogs/architecture/batch-inference-at-scale-with-amazon-sagemaker/
https://lambdalabs.com/service/gpu-cloud
https://lambdalabs.com/service/gpu-cloud

Published in Transactions on Machine Learning Research (07/2025)

Luzian Lebovitz, Lukas Cavigelli, Michele Magno, and Lorenz K. Muller. Efficient Inference With Model
Cascades. Transactions on Machine Learning Research, 2023.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. Orchestrallm: Efficient orchestration of language models
for dialogue state tracking. arXiv preprint arXiv:2311.09758, 2023.

Baolin Li, Vijay Gadepally, Siddharth Samsi, Mark Veillette, and Devesh Tiwari. Serving machine learning
inference using heterogeneous hardware. In 2021 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–8. IEEE, 2021a.

Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. Kairos: Building cost-efficient machine
learning inference systems with heterogeneous cloud resources. In Proceedings of the 32nd International
Symposium on High-Performance Parallel and Distributed Computing, pp. 3–16, 2023.

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li, Jie Zhou, and Xu Sun. CascadeBERT: Accelerating
Inference of Pre-trained Language Models via Calibrated Complete Models Cascade. In Findings of the
Association for Computational Linguistics: EMNLP 2021, pp. 475–486, Punta Cana, Dominican Republic,
November 2021b. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.43.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. Fastbert: a self-distilling bert
with adaptive inference time. arXiv preprint arXiv:2004.02178, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Aman Madaan, Pranjal Aggarwal, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei Zhou,
Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, Shyam Upadhyay, Mausam, and
Manaal Faruqui. AutoMix: Automatically Mixing Language Models, October 2023. arXiv:2310.12963 [cs].

Jonathan Mamou, Oren Pereg, Moshe Wasserblat, and Roy Schwartz. TangoBERT: Reducing Inference Cost
by using Cascaded Architecture, April 2022. arXiv:2204.06271 [cs].

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin, Tianqi Chen, and Zhihao Jia.
Towards efficient generative large language model serving: A survey from algorithms to systems. ArXiv,
abs/2312.15234, 2023.

Hao Mo, Ligu Zhu, Lei Shi, Songfu Tan, and Suping Wang. Hetsev: Exploiting heterogeneity-aware autoscaling
and resource-efficient scheduling for cost-effective machine-learning model serving. Electronics, 12(1):240,
2023.

Harikrishna Narasimhan, Wittawat Jitkrittum, Aditya K. Menon, Ankit Rawat, and Sanjiv Kumar. Post-hoc
estimators for learning to defer to an expert. Advances in Neural Information Processing Systems, 35:
29292–29304, December 2022.

Lunyiu Nie, Zhimin Ding, Erdong Hu, Christopher Jermaine, and Swarat Chaudhuri. Online cascade learning
for efficient inference over streams. arXiv preprint arXiv:2402.04513, 2024.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez, M Waleed
Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. arXiv preprint
arXiv:2406.18665, 2024.

Yulong Pei, Amarachi B. Mbakwe, Abhinav Gupta, Salwa Alamir, Huang Lin, Xiaomo Liu, and Sameena
Shah. Tweetfinsent: A dataset of stock sentiments on twitter. 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International conference on machine learning, pp. 8748–8763. PMLR, 2021.

18

Published in Transactions on Machine Learning Research (07/2025)

Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering challenge.
Transactions of the Association for Computational Linguistics, 7:249–266, 2019.

H.A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(1):23–38, January 1998. ISSN 1939-3539. doi: 10.1109/34.655647.

Marija Šakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language model choice
via meta-modeling. In Proceedings of the 17th ACM International Conference on Web Search and Data
Mining, pp. 606–615, 2024.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. ArXiv, October 2019.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident Adaptive Language Modeling. Advances in Neural Information Processing Systems, 35:
17456–17472, December 2022.

Mohammad Saeed Shafiee, Mohammad Javad Shafiee, and Alexander Wong. Efficient inference on deep
neural networks by dynamic representations and decision gates. Advances in neural information processing
systems, 2018.

Amanda J. C. Sharkey. On combining artificial neural nets. Connection Science, 8(3-4):299–314, 1996. doi:
10.1080/095400996116785.

Tal Shnitzer, Anthony Ou, Mírian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil Thompson, and Mikhail
Yurochkin. Large Language Model Routing with Benchmark Datasets, September 2023. arXiv:2309.15789
[cs].

Ankur Sinha and Tanmay Khandait. Impact of news on the commodity market: Dataset and results.
In Advances in Information and Communication: Proceedings of the 2021 Future of Information and
Communication Conference (FICC), Volume 2, pp. 589–601. Springer, 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods in natural language processing, pp. 1631–1642,
2013.

Sander Soo. Object detection using Haar-cascade Classifier. Institute of Computer Science, University of
Tartu, 2(3):1–12, 2014.

Matthew Streeter. Approximation Algorithms for Cascading Prediction Models. In Proceedings of the 35th
International Conference on Machine Learning, pp. 4752–4760. PMLR, July 2018. ISSN: 2640-3498.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for modern
deep learning research. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
13693–13696, 2020.

Arun Suggala, Bingbin Liu, and Pradeep Ravikumar. Generalized boosting. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 8787–8797, 2020.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for language-
model-as-a-service. In International Conference on Machine Learning, pp. 20841–20855. PMLR, 2022.

Teo Susnjak, Andre L. C. Barczak, and Kenneth A. Hawick. Adaptive cascade of boosted ensembles for face
detection in concept drift. Neural Computing and Applications, 21:671–682, 2012.

C Szegedy. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

19

Published in Transactions on Machine Learning Research (07/2025)

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Neeraj Varshney and Chitta Baral. Model Cascading: Towards Jointly Improving Efficiency and Accuracy of
NLP Systems. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 11007–11021, Abu Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics.

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Proceedings of
the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001,
volume 1, December 2001. ISSN: 1063-6919.

Paul Viola and Michael J. Jones. Robust Real-Time Face Detection. International Journal of Computer
Vision, 57(2):137–154, May 2004. ISSN 1573-1405. doi: 10.1023/B:VISI.0000013087.49260.fb.

Lidan Wang, Jimmy Lin, and Donald Metzler. A cascade ranking model for efficient ranked retrieval. In
Proceedings of the 34th international ACM SIGIR conference on Research and development in Information
Retrieval, pp. 105–114. ACM, 2011.

Xiaofang Wang, Dan Kondratyuk, Eric Christiansen, Kris M Kitani, Yair Movshovitz-Attias, and Elad Eban.
Wisdom of committees: An overlooked approach to faster and more accurate models. In International
Conference on Learning Representations, 2021.

Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and Joseph E. Gonzalez. IDK
Cascades: Fast Deep Learning by Learning not to Overthink, June 2018a. arXiv:1706.00885 [cs].

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. SkipNet: Learning Dynamic
Routing in Convolutional Networks. pp. 409–424, 2018b.

Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. Tabi: An efficient multi-level inference system for
large language models. In Proceedings of the Eighteenth European Conference on Computer Systems, pp.
233–248, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, et al. Huggingface’s transformers: State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771, 2019.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 2246–2251, 2020.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. Xlnet:
Generalized autoregressive pretraining for language understanding. In Neural Information Processing
Systems, 2019.

Jiahui Yu and Thomas S. Huang. Universally Slimmable Networks and Improved Training Techniques. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1803–1811, 2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable Neural Networks, December
2018. arXiv:1812.08928 [cs].

20

Published in Transactions on Machine Learning Research (07/2025)

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. Large language model cascades with mixture of
thought representations for cost-efficient reasoning. In The Twelfth International Conference on Learning
Representations, 2024.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. SWAG: A large-scale adversarial dataset for
grounded commonsense inference. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 93–104, 2018.

Lucia Zheng, Neel Guha, Brandon R Anderson, Peter Henderson, and Daniel E Ho. When does pretraining
help? assessing self-supervised learning for law and the casehold dataset of 53,000+ legal holdings. In
Proceedings of the eighteenth international conference on artificial intelligence and law, pp. 159–168, 2021.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience: Fast
and robust inference with early exit. Advances in Neural Information Processing Systems, 33:18330–18341,
2020.

Ligeng Zhu, Hongzhou Lin, Yao Lu, Yujun Lin, and Song Han. Delayed gradient averaging: Tolerate the
communication latency for federated learning. Advances in Neural Information Processing Systems, 34:
29995–30007, 2021.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large
language models. arXiv preprint arXiv:2308.07633, 2023.

Fei Zuo and Peter H. N. de With. Fast face detection using a cascade of neural network ensembles. In
Advanced Concepts for Intelligent Vision Systems Conference, 2005.

Fei Zuo and Peter H. N. de With. Cascaded face detection using neural network ensembles. EURASIP
Journal on Advances in Signal Processing, 2008:1–13, 2008.

A Agreement-Based Cascading (ABC) can Improve Accuracy

Our construction of ABC, as explained in Section 3 and 4 is based on safe deferral rules (Definition 4.1) —
rules such that when a data point is selected at a lower cascade tier, the inference is accurate with high
probability. This means that if the lower tier of the cascade has a higher accuracy compared to the largest
model, on the ‘easy’ data it predicts on, the overall accuracy of ABC can increase. For ‘hard’ samples ABC
and the largest, SoTA model produces identical predictions as ABC is internally deferring to this model. We
formalize this notion of accuracy improvement in this section.

Consider a classification problem in the statistical learning framework, where X is our instance space and Y
is the label space. Let r denote any deterministic deferral rule r : X → {0, 1}. Let {H1, h2} be two classifiers
hi : X → Y for i ∈ {1, 2}. We will think of h2 as being the more expensive (better accuracy) model. Consider
a distribution P over X × Y. The risk of classifier h2 is defined as

R(h2) = P (h2(x) ̸= y)

Let us define a cascaded classifier Mr : X → Y such that,

Mr(x) =
{

H1(x) r(x) = 0
h2(x) r(x) = 1.

(5)

Then the risk of the cascaded classifier using rule r is,

R(Mr) = P (Mr(x) ̸= y)

We wish to understand when we can replace an existing large, expensive classifier h2 with a cascade such
that there is no drop in accuracy. This is useful when we are extremely sensitive towards accuracy drop and

21

Published in Transactions on Machine Learning Research (07/2025)

wish to only select models at the lower-level when we are certain about the classification. Let us define the
excess risk of using a cascade in-place of the larger model h2 as,

Rexcess(Mr, h2) = R(Mr)−R(h2).

Expanding further, we can express the excess risk as,

Rexcess(Mr, h2) = P (Mr(x) ̸= y)− P (h2(x) ̸= y)
= P (Mr(x) ̸= y | r(x) = 0)P (r(x) = 0) + P (Mr(x) ̸= y | r(x) = 1)P (r(x) = 1)
− P (h2(x) ̸= y)

= P (H1(x) ̸= y | r(x) = 0)P (r(x) = 0) + P (h2(x) ̸= y | r(x) = 1)P (r(x) = 1)
− P (h2(x) ̸= y | r(x) = 0)P (r(x) = 0) + P (h2(x) ̸= y | r(x) = 1)P (r(x) = 1)

=
(

P (H1(x) ̸= y | r(x) = 0)− P (h2(x) ̸= y | r(x) = 0)
)

P (r(x) = 0) (6)

As can be seen, the general excess risk here depends on both models. Since our focus is on accuracy, any
rule that leads to a risk that is no worse than that of the classifier h2 can be used, and we term these as
admissible cascades.
Definition A.1 (Admissible cascades). Mr(x) defined above is an admissible cascade w.r.t the population
distribution P and the reference classifier h2 if,

Rexcess(Mr, h2) ≤ 0,

or equivalently
P (H1(x) ̸= y | r(x) = 0) ≤ P (h2(x) ̸= y | r(x) = 0).

As mentioned in Section 4, for this work, we specialize to the case where whenever the smaller model is
selected, it is always correct. That is, P (H1(x) ̸= y | r(x) = 0) = 0. Of course, such a pair of smaller-classifier
H1 and deferral rule r need not exists. However, whenever they do, a cascade constructed using any h2 is
admissible since,

∀h2, R(Mr, h2) = −P (h2(x) ̸= y | r(x) = 0)P (r(x) = 0) ≤ 0.

This implies a universal nature of such (H1, r) for such two tier cascades as the excess risk of the cascade
does not depend on the larger classifier h2.

Finally, if the ensemble H1(x) outperforms the SoTA model on the ‘easy’ samples by some strictly positive
ξ > 0, such that

P (H1(x) ̸= y | r(x) = 0) ≤ P (h2(x) ̸= y | r(x) = 0)− ξ

Then, from Equation 6

Rexcess(Mr, h2) =
(

P (H1(x) ̸= y | r(x) = 0)− P (h2(x) ̸= y | r(x) = 0)
)

P (r(x) = 0)

= −ξP (r(x) = 0) < 0,

wherever the selection rate satisfies P (r(x) = 0) ≥ 0. Negative excess risk implies an improvement over the
SoTA classifier we were using with the overall amount of improvement depending on P (r(x) = 0).

Proof of Proposition 4.1

Part 1: By Definition 4.1, we have P (r(x) = 0, Hk
1 (x) ̸= y) ≤ ϵ. The risk of the cascade decomposes as:

R(Mr) = P (r(x) = 0, Hk
1 (x) ̸= y) + P (r(x) = 1, h2(x) ̸= y) (7)

≤ ϵ + P (r(x) = 1)R(h2) ≤ R(h2) + ϵ (8)

Part 2: The expected cost follows from Equation 1 and conditioning on the deferral decision:

E[C(Mr)] = P (r(x) = 0)C(Hk
1) + P (r(x) = 1)C(h2) = (kργ + P (r(x) = 1))C(h2)

22

Published in Transactions on Machine Learning Research (07/2025)

 3K 7K 18K 42K
0.00

0.25

0.50

0.75

1.00

Acc: 37.6%

 1K 3K 10K 32K
0.00

0.25

0.50

0.75

1.00

Acc: 51.9%

 1K 3K 10K 32K
0.00

0.25

0.50

0.75

1.00

Acc: 58.8%

 1K 3K 10K 32K
0.00

0.25

0.50

0.75

1.00

Acc: 65.6%

 1K 3K 10K 32K
0.00

0.25

0.50

0.75

1.00

Acc: 71.6%

 1K 3K 10K 32K
0.00

0.25

0.50

0.75

1.00

Acc: 86.0%

Number of Samples

Th
et

a
(

)
Threshold estimate vs number of samples used on ImageNet1K

Figure 6: Estimation of agreement threshold θ stability as a function of the number of samples used, across different
model accuracy levels on the ImageNet-1K dataset. Each plot corresponds to a model with a specific accuracy, shown
in the legend. The initial estimate is with 100 samples, with subsequent estimates with larger and larger number of
samples. The initial estimate is reasonably close within subsequent estimates with larger number of samples.

B Estimating Agreement Threshold θ

To effectively apply ABC, it’s essential to configure an agreement threshold θ for the deferral rules defined
in Equations 3 and 4. This threshold indicates a sufficient level of confidence in the ensemble’s predictions,
allowing ABC to avoid deferring to a higher-cost model when the ensemble’s agreement is high, thereby
reducing inference costs without sacrificing accuracy. Recall from Definition 4.1 that the failure rate of a
deferral rule, as a function of the agreement threshold is given by,

P(s(x) ≥ θ, Hk(x) ̸= y).

In particular, safe deferral rules are those with a failure rate bounded by a small ϵ ≥ 0 of our choice. This
means that, given a distribution P over X × Y we can define a function p(θ) as,

p(θ) = P(s(x) ≥ θ, Hk(x) ̸= y).

We can now define feasible thresholds, θ as those for which the error rate p(θ) ≤ ϵ, since any such θ leads to
safe deferral. In practice, we rarely have access to P and therefore p(θ). We instead use its plugin-estimator,
given by

p̂(θ) = 1
n

n∑
i=1

I[s(x) ≥ θ, Hk(x) ̸= y].

We estimate p̂(θ) by using a small subset of samples from the validation set. Typically, we draw around 100
samples and set them aside to determine a stable threshold. Figure 6 shows how the estimated threshold
varies with the number of samples used in the estimation process, across models with different accuracy
levels. Each plot represents a model of a specific accuracy, with accuracy percentages indicated in the legend.
As shown, the estimate generally stabilizes even with 100 samples, suggesting that only a few validation
samples are needed to reliably estimate θ, making the parameter estimation process efficient and practical for
real-world applications.

C Existence of Safe Deferral Rules and Selection Rates

This section examines the existence of safe deferral rules — rules that have a very low probability of being
incorrect, where data is not deferred to a larger model — by evaluating selection rates. For any threshold θ,

23

Published in Transactions on Machine Learning Research (07/2025)

20 30 40 50 60 70 80
Accuracy (%)

0

20

40

60

D
at

a
se

le
ct

ed
 (%

)
Selection rate vs accuracy on ImageNet1K

Max-error (%)
1.0
3.0
5.0

0.5B 3B 10B 32B 100B
FLOPs

0

20

40

60

D
at

a
se

le
ct

ed
 (%

)

Selection rate vs FLOPs on ImageNet1K

Max-error (%)
1.0
3.0
5.0

Figure 7: Selection rate as a function of accuracy (left) and FLOPs (right) for different error tolerances on ImageNet-
1K. The selection rate P(r(x) ≥ θ) represents the fraction of data handled at a lower cascade tier without deferring
to a larger model, based on a threshold θ. Laxer error tolerances (e.g., 5%) yield higher selection rates, as more
samples meet the criteria for safe deferral. In contrast, stricter tolerances (e.g., 1%) result in lower selection rates.
Both plots illustrate that higher-accuracy or higher-FLOP models generally achieve higher selection rates, especially
as the allowable error tolerance increases, reinforcing the stability and practicality of ABC.

the selection rate P (r(x) ≥ θ) represents the fraction of data that deemed ‘easy’ enough to be processed at a
lower tier of the cascade. Experimentally, we observe that θϵ computed in the manner described in Section B
does indeed adhere to the error tolerance of choice ϵ. This means that whenever a data point is selected at a
lower tier, the inference is accurate with probability 1− ϵ. Stricter values of ϵ typically result in a higher
threshold for agreement and a lower-selection rate.

The plots in Figure 7 show the selection rate across different accuracy levels and FLOP values on the
ImageNet-1K dataset. We explore selection rates for three error tolerances, corresponding to maximum
allowable error rates of 1%, 3%, and 5%. As shown in the left plot, which compares selection rate versus
accuracy of the models used in the ensemble, higher accuracy models tend to achieve higher selection
rates, especially when the error tolerance is relaxed (e.g., 5% maximum error). Conversely, stricter error
tolerances (e.g., 1%) lead to lower selection rates across all accuracy levels, as fewer samples meet the stringent
requirements for safe deferral at lower cascade tiers. In the right plot, which illustrates selection rate versus
FLOPs, a similar trend is observed. Higher-FLOP models, which are generally more accurate, are able to
safely handle a larger portion of the data at lower tiers, particularly as the error tolerance increases.

D Evaluation Setups

D.1 Datasets and Models

Datasets and models used in our experiments are detailed in Table 2 and Table 3.
Table 2: Datasets used in both benchmark and black-box API experiments across various task types.

Category Dataset Task Type

Image Tasks ImageNet-1K (Deng et al., 2009) Image classification
CIFAR-10 (Krizhevsky & Hinton, 2009) Image classification

Language Tasks
SST-2 (Socher et al., 2013) Sentiment analysis

Twitter Financial News (Pei et al., 2021) Sentiment analysis
SWAG (Zellers et al., 2018) Multiple-Choice QA

Black-Box Experiments

GSM8K (Cobbe et al., 2021) Math Reasoning
COQA (Reddy et al., 2019) Conversational QA

OVERRULING (Zheng et al., 2021) Legal Reasoning
HEADLINES (Sinha & Khandait, 2021) News Classification

24

Published in Transactions on Machine Learning Research (07/2025)

Table 3: Summary of models used for both benchmark and black-box API experiments, across image and text tasks.

Category Dataset Tiers Used

Language Models

BERT (Devlin et al., 2019)
RoBERTa (Liu et al., 2019)
XLNet (Yang et al., 2019) BASE, LARGE

ELECTRA (Radford et al., 2021)

Image Models
ResNet (He et al., 2016)
ViT (Dosovitskiy, 2020) Selection based on FLOPs

CLIP (Clark et al., 2020)

Black-Box Models
LlaMA 3.1 (Dubey et al., 2024)
Gemma 2 (Team et al., 2024) See Table 1
Qwen 2 (Yang et al., 2024)

D.2 Details for Black-Box API Experiments

Baselines We compare ABC to FrugalGPT (Chen et al., 2023), 2 variants of AutoMix (Madaan et al.,
2023), and MoT LLM Cascade (Yue et al., 2024). Although HybridLLM (Ding et al., 2024) falls into this
category of SOTA methods, it has been shown to underperform FrugalGPT and AutoMix (Madaan et al.,
2023). For practical comparison, we implement all methods in a fully functional cascade system.

Method-Specific Details

• AutoMix: AutoMix trains a different router for all possible cascade steps, i.e., n − 1 routers for
the n cascade tiers, and this has to be repeated for every new task or model replacement in the
system. A threshold (AutoMix+T) or POMDP (AutoMix+P) is trained with a combination of
≥ 50 training samples from the same test data distribution and the initial inferences generated on
the test data by the two models involved in each cascading step. After training the router, using
the cascading system often involves running a few-shot self-verification 8 times at a high sampling
temperature (temp = 1.0), using the same model that generates inference at the given cascade tier.
Automix then averages the self-verification results and meta-verify it with the best parameters of the
routing strategy to decide when to exit.

• FrugalGPT: Just like AutoMix, FrugalGPT needs to train n− 1 routers for n cascade tiers, and
each router needs to have a sense of the data distribution and the model’s predictive power. ≥ 500
training samples and inference generated on these samples by the tier’s model are needed to train
each tier/model’s scorer, a DistilBERT (Sanh et al., 2019).

• MoT LLM Cascade: Yue et al. (2024) focuses on sampling and consistency checking as a means of
cascade. To measure consistency, the weaker LLM generates multiple answers for a single question by
varying the randomness in the LLM’s responses—i.e., varying the temperature of the model—while
using in-context demonstrations and reasoning techniques (e.g., Chain-of-Thought (Wei et al., 2022))
to influence how the model generates answers. The system compares the different sampled answers
and picks the most consistent one. If the consistency score is high enough, the weaker model’s answer
is accepted. Otherwise, the question is passed to the next tier.

• ABC: We use the voting-based safe deferral rule, requiring no additional training or any complex
routing strategies.

Cascade Models We use the models described in Table 1. We consider a setting that is advantageous to
the baselines by selecting the best singlular model from each performance tier and cascading between them.
In all cascading systems, we use all three tiers for cascade; but considering budget constraints, we also have
setups where we delete Tier 3 and use only the first two tiers (2-level cascade).

Evaluation Setup We evaluate these methods on a variety of (closed) generation datasets and tasks as
shown in Table 2. To ensure consistency in output format and easier evaluation setup, we use few-shot

25

Published in Transactions on Machine Learning Research (07/2025)

prompting—specifically, 4-shot—for all models across all tasks. For evaluation metrics, we use the macro
F1 score for CoQA to capture overlaps between predictions and ground-truth answers, while we measure
accuracy (essentially exact match) for the rest of the tasks. In terms of efficiency, we also measure the costs
of using the model APIs. It is important to note that AutoMix and FrugalGPT incur extra setup costs
that we did not factor into our results. These costs and associated latency represent a significant constraint,
especially for scenarios requiring frequent retraining or adaptation to new tasks, distributions, and models.

As shown in Figure 5, we observe that ABC is often more cost-effective than the baselines, even with their
sophisticated routing mechanisms and singular model tiers. Our analyses show that ABC’s efficient deferral
strategy allows a more aggressive utilization of cheaper models for a significant portion of the input while only
using expensive models when necessary. For instance, we realize—upon analyzing FrugalGPT’s results—that
the trained scorer struggles as an efficient deferral signal as the tasks get harder; hence, it is more likely to
take the safer option to cascade as test sample difficulty increases. This means that ABC can be expected to
be more efficient since the scaling laws ensure that the sum of the costs of using several cheaper models is
still much less than the cost of using the larger model in the next tier. AutoMix, on the other hand, uses a
few-shot self-verification system that is sampled > 1 times; hence, the additional API calls add significantly
to its cost of usage. Considering that the self-verification process is an integral part of the AutoMix setup, it
can be guaranteed that ABC will always be cheaper to use than AutoMix, despite using more models.

E Benefits of ABC

E.1 Parallel vs. sequential inference execution

0 1 2 3 4
Average FLOPs ×108

88

90

92

94

A
cc

u
ra

cy

w/ parallel inference execution

1 2 3 4
Average FLOPs ×108

88

90

92

94

A
cc

u
ra

cy

w/o parallel inference execution
Cascade length=2; nmodels=2

Cascade length=2; nmodels=3

Cascade length=2; nmodels=4

Cascade length=2; nmodels=5

Cascade length=3; nmodels=2

Cascade length=3; nmodels=3

Cascade length=3; nmodels=4

Cascade length=3; nmodels=5

Cascade length=4; nmodels=2

Cascade length=4; nmodels=3

Cascade length=4; nmodels=4

Cascade length=4; nmodels=5

Top-1 models in cluster

Figure 8: Impact of parallelization on ABC performance for CIFAR-10. Left: With parallel inference execution (ρ = 1),
ABC configurations consistently outperform the best single models across different cascade lengths and ensemble sizes.
Right: Even with sequential execution (ρ = 0), ABC maintains advantages over single models, though with reduced
efficiency. The results demonstrate that while parallelization is beneficial, ABC remains effective even under sequential
constraints when cost disparities are sufficient.

Based on Section 5.1.1, we additionally show in Figure 8 the superiority of parallel inference execution
for cascading over using the best single model using CIFAR-10 as a case study. We also show that in the
worst-case scenarios in which every single inference is sequentially produced over each ensemble and cascade,
there are still considerable savings over the largest single models, if the scenarios assumptions are met.

E.2 Cost Benefits

Based on Section 5.2.2, Table 4 shows the GPUs’ pricing across several tiers retrieved from Lambda Cloud.
Table 5 shows a detailed analysis of costs across all cascade tiers, associated with the number of cascade exits
at each cascade tier, to provide holistic efficiency comparisons of the aggregated cascade costs against using
the best (and largest) model — and ABC dominates in every measured metric. Typically, most cascade exits
occur in the earlier (and much cheaper) tiers (as also shown in Table 5), ensuring that the more cost-intensive
cascade tiers featuring are reserved for the harder test instances.

26

Published in Transactions on Machine Learning Research (07/2025)

Table 4: GPU rental costs from Lambda Cloud (Lambda, 2024) (September 2024) showing the substantial cost
disparities between hardware generations. The 25× cost difference between H100 and V100 GPUs, combined with
more modest throughput differences, creates favorable conditions for ABC’s heterogeneous hardware placement strategy
described in Section 5.2.2

GPU Cost per Hour (USD)
V100 0.5
A6000 0.8
A100 1.29
H100 2.49

Table 5: Detailed cost breakdown across cascade tiers for each dataset, showing the fraction of samples processed
at each tier, associated GPU costs, latency, and FLOPs. The high fraction of samples processed at cheaper early
tiers (52-93%) demonstrates ABC’s effectiveness at concentrating expensive computation on truly difficult samples. ABC
consistently outperforms single best models across all metrics while achieving substantial cost savings.

Best Single

Dataset Metric Tier 1 Tier 2 Tier 3 Tier 4 ABC Model

CIFAR-10 Frac. Samples (total=10,000) 0.73 0.09 0.08 0.10 1.00 1.00

Total GPU Cost ($ / hour) 0.36 0.07 0.11 0.24 0.79 2.49

Avg. Latency (ms) 3.11 3.79 7.76 9.07 4.13 9.07

Avg. FLOPs 5.42e6 2.32e7 1.16e8 2.47e8 3.97e7 2.48e8

ImageNet-1K Frac. Samples (total=50,000) 0.52 0.29 0.19 - 1.00 1.00

Cost ($ / hour) 0.26 0.23 0.25 - 0.74 1.29

Avg. Latency (ms) 2.45 2.88 3.17 - 2.71 3.17

Avg. FLOPs 2.15e9 3.90e9 4.30e9 - 3.07e9 4.30e9

SWAG (MCQ) Frac. Samples (total=20,006) 0.71 0.29 - - 1.00 1.00

Cost ($ / hour) 0.36 0.23 - - 0.59 0.80

Avg. Latency (ms) 4.52 8.05 - - 5.53 8.05

Avg. FLOPs 1.88e10 6.67e10 - - 3.25e10 6.67e10

SST-2 Frac. Samples (total=872) 0.93 0.07 - - 1.00 1.00

Cost ($ / hour) 0.46 0.06 - - 0.52 0.80

Avg. Latency (ms) 3.88 7.22 - - 4.13 7.22

Avg. FLOPs 5.43e9 1.68e10 - - 6.26e9 1.68e10

Twitter Fin News Frac. Samples (total=822) 0.65 0.35 - - 1.00 1.00

Cost ($ / hour) 0.32 0.28 - - 0.61 0.80

Avg. Latency (ms) 4.05 7.26 - - 5.19 7.26

Avg. FLOPs 6.83e9 2.42e10 - - 1.30e10 2.42e10

27

	Introduction
	Related Work
	Cascading using Score-based Deferrals
	Cascades with Routing Procedures
	Dynamic and Adaptive Networks

	Agreement-Based Cascading (ABC)
	Overview of ABC Approach
	ABC in Modern ML Environments

	Formalization and Theoretical Details
	Problem Setup and Notation
	Deferral Rule-Based Drop-in Cascade
	Deferral using Ensemble Agreement
	Inference Cost Savings and Competitiveness

	Experiments
	When is ABC Practical?
	When Parallelization is Cheap
	Disparity in Relative Cost is High

	Real-world Use-cases
	Communication Cost in Edge-to-Cloud Inference
	Monetary Cost for Model Serving on Heterogeneous Hardware
	Monetary Cost for Black-box API-Based Inference

	Ablation Studies and Sensitivity Analysis

	Conclusion
	Agreement-Based Cascading (ABC) can Improve Accuracy
	Estimating Agreement Threshold
	Existence of Safe Deferral Rules and Selection Rates
	Evaluation Setups
	Datasets and Models
	Details for Black-Box API Experiments

	Benefits of ABC
	Parallel vs. sequential inference execution
	Cost Benefits

