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Abstract
Attention-based transformers have been remark-
ably successful at modeling generative processes
across various domains and modalities. In this
paper, we study the behavior of transformers on
data drawn from kth-order Markov processes,
where the conditional distribution of the next
symbol in a sequence depends on the previous
k symbols observed. We observe a surprising
phenomenon empirically which contradicts
previous findings: when trained for sufficiently
long, a transformer with a fixed depth and 1
head per layer is able to achieve low test loss on
sequences drawn from kth-order Markov sources,
even as k grows. Furthermore, this low test
loss is achieved by the transformer’s ability to
represent and learn the in-context conditional
empirical distribution. On the theoretical side,
our main result is that a transformer with a
single head and three layers can represent the
in-context conditional empirical distribution
for kth-order Markov sources, concurring with
our empirical observations. Along the way,
we prove that attention-only transformers with
Oplog2pkqq layers can represent the in-context
conditional empirical distribution by composing
induction heads to track the previous k symbols
in the sequence. These results provide more
insight into our current understanding of the
mechanisms by which transformers learn to
capture context, by understanding their be-
havior on Markov sources. Code is available
at: https://github.com/Bond1995/
Constant-depth-Transformers

1. Introduction
Attention-based transformers have revolutionized the field
of natural language processing (NLP) (Vaswani et al., 2017;
Brown et al., 2020) and beyond (Dosovitskiy et al., 2021;
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He et al., 2021), achieving significant performance gains
across tasks like machine translation, text generation, and
sentiment analysis. A key factor in their success is their
ability to model sequences far more efficiently, and the
ability to learn in-context (Bietti et al., 2023; Edelman et al.,
2024).

To understand this capability, a canonical approach is to
sample the input from a kth-order Markov process, where the
next symbol’s conditional distribution depends only on the
previous k symbols. Recent studies (Makkuva et al., 2024;
Edelman et al., 2024; Nichani et al., 2024) have investigated
the ability of transformers to learn Markov processes and
establish that learning happens in phases. The transformer
eventually learns to represent the conditional k-gram model,
which is the in-context MLE of the Markov process.

The results in (Edelman et al., 2024; Nichani et al., 2024)
seem to suggest that for low depth transformers to learn
Markov processes of order k, it is essential that the number
of heads scale linearly in k. At first glance, this is a bit con-
cerning - real world data generating processes often contain
long-range dependencies. How is it that transformers suc-
ceed at capturing these kinds of long-range dependencies,
while at the same time requiring so many heads to be able to
capture the necessary context for kth-order Markov sources?

To understand the nature of this phenomenon, we train low-
depth transformers on kth-order Markov sources. These
experiments result in two surprising empirical phenomena
that seem to contradict previous findings: when trained
for sufficiently long, piq a 2-layer, 1-head transformer can
learn kth-order Markov processes for k as large as 4, piiq
a 3-layer, 1-head transformer is able to achieve low test
loss on sequences drawn from kth-order Markov sources,
even as k grows to be as large as 8 (Fig. 4). In both cases,
the values of k for which the models appear to learn kth-
order Markov sources are much higher than those predicted
in prior experiments (Edelman et al., 2024; Nichani et al.,
2024). This discrepancy shows that our understanding of the
mechanisms used by transformers to learn kth-order Markov
processes is not complete and raises a broader question:

What is the interplay between depth, num-
ber of heads and non-linearity in learning kth-
order Markov processes?
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Figure 1: kth-order Markov processes for k “ 4. The next
symbol Xn`1 in the sequence is sampled from the distribu-
tion P p¨|Xn, Xn´1, Xn´2, Xn´3q which only depends on
the last kp“ 4q symbols (marked in red).

In this paper, we approach this question from the point
of view of representation power, and provide some partial
explanations toward the phenomena illustrated previously.

Our main contributions are as follows:

1. We show, rather surprisingly, that the standard trans-
former architecture with 3 layers and 1 head per layer is
capable of representing the conditional k-gram model
(Definition 2.1), and thereby learn kth-order Markov
models in-context.

2. Along the way to building up to this result, we consider
the simpler family of attention-only transformers and
show that they can represent the conditional k-gram
model with rlog2pk ` 1qs layers.

3. Under a natural assumption on the nature of the at-
tention patterns learnt by the transformer, we then ar-
gue that for k ě 3 attention-only transformers need
at least r1 ` log2pk ´ 2qs layers to represent a “kth-
order induction head” (Definition 4.3). Empirically,
transformers are observed to learn kth-order induction
heads whenever they achieve small test error (Edelman
et al., 2024).

The last result is a consequence of a more general tradeoff
between the number of layers, L, and heads per layer, H ,
an attention-only transformer requires to represent a kth-
order induction head, under a natural assumption on the
learnt attention patterns. In conjunction, these results also
reveal the role of non-linearities (aside from the softmax
in the attention) in the transformer architecture. In particu-
lar, it appears that layer normalization plays a critical role
in the ability of constant-depth transformers to learn the
conditional k-gram model. Together with the experimen-
tal results mentioned previously, these results paint a more
comprehensive picture about the representation landscape of
transformers in the context of kth-order Markov processes.

Notation. Scalars are denoted by italic lower case let-
ters like x, y and Euclidean vectors and matrices in bold
x,y,M , etc. The notation 0pˆq (resp. 1pˆq) refers to
the all-zero (resp. all-one) matrix. When it is clear from
the context, we omit the dimensions of a matrix. Define
rSs fi t1, 2, . . . , Su for S P N. Ip¨q denotes the indicator

Attention-only Standard
Layers pLq 2 rlog2pk ` 1qs 3

Heads pHq k 1 1

Table 1: Each column in this table indicates that there is
a transformer with L layers and H heads in the first layer
which can represent the conditional k-gram model.1

Input: 0 1 0 10 32 3 ¨ ¨ ¨ 0 1

match final
k symbols

Uniform
distribution

Figure 2: Conditional k-gram model. The conditional k-
gram is the in-context estimate of the Markov process and is
realized in two steps. The first step is to find the locations in
the sequence (marked red) which match the final k symbols
(functionally, a kth-order induction head). The conditional
k-gram model returns the uniform distribution over the next
symbol at these locations (marked blue).

function and UnifpSq denotes the uniform distribution over
a set S.

1.1. Related work

There is a large body of active research focused on studying
different aspects of transformer models (Weiss et al., 2021;
Giannou et al., 2023; Oymak et al., 2023; Li et al., 2023).
Our work closely relates to the aspects of understanding
the representation power of transformers, and in-context
learning. (Yun et al., 2020; Pérez et al., 2021; Wei et al.,
2022a) study the representation capabilities of transformers
and show properties such as universal approximation and
Turing-completeness. Viewing transformers as sequence
to sequence models, (Liu et al., 2023; Bhattamishra et al.,
2020) study their ability to model formal languages and
automata. Along more related lines to our work, (Sanford
et al., 2024; 2023) present logarithmic depth transformer
constructions for representing a k-hop generalization of the
notion of an induction head (Olsson et al., 2022). On the
other hand the theoretical and mechanistic understanding of
in-context learning (Wei et al., 2022b) has received much at-
tention lately (Bai et al., 2023; Lin and Lee, 2024; Akyürek
et al., 2023; Hoogland et al., 2024), focusing on different
operating regimes and phases of learning. There are a few re-
cent papers which study the behavior of transformers when

1The requisite embedding dimension and bit-precision to
achieve a target additive approximation is discussed in more detail
in Sections 4 and 5
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trained on data generated from Markov processes, and gen-
eralizations thereof (Bietti et al., 2023; Rajaraman et al.,
2024). In particular, (Makkuva et al., 2024; Nichani et al.,
2024) study the optimization landscape of gradient descent
in learning generalizations of Markov processes, and (Edel-
man et al., 2024) present a study of how transformers learn
to represent in-context k-gram models, focusing on different
phases of learning.

2. Preliminaries
We provide the necessary background for Markov processes,
the conditional k-gram model, and the transformer architec-
ture.

2.1. Markov processes

Markov processes are one of the widely used models in
sequence modeling (Norris, 1997). The characterizing prop-
erty of these processes is that at any time step, the future
evolution is only influenced by the most recent states. More
formally, a sequence pXnqně1 is a kth-order Markov pro-
cess on a finite state space rSs with the transition kernel P ,
if surely,

P
`

Xn`1 | X1, ¨ ¨ ¨ , Xn

˘

“ P
`

Xn`1 | Xn´k`1, ¨ ¨ ¨ , Xn

˘

This property allows us to capture the conditional distribu-
tion at any position using only its previous k symbols. This
motivates the notion of a conditional k-gram, its empirical
counterpart, defined for any sequence px1, . . . , xnq.
Definition 2.1 (Conditional k-gram model). Given a se-
quence px1, ¨ ¨ ¨ , xnq of length n in rSsn, the conditional
k-gram model xPrkp¨ | x1, ¨ ¨ ¨ , xnq corresponds to the in-
context estimate of the distribution over symbols condi-
tioned on the last k symbols, i.e. for x P rSs,

xPrkpx | x1, ¨ ¨ ¨ , xnq

fi

řn
i“k`1 Ipxi “ x, xi´1 “ xn, . . . , xi´k “ xn´k`1q
řn

i“k`1 Ipxi´1 “ xn, . . . , xi´k “ xn´k`1q
,

(1)

which is defined only so long as the denominator is non-
zero. This structure is illustrated in Figure 2. It is well
known that the conditional k-gram in Eq. (1) with Laplace
smoothing corresponds to the Bayes optimal estimate of the
next symbol probability, when the data is drawn from fixed
Markov process sampled from a prior distribution (Norris,
1997).

In our experiments, we will consider kth-order Markov
kernels sampled from a Dirichlet prior with parameter 1.
Namely, the transition P p¨|X1 “ i1, ¨ ¨ ¨ , Xk “ ikq is sam-
pled independently and uniformly on the S-dimensional
simplex ∆S

1 , for each tuple pi1, ¨ ¨ ¨ , ikq.

Transformer layer

Layer norm

xpℓq

Multi-head
Attention

+ POS

rxpℓq

Layer norm

FFN

xpℓ`1q

Layer 1

...

Layer ℓ

...

Layer L

xp1q

Linear +
Prediction

Prp¨ | x1, ¨ ¨ ¨ , xT q

Emb Emb Emb¨ ¨ ¨

x1 x2 xT

Figure 3: Transformer architecture. POS refers to the rela-
tive position encodings.

2.2. Transformer architecture

In this paper, we will consider variants of the standard trans-
former architecture in Figure 3 introduced in (Vaswani et al.,
2017), with the goal to understand the role of depth and
the non-linearities in the architecture. The simplest vari-
ant removes all the layer normalization and the (non-linear)
feedforward layer, and is referred to as an attention-only
transformer. The L-layer 1-head attention-only transformer
with relative position encodings, operating on a sequence of
length T is mathematically defined in Architecture 1.

for n “ 1, 2, ¨ ¨ ¨ , T do

xp1q
n “ Embpxnq P Rd. (Input embeddings)

for ℓ “ 1, 2, ¨ ¨ ¨ , L, do
for n “ 1, 2, ¨ ¨ ¨ , T, do

rxpℓq
n “

ÿ

iPrns
att

pℓq

n,i ¨W
pℓq

V

´

x
pℓq

i ` p
pℓq,V
n´i

¯

P Rd,

(Attention)

xpℓ`1q
n “ xpℓq

n ` rxpℓq
n , (Residual)

logitT “ Ax
pL`1q

T ` b P RS , (Linear)
Prθ p¨ | x1, ¨ ¨ ¨ , xT q “ f plogitT q (Prediction)

Architecture 1: Attention-only transformer.

The attention scores in layer ℓ, tatt
pℓq

n,i : i ď nu, are com-

puted as Softmax
`␣@

W
pℓq

K px
pℓq

j ` p
pℓq,K
n´j q,W

pℓq

Q x
pℓq

j

D

:
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j P rns
(˘

. The superscript pℓq indicates the layer index,
and the matrices W

pℓq

K , W pℓq

Q ,W
pℓq

V P Rdˆd capture the
key, query and value matrices in layer ℓ. Note that the
attention-only transformer may include a feedforward layer
with linear activations, i.e. a linear transformation. For
representation purposes, this linear transformation can be
combined with the projection matrix in the attention layer,
allowing the feedforward layer to be omitted from the model.
In the attention layer, we consider relative position encod-
ings (the terms labeled in blue), which translates the key
and value vectors depending on the relative position of the
embedded symbol.

The extension to H heads is straightforward, where in each
transformer layer there are H attention layers in parallel,
resulting in y

pℓ,1q
n , ¨ ¨ ¨ ,y

pℓ,Hq
n P Rd for each n. These

vectors are concatenated and passed through a linear trans-
formation W

pℓq

O : RdH Ñ Rd which is the output of the
attention layer. Finally, the output of the model after L
layers is passed through a linear layer, which projects the
d-dimensional embeddings back into RS and the resulting
vector is passed through a non-linearity f , usually a softmax,
to result in the model’s prediction of the next symbol prob-
abilities. The theoretical results in this paper will choose
f “ ReLUp¨q.

3. Understanding the empirical behavior of
transformers

The motivation for the present work comes from a se-
ries of experimental results, which challenge our current
understanding of transformers in the context of learning
Markov processes. Several works in the literature (Makkuva
et al., 2024; Nichani et al., 2024; Edelman et al., 2024)
have studied the ability of transformer models to learn kth-
order Markov processes. The experimental results present in
the literature suggest that in order for a 2 layer transformer
model to be able to learn a randomly sampled Markov pro-
cess of order k, it is crucial for the number of heads in
the first attention layer to scale linearly with the order, k.
In particular, the authors of (Edelman et al., 2024) claim
that in their experiments, “Single attention headed models
could not achieve better performance than bigram (models)”
in learning random kth-order Markov processes in-context.
Similarly, the authors of (Nichani et al., 2024) study a gener-
alization of learning kth-order Markov processes to learning
causal processes on degree k graphs. The theory and experi-
ments pertain to 2-layer transformers with k heads.

In Figure 4, we train 2 and 3-layer transformers with a
single head on data drawn from random Markov processes
of various orders drawn from a Dirichlet prior. With 2 layers
and a single head, we see that the model is able to learn
even order-4 Markov processes, and go beyond the simple
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Figure 4: Gap with the optimal test loss for paq a 2-layer,
1-head transformer model (above), and pbq a 3-layer, 1-head
transformer (below), averaged over 3 runs for each k. The
models learn the conditional k-gram model for randomly
sampled k-th order Markov processes, even for large k.

order-1 processes which were projected to be the limit of its
ability to learn. Likewise, with 3 layers, transformers are
able to go much further and learn order-8 Markov processes,
which was the largest value of k we evaluated on.

These results contrast with our current understanding of
how induction heads are realized in the parameter space
(Edelman et al., 2024; Nichani et al., 2024) - existing con-
structions which realize these attention patterns require k
heads when the number of layers is 2, and it’s unclear how
to implement them with fewer heads. At a high level, each
of the k heads play a critical role - where, loosely speaking,
the ith-head looks back i positions in the sequence.

Building up to our main results, in the sequel, we study
the simpler case of attention-only transformers where the
feedforward layers and layer normalization are removed.

4. Warming up: Attention-only transformers
The study of attention-only transformers trained on Markov
processes has garnered some attention in the prior litera-
ture. Notably, the authors of (Edelman et al., 2024) study
2-layer 1-head attention-only transformers trained on data
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drawn from 1st-order Markov processes whose parameters
are drawn from a Dirichlet prior. The model is observed
to learn a very specific behavior, known as an “induction
head” (Olsson et al., 2022), which in this setting is able to
represent the conditional 1-gram (Eq. (1)).

The induction head mechanism is composed of two layers
where the first layer learns the attention pattern att

p1q

n,i “

Ipi “ n ´ 1q, thereby allowing the model to capture infor-
mation about the symbol at position n´ 1 in the embedding
vector at time n. In the second layer, the attention layer
picks out those indices n where xn´1 “ xT , the final sym-
bol in the sequence. At these positions, since xn´1 “ xT ,
one would expect that the next symbol xn is a good predic-
tor of xT`1, and the model uses this information to predict
the next symbol xT`1 according to its conditional empir-
ical estimate, xPr1pxT`1|x1, ¨ ¨ ¨ , xT q, i.e. the conditional
1-gram model.

Theorem 4.1. The conditional 1-gram model can be repre-
sented by a 2-layer and 1-head attention-only transformer
with embedding dimension d “ 3S ` 2.

Although a version of this result is also proved in (Edel-
man et al., 2024), we include a proof in Appendix A for
completeness.
Remark 4.2. In Theorem 4.1 and other results to follow,
we de-emphasize the role of the bit-precision to which the
transformer is implemented. That said, note that when the
constructions in Theorems 4.1, 4.4 and 4.5 are implemented
to OplogpT qq bits of precision, the representation results are
realized up to an additive Op1{T q error.

The ideas in Theorem 4.1 readily extend to representing the
conditional k-gram model, by instead using k heads in the
first layer. The jth head learns the attention pattern att

p1q

n,i “

Ipi “ n´ jq and concatenating the outputs of the heads, the
model learns to aggregate information about xn, ¨ ¨ ¨ , xn´k

in the embedding vector at time n. The second layer realizes
what is best described as a “kth-order ” induction head,
where the model learns to pick out those positions n where
for every j P rks, xn´j “ xT´j`1, i.e. the history of
length k at those positions match the final k symbols in
the input sequence ( see Figure 5). This mechanism is also
referred to as a long-prefix induction head in the literature
(Goldowsky-Dill et al., 2023).

Definition 4.3 (Higher-order induction head). A 1-head
attention layer is said to realize a kth-order induction head if
on any sequence px1, ¨ ¨ ¨ , xT q P rSsT , for any fixed n ď T ,
as a function of the input sequence, attn,T is maximized if
and only if xn´j “ xT´j`1 for every j P rks.

The kth-order induction head generalizes the concept of an
induction head (Olsson et al., 2022), and is able to keep track
of the positions i ď n where there is a perfect occurrence

Input:

n “

0 1 0 10 32 3

1 2 3 64 5 7 8 9 10

101 2 3 4 5 6 7 8 9
0

0.5

1

n

a
tt

T
,n

0 1

Figure 5: kth-order induction head for k “ 2. The attention
pattern attT,n is maximized for those values of n at which
xT´j`1 “ xn´j for all j P rks. These are the positions
where the k-length prefix at those positions matches with
the last k symbols in the sequence.

of the final k symbols in the sequence. Such attention pat-
terns are immediately useful in representing the conditional
k-gram - increasing the temperature within the softmax of
this attention layer results in an attention pattern which con-
verges to the uniform distribution over those positions where
the final k symbols xT´k`1, ¨ ¨ ¨ , xT are seen previously in
the sequence. Loosely, this is what allows the model to
“condition” on the last k symbols in the sequence. With k
heads, the model can aggregate information from the previ-
ous k positions and implement a kth-order induction head,
which leads to the following result. A full proof is discussed
in Appendix A.1.

Theorem 4.4. The conditional k-gram model can be rep-
resented by an attention-only transformer with 2 layers, k
heads and embedding dimension d “ pk ` 2qS ` k ` 1.

While this result is positive, it suggests that a 2-layer trans-
former requires approximately k times as many parameters
to be able to represent the conditional k-gram model. The
first result we prove is that increasing the depth of the model
is exponentially more beneficial, in that a transformer with
Oplogpkqq depth can estimate in-context k-grams.

Theorem 4.5. The conditional k-gram model can be repre-
sented by an attention-only transformer with relative posi-
tion encodings, with L “ rlog2pk ` 1qs layers and 1 head
per layer. The embedding dimension is ď 2kpS ` 1q ` S.

With 2 layers and k heads, the transformer aggregates infor-
mation about each of the previous k positions one step at a
time through the k heads. However, with Ωplogpkqq layers,
the same task can be done far more efficiently. In the first
attention layer, the model aggregates information about the
current and previous position. Namely, using the relative
position embeddings, xp2q

n is chosen as a linear combination
of xp1q

n “ Embpxnq and x
p1q

n´1 “ Embpxn´1q. This allows
the embedding at position n to aggregate information about
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xn and xn´1. In the same vein, in the second attention layer,
the model aggregates information from x

p2q
n and x

p2q

n´2 in
x

p3q
n ; the former has information about xn and xn´1, and

the latter has information about xn´2 and xn´3. This ex-
pands the “window” of xi’s on which xn depends on to
size 4. In the ℓth layer, the model aggregates information
from x

pℓq
n and x

pℓq

n´2ℓ
which allows x

pℓ`1q
n to effectively

depend on the xi’s in a window of size 2ℓ`1 starting at po-
sition n, namely xn, ¨ ¨ ¨ , xn´2ℓ`1`1. In the final layer, the
embedding at position i, xpLq

i for L “ rlog2pk ` 1qs de-
pends on xn, xn´1, ¨ ¨ ¨ , xn´k. In the last layer, the model
can realize the dot-product

A

W
pLq

K x
pLq
n ,W

pLq

Q x
pLq

T

E

“
řk

j“1 Ipxn´j “ xT´j`1q by choosing the key and query
vectors appropriately. By increasing the temperature in the
attention softmax, the attention pattern realized is the uni-
form distribution on values of n such that xn´j “ xT´j`1

for every j P rks, i.e., a kth-order induction head. The full
proof of this result is provided in Appendix B.

While this is a promising step toward understanding the be-
havior transformers exhibit in Figure 4, showing that depth
plays an important role in their ability to represent condi-
tional k-gram models, the picture is still not complete. The
experimental results in Section 3 do not preclude the possi-
bility that a transformer might not even require logarithmic
depth to be able to learn kth-order Markov processes approx-
imately. In the next section, we will study constant-depth
transformers and establish a rather surprising positive result
about the representation power of this class of models in
capturing conditional k-grams.

5. Understanding the role of non-linearity:
Constant-depth constructions

In the previous section, we saw how the transformer uses
the power of depth to learn conditional k-grams far more ef-
ficiently. In particular, every additional attention layer effec-
tively doubles the window of positions i “ n´1, n´2, ¨ ¨ ¨

which the model has access to information about at the cur-
rent time n. By composing L “ Ωplogpkqq attention layers,
the model is able to collect enough information within the
output embedding x

pL`1q
n to be able to realize a kth-order

induction head in the next layer. In this section, we prove
that adding non-linearity to the architecture, in the form
of layer normalization, can significantly change the mecha-
nism in which the transformer realizes this kth-order head.
In particular, there are constant depth architectures which
allow a kth-order induction head to be realized, surpassing
the logarithmic depth attention-only constructions.

Modification to the standard transformer architecture.
To simplify the proof of our main result, we will consider a
subtle modification to the standard transformer architecture,

Multi-head
Attention

+ POS

xpℓq

rxpℓq

FFN

Layer norm

xpℓ`1q

Figure 6: Rearranged transformer layer with layer normal-
ization and FFN.

which is presented in Architecture 2 and Figure 6. We will
remove the first layer norm prior to the multi-head attention
and move the second layer norm to after the feed-forward
network. It is important to note that Theorem 5.1 holds
even for the architecture presented in Figure 3, which is the
architecture we evaluate empirically. The modification we
present in Figure 6 allows the construction to be simpler and
makes it much easier to convey the key intuition. The main
difference compared to the attention-only design presented
in Architecture 1 is the addition of layer normalization and a
feedforward layer in the for-loop over n P rT s for each trans-
former layer ℓ. The differences between Architectures 2 and
1 are emphasized in blue.

rxpℓq
n “ xpℓq

n `
ÿ

iPrns
att

pℓq

n,i ¨W
pℓq

V

´

x
pℓq

i ` p
pℓq,V
n´i

¯

,

(Attention + Residual1)

ypℓq
n “ W

pℓq

2 ReLU
´

W
pℓq

1 rxpℓq
n

¯

P Rd, (FFN)

lpℓq
n “

y
pℓq
n ´ µ1dˆ1

σ
P Rd, (LN)

xpℓ`1q
n “ lpℓq

n ` rxpℓq
n P Rd, (Residual2)

Architecture 2: Modified transformer architecture. The
computations above are carried out for each n P rT s in each
layer ℓ P rLs. In the layer normalization step (LN), the
feature mean µ is defined as, Ei„Unifprdsq

“@

edi y
pℓq
n

D‰

and

the feature variance σ2 “ Ei„Unifprdsq

“@

edi ,y
pℓq
n

D2‰
´ µ2.

Theorem 5.1. Conditional k-grams can be represented
by a transformer with 3 layers, 1 head per layer, relative
position encodings and layer normalization. The embedding
dimension is OpSq.

Remark 5.2. Although the proof stated does not bound the
approximation error arising from a finite bound on the bit
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Layers 1 ` 2

»

—

—

–

Embpxnq EmbpxT q

¨ ¨ ¨ un

}un}2
¨ ¨ ¨ uT

}uT }2

vn

}vn}2

vT

}vT }2

fi

ffi

ffi

fl

Layer 3

“

¨ ¨ ¨ Embpxnq ¨ ¨ ¨ EmbpxT q
‰

attT,n 9 exp
´

κ xvn,uT y

}vn}2}uT }2

¯

(realizes a kth-order induction head)

Emb

x1, ¨ ¨ ¨ , xT

Figure 7: Disassembling the constant-depth construction.
The first two layers are critical in the model’s ability to
capture information from the previous k positions. Layer
normalization plays a critical role in the 3rd layer which
realizes a kth-order induction head.

precision of the transformer, in theory, it should suffice to
have ΩplogpT q ` kq bits per parameter for the statement of
Theorem 5.1 to go through with an Op1{T q additive approx-
imation error. The main point is that none of the weights
of the model exceed exppkq and with logpT q additional bits
per parameter, the approximation error scales as Op1{T q.

5.1. Proof sketch

In the attention-only transformer with 2 layers and k heads,
the model is able to keep track of where the final k symbols
in the sequence appeared previously (i.e., a kth-order induc-
tion head) by, loosely, using each head to keep track of the
occurrences of one of the final k symbols. On the other hand,
with the benefit of more depth, with L “ Ωplogpkqq layers,
the model is able to collect enough information within the
output embedding x

pL`1q
n to be able to realize the same be-

havior. However, neither of these constructions scale down
to the case when the depth and number of heads of the trans-
former are both constants independent of k. We provide a
brief intuition for the construction below.

Recall that a kth-order induction head keeps track of the
indices i such that @j P rks, xi´j “ xn´j`1. Defin-
ing zi fi

řk
j“1 2

jexi´j`1 , notice that the condition t@j P

rks, xi´j “ xn´j`1u can equivalently be captured by writ-
ing tzi´1 “ znu. This true because of the fact that the
binary representation of any integer is unique. Furthermore,
these vectors, up to scaling, can be realized by softmax
attention (namely, attn,n´i 9 2i for 1 ď i ď k).

With this step, finding occurrences of the last k symbols
in the input sequence boils down to realizing an attention
pattern in the second layer, attp2q

n,i, which is maximized
whenever zi´1 “ zn. While dot-product attention naively

encourages those values of i for which zi´1 and zn are
“similar” to each other, a qualitative statement is lacking.
In general, it will turn out to that a different measure of
similarity is necessary within the softmax to be able to
encourage those values of i for which these vectors match.
This is where the role of layer-normalization comes in.

Instead of the usual dot-product, suppose the attention mech-
anism in the second layer was,

att
p2q

n,i 9 exp

˜

´κ

›

›

›

›

zi´1

}zi´1}2
´

zn
}zn}2

›

›

›

›

2

2

¸

, (2)

where κ is the temperature parameter. Then, as the temper-
ature κ grows, the attention pattern essentially focuses on
those values of i for which zi{}zi´1}2 “ zn{}zn}2. With
this attention pattern, we are thus very close to the state-
ment we wanted to check, (zi´1

?
“ zn). As it turns out, for

the special structure in the zi’s considered (dyadic sums of
one-hot vectors), we may write down,

zi´1 “ zn ðñ zi´1{}zi´1}2 “ zn{}zn}2.

A quantifiable equivalence is provided in Lemma C.1.

Realizing L2-norm attention (eq. (2)). Observe the
equivalence,
B

zi´1

}zi´1}2
,

zn
}zn}2

F

“ 1 ´
1

2

›

›

›

›

zi´1

}zi´1}2
´

zn
}zn}2

›

›

›

›

2

2

(3)

Taking a softmax on both sides, notice that the RHS (up
to an additive constant) is the L2-norm based attention,
while the LHS is the usual dot-product attention between
zi´1{}zi´1}2 and zn{}zn}2. Thus on unit-normalized vec-
tors, the L2-norm attention and scaled-dot product attention
are nothing but the same.

While the first layer of the transformer computes the zi’s by
a weighted summation, layer normalization fills in the last
missing piece of the puzzle which is to normalize them to
unit norm. This is a consequence of defining the embedding
vectors appropriately, in such a way that the feature variance
evaluates to }zi}

2
2.

From this step, realizing the actual conditional k-gram
model follows readily. In particular, as the temperature κ in
the attention grows, the attention pattern zooms in on indices
i P In fi tk ` 1 ď i ď n : @j P rks, xi´j “ xn´j`1u

in the last layer. The value vectors at this step are the one-
hot encoding of xi; putting everything together, the logits
realized by the transformer are,

logitT pxT`1q “
1

|In|

ÿ

iPIn

Ipxi “ xT q, (4)

which is the conditional k-gram model (eq. (1)).
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While the transformer construction described above only re-
quires two layers, the actual construction we propose differs
slightly and has an additional layer. The first two layers of
the transformer respectively compute zi and zi´1 which are
added to the embedding vector at time i. This is important
because we need to test whether zi´1

?
“ zn and not whether

zi
?
“ zn or zi´1

?
“ zn.

Summary. The construction can be summarized as follows:
the first layer computes zn “

řk
j“1 2

j´1 ¨ exn´j by choos-
ing appropriate value vectors and relative position embed-
dings to realize the attention pattern attnn,n´i 9 2iIp1 ď

i ď kq. The layer normalization that follows subsequently
can be made to carry out L2 normalization, by a simple trick
which we discuss in Appendix C.1, resulting in zn{}zn}2 to
be appended to the embedding at time n. Using a very simi-
lar construction, layer 2 computes zn´1{}zn´1}2, which is
added to the embedding at time n. Finally, in the last layer,
the dot-product

A

zi´1

}zi´1}2
, zn

}zn}2

E

defines the attention score,
and as the temperature κ grows, the pattern converges to
UnifpInq. Choosing the value vectors in this layer appro-
priately results in eq. (4).

6. Lower bounds on transformer size
Having established positive results on the representation
power of the standard transformer model in the previous
section, we ask what are the limits of how shallow the model
can be made to be able to capture conditional k-grams. The
first result we establish in this vein is a lower bound against
1 layer transformers showing that their expressive power is
too limited unless the embedding dimension or number of
heads scale near-linearly in T .

Theorem 6.1. Consider any 1-layer transformer with layer
normalization and feedforward layers, where all the coordi-
nates of the embedding vectors and unnormalized attention
scores are computed with p bits of precision. If the trans-
former is able to compute the conditional 3-gram on inputs
drawn from t0, 1, 2uT to within an additive error of 1{3T ,
then 2pH ` dp ` 2 ě T {3.

Choosing the bit precision to be p “ OplogpT qq, this im-
plies that for transformers with 1 layer, the sum of the num-
ber of heads and the embedding dimension must be at least
ΩpT { logpT qq, in order to represent conditional 3-grams to
within an additive error of 1{3T .

6.1. Conditional lower bounds on attention-only
transformers

While the previous section shows that 1-layer transformers
have fairly limited representation power, it is not immedi-
ately clear how whether any of these issues are present with
transformers with more layers. Indeed, as we discussed in

Section 4, an attention-only transformer with Oplog2pkqq

layers and 1 head per layer can represent conditional k-
grams on its input sequences. With the addition of non-
linearities, Theorem 5.1 shows that the model can represent
conditional k-grams using just a constant number of lay-
ers. In this section, we try to understand the gap between
these two results and prove conditional lower bounds on
the size of attention-only transformers which do not have
non-linearities arising from layer normalization. This sheds
some more light on the components of the architecture.

We prove conditional lower bounds under some natural
assumptions on the nature of the attention patterns learnt by
the transformer. To motivate these assumptions, consider
the experiment in Figure 8, where we train an attention-only
transformer with 2 layers and 1 head, on data drawn from a
random order-1 Markov process. At test-time, we sample
sequences from the same process and plot the attention
patterns learnt in the first layer of the model. Notice that
the attention pattern learnt by the model at layer 1 is largely
independent of the input sequences themselves and only
depends on the position. These, and additional experiments
in Appendix G support the assumption we make on the
transformer in the size lower bound.

For higher values of k, we observe that there is some de-
pendency of the learnt attention pattern on the inputs, corre-
sponding to higher variance For higher values of k, we defer
the experimental results to the appendix, since it requires
plotting the attention across multiple heads.

Assumption 6.2. In an L-layer attention-only trans-
former with H heads per layer, assume that layers ℓ “

1, 2, ¨ ¨ ¨ , L ´ 1 and heads h P rHs realize an attention pat-
tern where att

pℓ,hq

n,i only depends on the positions n and i
and on ℓ and h, but not on the input sequence x1, ¨ ¨ ¨ , xT .

Rather than proving the size lower bound depending on the
transformers ability to represent the conditional k-gram it-
self, we consider a simplification and assume that the goal
of the model is to represent a kth-order induction head (Def-
inition 4.3) in the last layer. Although learning a kth-order
induction head is not strictly necessary for the transformer
to be able to represent conditional k-grams, note that every
construction we have considered so far (cf. Theorems 4.1,
4.4, 4.5 and 5.1) go through this mechanism to realize the
conditional k-gram model. Likewise, for other related prob-
lems, such as the causal learning task in (Nichani et al.,
2024), the causal structure is captured by an extension of
the kth-order induction head to general causal graphs.

Theorem 6.3. Consider an L-layer attention-only trans-
former with 1 head per layer and relative position encod-
ings, which satisfies Assumption 6.2. If L ď 1` log2pk´2q,
the attention pattern in layer L of the transformer cannot
represent a kth-order induction head.

8



Transformers on Markov data

0 5 10 15 20 25 30

0

5

10

15

20

25

30
0.0

0.2

0.4

0.6

0.8

1.0

Index i

In
de

x
n

0 5 10 15 20 25 30

0

5

10

15

20

25

30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Index i

In
de

x
n

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Sequence index piq

A
tte

nt
io

n
w

ei
gh

t

Figure 8: Attention matrix of the first attention layer, for
a 2-layer 1-head transformer model trained on an order-1
Markov process, averaged across 100 input sequences of
length 128. (a) and (b) plot the mean and standard deviation
of the first 32 rows and columns of the attention matrix,
while (c) zooms in on the column n “ 10 and plots the mean
attention for this column. (a) and (c) show that for almost all
indices n, the attention layer focuses only on the previous
symbol xn´1. (b) also shows that the attention pattern is
largely independent of the actual sequence x considered,
thereby providing evidence toward Assumption 6.2.

While this lower bound is not unconditional, meaning that
it does not directly imply that the transformer cannot rep-
resent conditional k-grams, it is important to understand
the interpretation of this result: attention-only transformers
which somehow break through this barrier need to use a
significantly different mechanism to realize the conditional
k-gram model. It is an interesting question to see if the
size lower bound on representing kth-order induction heads
also necessarily implies a lower bound on representing the
conditional k-gram model under the same assumptions. We
also prove a size lower bound on 2-layer transformer models
under Assumption 6.2.

Theorem 6.4. Consider an 2-layer attention-only trans-
former with H heads in the first layer and relative position
encodings, and assume that Assumption 6.2 is satisfied. If
H ď k ´ 3, the attention pattern in the 2nd layer cannot
represent a kth-order induction head.

This result implies that under Assumption 6.2, attention-
only transformers indeed require the number of heads to
scale linearly in k to be able to represent a kth-order induc-
tion head. In particular, under Assumption 6.2 this implies
that a 2-layer attention-only transformer with 1 head cannot
realize a kth-order induction head for any k ě 4. Like-
wise, under the same assumption, a 3-layer attention-only
transformer with 1 head cannot realize a kth-order induction
head for any k ě 6. These results give more weight to
the experiment in Figure 4 where we observe that a 2-layer
transformer learns a kth-order Markov process for k “ 4
and a 3-layer transformer learns a kth-order Markov process
for k “ 8, and show that non-linearities in the architec-
ture allow the transformer to break past the size barriers in
Theorems 6.3 and 6.4.

Both of these theorems follow as a consequence of a more
general size lower bound on attention-only transformers
with Hℓ heads in layer ℓ P rLs which are able to repre-
sent a kth-order induction head under Assumption 6.2. This
general result also shows the utility in having deeper trans-
formers, relative to wider (i.e., more number of heads) ones,
in the context of learning kth-order Markov processes.

Theorem 6.5. Consider an L-layer transformer with hℓ

heads in layer L. Assuming the transformer satisfies As-
sumption 6.2, if

śL´1
ℓ“1 pHℓ ` 1q ď k ´ 2, the attention

pattern in layer L cannot represent a kth-order induction
head.

7. Conclusion
We observe empirically that 2 and 3 layer transformers are
able to learn kth-order Markov chains for much higher val-
ues of k than previously anticipated. We show there are
Oplogpkqq-layer constructions of attention-only transform-
ers which are able to learn the conditional k-gram model,
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which is the in-context MLE of the Markov model. With
non-linearities in the model, we show that a 3-layer 1-head
transformer is capable of representing the same. We show
that 1-layer transformers cannot represent conditional k-
grams for any k ě 3 unless the number of heads or embed-
ding dimension scale almost linearly in T . We also prove a
conditional lower bound showing attention-only transform-
ers need Ωplogpkqq layers to represent kth-order induction
heads, under an assumption on the realized attention pat-
terns. Under the same assumptions, we show that a 2-layer
transformer needs Ωpkq heads in the first layer to realize
a kth-order induction head in the second layer. Our work
focuses on the representational aspects of transformers; un-
derstanding the learning dynamics of gradient descent on
these problems is an important next question.
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Appendix

Notation. The notation ed
1

i P Rd1

refers to the one-hot encoding of i in d1 dimensions. In other words it is the ith standard
basis vector in d1 dimensions. The notation BlkdiagptA1, A1, ¨ ¨ ¨ , Amuq refers to the block diagonal matrix with ith

block as Ai.

A. Proof of Theorem 4.1
We will first prove Theorem 4.1. In the first layer, choose the embeddings as,

xp1q
n “ Embpxnq “ κ

“

11ˆ2 eSxn
01ˆ2S

‰T
P Rd. (5)

for a constant κ ą 0 to be chosen later and d “ 2S ` 2. The relative position encodings will essentially be supported on
the first two coordinates, the middle S coordinates are a one-hot encoding of the symbol xn and the last 2S coordinates
are 0. The relative position encodings in the first layer are chosen to be p

p1q,K
n´i “ κ p´1 ` Ipn ´ i “ 1uqq ed1 P Rd and

p
p1q,V
n´i “ 0 P Rd. Choose W

p1q

K and W
p1q

Q to be ed1ped1qT P Rdˆd. With this choice,
A

W
p1q

K

`

x
p1q

i ` p
p1q,K
n´i

˘

,W
p1q

Q xp1q
n

E

“ κIpn ´ i “ 1q (6)

As κ Ñ 8, the attention pattern (which takes the softmax over of these inner products over i P rns) computes,

att
p1q

n,i “ Ipi “ n ´ 1q (7)

for any n ą 1. Choose the value matrix as,

W
p1q

V “

»

–

0p2`Sqˆ2 0 0
0 ISˆS 0
0 0 0

fi

fl P Rdˆd (8)

And with this choice and the residual connection, we get,

xp2q
n “ κ

“

11ˆ2 eSxn
eSxn´1

0
‰

P Rd (9)

which serves as the input to the 2nd transformer layer.

Layer 2. In layer 2, the relative position encodings pK,p2q

n´i and p
V,p2q

n´i are all set as 0. The key matrix picks out the eSxn

block out of xp2q
n and the query vector picks out the eSxi´1

block out of xp2q

i´1. In particular, these matrices are chosen so that,

W
p2q

K x
p2q

i “ κ
“

11ˆ2 eSxi´1
0
‰T

P Rd,

W
p2q

Q xp2q
n “ κ

“

11ˆ2 eSxn
0
‰T

P Rd
(10)

Taking the inner product of these vectors, and taking κ Ñ 8, observe that the attention pattern concentrates on the uniform
distribution over all coordinates i such that xi´1 “ xn. More formally, the attention pattern for any n ą 1 is,

att
p2q

n,i “
Ipxi´1 “ xnq

řn
i“2 Ipxi´1 “ xnq

, (11)

assuming
řn

i“2 Ipxi´1 “ xnq ą 0. Having realized this attention pattern, may choose the value and subsequent linear layer
appropriately. The value matrix simply picks out the eSxi

block from x
p2q

i and places it into the last S coordinates of xp3q

i ,
and the linear layer simply extracts this block and outputs it (after scaling down by a factor of κ), realizing the logits,

logitn “
1

řn
i“2 Ipxi´1 “ xnq

n
ÿ

i“2

Ipxi´1 “ xnq ¨ eSxi
. (12)
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if
řn

i“2 Ipxi´1 “ xnq ą 0. In particular, under the same condition,

logitT pxT`1q “

řT
n“2 Ipxn “ xT`1, xn´1 “ xT q

řn
i“2 Ipxn´1 “ xT q

(13)

assuming
řn

i“2 Ipxn´1 “ xT q, which is the conditional 1-gram model.

A.1. Extension to k-heads: Proof of Theorem 4.4

In the first layer, the embeddings are chosen to be,

xp1q
n “ Embpxnq “ κ

“

01ˆk 1 eSxn
01ˆpk`1qS

‰T
P Rd (14)

With d “ pk ` 1qpS ` 1q ` S. The relative position encodings are chosen as p
K,p1q

i “
“

eki 0
‰T

for 1 ď i ď k and
p
K,p1q

i “ 0 otherwise. Similarly, pV,p1q

i “ 0 for every i. The hth head has key and query matrices,

W
p1,hq

Q “

„

01ˆk 1 0
0 0 0

ȷ

W
p1,hq

K “

„

01ˆph´1q 1 0
0 0 0

ȷ (15)

With these choices, and letting κ Ñ 8, the hth layer computes the attention pattern,

att
p1,hq

n,i “ Ipi “ n ´ hq. (16)

Choose the corresponding value matrix as,

W
p1,hq

V “

„

0p2`hSqˆ2 0 0
0 ISˆS 0

ȷ

(17)

choosing the projection matrix appropriately, the output of the transformer after the first residual connection is,

xp2q
n “ κ

“

01ˆk 1 eSxn
¨ ¨ ¨ eSxn´k

‰T
. (18)

Layer 2. In this layer, the relative position encodings pK,p2q

n´i and p
V,p2q

n´i are all set as 0. The key and query matrices are
chosen as,

W
p2q

Q “

„

0Skˆk IpSk`1qˆpSk`1q 0
0 0 0

ȷ

W
p2q

K “

„

0Skˆpk`Sq IpSk`1qˆpSk`1q

0 0

ȷ

.

(19)

With this choices, we have that,

A

W
p2q

K x
p2q

i ,W
p2q

Q xp2q
n

E

“ κ
k
ÿ

j“1

Ipxi´j “ xn´j`1q. (20)

Taking κ Ñ 8, observe that the attention pattern concentrates on the uniform distribution over all coordinates i such that
xi´j “ xn´j`1 for all j P rks. More formally, if

řn
i“2 Ipxi´1 “ xnq ą 0, the attention pattern for any n ą 1 is,

att
p2q

n,i “
Ip@j P rks, xi´j “ xn´j`1q

řn
i“k`1 Ip@j P rks, xi´j “ xn´j`1q

. (21)

The value matrix picks out eSxi
from the embedding x

p2q

i (Equation (18)) and places it in the last S coordinates. The
subsequent linear layer picks out the last S coordinates, resulting in the logits,

logitn “

n
ÿ

i“k`1

Ip@j P rks, xi´j “ xn´j`1q
řn

i“k`1 Ip@j P rks, xi´j “ xn´j`1q
eSxi

, (22)

13
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assuming that
řn

i“k`1 Ip@j P rks, xi´j “ xn´j`1q ą 0. In particular,

logitT pxT`1q “

řT
n“k`1 Ip@0 ď j ď k, xn´j “ xT´j`1q

řT
n“k`1 Ip@1 ď j ď k, xn´j “ xT´j`1q

, (23)

assuming
řT

n“k`1 Ip@1 ď j ď k, xn´j “ xT´j`1q ą 0, i.e., the conditional k-gram model.

B. Proof of Theorem 4.5
Define k‹ “ 2rlog2pk`1qs by rounding k ` 1 up to the nearest power of 2 and ℓ‹ “ log2pk‹q. In the setting of relative
position encodings, given the sequence x1, ¨ ¨ ¨ , xn, while generating the output of the attention + feedforward layer for the
symbol xn, the embeddings xi “ Embpxnq ` pn´i are used for i P rns. In other words, the position encoding vector is
taken relative to the end of the sequence, rather than the start of the sequence. Consider the embedding of x as,

xp1q
n “ Embpxnq “

“

01ˆℓ‹ 1 eSxn
01ˆpk‹´1qS 01ˆS

‰T
P Rpk‹

`1qS`ℓ‹
`1 (24)

where ed
1

i P RS is the standard basis vector in d1 dimensions. And the relative position encoding for the keys as,

p
p1q,K
i “

$

’

’

’

&

’

’

’

%

”

11ˆℓ‹ 0
ıT

, if i “ 0,
”

eℓ
‹

1`log2piq 0
ıT

if i P t1, 2, 4, ¨ ¨ ¨ , k‹{2u

0dˆ1 otherwise.

(25)

And for the value vectors, pV
i “ 0 for all i.

For the first layer and first head, we will describe the value, key and query matrices. Choose,

W
p1q

K “
?
κ

„

1 0
0 0

ȷ

, and,

W
p1q

Q “
?
κ

„

01ˆl‹ 1 0
0 0 0

ȷ

.

(26)

Then, observe that for i ě 1,
A

W
p1q

K

`

xn´i ` p
p1q,K
i

˘

,W
p1q

Q xn

E

“ κIpi “ 1q

and for i “ 0,
A

W
p1q

K

`

xn ` p
p1q,K
0

˘

,W
p1q

Q xn

E

“ κ

In particular, letting κ Ñ 8, the attention pattern is,

att
p1q

n,n´i “
1

2
Ipi “ 0q `

1

2
Ipi “ 1q. (27)

Choose the value matrix as,

W
p1q

V “

„

0pℓ‹`Sqˆℓ‹ 0
0 2I

ȷ

together with the residual connection, we get,

xp2q
n “

“

01ˆℓ‹ 1 eSxn
eSxn

` eSxn´1
01ˆpk‹´2qS 01ˆS

‰T
(28)

14
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Layer ℓ ` 1. By induction, assume that the output of the ℓth transformer layer is of the form,

xpℓ`1q
n “

“

01ˆℓ‹ 1 vn 01ˆpk‹´2ℓqS 01ˆS

‰T
(29)

for some vector vn P R2ℓS . We will show that with appropriately chosen key, query and value vectors in the pℓ ` 1qth layer,
the output of this layer is,

xpℓ`2q
n “

“

01ˆℓ‹ 1 vn vn ` vn´2ℓ 01ˆpk‹´2ℓ`1qS 01ˆS

‰T
(30)

We will consider the same relative position encodings and query matrix in this layer as in the first layer (Equations (25)
and (26)). Consider a key matrix of the form,

W
pℓ`1q

K “

„

01ˆℓ

?
κ 0

0 0 0

ȷ

With this choice, observe that for i ě 1,
A

W
pℓ`1q

K

`

x
pℓ`1q

n´i ` p
pℓ`1q,K
i

˘

,W
pℓ`1q

Q xpℓ`1q
n

E

“ κ ¨ Ipi “ 2ℓq

and for i “ 0,
A

W
pℓ`1q

K

`

xpℓ`1q
n ` p

pℓ`1q,K
0

˘

,W
pℓ`1q

Q xpℓ`1q
n

E

“ κ

In particular, letting κ Ñ 8, the attention pattern is,

att
pℓ`1q

n,n´i “
1

2
Ipi “ 0q `

1

2
Ipi “ 2ℓq. (31)

Choosing the value matrix as,

W
pℓ`1q

V “

„

0pℓ‹`2ℓSqˆℓ‹ 0
0 2I

ȷ

,

we get,

xpℓ`2q
n “

“

01ˆℓ‹ 1 vn vn ` vn´2ℓ 01ˆpk‹´2ℓ`1qS 01ˆS

‰T
(32)

Final last transformer layer (ℓ “ ℓ‹). The output of the second last transformer layer, indexed ℓ‹ ´ 1 is,

zpℓ‹
q

n fi xpℓ‹
q

n “

”

01ˆℓ‹ 1 v
pℓ‹

´1q
n v

pℓ‹
´1q

n ` v
pℓ‹

´1q

n´2ℓ‹´1 01ˆS

ıT

“

”

01ˆℓ‹ 1 v
pℓ‹

´1q
n v

pℓ‹
´1q

n ` v
pℓ‹

´1q

n´ k‹

2

01ˆS

ıT

,

which follows by plugging in the definition of k‹. Note that there exists a linear transformation Lpℓ‹
q such that,

zpℓ‹
´1q

n fi Lpℓ‹
qxpℓ‹

q
n “

”

01ˆℓ‹ 1 v
pℓ‹

´1q
n v

pℓ‹
´1q

n´ k‹

2

01ˆS

ıT

This can be further decomposed as,

zpℓ‹
´1q

n

“

”

01ˆℓ‹ 1 v
pℓ‹

´2q
n v

pℓ‹
´2q

n ` v
pℓ‹

´2q

n´2ℓ‹´2 v
pℓ‹

´2q

n´ k‹

2

v
pℓ‹

´2q

n´ k‹

2

` v
pℓ‹

´2q

n´ k‹

2 ´2ℓ‹´2
01ˆS

ıT

And yet again there exists a linear transformation Lpℓ‹
´1q which transforms this as,

zpℓ‹
´2q

n fi Lpℓ‹
´1qzpℓ‹

´1q
n

15
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“

”

01ˆℓ‹ 1 v
pℓ‹

´2q
n v

pℓ‹
´2q

n´2ℓ‹´2 v
pℓ‹

´2q

n´ k‹

2 ´2ℓ‹´2
v

pℓ‹
´2q

n´ k‹

2 ´2ℓ‹´2
01ˆS

ıT

“

”

01ˆℓ‹ 1 v
pℓ‹

´2q
n v

pℓ‹
´2q

n´ k‹

4

v
pℓ‹

´2q

n´ k‹

2

v
pℓ‹

´2q

n´ 3k‹

4

01ˆS

ıT

(33)

By recursing this argument and composing all the linear transformations, up to a global permutation, we get that,

ℓ‹
ź

ℓ“1

Lpℓqxpℓ‹
q

n “

”

01ˆℓ‹ 1 v
p1q
n v

p1q

n´1 ¨ ¨ ¨ v
p1q

n´pk‹´1q
01ˆS

ıT

“

”

01ˆℓ‹ 1 eSxn
¨ ¨ ¨ eSxn´pk‹´1q

01ˆS

ıT

(34)

In the final layer, we will right multiply the key, query and value matrices by L‹ “
śℓ‹

ℓ“1 L
pℓq. The effect can be interpreted

as operating the original key, query and value matrices on the embedding vectors in Equation (34). In the final layer, we will
set all the position encodings to be 0 and consider the key and query matrices,

W
pℓ‹

q

K “
?
κ

„

0Skˆpℓ‹`1`Sq ISkˆSk 0
0 0 0

ȷ

W
pℓ‹

q

Q “
?
κ

„

0Skˆpℓ‹`1q ISkˆSk 0
0 0 0

ȷ (35)

Then,

A

W
pℓ‹

q

K L‹x
pℓ‹

q

n´i,W
pℓ‹

q

Q L‹xpℓ‹
q

n

E

“ κ
k´1
ÿ

j“0

Ipxn´j “ xi´1´jq (36)

Where we must be careful to note that the input xpℓ‹
q

n contains copies of exn
, exn´1

, ¨ ¨ ¨ , exn´k
since k‹ ě k ` 1 by

definition.

Letting κ Ñ 8, if there exists i such that
řk´1

j“0 Ipxn´j “ xi´j´1q ą 0, for n ě k, the attention pattern is,

att
pℓ‹

q

n,i “
Ipxi´1 “ xn, xi´2 “ xn´1, ¨ ¨ ¨ , xi´k “ xn´k`1q

řn
i“k Ipxi´1 “ xn, xi´2 “ xn´1, ¨ ¨ ¨ , xi´k “ xn´k`1q

(37)

Finally, choose,

W
pℓ‹

`2q

V “

„

0pd´Sqˆpℓ‹`1q 0 0
0Sˆpℓ‹`1q ISˆS 0

ȷ

, (38)

we get,

xpℓ‹
`1q

n `

n
ÿ

i“k

Ipxi´1 “ xn, xi´2 “ xn´1, ¨ ¨ ¨ , xi´k “ xn´k`1q
řn

i“k Ipxi´1 “ xn, xi´2 “ xn´1, ¨ ¨ ¨ , xi´k “ xn´k`1q

„

0pd´Sqˆ1

exi

ȷ

(39)

Choosing the subsequent linear layer as,

A “
“

0Sˆpd´Sq ISˆS

‰

(40)
b “ 0Sˆ1 (41)

Results in the output,

logitT pxT`1q “

T
ÿ

n“k

Ipxn “ xT`1, xn´1 “ xT , xn´2 “ xT´1, ¨ ¨ ¨ , xn´k “ xT´k`1q
řT

n“k Ipxn´1 “ xT , xn´2 “ xT´1, ¨ ¨ ¨ , xn´k “ xT´k`1q
(42)

which is precisely the in-context conditional k-gram.
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C. Proof of Theorem 5.1
C.1. Modifying the definition of layer normalization

In every layer, we will perform a simple transformation which is to double the hidden dimension d and add a copy of ´x
pℓq
n

into the last d coordinates. This is possible by modifying the weights of the transformer appropriately as discussed below. A
consequence of this transformation is that the feature mean of the xn’s is µn “ 0, and therefore the standard deviation σn

simply normalizes by the L2-norm of the features. In order to avoid having to explicitly state this transformation at each
layer, we will simply redefine the layer norm LN to output v{}v}2 for the input vector v, which is realized on the first d
coordinates of the transformed embeddings.

This transformation can be realized automatically by redefining the initial embeddings Embpxnq, and modifying the weights
of the attention and feedforward subnetworks as follows: The input embeddings are changed to

“

Embpxnq ´Embpxnq
‰T

P

R2d. The key and query matrices are chosen to be 0 on the last d coordinates in every layer; the value matrix for i ě 1 is
transformed to Blkdiag

`␣

W
pℓq

V ,W
pℓq

V

(˘

, and likewise changing the feedforward layer to the block diagonal matrices
Blkdiag

`␣

W
pℓq

1 ,W
pℓq

1

(˘

and Blkdiag
`␣

W
pℓq

2 ,W
pℓq

2

(˘

. This transformation adds a copy of ´x
pℓq
n into the last d

coordinates of the corresponding embeddings.

C.2. Notation and supplementary lemmas

For each i P rT s, define,

vi “ exi´1
` 3 ¨ exi´2

` ¨ ¨ ¨ ` 3k´1 ¨ exi´k
(43)

ui “ exi
` 3 ¨ exi´1

` ¨ ¨ ¨ ` 3k´1 ¨ exi´k`1
(44)

Note that although vi “ ui´1, we make the distinction between the two to avoid any confusion in what is stored in the
embedding vector at time i and at time i ´ 1. Furthermore, define,

In “ tk ` 1 ď i ď n : @j P rks, xi´j “ xn´j`1u. (45)

Lemma C.1. If i P In, zi “ zn´1. However, if i ě k ` 1 but i R In, then,
›

›

vi

}vi}2
´ un

}un}2

›

›

2
ě 3´k.

Let j‹ P t0, 1, ¨ ¨ ¨ , k ´ 1u denote the largest index j such that xn´j ‰ xi´j´1. Consider the coordinates a “ xn´j‹ P rSs

and b “ xi´j‹´1 P rSs. Then,

xvn, eay ´ xui, eay ě 3j ´

j‹
´1
ÿ

j“0

3j “
3j

‹

2
, (46)

xui, eby ´ xvn, eby ě
3j

‹

2
(47)

If }vn}2 ě }ui}2, then,

B

ui

}ui}2
, eb

F

´

B

vn

}vn}2
, eb

F

ě
xui, eby ´ xvn, eby

maxt}ui}2, }vn}2u
ě

3j
‹

2 ¨ 3k

2

“ 3j
‹

´k (48)

This uses the fact that ui and vn are coordinate-wise non-negative. On the other hand, if }vn}2 ď }ui}2, using a similar
analysis,

B

ui

}ui}2
, ea

F

´

B

vn

}vn}2
, ea

F

ě 3j
‹

´k. (49)

In either case, there is a coordinate (a or b) such that, ui{}ui}2 and vn{}vn}2 differ by at least 3j
‹

´k. This implies the
lower bound on the L2 norm of the difference of the vectors.
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C.3. Proof of Theorem 5.1

Choose the input embeddings as,

xp1q
n “ Embpxnq “

“

01ˆ3 eSx 01ˆ5S

‰T
P R6S`3 (50)

In the first two layers we will use the same relative position embeddings, in particular,

p
p1q,K
i “ p

p2q,K
i “

$

’

’

’

’

&

’

’

’

’

%

a

logp3q ¨

”

1 0
ıT

, if i “ 0,

pi ` 1q
a

logp3q ¨

”

0 1 0
ıT

, if i P t1, 2, ¨ ¨ ¨ , k ´ 1u,

pk ` 1q
a

logp3q ¨

”

0 0 1 0
ıT

, if i “ k.

, (51)

and the value embeddings,

p
p1q,V
i “ p

p2q,V
i “

$

&

%

3i
”

1 0
ıT

for i ď k

0 i ą k.
(52)

In the final layer, we will drop all position-related information and choose p
p3q,K
i “ p

p3q,V
i “ 0 for all i.

Layer 1. Consider the key and query matrices,

W
p1q

K “
?
κ ¨

„

11ˆ2 0
0 0

ȷ

W
p1q

Q “
?
κ ¨

„

01ˆ3 11ˆS 0
0 0 0

ȷ (53)

Then, observe that,
A

W
p1q

K

`

Embpxn´iq ` p
p1q,K
i

˘

,W
p1q

Q Embpxnq

E

“ κpi ` 1q logp3q ¨ Ip0 ď i ď mintn, ku ´ 1q

Letting κ Ñ 8, this results in the attention pattern,

att
p1q

n,n´i “
3iIp0 ď i ď mintn, ku ´ 1q

řmintn,ku´1
i1“0 3i1

(54)

Choose the value matrix as,

W
p1q

V “

„

0pS`3qˆ3 0
0 I

ȷ

The output of the attention layer (with the residual connection) is,

rxp1q
n “

“

01ˆ3 eSxn
un 01ˆ3S

‰T
, where, un “

mintn,ku´1
ÿ

i“0

attn,n´i e
S
xn´i

. (55)

In the feedforward layer to follow, we will choose,

W
p1q

1 “ I

W
p1q

2 “

»

–

0p3`2Sqˆp3`Sq 0 0
0 ISˆS 0
0 0 0

fi

fl

(56)

Which simply extracts un from rx
p1q
n . With the subsequent layer norm and residual connection, the output of the first layer is,

xp2q
n “

”

01ˆ3 eSxn
un

un

}un}2
01ˆ3S

ıT

(57)
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Layer 2. In this layer, the relative position encodings and query matrix are the same as in layer 1 but the key matrix is
chosen as,

W
p2q

K “
?
κ

„

0 11ˆ2 0
0 0 0

ȷ

(58)

With this choice, observe that,
A

W
p2q

K px
p2q

n´i ` p
p1q,K
i q,W

p2q

Q xp2q
n

E

“ κpi ` 1q logp3q ¨ Ip1 ď i ď kq (59)

As before, since κ Ñ 8, this results in the attention pattern,

att
p2q

n,n´i “
3iIp1 ď i ď mintk, n ´ 1uq

řmintk,n´1u

i1“1 3i1
(60)

which is similar, but subtly different from the attention pattern in the first layer (Equation (54)). The first layer focuses on
indices n ´ i such that 0 ď i ď k ´ 1, while this layer focuses on 1 ď i ď k. Choosing the value and projection matrices as,

W
p2q

V “

»

—

—

–

I3ˆ3 0 0
03Sˆ3 0 0
0 ISˆS 0
0 0 0

fi

ffi

ffi

fl

(61)

The output of the attention layer (with the first residual connection) is,

rxp2q
n “

”

Zn 01ˆ2 eSxn
un

un

}un}2
vn 01ˆ2S

ıT

,

where, vn “

mintk,n´1u
ÿ

i“1

attn,n´i e
S
xn´i

,

and, Zn “

mintk,n´1u
ÿ

i“1

attn,n´i 3
i,

(62)

It is a short calculation to see that Zn “ 3k`1{5 if n ě k ` 1 and otherwise, Zn ď 3k{5. This will be useful later, since the
value of Zn can be used to determine whether n ě k ` 1 or n ď k which will allow the the next layer to avoid calculating
the attention at i ď k, where the evaluation xn “ xi´1, ¨ ¨ ¨ , xn´k`1 “ xi´k is not well defined. In the subsequent FFN
layer, we will choose,

W
p2q

1 “ I

W
p2q

2 “

»

–

0p3`4Sqˆp3`3Sq 0 0
0 ISˆS 0
0 0 0Sˆ2S

fi

fl

(63)

Which extracts vn from the embedding rx
p2q
n . With the layer norm and adding the final residual connection, the output of this

layer is,

xp3q
n “

”

Zn 02ˆ1 eSxn
un

un

}un}2
vn

vn

}vn}2
0Sˆ1

ıT

(64)

Layer 3. In this layer, all the relative position encodings are set as 0 and instead,

W
p3q

Q “
?
2κ

»

–

1 0 0 0
0 0Sˆp2`3Sq ISˆS 0
0 0 0 0

fi

fl

W
p3q

K “
?
2κ ¨

»

–

1 0 0 0
0 0Sˆp2`4Sq ISˆS 0
0 0 0 0

fi

fl

(65)
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With these choices,

A

W
p3q

K x
p3q

i ,W
p3q

Q xp3q
n

E

“ 2κZiZn `
2κxvi,uny

}vi}2 ¨ }un}2

“ 2κZiZn ` 2κ ´ κ

›

›

›

›

vi

}vi}2
´

un

}un}2

›

›

›

›

2

(66)

The resulting attention scores are,

att
p3q

n,i 9 exp

˜

´κ

›

›

›

›

vi

}vi}2
´

un

}un}2

›

›

›

›

2

` 2κZiZn

¸

(67)

Recall that In “ tk ` 1 ď i ď n : @j P rks, xn´j`1 “ xi´ju. Then for any i P In, vi “ un, and by Lemma C.1, for any
i ě k ` 1 but not in In,

›

›

›

›

vi

}vi}2
´

un

}un}2

›

›

›

›

2

ě
1

3k
.

Note that this gap is small but non-zero. Furthermore, recall that Zi “ 3k`1{5 if i ě k and otherwise Zi ď 3k{5. Thus the
attention prefers values of i such that vi “ un and such that i ě k ` 1. In particular, as κ Ñ 8, the resulting attention
pattern is,

attp3q
n,¨ “ UnifpInq. (68)

Choosing,

W
p3q

V “

„

0 0 0
0Sˆ3 ISˆS 0

ȷ

.

We get that,

rxp3q
n “ xp3q

n `

n
ÿ

i“1

att
p3q

n,i

„

0
eSxi

ȷ

“ xp3q
n `

1

|In|

ÿ

iPIn

„

0
eSxi

ȷ

.

The feedforward layer is chosen to have W p3q

1 “ W
p3q

2 “ 0, and the overall output of the final transformer layer is therefore
just rxp3q

n . In the output linear layer, choose,

A “
“

0Sˆpd´Sq ISˆS

‰

b “ 0
(69)

which results in,

logitn “
1

|In|

ÿ

iPIn

eSxi
“

n
ÿ

i“k`1

Ip@1 ď j ď k, xi´j “ xn´j`1q
řn

i1“k`1 Ip@1 ď j ď k, xi1´j “ xn´j`1q
¨ exi

In particular,

logitT pxT`1q “

řT
n“k`1 Ip@0 ď i ď k, xn´i “ xT´i`1q

řT
n“k`1 Ip@1 ď i ď k, xn´i “ xT´i`1q

(70)

which is the conditional k-gram.
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D. Representation lower bounds for 1-layer transformers: Proof of Theorem 6.1
We prove this lower bound by a reduction to communication complexity, and specifically to the set disjointness problem.

Suppose Alice and Bob are given strings a, b P t0, 1un which are indicator vectors of sets A and B. Their goal is to jointly
compute DISpa, bq “ IpDi : ai “ bi “ 1q, which indicates whether A and B intersect or not. Alice and Bob may send a
single bit message to the other party over a sequence of communication rounds. The following seminal result by (Yao, 1979)
asserts a lower bound on amount of communication required between Alice and Bob to carry out this task.

Theorem D.1 ((Yao, 1979)). Any deterministic protocol for computing DISpa, bq requires at least n rounds of communica-
tion.

We show that a 1-layer transformer with sufficiently small embedding dimension / number of heads can be used to simulate
a two-way communication protocol between Alice and Bob to solve DISpa, bq in a way which contradicts Yao’s lower
bound in Theorem D.1.

With m “ T {3 ´ 1, suppose Alice and Bob have length m bit strings a, b P t0, 1um. The transformer’s input will be a
sequence of the form,

2,a1, b1, 2,a2, b2, ¨ ¨ ¨ , 2,am, bm, 2, 1, (71)

of length 3m ` 2 “ T ´ 1. The input basically contains a repeating motif, composed of the symbol 2 followed by one of
Alice’s bits, and then one of Bob’s bits. The last 2 symbols are 2 and 1. We will consider the empirical conditional 3-gram
probability the transformer associates with the symbol xT “ 2. Noting that xT´1 “ 1 and xT´2 “ 1, the conditional
3-gram is computed to be,

řT´1
i“3 Ipxi “ 1, xi´1 “ 1, xi´2 “ 2q
řT´1

i“3 Ipxi´1 “ 1, xi´2 “ 2q
(72)

Note that if xi´2 “ 2, then i must be of the form 3j for j “ 1, ¨ ¨ ¨ , n, and we may rewrite the sum as,
řm

j“1 Ipx3j “ 1, x3j´1 “ 1q
řm

j“1 Ipx3j´1 “ 1q
“

|A X B|

|B|
(73)

Now, let us use the transformer to construct a deterministic communication protocol between Alice and Bob. Alice is given
px2, x5, ¨ ¨ ¨ , x3m´1q “ pa1,a2, ¨ ¨ ¨ ,amq and Bob is given px3, x6, ¨ ¨ ¨ , x3mq “ pb1, b2, ¨ ¨ ¨ , bmq.

In the first round, Alice computes the normalization in the softmax of the attention which comes from the set of inputs she
holds. For simplifying notation define,

scorephqpiq “ exp
´A

W
phq

K pEmbpxiq ` piq,W
phq

Q EmbpxT´1q

E¯

(74)

In particular, for each head h P rHs, she computes,

Z
phq

Alice “ log
´

ÿm

j“1
scorephqp3j ´ 1q

¯

(75)

Assuming that the transformer uses p bits of precision, Alice communicates Zphq

Alice for each h, which corresponds to pH bits
of communication. With this information, Bob completes the rest of the normalization term (again up to p bits of precision)
and computes,

Zphq “ log
´

Z
phq

Alice ` Z
phq

Bob ` Zphq
common

¯

, (76)

where Z
phq

Bob “ log
´

ÿm

j“1
scorephqp3jq

¯

(77)

and Zphq
common “ log

´

ÿm

j“1
scorephqp3j ´ 2q ` scorephqpT ´ 2q ` scorephqpT ´ 1q

¯

(78)
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which is the overall normalization term in the softmax. This is communicated back to Alice, using another pH bits of
communication. Next using this information, Alice computes the output of the attention layer, taking the convex combination
corresponding to the inputs she knows. In particular, for each h P rHs she computes,

n
ÿ

j“1

scorephqp3j ´ 1q

exppZphqq
Embpx3j´1q P Rd. (79)

across all the heads. Rather than transmitting everything, she concatenates the outputs of the heads, and multiplies them by
the value and projection matrices to result in the output yAlice which is d-dimensional. This is sent to Bob using dp bits of
communication. Subsequently, Bob computes the terms in the attention corresponding to the inputs he knows as well as the
public inputs (all the 2’s at positions 3j ´ 2 as well as the last two symbols). In particular,

m
ÿ

j“1

scorephqp3jq

exppZphqq
Embpx3jq `

m`1
ÿ

j“1

scorephqp3j ´ 2q

exppZphqq
Embp2q `

scorephqpT ´ 1q

exppZphqq
Embp1q (80)

These are yet again concatenated across all the heads and multiplied by the value and projection matrices to result in
the output yBob which is added to yAlice to result in y. Bob passes y through the residual connection, layer norm, and
feedforward layers, and subsequently through the linear layer and softmax of the model to result in the output of the model.
By assumption, the output of the model approximately captures the conditional 3-gram, which by Equation (73) equals
|AXB|{|B|. Note that if |AXB|{|B| is non-zero, it must be at least 1{T . This means, if the transformer is able to compute
the conditional 3-gram to within an additive error of 1{3T , then Bob can simply threshold the output of the transformer to
decide whether A X B “ H or not, thereby solving DISpa, bq.

Since this communication protocol is deterministic, by Yao’s lower bound in Theorem D.1, the number of bits communicated
between Alice and Bob must be at least m “ T {3 ´ 1. The total number of bits of communication in the protocol is
2pH ` dp ` 1 (the last 1 comes from Bob having to communicate the answer to Alice), completing the proof.

E. Lower bounds on representing kth-order induction heads: Proof of Theorems 6.3 to 6.5
In this section we prove a size-lower bound on attention-only transformers representing kth-order induction heads which
generalizes both Theorem 6.3 and Theorem 6.4. We will first prove the result for the case L “ 2 and H “ 1, showing that
they cannot represent kth-order induction heads for k ě 4 under Assumption 6.2. We subsequently extend it to the general
L-layer transformer in Appendix E.2 and to the general case with Hℓ heads in layer ℓ P rLs in Appendix E.3.

E.1. Lower bounds on 2-layer 1-head attention-only transformers

In this section we show that under Assumption 6.2, a 2-layer 1-head attention-only transformer cannot represent kth-
order induction heads for any k ě 4. We will prove lower bounds on the transformer when the input is binary, i.e.,
S “ t0, 1u. With relative position embeddings, observe that the first layer of the transformer model learns representations of
the form,

xp2q
n “ Embpxnq `

ÿ

iďn

att
p1q

n,i W
p1q

V Embpxiq `
ÿ

iďn

W
p1q

V p
V,p1q

n´i (81)

where note that the attention pattern only depends on n and i and not on xi or xn. These representations are input into the
second layer, which realizes the attention pattern att

p2q

n,i, which is proportional to,

exp
´A

W
p2q

K

`

x
p2q

i ` p
K,p2q

n´i

˘

,W
p2q

Q xp2q
n

E¯

. (82)

We need this function to be maximized uniquely when xi´1 “ xn, ¨ ¨ ¨ , xi´k “ xn´k`1. Denoting ϕp0q “ W
p1q

V Embp0q

and ϕp1q “ W
p1q

V Embp1q,

xp2q
n “ Embpxnq `

ÿ

iďn

att
p1q

n,i W
p1q

V Embpxiq `
ÿ

iďn

W
p1q

V p
p1q,V
n´i (83)

“ xnEmbp1q ` p1 ´ xnqEmbp0q `
ÿ

iďn

att
p1q

n,i

`

xi ¨ ϕp1q ` p1 ´ xiq ¨ ϕp0q
˘

`
ÿ

iďn

W
p1q

V p
p1q,V
n´i (84)
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“

ˆ

Embp1q ` Embp0q

2
` x1

n ¨
Embp1q ´ Embp0q

2

˙

`
ÿ

iďn

att
p1q

n,i

ˆ

ϕp1q ` ϕp0q

2
` x1

i ¨
ϕp1q ´ ϕp0q

2

˙

`
ÿ

iďn

W
p1q

V p
p1q,V
n´i (85)

where x1
i Ð 2xi ´ 1. We can write this down as,

xp2q
n “ mp1q

n ` M p1q
n

“

x1
n x1

n´1 ¨ ¨ ¨ x1
1

‰T
(86)

where M
p1q
n is a matrix of rank at most 2 and of the form,

M p1q
n “

ˆ

ϕp1q ´ ϕp0q

2

˙

”

att
p1q
n,n ¨ ¨ ¨ att

p1q

n,1

ı

`

ˆ

Embp1q ´ Embp0q

2

˙

“

1 0 ¨ ¨ ¨ 0
‰

(87)

which is independent of x1
1, ¨ ¨ ¨ , x1

n. Likewise m
p1q
n collects all the vectors in the sum that don’t depend on x1

1, ¨ ¨ ¨ , x1
n.

Now, observe that in the next layer, we wish to show that an induction head cannot be realized by att
p2q

n,i for each i ď n. We
will show this for any value of i ď n ´ k.

In the second layer, we may write down the key vectors as,

W
p2q

K

´

x
p2q

i ` p
p2q,K
n´i

¯

“ W
p2q

K m
p1q

i ` W
p2q

K M
p1q

i

“

x1
i x1

i´1 ¨ ¨ ¨ x1
1

‰T
` W

p2q

K p
p2q,K
n´i . (88)

Again, defining the vector mp1q

i and the matrix M
p1q

i appropriately (having rank at most 2), this equals,

m
p1q

i ptx1
iu Y tx1

´k´1, ¨ ¨ ¨ , x1
1uq ` M

p1q

i y (89)

where y fi
“

x1
i´1 ¨ ¨ ¨ x1

i´k

‰T
and the vector mp1q

i depends on x1
i as well as the inputs x1

i´k´1, ¨ ¨ ¨ , x1
1, which in this

context, are treated as nuisance variables since they do not intersect with tx1
i´1, ¨ ¨ ¨ , x1

i´kuYtxn, ¨ ¨ ¨ , xn´k`1u. Henceforth

we will avoid explicitly stating the dependency of mp1q

i on the xj’s. Similarly, the query vector can be written down as,

W
p2q

Q xp2q
n “ xmp1q

n ` |M p1q
n x ` xM p1q

n y (90)

where xm
p1q
n , |M

p1q
n and xM

p1q
n are defined appropriately, with xM

p1q
n and xM

p1q
n of rank at most 2, and x is defined as

“

x1
n ¨ ¨ ¨ x1

n´k`1

‰T
. For an appropriate matrix Mˆ

n,i, vectors mˆ
n,i and Ămˆ

n,i and scalar mˆ
n,i, the dot-product of the key

and query vectors can be written as,
A

W
p2q

K

`

x
p2q

i ` p
p2q,K
n´i

˘

,W
p2q

Q xp2q
n

E

“ xTMˆ
n,iy ` yT

`

M
ˆ

n,i

˘

y ` pmˆ
n,iq

Tx ` pmˆ
n,iq

Ty ` mˆ
n,i fi fn,ipx,yq, (91)

Which is a linear function in x and quadratic in y, both of which lie on t˘1uk. Note that the matrix Mˆ
n,i has rank at most

2 since it is a product of M
p1q

i and |M
p1q
n , each with rank at most 2. Next we introduce a lemma showing that if Mˆ

n,i is
inherently low rank, the quadratic form in Equation (91) which captures the dot-product between the key and value vectors
cannot satisfy the property that for every y, the function is uniquely maximized at x “ y. In particular, this means that for
any i ď n ´ k, there is some choice of xn, xn´1, ¨ ¨ ¨ , xn´k`1 such that there are xi´1, ¨ ¨ ¨ , xi´k such that for at least one
j P rks, xi´j and xn´j´1 are not equal, but the attention score is larger than the case when xi´j were equal to xn´j´1 for
each j P rks.

Lemma E.1. If Mˆ
n,i has rank ď k ´ 2, it is impossible for fn,ipx,yq to satisfy the property that for every y P t˘1uk, the

maximizer is uniquely x “ y.

The proof is almost complete: if k ě 4, then the rank of Mˆ
n,i, which is at most 2, does not exceed k ´ 2. This means that

when k ě 4, any attention pattern realized in the second layer must satisfy the property that there exists a string such that
the attention is no longer uniquely maximized when xn “ xi´1, ¨ ¨ ¨ , xn´k`1 “ xi´k.
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Proof. For the purpose of brevity, define Hk “ t˘1uk. First consider the reparameterization,

rx “ ĂMˆ
n,ix, where ĂMˆ

n,i “

„

pMˆ
n,iq

T

pmˆ
n,iq

T

ȷ

. (92)

Then, the dot-product of the key and query matrices can be written as,
“

yT 1
‰

rx ` yT
`

M
ˆ

n,i

˘

y ` pmˆ
n,iq

Ty ` mˆ
n,i (93)

Note that this function is linear in rx and therefore must be maximized on a vertex of the convex hull of the domain,
ĂMˆ

n,iHk fi
␣

ĂMˆ
n,ih : h P Hk

(

. If Mˆ
n,i has rank at most k ´ 2, the rank of ĂMˆ

n,i is at most k ´ 1 and cannot be full rank.

We show that this must imply that there is a vertex v P Hk such that ĂMˆ
n,iv is not a unique vertex of the convex hull of

ĂMˆ
n,iHk. This means that v cannot be a unique maximizer for rx when maximizing over all strings in Equation (93), and

specifically y “ v is a witness to Lemma E.1.

Below we discuss how to find such a vector v. Note that ĂMˆ
n,i is not full rank, which implies that there exists a vector n

such that ĂMˆ
n,in “ 0. Without loss of generality, let n1 be the smallest non-zero coordinate of n in absolute value. Then

the vector n´1
1 n has no non-zero coordinates in the interval p´1, 1q. We will show that signpn´1

1 nq is a good choice for v.

Consider two cases,

Case I. Every non-zero coordinate of n´1
1 n is in t˘1u. Consider any x P Hk which matches with n on the non-zero

coordinates. Consider x1 which is the same as x, except a negation is taken on the coordinates where n is non-zero. Note
that ĂMˆ

n,ix “ ĂMˆ
n,ix

1, for the same value of x. This means that for any y. In particular, from Equation (93), both x and x1

are maximizers, showing that Lemma E.1 is true in this case. We circumvent having to find such a vector v in this case.

Case II. n´1
1 n has non-zero coordinates which are not all in t˘1u. In particular, at least one coordinate where this vector

is strictly less than ´1 or strictly greater than `1. In this case, observe that the sign vector rn “ signpn´1
1 nq P Hk lies

within, but is not a vertex of the convex hull of the set Hk Y tn´1
1 nu. The reason for this is simple to see when we assume

that n´1
1 n has only one coordinate which is not in r´1, 1s, say, the coordinate j “ 2: here, rn can be written down as a

convex combination (with non-zero coefficients) of n´1
1 n and rnp2q; the latter vector is obtained by flipping coordinate 2 of

rn. When there is more than one coordinate not in r´1, 1s, we can peel away these large coordinates in n´1
1 n by taking a

convex combination of this vector with the vectors rnpjq for the appropriate values of j, to return the sign vector rn. Here,
rnpjq is the version of rn where the jth-coordinate is flipped. This results in the following claim.
Claim 1. The sign vector rn lies within the convex hull of the points Hk Y tn´1

1 nu, but is not a vertex of this set.

In particular, we may write,

rn “ α0n
´1
1 n `

ÿ

jPrns

αj rn
pjq. (94)

where α0 ą 0 and
řn

j“0 αi “ 1. By left-multiplying this on both sides by ĂMˆ
n,i and noting that n lies in the null-space of

this matrix, we get,

ĂMˆ
n,irn “

ÿ

jPrns

αj
ĂMˆ

n,irn
pjq (95)

where note that
ř

jPrns αj is strictly less than 1, since α0 ą 0. We may write this vector as,

ĂMˆ
n,irn “ α00 `

ÿ

jPrns

αj
ĂMˆ

n,irn
pjq

“
α0

2k

ÿ

hPHk

ĂMˆ
n,ih `

ÿ

jPrns

αj
ĂMˆ

n,irn
pjq (96)

Since α0 ą 0, this equation implies that the image of rn under ĂMˆ
n,i itself falls within convp ĂMˆ

n,iHkq, but is itself not
a vertex of this set. This means that rn can never be a maximizer of fn,i

`

¨,y
˘

for any y, and in particular when y “ rn,
thereby proving Lemma E.1.
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E.2. L-layer attention-only transformers with 1 head per layer: Proof of Theorem 6.3

Proof. The proof largely tracks the 2-layer case, with the main exception that we keep track of how the maximum possible
rank of the matrix Mˆ

n,i grows as a function of the depth of the transformer. In the case the 2-layer transformer, we show
that it cannot exceed 2. With the addition of more layers, we show that it cannot exceed 2L´1.

Recall from the notation in Equation (86) that the output of the first attention layer is,

xp2q
n “ mp1q

n ` M p1q
n

“

x1
n x1

n´1 ¨ ¨ ¨ x1
1

‰T
(97)

where M
p1q
n P Rdˆn has rank at most 2. Let us rewrite this as,

xp2q
n “ mp1q

n ` M
p1q

n

“

x1
T x1

T´1 ¨ ¨ ¨ x1
1

‰T
(98)

where M
p1q
n P RdˆT is causally masked to be 0’s when it operates on xi for all indices i ą n. Note that even with this

causal masking, M
p1q

n has rank at most 2, as discussed in Equation (86).

By induction, assume that the output of the pℓ ´ 1qth attention layer is of the form,

xpℓq
n “ mpℓ´1q

n ` M
pℓ´1q

n x1:T (99)

where x1:T fi
“

x1
T x1

T´1 ¨ ¨ ¨ x1
1

‰T
. Passing x

pℓq
n through the ℓth attention layer, we get,

xpℓ`1q
n “ xpℓq

n `
ÿ

iďn

att
pℓq

n,i W
pℓq

V

´

x
pℓq

i ` p
pℓq,V
n´i

¯

(100)

“ mpℓ´1q
n ` M

pℓ´1q

n x1:T `
ÿ

iďn

att
pℓq

n,i W
pℓq

V m
pℓ´1q

i `
ÿ

iďn

att
pℓq

n,i W
pℓq

V M
pℓ´1q

i x1:T

`
ÿ

iďn

att
pℓq

n,i W
pℓq

V p
pℓq,V
n´i (101)

Define,

mpℓq
n “ mpℓ´1q

n `
ÿ

iďn

att
pℓq

n,i W
pℓq

V m
pℓ´1q

i `
ÿ

iďn

att
pℓq

n,i W
pℓq

V p
pℓq,V
n´i , and, (102)

M
pℓq

n “ M
pℓ´1q

n `
ÿ

iďn

att
pℓq

n,i W
pℓq

V M
pℓ´1q

i (103)

Then, we can write down,

xpℓ`1q
n “ mpℓq

n ` M
pℓq

n x1:T (104)

We also inductively assume that for every i ď n,

piq M
pℓ´1q

i has rank R ď 2ℓ´1, and,

piiq M
pℓ´1q

i can be factorized in the form
řR

r“1 ur ¨ vT
i,r, where only the vi,r’s depend on i, but the ur’s do not depend on

i.

Both of these conditions are true when ℓ ´ 1 “ 1 as evidenced by the structure of M p1q

i in Equation (87) and noting that

M
p1q

i is obtained from M
p1q

i by right multiplying by a diagonal mask matrix. Using the recursion in Equation (102), we
prove that the induction hypotheses piq and piiq are true at layer ℓ as well. In particular using the decomposition in piiq,
observe that,

M
pℓq

n “

R
ÿ

r“1

ur ¨ vT
n,r `

ÿ

iďn

att
pℓq

n,i W
pℓq

V

R
ÿ

r“1

ur ¨ vT
i,r (105)

25



Transformers on Markov data

“

R
ÿ

r“1

ur ¨ vT
n,r `

R
ÿ

r“1

W
pℓq

V ur ¨

´

ÿ

iďn
att

pℓq

n,i vi,r

¯T

(106)

“

2R
ÿ

r“1

ur ¨ vT
n,r (107)

where for r1 P rRs, uR`r1 fi W
pℓq

V ur and vn,r1 fi
ř

iďn att
pℓq

n,i vi,r. Since M
pℓq
n is the sum of 2R rank 1 matrices and

therefore has rank at most 2R ď 2ℓ, proving both parts of the induction hypothesis.

By induction, at the end of the pL ´ 1qth layer, we have an output which looks like,

xpLq
n “ mpL´1q

n ` M
pL´1q

n x1:T (108)

where M pL´1q
n has rank at most 2L´1. More importantly, note that by the causal masking, even though it appears to depend

on the whole input sequence through x1:T , note that xpLq
n only depends on x1, ¨ ¨ ¨ , xn and not on the future inputs to this

time n. In particular, by a similar argument as in the 2-layer case (cf. Equation (86) to Equation (91)), for any i ď n ´ k we
can decompose the dot-product of the key and query vectors at the Lth layer as a bilinear form which looks like,

A

W
pLq

K

`

x
pLq

i ` p
pLq,K
n´i

˘

,W
pLq

Q xpLq
n

E

“ xTMˆ
n,iy ` yT

`

M
ˆ

n,i

˘

y ` pmˆ
n,iq

Tx ` pmˆ
n,iq

Ty ` mˆ
n,i fi f

pL`1q

n,i px,yq (109)

where x and y are defined as
“

x1
n ¨ ¨ ¨ x1

n´k`1

‰T
and

“

x1
i´1 ¨ ¨ ¨ x1

i´k

‰T
respectively, and Mˆ

n,i has rank at most that

of M pL´1q
n , which is 2L´1. In particular, if 2L´1 ď k ´ 2, by Lemma E.1 the proof concludes.

E.3. The general case: Transformers with Hℓ heads in layer ℓ: Proof of Theorem 6.5

The hth head of the first layer of the attention-only transformer learns patterns of the form,

rxp1,hq
n “

ÿ

iďn

att
p1,hq

n,i W
p1,hq

V Embpxiq `
ÿ

iďn

W
p1,hq

V p
V,p1,hq

n´i (110)

“
ÿ

iďn

att
p1,hq

n,i

ˆ

ϕhp0q ` ϕhp1q

2
` x1

i ¨
ϕhp1q ´ ϕhp0q

2

˙

`
ÿ

iďn

W
p1,hq

V p
V,p1,hq

n´i (111)

where the last equation assumes a binary input sequence, defines x1
i “ 2xi´1 and uses the notation ϕhp0q “ W

p1,hq

V Embp0q

and ϕhp1q “ W
p1,hq

V Embp1q. We can further rewrite this as,

rxp1,hq
n “ mp1,hq

n ` M p1,hq
n x1:T (112)

where each M
p1,hq
n P RdˆT is rank 1 and applies a causal mask on the inputs xi for i ą n. Recall that the output of the

first attention layer applies a projection matrix on the concatentation of rxp1,hq
n across h P rH1s and then adds a residual

connection. The output can be written down as,

rxp2q
n “ Embpxnq ` W

p1q

O

»

—

—

–

m
p1,1q
n

...
m

p1,H1q
n

fi

ffi

ffi

fl

` W
p1q

O

»

—

—

–

M
p1,1q
n

...
M

p1,H1q
n

fi

ffi

ffi

fl

x1:T (113)

“ mp1q
n ` M p1q

n x1:T , (114)

where,

M p1q
n “

ˆ

Embp1q ` Embp0q

2

˙

eTn ` W
p1q

O

»

—

—

–

M
p1,1q
n

...
M

p1,H1q
n

fi

ffi

ffi

fl

, and, (115)
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mp1q
n “

ˆ

Embp1q ´ Embp0q

2

˙

` W
p1q

O

»

—

—

–

m
p1,1q
n

...
m

p1,H1q
n

fi

ffi

ffi

fl

(116)

Notice that the rank of the matrix M
p1q
n is at most H1 ` 1. This is because the concatenation operation can increase the

rank at most additively, and since each of the M
p1,hq
n matrices are rank at most 1.

Following through the proof in Appendix E.2 for the L-layer case, we can prove inductively that at any layer ℓ, the output
looks like,

xpℓq
n “ mpℓq

n ` M pℓq
n x1:T (117)

where the rank of M pℓq
n is

śℓ
i“1pHi ` 1q. Invoking Lemma E.1, if

śL´1
i“1 pHi ` 1q ď k ´ 2, the attention-only transformer

cannot realize a kth-order induction head at layer L.

F. Model architecture and hyper-parameters
The experiments were run on one 8 ˆ A100 GPU node.

Table 2: Parameters in the transformer architecture with their shape.

Parameter Matrix shape

transformer.wte 2 ˆ d
transformer.wpe N ˆ d
transformer.h.ln_1 pˆℓq d ˆ 1
transformer.h.attn.c_attn pˆℓq 3d ˆ d
transformer.h.attn.c_proj pˆℓq d ˆ d
transformer.h.ln_2 pˆℓq d ˆ 1
transformer.h.mlp.c_fc pˆℓq 4d ˆ d
transformer.h.mlp.c_proj pˆℓq d ˆ 4d
transformer.ln_f d ˆ 1

Table 3: Settings and parameters for the transformer model used in the experiments.

Dataset k-th order binary Markov source
Architecture Based on the GPT-2 architecture as implemented in (Pagliardini, 2023)

Batch size Grid-searched in t8, 16u

Accumulation steps 1

Optimizer AdamW (β1 “ 0.9, β2 “ 0.95)
Learning rate 0.001
Scheduler Cosine
# Iterations Up to 25000
Weight decay 1 ˆ 10´3

Dropout 0
Sequence length Grid-searched in t32, 64, 128, 256, 512, 1024u

Embedding dimension Grid-searched in t16, 32, 64u

Transformer layers Between 1 and 8
Attention heads Up to k

Repetitions 3

G. Additional experimental results

27



Transformers on Markov data

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

Sequence index

A
tte

nt
io

n
w

ei
gh

t

Figure 9: First head
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Figure 10: Second head

Figure 11: Mean attention for column n “ 10 of the two
heads of the first attention layer, for a 2-layer 2-head trans-
former model trained on an order-2 Markov process, aver-
aged across 100 input sequences of length 128.
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Figure 12: First head
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Figure 13: Second head
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Figure 14: Third head

Figure 15: Mean attention for column n “ 10 of the three
heads of the first attention layer, for a 2-layer 3-head trans-
former model trained on an order-3 Markov process, aver-
aged across 100 input sequences of length 128.
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Assumption 6.2 suggests that the attention patterns attpℓq

n,i in layers ℓ “ 1, 2, ¨ ¨ ¨ , L´1, as learnt by an L-layer attention-only
transformers may only be a function of only the position indices n, i. In this section we run some additional experiments
to test this conjecture. We train a 2 layer attention-only transformer with k heads in the first layer, on data drawn from a
randomly sampled kth-order Markov process, and focus on the learnt attention patterns as a function of in the input sequence.
Figure 11 plots the results of this experiment for k “ 2 and Figure 15 for k “ 3. While in both cases there is some variance
in the attention patterns learnt by the transformer in some of the heads, we believe that this is a consequence of the iteration
budget of the transformer, and specifically the fact that even if the test loss appears to have converged, the transformer
may still continue changing in the parameter space. Furthermore, when the attention patterns have some non-zero but
small variance as a function of the input, a relaxation of Assumption 6.2, we also believe that the results we proved in
Theorems 6.3 to 6.5 should carry over approximately and leave this as an interesting question for future work. Conditional
lower bounds of this nature, reliant on structural assumptions the transformer appears to demonstrate in practice are an
interesting area of future research.
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