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Abstract
Conformal prediction is a popular framework of
uncertainty quantification that constructs predic-
tion sets with coverage guarantees. To uphold
the exchangeability assumption, many conformal
prediction methods necessitate an additional hold-
out set for parameter tuning. Yet, the impact of
violating this principle on coverage remains un-
derexplored, making it ambiguous in practical ap-
plications. In this work, we empirically find that
the tuning bias - the coverage gap introduced by
leveraging the same dataset for tuning and calibra-
tion, is negligible for simple parameter tuning in
many conformal prediction methods. In particular,
we observe the scaling law of the tuning bias: this
bias increases with parameter space complexity
and decreases with calibration set size. Formally,
we establish a theoretical framework to quantify
the tuning bias and provide rigorous proof for the
scaling law of the tuning bias by deriving its upper
bound. In the end, we discuss how to reduce the
tuning bias, guided by the theories we developed.

1. Introduction
Quantifying uncertainty in predictions is crucial for the safe
deployment of machine learning, particularly in high-risk
domains such as financial decision-making and medical di-
agnostics. Conformal prediction stands out as a promising
statistical framework for quantifying uncertainty in the pre-
dictions of any predictive algorithm (Papadopoulos, 2008;
Vovk, 2012; Vovk et al., 2005). It transforms point pre-
dictions into prediction sets guaranteed to contain ground
truths with a user-specified coverage rate. Under the as-
sumption of data exchangeability, these prediction sets offer
non-asymptotic coverage guarantees without distributional
assumptions. However, the assumption may not always hold
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due to the inherent characteristics of the data or its usage
in practice, such as time series analysis, domain shifts, and
parameter tuning (Barber et al., 2023; Oliveira et al., 2024).
Therefore, it is essential to understand and quantify the cov-
erage gap that arises from the violation of exchangeability.

Many conformal prediction methods utilize a hold-out set
for parameter tuning, in addition to the calibration set.
For example, (1) RAPS (Angelopoulos et al., 2021) and
SAPS (Huang et al., 2024) search their parameters on the
hold-out set; (2) score aggregation methods (Fan et al., 2024;
Luo & Zhou, 2024; Yang & Kuchibhotla, 2024) optimize
the selection or weights for candidate scores; (3) confidence
calibration methods (Dabah & Tirer, 2024; Guo et al., 2017;
Xi et al., 2024) tune the scale parameters for better cali-
bration; (4) training methods (Liu et al., 2025; Stutz et al.,
2022) fine-tune models on the hold-out set. Previous works
claim that leveraging the same hold-out set for tuning and
calibration will destroy the exchangeability (Angelopoulos
et al., 2021; Dabah & Tirer, 2024; Xi et al., 2024; Yang &
Kuchibhotla, 2024), but they did not provide a formal quan-
tification on the coverage gap introduced by the violation of
exchangeability systematically. This prompts us to investi-
gate the influence of parameter tuning on the coverage gap
in the absence of a hold-out set.

In this work, we reveal a previously unrecognized phe-
nomenon: the tuning bias - the coverage gap introduced
by using the same dataset for tuning and calibration, is neg-
ligible for simple parameter tuning in conformal prediction
methods. Empirically, we find that most methods maintain
their coverage rates, except for vector scaling (Guo et al.,
2017) and the fine-tuning version of ConfTr (Stutz et al.,
2022). Furthermore, we observe the parametric scaling
law of the tuning bias: this bias increases with parameter
space complexity and decreases with calibration set size.
An intuitive explanation for this phenomenon is that models
with more complex parameter space require more data to
tune for the optimal parameters.1

Formally, we propose a theoretical framework to quantify
the tuning bias, which is formulated as a specifically de-
signed constrained ERM problem (Bai et al., 2022). In
particular, we measure the tuning bias using the classical

1Code: https://github.com/ml-stat-Sustech/
Parametric-Scaling-Law-CP-Tuning.
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empirical process within the extended parameter space (van
der Vaart & Wellner, 1996). Furthermore, we derive the
upper bounds of tuning bias in the cases of finite and infinite
parameter spaces, respectively. We then provide rigorous
proof for the parametric scaling law of tuning bias through
the upper bounds, which aligns with empirical observations.
Finally, we present the tuning biases of parameter tuning in
several conformal prediction methods, such as RAPS, score
aggregation, and confidence calibration methods.

We further discuss the potential solutions to mitigate tuning
bias. With the parametric scaling law, we could increase
the size of the calibration set or reduce the complexity of
the parameter space to reduce the tuning bias. The former
may not be practical due to data scarcity. On the latter, we
discuss two cases: one is to reduce the number of parameters
to tune; the other is to apply regularization on the parameter
space. Our main contributions are summarized as follows:

• We identify a new phenomenon: simple parameter
tuning in many conformal prediction methods leads
to negligible tuning bias, where we leverage the same
dataset for tuning and calibration.

• We present the parametric scaling law of tuning bias:
this bias increases with parameter space complexity
and decreases with calibration set size.

• We establish a theoretical framework to quantify tuning
bias and rigorously prove the parametric scaling law of
tuning bias via its upper bounds.

• We discuss the potential application of our theoretical
results and explain order-preserving regularization as a
possible solution to reduce tuning bias.

2. Background
Conformal prediction Conformal prediction (Vovk et al.,
2005) aims to produce prediction sets that contain ground-
truth labels with a desired coverage rate. Let X ⊂ Rd denote
the input space and Y denote the label space. Formally, the
goal of conformal prediction is to construct a set-valued
mapping C : X → 2Y that satisfies the marginal coverage:

P(y ∈ C(x)) ≥ 1− α, (1)

for a user-specified error rate α ∈ (0, 1), where input
x ∈ X , and output y ∈ Y . As a widely used proce-
dure, split conformal prediction (Papadopoulos, 2008) initi-
ates with a calibration step. For each sample (xi, yi) from
the calibration set Dcal := {(xi, yi)}ni=1, we compute the
non-conformity score si := S(xi, yi) for a score function
S : X ×Y → R. The non-conformity score function S mea-
sures the strangeness of a given sample. Based on the scores
computed on the calibration set, we search for a threshold

t̂ such that the probability of observing scores on test sam-
ples below the threshold satisfies a pre-specified error rate
α. Specifically, we determine the threshold by finding the
(1− α)-th empirical quantile of the calibration scores:

t̂ = inf {s : |{i : S(xi, yi) ≤ s}| ≥ ⌈(n+ 1)(1− α)⌉} .
(2)

For the test step with a given feature of test sample x, the
non-conformity score is computed for each label y ∈ Y . The
prediction set C(x) is constructed by including all labels
whose non-conformity scores are below the threshold t̂:

C(x) := Ĉt̂(x) =
{
y ∈ Y : S(x, y) ≤ t̂

}
, (3)

where the notation ·̂ is used to emphasize its dependence
on the calibration set Dcal. Here we consider a little weaker
version of independence:
Definition 2.1 (Exchangeability). The samples from D are
exchangeable if and only if the joint distribution of these
samples is invariant under any permutation of the indices of
the samples in D.

With the assumption of exchangeability, the conformal pre-
diction set C(x) in Eq. (3) has a finite-sample coverage
guarantee:
Theorem 2.2. (Barber et al., 2023; Lei et al., 2018) If the
samples from Dcal and the test sample (x, y) are exchange-
able, the conformal prediction set defined in Eq. (3) satisfies

1− α ≤ P (y ∈ C(x)) ≤ 1− α+
1

n+ 1
.

If the assumption of exchangeability does not hold, there
could be a large deviation in the coverage rate. We could
use the coverage gap to measure the conformal predictor C
for a given error rate α and test sample (x, y):

CovGap(C) := |(1− α)− P(y ∈ C(x))|.

Parameter tuning Parameter tuning is a common practice
in conformal prediction. We characterize the parameter tun-
ing as follows. Given a score function S, we can transform
it using a function σ to obtain Sσ := σ◦S ∈ {f : X ×Y →
R}. When this transformation σ is parameterized by λ ∈ Λ,
where Λ is the parameter space, we denote the transformed
score as Sλ for simplicity. There are some examples:

• RAPS (Angelopoulos et al., 2021) uses a scalar λ and
an integral to tune the best score function on a hold-out
set, and so does SAPS (Huang et al., 2024).

• For selection and aggregation of scores problems (Fan
et al., 2024; Ge et al., 2024; Luo & Zhou, 2024; Yang
& Kuchibhotla, 2024), the optimal score function or
weight vector is obtained from a finite number of can-
didates. The selection or weights could be viewed as
the transformation parameter λ to tune.
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• Conformal prediction with confidence calibration
(Dabah & Tirer, 2024; Guo et al., 2017; Xi et al., 2024)
uses a single positive scalar λ > 0 or a vector λ ∈ RK

to calibrate deep learning classifiers.

• For training models from scratch in conformal predic-
tion, they could be modified as a post-training method.
Researchers fine-tune the fully connected layer or an
appended layer, and the efficiency of conformal predic-
tors could be enhanced (Huang et al., 2023; Liu et al.,
2025; Stutz et al., 2022). The parameters in the layer
could be viewed as the transformation parameter.

These practices tune their parameters using a hold-out set
that is separate from the one used for conformal prediction
calibration. Given the transformation parameter λ, we can
calculate the threshold t̂ in Eq. (2) with parameter λ. If we
use the same set for both parameter tuning and conformal
prediction calibration, it will destroy the data exchange-
ability assumption and probably introduce an additional
coverage gap. We defined the additional coverage gap as:

Definition 2.3 (Tuning Bias). For the conformal prediction
with parameter tuning, C, the tuning bias for parameter
tuning on the same set as the calibration set is defined as the
additional coverage gap caused by the practice, i.e.,

TuningBias(C) = CovGap(C)− CovGap(Chold-out),

where C is the conformal predictor with parameter tuned
on the same set as the calibration set, and Chold-out is the
conformal predictor with parameter tuning using a hold-out
set separated from the set used for conformal prediction.

Remark 2.4. Here, we clarify that understanding the tuning
bias is crucial in conformal prediction practice:

• For data-scarce scenarios, splitting the calibration
dataset is impractical in data-scarce scenarios like
rare diseases, natural disaster prediction, and privacy-
constrained personal data. With limited data, using
separated datasets will reduce points for parameter
tuning and conformal calibration, compromising the
approach’s effectiveness and stability. Thus, it’s valu-
able to assess when splitting is needed, or data reuse is
permissible rather than sticking to traditional practices.

• For simple implementation, even with sufficient data,
maintaining separate sets can increase the pipeline com-
plexity. Understanding when this separation is unneces-
sary—such as when tuning bias is negligible—enables
simpler, more streamlined workflows while preserving
coverage guarantees, offering practical relevance.

• For foundational understanding, exploring the tun-
ing bias can provide an in-depth understanding of the
exchangeability assumption in conformal prediction.
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Figure 1. Tuning biases of various methods in conformal pre-
diction, using ResNet-18 on CIFAR-100 at α = 0.1. The APS is
used except for RAPS, SAPS and SA, with a calibration set size of
1000. The “hold-out” and “same” denote that we use separate/same
datasets for parameter tuning and calibration, respectively. Tuning
bias is the difference between the coverage gaps of models tuned
in the setting of hold-out and same.

In particular, the insight in this work may inspire future
works in non-exchangeable conformal prediction.

It could also answer the concern, “why not split the dataset”,
for the same reasons. Indeed, it is easy to split the validation
set when the provided data is sufficient. However, it can be
particularly important to consider data reusing in data-scarce
scenarios, like rare diseases, natural disaster prediction, and
privacy-constrained personal data. With limited data, sep-
arating the dataset will further exacerbate the data scarcity
problem, compromising the effectiveness of both conformal
calibration and parameter tuning. In addition, exploring
the tuning bias could provide an in-depth understanding of
the exchangeability assumption, which may inspire future
works in non-exchangeable CP.

In the next section, we first conduct an extensive empir-
ical study of various conformal prediction methods with
parameter tuning. Then, we explore how the complexity of
parameter space and the size of the calibration set influence
tuning bias, respectively. We empirically demonstrate the
scaling laws of tuning bias on the complexity of parameter
space and the size of the calibration set.

3. Empirical Study
3.1. Tuning Bias of Current Methods

We empirically investigate the potential influences of the tun-
ing bias. The methods considered here include RAPS (An-
gelopoulos et al., 2021), SAPS (Huang et al., 2024), score
aggregation (Luo & Zhou, 2024, SA), temperature scaling
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(TS), vector scaling (VS) (Dabah & Tirer, 2024; Guo et al.,
2017; Xi et al., 2024), C-Adapter (Liu et al., 2025), and the
fine-tuning version of ConfTr (Stutz et al., 2022). We con-
duct experiments on the CIFAR-100 dataset (Krizhevsky,
2009) and use pre-trained model ResNet-18 (He et al., 2016).
The introduction of methods and detailed experimental setup
are provided in Appendix A. The size of the calibration
set considered here is 1000. We use separate or the same
datasets for parameter tuning and calibration, respectively.
For each experiment, the test set comprises the remaining
data. By default, we use the APS score for experiments
involving confidence calibration and conformal training.

Tuning bias is not always negligible for the parameter
tuning in conformal prediction. In Figure 1, we present
the tuning biases caused by various tuning methods using
ResNet-18 on CIFAR-100. The results indicate that most
methods do not introduce significant tuning biases, achiev-
ing similar coverage gaps regardless of whether the same
dataset or separate datasets are used for calibration and tun-
ing. For example, the coverage gaps of RAPS using the
same and separate datasets are almost identical, as shown
in Figure 1. However, in vector scaling and ConfTr (ft.),
using the same datasets could result in much larger coverage
gaps than using a hold-out dataset for tuning. We conjecture
that these differences may be due to the large number of
parameters tuned in these methods. In what follows, we
provide in-depth analyses to explore the factors influencing
tuning biases in these methods.

3.2. Parametric Scaling Laws of Tuning Bias

We conduct an additional analysis from two key perspec-
tives: (1) the number of parameters and (2) the size of the
calibration set. The experiments provide deeper insights
into how tuning methods influence bias formation. By the
convention to control the number of unfrozen parameters,
we focus on confidence calibration using vector scaling. We
could control the number of unfrozen parameters by freez-
ing a portion of the parameters in vector scaling. We freeze
a portion of the parameters in vector scaling. In detail, we
do not let the proportion of the parameters be optimized
randomly. The ratio of frozen parameters ranges from 0%
to 40% by 10% increments. The detail of vector scaling is
provided in Appendix A.2. We use separate or the same
datasets for parameter tuning and calibration, respectively,
with APS. All methods of conformal prediction are under
the same error rate α = 0.1. To ensure the reliability of our
results, we repeat each experiment 30 times and report both
the average result and its corresponding standard deviation.

The tuning bias scales up with the complexity of pa-
rameter space. We first consider the tuning bias under
a different number of unfrozen parameters in Figure 2 (a).

As shown in Figure 2 (a), the tuning bias increases with the
number of unfrozen parameters in vector scaling. With a
larger number of parameters, the tuning bias increases by
more than 50% compared to the lower number of param-
eter spaces. In general conclusions in learning theory, the
higher number of parameters to tune means more complex
parameter space without additional constraints. The more
complex parameter space leads to more generalization bias.
Here, our empirical results also support this conclusion: the
tuning bias scales with the complexity of parameter space.

The effect of calibration set size Then, we consider the
tuning bias under different sizes of the calibration set on
Figure 2 (b). The calibration set size varies from 6000 to
10000 with an increment of 1000. The parameter tuning
method used here is vector scaling with full parameter space.
For the size of the calibration set, the tuning bias decreases
with the size of the calibration set increasing, as shown
in Figure 2 (b). The tuning bias decreases about 50% from
the size of 6000 to 10000. As the size of the calibration set
increases, the tuning bias approaches zero. The empirical
results support the conclusion that the tuning bias scales
down with the size of the calibration set.

3.3. Intuitive Explanation

Combining the above two empirical results, we could see
the tuning bias scales up with the complexity of parameter
space and down with the size of the calibration set empiri-
cally. Based on the framework of learnability of conformal
prediction (Bai et al., 2022; Gupta et al., 2022), we could
reinterpret the threshold calculation step Eq. (2) as solving
a constrained empirical risk minimization (ERM) problem
with a single learnable parameter:

t̂ = argmin
t

∑
i∈Ical

|Ĉt(xi)|/n

such that
∑
i∈Ical

1{yi /∈ Ĉt(xi)}/n ≤ α

where Ical is the index set of the hold-out set Dcal. Then,
the tuning parameter in the conformal prediction could be
placed into the optimization problem with the learnable pa-
rameter (λ, t). According to the general results in ERM
theory, a more complex parameter space requires more data
to learn the optimal tuning parameters. These results intu-
itively explain the phenomenon that appears above. Further,
we will quantify the parametric scaling law of the tuning
bias on the complexity of parameter space and the size of
the calibration set, respectively, under the constrained ERM
framework. To our knowledge, we are the first to explore
this framework for the learnability of tuning parameters in
the context of conformal prediction. Based on the learn-
ability of tuning parameters in the context of conformal
prediction, we further establish the theoretical results of the
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Figure 2. Parametric scaling law, on (a) the complexity of parameter space and (b) the size of the calibration set, using ResNet-18 on
ImageNet using APS. The calibration set size for Figure (a) is 6000. The ‘hold-out’ and ‘same’ denote that we use separate/same datasets
for parameter tuning and calibration, respectively. Tuning bias is the difference between the coverage gaps of models tuned in the setting
of hold-out and same. The tuning bias scales up with the number of parameters and scales down with the size of the calibration set.

tuning bias in the following section.

In summary, the empirical results reveal that the tuning bias
is negligible for simple parameter tuning and scales up with
the complexity of parameter space and down with the size
of the calibration set. We intuitively explain the empirical
results using the learnability of tuning parameters in the
context of conformal prediction. Next, we will provide the
theoretical results of the tuning bias in the following section.

4. Theoretical Results
In this section, we provide the theoretical results for the
tuning bias. We first introduce the problem formulation in
Section 4.1. We introduce the tuning bias in general cases.
Then, we consider the theoretical results of the tuning bias
in finite and infinite parameter cases in Section 4.2 and
Section 4.3, respectively. The application of these results to
some specific cases is also considered.

4.1. Problem Formulation

For a score function Sλ with λ ∈ Λ, the prediction set is
defined as:

Ĉλ
t (x) := {y ∈ Y : Sλ(x, y) ≤ t},

where t is a threshold. Given a dataset D, we denote the
set of scores under parameter λ as Sλ

D := {Sλ(xi, yi) |
(xi, yi) ∈ D} and SD := {S(xi, yi) | (xi, yi) ∈ D}. The
associated threshold for Sλ

D is defined as:

t̂λD = Q((1−α)(1+1/n))(Sλ
D), (4)

where Qp(S) denotes the p-th empirical quantile of non-
empty set S: Qp(S) = inf{q : |{s ∈ S : s ≤ q}| ≥ p|S|}.

We formulate the parameter tuning using the same set as
the calibration set for conformal prediction as follows: the
tuning parameter λ̂ is selected by minimizing a pre-specified
loss function ℓ on the calibration set Dcal:

λ̂ := λ̂Dcal = argmin
λ∈Λ

ℓ(λ,Sλ
Dcal

).

The conformal prediction set with parameter tuning is refor-
mulated as:

C(x) := Ĉλ̂

t̂λ̂Dcal

(x). (5)

Tuning bias While this procedure appears straightforward,
using the same set for both parameter tuning and confor-
mal prediction introduces a tuning bias. To understand this
phenomenon, let us examine why the standard split con-
formal prediction works. The validity guarantee in Eq. (1)
relies on the exchangeability assumption - specifically, the
score function S is independent of the calibration set Dcal.
This independence ensures that the score of a test sample
S(xtest, ytest) is exchangeable with the scores of calibration
samples {S(xi, yi) | (xi, yi) ∈ Dcal}. However, if we
reuse the same set for both parameter tuning and calibra-
tion for conformal prediction, this crucial exchangeability
property is violated. The transformed score Sλ̂ depends
on the calibration set Dcal through the parameter selection
process. Consequently, the scores of test samples lose their
exchangeability with the scores of calibration samples, in-
validating the coverage guarantee in Eq. (1). To understand
this phenomenon mathematically, we demonstrate the cover-
age gap for the conformal prediction with parameter tuning
by decomposing the coverage gap into two components:

Theorem 4.1 (Coverage gap for conformal prediction with
parameter tuning). If the samples in Dcal ∪ Dtest are inde-
pendent and identically distributed, then the coverage gap
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of the conformal prediction set with parameter tuning Ĉ
defined in Eq. (5) are bounded as follows:

CovGap(C) ≤ ERΛ + εα,n,

where εα,n := ⌈(1 + n)(1 − α)⌉/n − (1 − α) ≥ 0 is the
coverage gap of the standard split conformal prediction set
with the size of the calibration set n and error rate α, and
the term RΛ with T ⊂ R,

RΛ := sup
λ∈Λ,t∈T

∣∣∣ 1
n

∑
i∈[n]

1{Sλ(xi, yi) ≤ t}

− P
(
Sλ(xtest, ytest) ≤ t | Dcal

) ∣∣∣.
The proof of Theorem 4.1 is provided in Appendix E. The
upper bound of the coverage gap could be decomposed into
two components: ERΛ and εα,n. The first term, ERΛ, in-
troduces an additional bound for the coverage gap, which is
not present in the standard conformal prediction framework,
containing only the second term, εα,n. As the definition of
tuning bias in Definition 2.3, we could conclude that

TuningBias(C) ≤ ERΛ.

In fact ERΛ is closely related to the classical empirical
process theory (van der Vaart & Wellner, 1996; Vershynin,
2018). We could define the class associated with RΛ as:

HΛ =
{
1{Sλ(x, y) ≤ t}, λ ∈ Λ, t ∈ R

}
.

The bound ERΛ is the empirical process on the class HΛ:

ERΛ = E sup
g∈HΛ

∣∣∣ 1
n

∑
i∈[n]

g(xi, yi)−E[g(xtest, ytest) | Dcal]
∣∣∣.

It depends on the complexity of parameter space Λ. The-
orem 4.1 is a general result that applies to any parameter
space Λ without any constraint. Next, we provide the bound
analysis of the tuning bias in finite and infinite parameter
space and consider several applications using these results.

4.2. Tuning Bias in Finite Parameter Space

When the parameter space Λ is finite, we bound the tun-
ing bias using classical concentration inequality, Dvoret-
zky–Kiefer–Wolfowitz inequality (Dvoretzky et al., 1956),
on the empirical process with the finite union of probability:

Proposition 4.2. For a finite parameter space Λ, we have

TuningBias(C) ≤
√

log(2|Λ|)
2n

+
1√

2n
√
log(2|Λ|)

.

The proof of Proposition 4.2 is provided in Appendix F. The
result in Proposition 4.2 is a general result that applies to

any finite parameter space Λ. The examples include param-
eter tuning in some specific score functions (Angelopoulos
et al., 2021; Huang et al., 2024), score selection (Yang &
Kuchibhotla, 2024) and aggregation (Luo & Zhou, 2024)
with finite candidates, and early stopping in conformal pre-
diction (Liang et al., 2023) and so on.

Application to parameter tuning in RAPS score The
Regularized Adaptive Prediction Sets (RAPS) method (An-
gelopoulos et al., 2021) introduces a score function that
requires tuning two hyperparameters:

SRAPS(x, y, p) = SAPS(x, y, p) + γ · (o(y,x, p)− kreg)
+,

where SAPS is defined in Eq. (9), o(y,x, p) represents
the rank of probability p(y|x) among all possible classes,
p(y′|x) (y′ ∈ [K]), and γ and kreg are hyperparameters.
The notation (z)+ signifies the positive part of z. The RAPS
method optimize the set size or adaptiveness with hyperpa-
rameters λ = (γ, kreg)

⊤ from a predetermined finite param-
eter space with|ΛRAPS| = M · K̄ where M is the number
of grid points for γ, and K̄ is the pre-specified max number
of classes (Angelopoulos et al., 2021). The tuning bias is
bounded by Proposition 4.2 as follows:

Corollary 4.3. For a classification problem and the hold-
out set size n, the tuning bias of RAPS is bounded by:

TuningBias(CRAPS) ≤
√

log(2MK̄)

2n
+

1
√
2n

√
log(2MK̄)

.

The proof of Corollary 4.3 is provided in Appendix G. Al-
though the RAPS method (Angelopoulos et al., 2021) recom-
mends using an additional hold-out set for hyperparameter
selection, our findings allow for direct hyperparameter se-
lection without the need for an extra hold-out set. As for
SAPS (Huang et al., 2024), the parameter space is also finite,
and we could also apply the same analysis to SAPS.

Application to score selection with finite candidate Con-
sidering there are M candidate score functions {Sm,m ∈
[M ]} for constructing conformal prediction sets, let Cm(x)
be the prediction set obtained using score function Sm at a
given error rate α. The optimal score function is selected by
minimizing the empirical size of the prediction set:

m̂ = argmin
m∈{1,...,M}

∑
i∈Ical

|Cm(xi)|/|Ical|.

This selection process introduces a tuning bias that can be
bounded using Proposition 4.2 with |Λ| = M . This case
is also considered by the score selection issues (Yang &
Kuchibhotla, 2024). They propose a score selection frame-
work for constructing minimal conformal prediction regions
by selecting optimal score functions from finite candidates.
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Their work introduces two methods. The first optimizes
prediction width using the same hold-out set as the calibra-
tion set of conformal prediction, and the second maintains
coverage guarantees using a separate hold-out set. The first
achieves minimal prediction interval width with approxi-
mate coverage guarantees. It provides a bound of coverage
gap for the first method, as a special case of our result:

Corollary 4.4. For a classification problem, and the hold-
out set size n, the tuning bias of selection of score func-
tions (Yang & Kuchibhotla, 2024) with the number of candi-
dates M is bounded by:

TuningBias(C) ≤
√

log(2M)

2n
+

1√
2n

√
log(2M)

.

The proof of Corollary 4.4 is provided in Appendix G. For
the score aggregation (Luo & Zhou, 2024), we analyze it
in Appendix L. Next, we extend our analysis to an infinite
parameter space and apply it to conformal prediction with
confidence calibration, where the parameter space is infinite.

4.3. Tuning Bias in Infinite Parameter Space

Before introducing the infinite parameter case, we first in-
troduce the concept of Vapnik-Chervonenkis (VC) dimen-
sion (Vapnik & Chervonenkis, 1971). VC-dimension is a
measure of the complexity of classes of Boolean functions.

Definition 4.5 (VC Dimension). Let F be a class of
Boolean functions defined on a domain Ω, f : Ω → {0, 1}
for all f ∈ F . A subset Ω′ ⊆ Ω is said to be shattered by F
if any function g : Ω′ → {0, 1} can be obtained by restrict-
ing some function f ∈ F onto Ω′. The VC dimension of F ,
denoted by VC(F), is the size of the largest subset Ω′ ⊆ Ω
that can be shattered by F . If the size of the largest shattered
subset is infinite, we say the VC dimension is infinite.

Although the concept may seem hard to understand, it can
be viewed as the maximum number of points that the class
of functions can shatter intuitively. With a more complex
class of functions, it is more likely to shatter a larger number
of points. It is a measure of the complexity of the class of
functions, F . The intuition is that the larger the complexity
of the class of functions, the larger the bound of the empir-
ical process is. By the definition of H and Lemma D.6 in
Appendix D, we develop a general bound of the tuning bias:

Proposition 4.6. For an infinite parameter space Λ ⊂ Rd,
we have the tuning bias is bounded by:

TuningBias(Ĉ) ≤ C

√
d+ 1

n

for some universal constant C > 0.

The proof of Proposition 4.6 is provided in Appendix H.
The bound in Proposition 4.6 is a general result that applies

to any infinite parameter space Λ ⊂ Rd. It shows that the
tuning bias increases with the dimension of parameter space
d and decreases with the size of the hold-out set n. Next,
we will present an application for confidence calibration.

Application to confidence calibration Consider a classi-
fication problem with K classes, where we have two confi-
dence calibration methods: Temperature scaling (TS) and
vector scaling (VS) (Dabah & Tirer, 2024; Guo et al., 2017;
Xi et al., 2024). The details of temperature scaling and
vector scaling with tuning parameter λ are given in Ap-
pendix A.2. For the two methods, there is a significant
difference in the dimension of parameter space Λ: For tem-
perature scaling, the parameter space is ΛTS = R+, contain-
ing only one positive real number λ. For vector scaling, the
parameter space is ΛVS = RK ×RK , containing 2K param-
eters. Since vector scaling has a more complex parameter
space compared to temperature scaling, the tuning bias of
vector scaling is larger than that of temperature scaling:

Corollary 4.7. For a classification problem with K classes,
the calibration set size n and the same pre-trained model,
the tuning bias of temperature scaling is smaller than that
of vector scaling: TuningBias(CTS) ≤ TuningBias(CVS),
where CTS and CVS are the prediction sets of temperature
scaling and vector scaling, respectively.

The proof of Corollary 4.7 is provided in Appendix I. The
result shows that the tuning bias of temperature scaling is
smaller than that of vector scaling. We provide a result for
the binary classification case in Section 5, where the tuning
bias of temperature scaling is zero.

In this section, we derive the upper bounds of tuning bias
in finite and infinite spaces, proving the parametric scaling
law of tuning bias, and provide examples including RAPS,
score selection and confidence calibration. Next, we discuss
how to reduce the tuning bias with two specific cases.

5. Discussion of Potential Solutions
In the previous analysis, we demonstrate the parametric
scaling law of tuning bias in relation to parameter space
complexity and calibration set size. Here, we provide an
initial discussion of potential solutions to mitigate the tuning
bias that arises from using the same data for both calibra-
tion and parameter tuning. It is important to note that the
common practice is to use separate hold-out datasets for
calibration and parameter tuning. Mitigating tuning bias can
be particularly beneficial in real-world applications when
splitting the dataset is impractical due to data scarcity.

Following the scaling law, we can implement two principles
to reduce the tuning bias: increasing the size of calibra-
tion sets or reducing the complexity of tuning parameters.
The former indicates that we can decrease the bias by col-
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lecting more data points for the calibration set, but it is
challenging in data-scarce scenarios. We then focus on the
latter - reducing the complexity of tuning parameters, which
is commonly implemented to address overfitting issues. In
the following, we discuss this principle with two special
cases of parameter tuning in split conformal prediction.

Table 1. Tuning bias comparison of various methods. The cal-
ibration set size is 2500 for CIFAR-100 and 5000 for ImageNet
using APS. Results in bold indicate superior performance.

Methods CIFAR-100 (%) ImageNet (%)

Temperature scaling 0.14 ± 0.01 0.04 ± 0.01
Vector scaling 1.13 ± 0.02 6.63 ± 0.03

ConfTr (ft.) w/ OP 0.52 ± 0.37 0.40 ± 0.31
ConfTr (ft.) w/o OP 6.15 ± 0.86 21.68 ± 0.58

Reducing the parameter number A straightforward way
to constrain parameter complexity is to reduce the number
of parameters in model tuning. Here, we provide an example
of parameter reduction through weight sharing. In particular,
we show the benefits of weight sharing by comparing the
tuning biases of temperature scaling (TS) and vector scaling
(VS), where the former can be viewed as a special case of
vector scaling with a shared parameter |ΛTS| < |ΛVS|. The
empirical results in Table 1 show that TS with fewer param-
eters achieves much smaller tuning biases than VS, which is
also supported by Figure 1 and Figure 3. Theoretically, we
provide a theoretical result for the comparison in the case
of binary classification:

Proposition 5.1. For a binary classification problem, we
have TuningBias(CTS) = 0 ≤ TuningBias(CVS), where CTS

and CVS are the prediction sets of models tuned by tempera-
ture scaling and vector scaling, respectively.

We provide the proof of the above proposition in Appendix J.
From the example, we demonstrate that designing tuning
algorithms with few parameters will be beneficial in prevent-
ing the tuning bias. Also, we analyze the relationship be-
tween the number of parameters and tuning bias by freezing
different numbers of parameters within VS. The results in
Figure 2 (a) show that increasing the number of parameters
leads to higher tuning bias, supporting the claim. However,
reducing the parameter number may severely degrade the
performance of parameter tuning, making it inapplicable in
some scenarios, which motivates us to apply regularization
to the tuning algorithm.

Regularization in the tuning Another effective approach
is the use of regularization methods, which introduce ad-
ditional constraints or penalties to model parameters, pre-
dictions, or loss functions. Here, we present an example
of applying an order-preserving constraint to model predic-

tions: ∀(x, y), o(y,x, p) = o(y,x, pλ) where o(y,x, p) is
the order of the true label y in the sorted predicted probabil-
ities p(·|x), and pλ is the probability after transformation λ.
Taking ConfTr (Stutz et al., 2022) as the tuning algorithm on
the final linear layer, we present the following proposition
to show the benefit of the order-preserving constraint.

Proposition 5.2. For a classification problem with K
classes, and the calibration set size n, we have the tun-
ing bias of Cop is less than the one of C: TuningBias(Cop) ≤
TuningBias(C), where C and Cop represent the prediction
sets of models tuned by ConfTr, with Cop under the order-
preserving constraint and C without it.

The proof of Proposition 5.2 is provided in Appendix K. And
by Lemma K.1, the dimension of parameter space of order-
preserving vector scaling is 2, which is much smaller than
that without constraint, 2K. By Lemma K.3, the dimension
of parameter space of ConfTr with order-preserving con-
straint is K + 2, which is much smaller than that of matrix
scaling with its dimension beingK2+K. We also verify the
argument by the empirical results shown in Table 1. The tun-
ing bias of ConfTr with order-preserving constraint is much
smaller than that without it. This approach is advantageous
as it can generalize to complex paradigms of parameter
tuning (e.g., fine-tuning the final layer). It is worth noting
that designing tailored regularization techniques for specific
tuning methods in conformal prediction may be a promising
direction for future research.

6. Related Works
Conformal prediction Conformal prediction is a method
for uncertainty quantification that ensures that the predic-
tion intervals or sets cover the true label with a user-defined
error rate (Papadopoulos, 2008; Vovk, 2012; Vovk et al.,
2005). On the one hand, conditional coverage validity is
a key property of conformal prediction, ensuring the algo-
rithm fairness (Angelopoulos et al., 2021; Gibbs et al., 2024;
Huang et al., 2024; Romano et al., 2020). On the other hand,
to enhance the efficiency of conformal prediction, recent
studies (Kiyani et al., 2024a;b; Liu et al., 2025; Stutz et al.,
2022) have proposed training-based methods, which could
be regarded as adapters, performing tuning prior to confor-
mal prediction. Beyond these, with many non-conformity
scores proposed, the score selection or aggregation is an-
other challenge in conformal prediction (Fan et al., 2024;
Gasparin & Ramdas, 2024; Ge et al., 2024; Luo & Zhou,
2024; Qin et al., 2024; Yang & Kuchibhotla, 2024). These
recent paradigms of conformal prediction typically require
tuning parameters on a hold-out dataset, and our work pro-
vides the first study to quantify the negative effect induced
by using the same dataset for tuning and calibration.
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Learnability As classical learnability theory, a learnable
model could be regarded as a risk minimization model with
a specific hypothesis class (van der Vaart & Wellner, 1996;
Vapnik, 1991; 1999; Vapnik & Chervonenkis, 1971; Ver-
shynin, 2018). And further, the constrained ERM is de-
veloped as a special case of learnability theory, where the
hypothesis class is the set with a specific constraint or struc-
ture, such as structural risk minimization of character recog-
nition (Guyon et al., 1991), of data-dependent hypothesis
class (Shawe-Taylor et al., 1998), of Rademacher penalty
method (Koltchinskii, 2001) and rough set-based classi-
fier (Liu et al., 2020). As for conformal prediction, several
works study learn the conformal prediction directly by de-
signing a specific objective function (Noorani et al., 2024;
Stutz et al., 2022). Further, the conformal prediction is a spe-
cial case of risk minimization problem with the constraint
of coverage guarantee, and the generalization loss for the
size of prediction set could be quantified (Gupta et al., 2022;
Yang & Kuchibhotla, 2024), including classification (Bai
et al., 2022) and regression (Fan et al., 2024; Gupta et al.,
2022). As we proposed in Section 4, we interpret the tuning
bias as a further constrained risk minimization problem of
conformal prediction and provide the first systematic theo-
retical analysis of the tuning bias, offering a novel tool for
analyzing the learnability of general conformal prediction
problems.

7. Conclusion
In this paper, we first uncover an unobservable phenomenon
related to the tuning bias in conformal prediction with pa-
rameter tuning. Empirically, we observe that the tuning bias
is negligible when the parameter space’s complexity is low,
and the hold-out set is sufficiently large. Our theoretical find-
ings establish a parametric scaling law for the tuning bias.
Additionally, we explore potential solutions to address the
implications of our theoretical results, emphasizing strate-
gies to mitigate tuning bias by reducing the complexity of
the parameter space. For future research, incorporating the
structure of the parameter space could improve the precision
of our theoretical results.

Limitation Our theoretical results provide a unified frame-
work for understanding tuning bias - a general phenomenon
in conformal prediction. However, the bound of tuning bias
is not tight without more assumptions on the modelling. The
bound could be more precise with more assumptions on the
modelling. Here, we provide an example of regularization
on the learnability for conformal prediction, which roughly
tightens tuning bias. The tuning bias could be more pre-
cise under more assumptions on the modelling, such as the
structure of the score and transformation.
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A. Basic Experimental Setup
In this section, we provide a detailed experimental setup. In Appendix A.1, we describe the pre-trained models. In
Appendix A.2, we describe the parameter tuning processes for confidence calibration, score function tuning, score aggregation
and ConfTr.

A.1. Pre-trained Models

We conduct this empirical study on three image classification benchmarks: CIFAR-10, CIFAR-100, and ImageNet. For
CIFAR-10, we use a simple CNN consisting of three convolutional layers and two fully connected layers. For CIFAR-100
and ImageNet, we employ ResNet-18 (He et al., 2016). The ImageNet experiments utilize pre-trained classifiers available
in TorchVision (Paszke et al., 2019), while the CIFAR-10 and CIFAR-100 classifiers are trained from scratch using their
respective full training sets. For CIFAR-100, the network is trained for 200 epochs using SGD with a momentum of 0.9, a
weight decay of 0.0005, and a batch size of 256. The initial learning rate is set to 0.1 and decreases by a factor of 5 at epochs
60, 120, and 160. Similarly, for CIFAR-10, the network is trained for 120 epochs using SGD with identical momentum,
weight decay, and batch size settings. The initial learning rate is also set to 0.1 and decreases by a factor of 5 at epochs 30,
60, and 90.

A.2. Setup for Parameter Tuning

Confidence calibration We investigate two commonly used confidence calibration methods, including temperature scaling
and vector scaling (Dabah & Tirer, 2024; Guo et al., 2017; Xi et al., 2024). Temperature scaling is the simplest extension for
Platt scaling (Platt, 1999) and is a calibration method that adjusts the model’s output logits through a scalar parameter λ.
The transformed output probability is defined as a special case of vector scaling with tuning parameter λ ∈ R+:

pTS
λ (y | x) = ψy(f(x)/λ), (6)

where f(x) is the original logit output from the pre-trained deep classifier model in Section A.1, and ψy denotes the y-th
element of the softmax function:

ψj(z) =
exp(zj)∑K
k=1 exp(zk)

, for j = 1, . . . ,K, (7)

where z ∈ RK is the input logit vector and zj is the j-th component of the input logit vector and ψj(z) represents the j-th
component of the output probability vector. The vector scaling (Guo et al., 2017) for a logits output of the pre-trained deep
classifier model f(x) ∈ RK with classes K is defined as:

pVS
λ (y | x) = ψy(W ◦ f(x) + b), (8)

where λ = (W⊤, b⊤)⊤ ∈ R2K , the notation “◦” means element-wise product of elements in two vectors. We optimize the
parameter λ using the objective negative log-likelihood (NLL) to obtain the optimal parameter

ℓNLL,p(λ) = − 1

n

∑
(x,y)∈Dcal

log(pλ(y | x)),

where pλ(y | x) is the transformed output probability from temperature scaling or vector scaling. The transformed score
function Sλ(X, y) is a function of p(y|X) based on some base score function, such as APS (Romano et al., 2020) defined
as:

SAPS(x, y, p) =
∑
yi∈Y

p(yi|x) · I{p(yi|x) > p(y|x)}+ u · p(y|x) (9)

given probability output p := p(y|x) for a classification task, and u is a random variable drawn from the uniform distribution
U [0, 1], and THR (Sadinle et al., 2019) defined as:

STHR(x, y, p) = 1− p(y | x). (10)

Score function tuning Score function tuning is a common step in the pipeline of conformal prediction. In this study, we
focus on two of the most widely used score functions: RAPS (Angelopoulos et al., 2021) and SAPS (Huang et al., 2024):

SSAPS(x, y, p) :=

{
u · pmax(x), if o(y,x, p) = 1,

pmax(x) + (o(y, p(x))− 2 + u) · γ, else,
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where pmax(x) is the maximum predicted probability among all classes for input x, o(y,x, p) is the order of the true label
y in the sorted predicted probabilities p(y|x), and γ is a tuning parameter.

A two-stage grid search for parameter searching is performed for both RAPS and SAPS. Initially, the search is conducted
over the range [0.01, 0.3] with a step size of 0.01 to determine the optimal parameter x. Subsequently, a finer search is
carried out within [x− 0.005, x+ 0.005] using a granularity of 0.001. Notably, since RAPS is not sensitive to its parameter
kreg, we focus on γ.

Score aggregation Score aggregation could significantly enhance the performance of conformal predictors. Recent
studies (Fan et al., 2024; Gasparin & Ramdas, 2024; Ge et al., 2024; Luo & Zhou, 2024; Qin et al., 2024; Yang &
Kuchibhotla, 2024) have proposed aggregation techniques that combine multiple non-conformity scores with tunable
weights, which can enhance the efficiency of conformal predictors. These methods typically require a hold-out set to search
for the optimal weights through grid search. In this study, we investigate the aggregation of three score functions—APS,
RAPS, and SAPS—all derived from the same pre-trained classifier as a case example. Specifically, we use three non-negative
parameters w1, w2, and w3, which represent the tunable weights for aggregating the three score functions. These parameters
satisfy the constraint w1 + w2 + w3 = 1, and we evaluate all possible value combinations with a granularity of 0.1. The
parameters w1, w2, and w3 are restricted to the set {0, 0.1, 0.2, . . . , 1}. We enumerate all triplets (w1, w2, w3) such that:

w1 + w2 + w3 = 1, w1, w2, w3 ≥ 0, and w1, w2, w3 ∈ {0, 0.1, 0.2, . . . , 1}.

This approach ensures that all feasible combinations of w1, w2, and w3 are comprehensively explored under the given
constraint and granularity.

C-Adapter Conformal Adapter (C-Adapter) (Liu et al., 2025) is an adapter-based tuning method designed to enhance the
efficiency of conformal predictors without sacrificing accuracy. It achieves this by appending an adapter layer to pre-trained
classifiers for conformal prediction. With C-Adapter, the model tends to produce extremely high non-conformity scores for
incorrect labels, thereby improving the efficiency of prediction sets across various coverage rates.

For tuning the C-Adapter, we use the Adam optimizer (Kingma & Ba, 2017) with a batch size of 256 and a learning rate of
0.1. The model is tuned for 10 epochs, and the only parameter, T , is set to 1× 10−4 by default. In our empirical study, we
explore the application of C-Adapter using hold-out data.

Conformal Training Conformal Training (ConfTr) (Stutz et al., 2022) is a training framework designed to enhance the
efficiency of conformal predictors. Its loss function is defined as:

LConfTr(f(x;θ), y, τ
soft
α ) = Lcls(f(x;θ), y) + λLsize(f(x;θ), τ

soft
α ),

where Lcls represents the classification loss, Lsize approximates the size of the prediction set at a coverage rate of 1−α, τ soft
α

denotes the soft threshold, and λ controls the strength of the regularization term. Here, τ soft
α denotes the soft threshold and λ

controls the strength of the regularization term. To improve efficiency, ConfTr adjusts the training objective by incorporating
a regularization term that minimizes the average prediction set size at a specified error rate.

Beyond training models from scratch, ConfTr can also function as a post-training adjustment method, allowing fine-tuning of
the fully connected layer or an appended layer to enhance further the efficiency of conformal predictors (Huang et al., 2023;
Stutz et al., 2022). We denote this version of ConfTr as ConfTr (ft.). In our empirical study, we explore this application
of ConfTr (ft.) using hold-out data. Specifically, we append a fully connected layer to the trained classifier and fine-tune
only the parameters of this layer using the Adam optimizer (Kingma & Ba, 2017) with a learning rate of 0.001. The
hyperparameter α is set to 0.01 by default. For λ, we use a value of 0.0001.

B. Additional Experimental Results
We investigate various conformal prediction algorithms that require parameter tuning. This section provides additional
results for these methods. Typically, we vary the size of the calibration set to examine the CovGap. For vector scaling, we
consider both the size of the calibration set and the number of parameters (i.e., the amount of frozen weights).

By the results in this section, it is worthy noting that the parameter numbers of those tuning methods (e.g., VS and C-Adapter)
are positively related to the class numbers of the dataset. Thus, datasets with more classes require more parameter numbers
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in the tuning, leading to a larger tuning bias. This explains why those methods perform differently in various datasets. The
details are provided as following.

B.1. Additional Results for Confidence Calibration

Temperature scaling Additional experimental results on the tuning bias with temperature scaling are shown in Figures 3a
and 3b, using APS and THR as the score functions, respectively.

Vector scaling Figure 3c and Figure 3d present additional experimental results on the tuning bias with vector scaling,
using THR as the score function. The experiments vary the size of the calibration set and the number of parameters.

The results in Figure 3 show that the tuning bias of temperature scaling is small for all datasets and score functions under
various settings. The tuning bias of vector scaling is generally large except for CIFAR-10. For comparison, the tuning bias
of temperature scaling is generally smaller than that of vector scaling.

B.2. Additional Results for Score Function Tuning

We focus on two widely used score functions: RAPS and SAPS. The results for them are provided in Figures 4a and 4b. The
results in these figures shows the tunig bias of RAPS and SAPS is not significantly different from the one with a hold-out set
under various settings.

B.3. Additional Results for Score Aggregation

In this study, we investigate the aggregation of three score functions—APS, RAPS, and SAPS—all derived from the same
pre-trained classifier as a case example. The results are provided in Figure 4c. The results in this figure shows the tuning
bias of score aggregation is not significantly different from the one with a hold-out set under various settings.

B.4. Additional Results for C-Adapter

Additional experimental results on CovGap with C-Adapter are shown in Figures 4d and 4e, using APS and THR as the
score functions, respectively. The results in these figures shows the tuning bias of C-Adapter is not significantly different
from the one with a hold-out set under various settings.

B.5. Additional Results for ConfTr (ft.)

Additional experimental results on CovGap with ConfTr (ft.) are shown in Figures 5a and 5b, using APS and THR as the
score functions, respectively. The results in these figures shows the tuning bias of ConfTr (ft.) is significantly different from
the one with a hold-out set under various settings except CIFAR-10.

C. Additional Results for Regression
We clarify that our analysis reveals a general phenomenon of conformal prediction in both classification and regression
tasks. Section 3 focuses on classification, as many parameter tuning methods (like TS/VS and ConfTr) are designed for
classification tasks. Here, we provide the results for regressions to show the case of regression tasks following previous
work (Liang et al., 2024) with a target coverage of 90% and 30 repetitions. The details are presented as following:

We conduct an empirical study to evaluate methods for constructing prediction intervals using the Conformalized Quantile
Regression (CQR) framework. The experiments are performed on the Protein Structure dataset obtained from the UCI
repository, which comprises N = 45730 data points with feature dimension d = 9. The base learners employed are
RandomForestQuantileRegressor instances from Python’s quantile forest package. The target nominal
coverage level for all experiments is set to 1− α = 0.9.

We investigate two distinct strategies for utilizing the data reserved after model training (referred to as calibration set and
hold-out set): Same: A single dataset is allocated for both model selection (i.e., choosing the optimal hyperparameter
configuration from a set of candidates) and the subsequent calibration step (i.e., determining the empirical quantile required
to adjust the prediction interval width); Hold-out: The reserved data is partitioned into two disjoint sets of equal size, where
the first set is used for model selection, while the second set is used for calibration, consequently requiring twice the amount
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(a) Temperature Scaling, APS
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(b) Temperature Scaling, THR
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(c) Vector Scaling, THR, Size of Calibration Set
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Figure 3. Additional results for confidence calibration across various datasets and score functions. The coverage gaps are obtained
on the conformal prediction with a hold-out set or the same set as calibration set to parameter tuning. Figures 3a and 3b show the tuning
bias with temperature scaling, using APS and THR as the score functions, respectively. The coverage gaps are obtained on the conformal
prediction with a hold-out set or the same set as calibration set to parameter tuning. Figures 3c and 3d show the tuning bias with vector
scaling, using THR as the score function. The experiments vary the size of the calibration set and the number of parameters. The
experiments are conducted on pre-trained models in Appendix A.1. The coverage rate is set to 0.9. The figure shows that the tuning bias
of temperature scaling is small for all datasets and score functions under various settings. The tuning bias of vector scaling is generally
large except CIFAR-10. For comparison, the tuning bias of temperature scaling is generally smaller than that of vector scaling.
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(a) RAPS
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(b) SAPS
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(c) Score Aggregation
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(d) C-Adapter, APS
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(e) C-Adapter, THR

Figure 4. Additional results for score function tuning, aggregation, and C-Adapter across various datasets and score functions.
The coverage gaps are obtained on the conformal prediction with a hold-out set or the same set as calibration set to parameter tuning.
Figures 4a and 4b show the tuning bias with RAPS and SAPS, respectively. Figure 4c shows the tuning bias with score aggregation.
Figures 4d and 4e show the tuning bias with C-Adapter, using APS and THR as the score functions, respectively. The experiments are
conducted on pre-trained models in Appendix A.1. The coverage rate is set to 0.9. The figure shows that the tuning bias of RAPS, SAPS,
score aggregation, and C-Adapter is not significantly different from the one with a hold-out set under various settings.
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(a) ConfTr(ft.), APS
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Figure 5. Additional results for ConfTr(ft.) across various datasets and score functions. The coverage gaps are obtained on the
conformal prediction with a hold-out set or the same set as calibration set to parameter tuning. Figures 5a and 5b show the tuning bias
with ConfTr(ft.), using APS and THR as the score functions, respectively. The experiments are conducted on pre-trained models in
Appendix A.1. The coverage rate is set to 0.9. The figure shows that the tuning bias of ConfTr (ft.) is generally small for all datasets and
score functions under various settings.

of reserved data compared to the Shared strategy to achieve an equivalently sized dataset for the final calibration phase.
Here we consider the following two experiments:

Experiment 1: Varying the number of candidate models. For the first experiment, the size of calibration set in the
Shared strategy is fixed at n = 50. For the Shared strategy, these 50 data points are employed for both model selection and
calibration, while for the Split strategy, 50 data points are used for model selection, and a separate set of 50 data points is
used for calibration, amounting to 100 reserved data points in total. The complexity of the model selection task is modeled
by varying the number of candidate models. All candidate models are RandomForestQuantileRegressor instances.
The max features parameter is varied across 10 distinct values, specifically np.linspace(d/10, d, 10). The
n estimator parameter is adjusted to alter the total pool of models: We vary the number of candidate models by adjusting
the n estimator parameter to 4, 8, 12, 16, and 20 values, which combined with the 10 distinct max features values
results in 40, 80, 120, 160, and 200 candidate models respectively.

Experiment 2: Varying the Calibration Set Size In this experiment, the number of candidate models is held constant
at 200 (derived from 20 n estimator values and 10 max features values). We vary the size of the calibration
dataset, denoted as n. For the Same strategy, n represents the size of the single dataset used for both model selection and
calibration, while for the Hold-out strategy, n denotes the size of each of the two datasets (one for selection and one for
calibration), resulting in a total reserved data of 2× n for the Hold-out strategy. The values investigated for both strategies
are n ∈ {100, 200, 300, 400, 500}.

The results of the two experiments are summarized in Table 2 and Table 3, respectively. Mean Coverage and Std Coverage
are calculated from the 30 independent runs. The results of the two experiments are similar to the ones in the main text.

D. Some Useful Lemmas and Corollaries
In this section, we provide some useful lemmas and corollaries that are used in the main text.

Lemma D.1. (Dvoretzky et al., 1956; Massart, 1990, Dvoretzky–Kiefer–Wolfowitz Inequality) Let x1,x2, . . . ,xn be
independent and identically distributed (i.i.d.) random variables with common distribution function F . The empirical
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Table 2. Results for varying the number of candidate models. For the Same strategy, calibration size n = 50. For the Hold-out strategy,
n = 50 for model selection and n = 50 for calibration. Target coverage 1− α = 0.9.

# Models Method Coverage Length Coverage Gap Tuning Bias
Mean (Std) Mean (Std) Mean (Std) Mean

40 Same 0.8437 (0.0383) 12.89 (1.22) 0.0563 (0.0348) 0.0246
Hold-out 0.9251 (0.0268) 17.28 (2.96) 0.0317 (0.0212) -

80 Same 0.8229 (0.0354) 12.41 (1.34) 0.0771 (0.0353) 0.0412
Hold-out 0.9049 (0.0404) 16.01 (2.51) 0.0359 (0.0252) -

120 Same 0.8258 (0.0564) 12.27 (1.63) 0.0742 (0.0520) 0.0324
Hold-out 0.8953 (0.0480) 15.94 (3.17) 0.0418 (0.0293) -

160 Same 0.8373 (0.0467) 12.40 (1.33) 0.0627 (0.0413) 0.0371
Hold-out 0.9163 (0.0286) 16.24 (2.06) 0.0256 (0.0217) -

200 Same 0.8447 (0.0494) 12.44 (1.41) 0.0553 (0.0429) 0.0187
Hold-out 0.9037 (0.0406) 15.09 (2.25) 0.0366 (0.0246) -

Table 3. Results for varying the calibration set size (n). The number of candidate models is fixed at 200. For the Hold-out strategy, n
refers to the size of each of the two sets (selection and calibration), totaling 2n reserved points. Target coverage 1− α = 0.9.

n Method Coverage Length Coverage Gap Tuning Bias
Mean (Std) Mean (Std) Mean (Std) Mean

100 Same 0.8459 (0.0509) 12.77 (1.25) 0.0541 (0.0433) 0.0150
Hold-out 0.9079 (0.0456) 16.16 (3.11) 0.0391 (0.0278) -

200 Same 0.8553 (0.0378) 13.10 (0.96) 0.0448 (0.0337) 0.0118
Hold-out 0.9043 (0.0394) 15.12 (1.72) 0.0330 (0.0212) -

300 Same 0.8608 (0.0326) 13.04 (0.93) 0.0392 (0.0296) 0.0158
Hold-out 0.8967 (0.0323) 14.46 (1.04) 0.0234 (0.0192) -

400 Same 0.8595 (0.0292) 13.13 (0.56) 0.0405 (0.0266) 0.0157
Hold-out 0.8927 (0.0322) 14.37 (1.16) 0.0248 (0.0201) -

500 Same 0.8767 (0.0388) 13.25 (0.68) 0.0327 (0.0269) 0.0037
Hold-out 0.9007 (0.0323) 14.21 (0.65) 0.0290 (0.0189) -
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distribution function Fn is defined by

Fn(x) =
1

n

n∑
i=1

1{xi ≤ x}.

Then for any ε > 0, the following bound holds:

P
(
sup
x∈Rd

|Fn(x)− F (x)| > ε

)
≤ 2 exp(−2nε2).

Lemma D.2 (Gaussian Tail Inequality). For any a > 0, we have:∫ ∞

a

e−t2 dt ≤ e−a2

2a

Proof. For any a > 0, we have: ∫ ∞

a

e−t2 dt =

∫ ∞

a

t

t
e−t2 dt

=
1

2

∫ ∞

a

1

t
· 2te−t2 dt

≤ 1

2a

∫ ∞

a

2te−t2 dt

=
e−a2

2a

The inequality in the third line is because when t ≥ a > 0, 1
t ≤ 1

a .

Lemma D.3. For a score function Sλ with one-dimensional parameter space Λ = R, consider the class:

HΛ = {1{Sλ(x, y) ≤ t} | λ ∈ R, t ∈ R}.

If Sλ(x, y) is continuous, bounded over λ for any fixed (x, y), then VC(HΛ) ≤ 2. Specifically, if Sλ(x, y) is distinct over
X × Y for any fixed λ, then VC(HΛ) = 2.

Proof. We prove that VC(HΛ) ≤ 2 in two steps:

1. We show that VC(HΛ) ≥ 2. Given any two distinct points (x1, y1) and (x2, y2), we need to verify that all four possible
binary labellings (0,0), (0,1), (1,0), (1,1) can be realized by some choice of λ and t. Consider Sλ(x, y):

• For labeling (0,0): Choose t small enough such that both points have values greater than t.
• For labelling (1,1): Choose t large enough such that both points have values less than or equal to t.
• Then forlabellingss (1,0) or (0,1): Since the points are distinct and Sλ(x, y) is continuous in λ over R, by the

intermediate value theorem, there exists some λ where Sλ(x1, y1) ̸= Sλ(x2, y2). Then, choose t between these
two values.

Therefore, VC(HΛ) ≥ 2.

2. We prove that VC(HΛ) ≤ 2. Suppose for contradiction that three distinct points can be shattered. Consider the
labelling pattern (1,0,1). This would require some λ and t such that:

Sλ(x1, y1) ≤ t, Sλ(x2, y2) > t, Sλ(x3, y3) ≤ t

implying Sλ(x2, y2) > max{Sλ(x1, y1), S
λ(x3, y3)}. However, since λ is one-dimensional and Sλ(x, y) is continu-

ous in λ, such a complex ordering cannot be achieved at a single λ value for all possible three-point configurations.
This phenomenon is because the continuity of Sλ(x, y) over R ensures that any crossing of function values must
occur in pairs, making it impossible to maintain the required ordering consistently. Therefore, three points cannot be
shattered, and VC(HΛ) ≤ 2.

19



Parametric Scaling Law of Tuning Bias in Conformal Prediction

Combining both results, we conclude that VC(HΛ) = 2.

Corollary D.4. For a score function Sλ with parameter space Λ = R+, consider the class:

HΛ = {1{Sλ(x, y) ≤ t} | λ ∈ R+, t ∈ R}.

If Sλ(x, y) is continuous and bounded over λ for any fixed (x, y) and Sλ(x, y) is distinct over X × Y for any fixed λ, then
VC(HΛ) = 2.

Proof. The proof mirrors Lemma D.3, with λ > 0. This restriction does not alter the VC dimension: First, we show that
VC(HΛ) ≥ 2. Two points can still achieve all labellings with positive λ and t. Next, we show that VC(HΛ) ≤ 2. The
restriction to λ > 0 does not allow shattering three points. Thus, the VC dimension is 2.

Lemma D.5. For a score function Sλ with d-dimensional parameter space Λ = Rd, consider the class:

HΛ = {1{Sλ(x, y) ≤ t} | λ ∈ Rd, t ∈ R}.

If Sλ(x, y) is continuous and bounded over λ for any fixed (x, y), then VC(HΛ) ≤ d+ 1.

Proof. We prove that VC(HΛ) ≤ d+ 1. Suppose for contradiction that d+ 2 distinct points can be shattered. Consider any
labelling pattern that requires one point to have a value strictly larger than d+ 1 other points at the same λ. This would
require some λ and t such that:

Sλ(xi, yi) ≤ t for i ∈ I, Sλ(xj , yj) > t for some j /∈ I

where |I| = d + 1. This implies Sλ(xj , yj) > maxi∈I{Sλ(xi, yi)}. However, since λ is d-dimensional and Sλ(x, y)
is continuous in λ, such a complex ordering requiring one point to dominate d + 1 other points cannot be achieved at a
single λ value. This phenomenon is because the continuity of Sλ(x, y) over Rd ensures that the ordering relationships
between d+ 2 points cannot be arbitrary with only d degrees of freedom. Therefore, d+ 2 points cannot be shattered, and
VC(HΛ) ≤ d+ 1.

Lemma D.6 (Empirical Process Bound via VC Dimension). For the class HΛ with finite VC dimension VC(HΛ) ≥ 1, we
have

ERΛ,Dcal ≤ C

√
VC(HΛ)

n
,

where C is a universal constant.

Proof. It is a direct result of the VC dimension bound in Vershynin (2018, Theorem 8.3.23).

Lemma D.7. If Sλ(x, y) is order-preserving for any transformation λ ∈ Λ, i.e., Sλ(x, y) ≤ Sλ(x′, y′) if and only if
S(x, y) ≤ S(x′, y′) for any transformation λ, then for (X, y) with the same distribution as (Xi, yi) ∈ Dcal

P(Sλ(x, y) ≤ t̂λDcal
| Dcal) = P(S(x, y) ≤ t̂ | Dcal)

for λ ∈ Λ where t̂ is defined in Eq. (2).

Proof. Since Sλ(x, y) is order-preserving for any transformation λ ∈ Λ, we have

Sλ(x, y) ≤ Sλ(x′, y′) if and only if S(x, y) ≤ S(x′, y′)

for any transformation λ. By the definition of t̂(λ,Dcal) and t̂, the position of Sλ(x, y) among Sλ(xi, yi) is the same as the
position of S(x, y) among S(xi, yi). Then, we have

P(Sλ(x, y) ≤ t̂(λ,Dcal) | Dcal) = P(S(x, y) ≤ t̂ | Dcal).

Lemma D.8. For temperature scaling in binary classification, we have pTS
λ (y|X) is order-preserving over (x, y) for any

transformation λ ∈ Λ.
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Proof. Noting that

pTS
λ (y | x) = ψy

(
f(x)

λ

)
where ψy is the softmax function defined in Eq. (7). Since

ψy(X) =
exp (fy(x))

exp (fy(x)) + exp (f1−y(x))
=

1

1 + exp (f1−y(x)− fy(x))

for binary label y ∈ {0, 1}, we have
ψy(f(x)) ≤ ψy′(f(x′))

⇐⇒ 1

1 + exp (f1−y(x)− fy(x))
≤ 1

1 + exp (f1−y′(x′)− fy′(x′))

⇐⇒ exp (f1−y(x)− fy(x)) ≥ exp (f1−y′(x′)− fy′(x′))

⇐⇒ exp ((f1−y(x)− fy(x))/λ) ≥ exp ((f1−y′(x′)− fy′(x′))/λ),∀λ > 0

⇐⇒ ψy

(
f(x)

λ

)
≤ ψy′

(
f(x′)

λ

)
for any transformation λ > 0.

E. Proof of Theorem 4.1
Proof. For any sample (x, y) with the same distribution as (xi, yi) ∈ Dcal and independent of Dcal, recalling the definition
of RΛ,Dcal in Theorem 4.1:

RΛ,Dcal := sup
λ∈Λ,t∈T

∣∣∣ 1
n

∑
i∈[n]

1{Sλ(xi, yi) ≤ t} − P
(
Sλ(xtest, ytest) ≤ t | Dcal

) ∣∣∣
we have

| 1
n

n∑
i=1

1{Sλ(xi, yi) ≤ t} − P(Sλ(x, y) ≤ t | Dcal)| ≤ RΛ,D

Then, we have

1

n

n∑
i=1

1{Sλ(xi, yi) ≤ t} −RΛ,D ≤ P(Sλ(x, y) ≤ t | Dcal) ≤
1

n

n∑
i=1

1{Sλ(xi, yi) ≤ t}+RΛ,D.

Letting t = t̂λDcal
defined in Eq. (4) and noting the truth that

1

n

n∑
i=1

1{Sλ(xi, yi) ≤ t̂(λ,Dcal)} =
⌈(1− α)(1 + n)⌉

n
,

we have
⌈(1− α)(1 + n)⌉

n
−RΛ,D ≤ P(Sλ(x, y) ≤ t̂λDcal

| Dcal) ≤
⌈(1− α)(1 + n)⌉

n
+RΛ,D.

Take expectations on both sides; we have

CovGap(C, α) ≤ ERΛ,D + εα,n.
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F. Proof of Proposition 4.2
Proof. By Lemma D.1, we have

P(sup
t∈T

| 1
n

n∑
i=1

1{Sλ(xi, yi) ≤ t} − P(Sλ(x, y) ≤ t | Dcal)| > u) ≤ 2 exp(−2nu2).

By the property of probability of finite union over λ ∈ Λ, we have

P( sup
λ∈Λ,t∈T

| 1
n

n∑
i=1

1{Sλ(xi, yi) ≤ t} − P(Sλ(x, y) ≤ t | Dcal)| > u) ≤ 2|Λ| exp(−2nu2),

i.e.,
P(RΛ,Dcal > u) ≤ 2|Λ| exp(−2nu2).

Noting that the bound is too large around 0, we take a departure from the bound into two parts from the point
√

log(2|Λ|)
2n

where the probability is just 1. Before this point, the bound is too large, we do not use it. Then, the expectation of RΛ,Dcal is
bounded by two parts:

E[RΛ,Dcal ] =

∫ ∞

0

P(RΛ,Dcal > u) du

=

∫ √
log(2|Λ|)

2n

0

P(RΛ,Dcal > u) du+

∫ ∞√
log(2|Λ|)

2n

P(RΛ,Dcal > u) du

≤
√

log(2|Λ|)
2n

+

∫ ∞√
log(2|Λ|)

2n

2|Λ| exp(−2nu2) du

=

√
log(2|Λ|)

2n
+

2|Λ|√
2n

∫ ∞

√
log(2|Λ|)

exp(−t2) dt

≤
√

log(2|Λ|)
2n

+
2|Λ|√
2n

· 1

2|Λ|
√

log(2|Λ|)

=

√
log(2|Λ|)

2n
+

1√
2n

√
log(2|Λ|)

where the second inequality is due to Lemma D.2.

G. Proof of Corollary 4.3 and 4.4
Proof. It is a direct application of Proposition 4.2.

H. Proof of Proposition 4.6
Proof. It is a direct application of Lemma D.5 and D.6.

I. Proof of Corollary 4.7
Proof. It is a direct application of Proposition 4.6.

J. Proof of Proposition 5.1
Proof. We consider a binary classification problem with temperature scaling and THR score applied. The probability
pTS
λ (y | x) is order-preserving of the label for a given input X for any λ ∈ R+, i.e, ∀λ ∈ R+,

pTS
λ (y | x) ≤ pTS

λ (y′ | x) ⇐⇒ p(y | x) ≤ p(y′ | x). (11)
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Then, for any two samples (x, y) and (x′, y′), with the property of softmax function ψy on binary classification (see
Lemma D.8 in Appendix D), we have

pTS
λ (y | x) ≤ pTS

λ (y′ | x) ⇐⇒ p(y | x) ≤ p(y′ | x). (12)

Then, the direct result is that the order of score function is preserved, i.e.,

STHR(x, y, p
TS
λ ) ≤ STHR(x

′, y′, pTS
λ )

⇐⇒ STHR(x, y, p) ≤ STHR(x
′, y′, p).

Therefore, the order of the scores on the dataset Dcal is preserved for any transformation λ ∈ R+, i.e, the order of Sλ
Dcal

is
the same as SDcal for any λ ∈ R+. Then by Lemma D.7 in Appendix D, we have

P
(
Sλ(x, y) ≤ t̂λDcal

|Dcal
)
= P

(
S(x, y) ≤ t̂|Dcal

)
(13)

for any λ ∈ R+, which means TuningBias(ĈTS) = 0 ≤ TuningBias(ĈVS).

K. Order-preserving Regularization and Proof of Proposition 5.2
Order-preserving regularization As discussed in Section 5, applying the regularization on the conformal prediction
with confidence calibration or fine-tuning methods could reduce the tuning bias significantly. Taking order-preserving
regularization as an example, we modify the class associated with RΛ as regularization form:

Hλ,op = {fλ,t ∈ HΛ s.t. o(y,x, p) = o(y,x, pλ)}, (14)

where o(y,x, p) is the order of the true label y in the sorted predicted probabilities p(·|x), and pλ is the probability after
confidence calibration like temperature scaling or vector scaling. The class HΛ,op is a constraint version of HΛ with a
special regularization. With the constrained ERM with artificial order-preserving regularization, we could obtain a less
tuning bias. The tuning bias of the conformal prediction with order-preserving regularization is bounded by the tuning bias
of the conformal prediction without order-preserving regularization as Proposition 5.2.

Proof of Proposition 5.2. The ConfTr(op) is a regularization case of ConfTr, where the class HΛ,op is used as the constraint.
Since the class HΛ,op defined in Eq. (14) is a subset of HΛ, we have

E sup
f∈HΛ,op

∣∣∣ 1
n

∑
i∈[n]

f(xi, yi)− E[f(xtest, ytest) | Dcal]
∣∣∣ ≤ E sup

f∈HΛ

∣∣∣ 1
n

∑
i∈[n]

f(xi, yi)− E[f(xtest, ytest) | Dcal]
∣∣∣,

which means that
TuningBias(CConfTr (op)) ≤ TuningBias(CConfTr).

Order-preserving regularization for vector scaling For the vector scaling defined in Eq. (8), because the softmax
function is order-preserving, the order-preserving regularization on the output probability in Eq. (7) is equivalent to the
order-preserving regularization on the input logits f(x). If we apply the order-preserving regularization on the vector
scaling, we should have for any logits vector f(x),

∀j, j′ ∈ [K], fj(x) ≤ fj′(x) ⇐⇒ Wjfj(x) + bj ≤Wj′fj′(x) + bj′ ,

where fj(x) is the j-th element of the logits vector f(x), Wj is the j-th element of W , and bj is the j-th element of b.

Lemma K.1. Vector scaling is order-preserving if and only if Wj = Wj′ > 0 for all j, j′ ∈ [K] and bj = bj′ for all
j, j′ ∈ [K].
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Proof. (⇐) It is a direct result of the definition of vector scaling.

(⇒) If vector scaling is order-preserving, then

∀j, j′ ∈ [K], fj(x) ≤ fj′(x) ⇐⇒ Wjfj(x) + bj ≤Wj′fj′(x) + bj′ .

We first exclude the case when Wj < 0 for any j ∈ [K]: For any Wj < 0, and fixed bj , bj′ , we could find small enough
fj(x), such that fj(x) < fj′(x) and Wjfj(x) + bj > Wj′fj′(x) + bj′ , which contradicts the order-preserving property.
Therefore, we only consider the case when Wj ,Wj′ > 0 for all j, j′ ∈ [K]. Without loss of generality, we assume
fj(x) ≤ fj′(x) and Wj < Wj′ , and let fj′(x) = fj(x) + ϵ with ϵ ≥ 0, then we have

Wjfj(x) + bj ≤Wj′fj′(x) + bj′ ⇐⇒ (Wj −Wj′)fj(x) ≤ bj′ − bj +Wj′ϵ

Let ε→ 0, we have
(Wj −Wj′)fj(x) ≤ bj′ − bj

hold for any fj(x). We could find a small enough fj(x), such that

(Wj −Wj′)fj(x) > bj′ − bj

This contradicts the order-preserving property. Therefore, we must have Wj =Wj′ > 0 for all j, j′ ∈ [K] and bj = bj′ for
all j, j′ ∈ [K].

Remark K.2. By Proposition 5.2, if we apply the order-preserving regularization on the vector scaling, the parameter space
of the vector scaling is reduced to Λ = R2.

Order-preserving regularization for matrix scaling Here we consider a more complex case that the parameter space of
the scaling is a matrix: Wf(x)+ b, where f be a logits value function for a classifier of K classes, and W is a matrix of size
K ×K and b is a vector of size K. Here the dimension of the parameter space is K2 +K. We apply the order-preserving
regularization on the matrix scaling:

Lemma K.3. Let f be a logits value function for a classification of K classes. The matrix scaling g(x) = Wf(x) + b
is order-preserving if and only if W has the form W = aI + 1vT for some scalar a > 0 and vector v ∈ RK , and b is a
constant vector (i.e., bj = bj′ for all j, j′ ∈ [K]). Here, I is the K ×K identity matrix and 1 is the K-dimensional vector
of all ones.

Remark K.4. Here, we regard C-Adapter as a special case of matrix scaling with order-preserving regularization. The
above proposition shows that the order-preserving regularization reduces the dimension of parameter space from K2 +K to
K + 2, which is much smaller than VS with its dimension being 2K. Based on the parametric scaling law (Section 4), we
explain why C-Adapter can achieve lower tuning bias than VS. And Lemma K.1 is a special case of Lemma K.3.

L. Additional Theoretical Results of Score aggregation
For a more general case about the selection of scores, we could also apply the same analysis to the score aggregation (Luo &
Zhou, 2024). In the setting of score aggregation, they choose an aggregation weights vector w to aggregate multiple score
functions:

Sw(x, y) =

M∑
m=1

wmSm(x, y),

where w = (w1, . . . , wM )⊤ is the aggregation weights vector. Define the parameter space Λ as the set of all possible
aggregation weights vectors, i.e., Λ = W = {w ∈ RM :

∑M
m=1 wm = 1, wm ≥ 0}. Then, for grid research, we could also

apply Proposition 4.2 to bound its tuning bias to obtain a more similar result as Corollary 4.4.
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