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Abstract—High-speed off-road autonomous driving presents
unique challenges due to complex, evolving terrain characteristics
and the difficulty of accurately modeling terrain-vehicle interac-
tions. While dynamics models used in model-based control can
be learned from real-world data, they often struggle to generalize
to unseen terrain, making real-time adaptation essential. We
propose a novel framework that combines a Kalman filter-
based online adaptation scheme with meta-learned parameters
to address these challenges. Offline meta-learning optimizes
the basis functions along which adaptation occurs, as well as
the adaptation parameters, while online adaptation dynamically
adjusts the onboard dynamics model in real time for model-based
control. We validate our approach through extensive experiments,
including real-world testing on a full-scale autonomous off-road
vehicle, demonstrating that our method outperforms baseline
approaches in prediction accuracy, performance, and safety
metrics, particularly in safety-critical scenarios. Our results
underscore the effectiveness of meta-learned dynamics model
adaptation, advancing the development of reliable autonomous
systems capable of navigating diverse and unseen environments.

I. INTRODUCTION

High-speed off-road autonomous driving presents a unique
set of challenges where precise and reliable control is essen-
tial for traversing complex and unseen environments. These
settings are characterized by diverse terrain types such as
sand, snow, and dense vegetation, as well as varying terrain
conditions like wetness, deformability, and roughness. Such
variability can significantly alter vehicle dynamics, introducing
substantial uncertainties [13, 1, 25, 20]. Just as a human driver
adjusts their driving policy based on how the vehicle responds
to the terrain, autonomous systems must adapt dynamically to
maintain both performance and safety.

Autonomous systems are increasingly relied upon in sce-
narios where human intervention is impractical, too slow, or
dangerous. For instance, Mars rovers operate with onboard
autonomy to identify obstacles and plan safe paths, as com-
munication delays prevent real-time teleoperation [26, 23].
On Earth, autonomous vehicles hold significant potential for
disaster response, where hazardous environments could render
human operation unsafe [15, 16, 18]. Similarly, in mining and
resource extraction, they can transport materials across rugged
and hazardous terrains, improving operational efficiency and
worker safety [3]. Safety is paramount in these scenarios, as
entering dangerous zones or tipping the vehicle over could
have severe consequences for mission success or operational
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Fig. 1: Trajectories for a single 3-lap run, with insets displaying video
stills. The baseline configuration shows erratic trajectories with frequent
course boundary and rollover limit violations. In contrast, our adaptation
configuration demonstrates more deliberate and compliant trajectories as the
car learns the terrain dynamics in real time.

integrity.
When system dynamics are known, model-based control

techniques are widely used for the effective control of au-
tonomous systems. For instance, model predictive path integral
(MPPI) control [28] is an algorithm that rolls out sampled
control inputs on a dynamics model to identify optimal tra-
jectories. This method has demonstrated significant success in
off-road autonomous driving applications [4, 12, 17, 9, 21, 27],
but its performance hinges on the accuracy of the underlying
dynamics model. Accurately modeling interactions between
vehicles and terrain remains a significant challenge, particu-
larly in high-speed off-road driving, where changing terrain
and operational conditions push the vehicle to its performance
limits. When the dynamics model fails to capture these inter-
actions, it can lead to degraded performance and compromised
safety.

To address these limitations, hybrid approaches have
emerged, integrating first-principles dynamics models with
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Fig. 2: Meta-learning online dynamics model adaptation. Online, a Kalman filter updates the linear combination of an ensemble of last-layer weights
(Algorithm 1). Offline, trajectory segments are used to meta-learn model parameters, the last-layer ensemble, and the Kalman filter parameters (Algorithm 2).

learned components to improve predictive accuracy [5, 14, 6,
9, 19]. While these models are effective under nominal con-
ditions, they can struggle to generalize to previously unseen
terrains or adapt to evolving dynamics during operation. This
limitation underscores the need for adaptive models capable
of online adjustment.

We propose a novel framework (Fig. 2) for meta-learned
online dynamics model adaptation designed to address these
challenges. By leveraging meta-learning techniques, our
method enables efficient and effective adaptation of the dy-
namics model to real-time sensor data. This approach allows
the system to adjust to changes in terrain and vehicle behavior
dynamically, providing accurate predictions essential for safe
and efficient control. Our contributions include:

• A meta-learning framework for offline optimization of
adaptation basis functions and parameters, along with
dynamics model parameters.

• An efficient Kalman filter-based online adaptation scheme
to update model parameters in real time, addressing the
challenges of noisy and delayed state measurements.

• Empirical validation of our method on a full-scale au-
tonomous off-road vehicle and simulated environments,
showcasing improved performance and safety metrics
over baseline approaches.

II. PRELIMINARIES

A. Vehicle Dynamics

We model the vehicle dynamics according to [11, 10]; a
brief overview is presented here. The dynamics are a discrete-

time nonlinear system of the form

xt+1 = f(xt, ut, yt), (1)

where ut ∈ R3 are control inputs (throttle, brake, and steering)
and yt ∈ R14 are sensor observations (e.g. roll, pitch, surface
normals). The state of the vehicle xt = [pt, vt, zt] ∈ R10,
consists of position pt ∈ R3, velocity vt ∈ R3, and actuator
states zt ∈ R4. The acceleration v̇t is predicted with a hybrid
parametric and learned model:

v̇t = g(xt, ut;ψ) + ζ(ηt;ϕ, θt) (2)

where g(·) is a physics-based parametric model with param-
eters ψ and ζ(·) contains a long short-term memory (LSTM)
network and a feedforward neural network (FNN) with learned
parameters ϕ, adaptable parameters θt, and measurements ηt.

B. Control Architecture

We use Model Predictive Path Integral Control (MPPI) as
specified in [11] to estimate the optimal control sequence
u∗
t = {ut, . . . , ut+T }. The cost function balances several

objectives critical for safe and efficient off-road driving, in-
cluding strong penalties for leaving the track and exceeding
rollover safety limits. To assess rollover risk, we estimate
the ratio of loading between the left- and right-side tires;
significant imbalance indicates a higher likelihood of tipping,
and is penalized accordingly.

III. META-LEARNING MODEL ADAPTATION

In this section, we present our approach (Fig. 2), detailing
how we design the adaptable components of the dynamics



model, the online scheme for real-time parameter updates, and
the meta-learning framework for optimizing adaptation.

A. Adaptable Parameters

Selection of the adaptable parameters θ is crucial in online
dynamics model adaptation. Adapting all parameters ϕ of
the LSTM and FNN in real-time is impractical for online
adaptation, as the sheer number of parameters would result
in prohibitively slow updates with respect to the timescale
of the changing dynamics involved with high-speed off-road
driving. On the other hand, adapting only the parameters of
the parametric model ψ would be insufficient because this
model cannot fully capture complex terrain interactions that
the learned model ζ(·) is designed to address.

To achieve adaptation fast enough for high-speed off-road
driving, we adapt the linear combination of an ensemble of
last-layer weights (Fig. 2). We represent the ensemble of last-
layer weights in the FNN as a tensor W ∈ Rnw×nout×nin ,
where nw denotes the ensemble size, and nin and nout are
the input and output feature dimensions of the last layer,
respectively. The weight matrices of the ensemble are stacked
along the first dimension to form this tensor. Now, we express
how the adapted parameters appear in the learned model with:

ζ(η;ϕ, θ) = (ϕw + θw)
T
WΦ(η;ϕl) + ϕb + θb, (3)

where Φ(·) ∈ Rnin is the output of the second to last
layer of the FNN, the learned parameters consist of ϕ =
[ϕl, ϕw, ϕb,W], and the adaptable parameters consist of θ =
[θw, θb]. The learned ensemble weighting ϕw ∈ Rnw is
adapted by θw and the last layer bias ϕb ∈ Rnout is adapted
by θb.

Remark 1. The tensor W is a set of basis functions, with
their weighting dynamically adjusted through adaptation of
θw.

B. Online Adaptation

Here, we present the online adaptation scheme (Algo-
rithm 1) implemented onboard the vehicle for dynamically
updating the adaptable parameters θ. We employ a Kalman
filter to quickly adapt the dynamics model to incoming
measurements since the adaptable parameters are linear with
respect to the dynamics. Propagation of the dynamics (1)
occurs at a very quick timescale; we run the Kalman filter
at a slower rate to improve parameter adaptation by adapting
parameters every h time steps. This allows us to mitigate the
impact of noisy and delayed state measurements, account for
the minimal changes in integrated quantities over single time
steps, and capture longer-term trends in parameter behavior.
To form the Kalman filter, we assume the following:

Assumption 1. The adaptable parameters evolve according
to a random walk: θt+h = θt + wθ

t with wθ
t ∼ N (0, Q).

Assumption 2. Explicitly denoting the dependence on θ, we
assume the system dynamics have additive Gaussian noise:
xt+1 = f(xt, ut, yt; θt) + wx

t , where wx
t ∼ N (0, R).

Algorithm 1 Online Adaptation

1: Input: starting step s, initial parameter covariance Ps

2: initialize t← s, θ0 ← 0
3: while running do
4: x̂t+1:t+h ← Propagate dynamics (1) h steps with θt
5: Ht+h ← Compute multi-step Jacobian with (4)
6: P̄t+h ← Pt +Q
7: St+h = C

(
Ht+hP̄t+hH

T
t+h +R

)
CT

8: Kt+h ← P̄t+hH
T
t+hC

TS−1
t+h

9: θt+h ← θt + γtKt+hC (xt+h − x̂t+h)
10: Pt+h ← P̄t+h +Kt+hCHt+hP̄t+h

11: t← t+ h

With the notation at:t+h ≜ {at, at+1, . . . , at+h}, where a
is any variable, we perform an h-step dynamics propagation
to obtain predicted states x̂t+1:t+h. Since we propagate the
dynamics over multiple steps, we compute the multi-step
Jacobian Ht+h = ∂x̂t+h/∂θt with the recursion:

Ht+i = Fx
t+iHt+i−1 + Fθ

t+i

Ht = Fθ
t ,

(4)

where:

Fx
t+i =

∂

∂xt+i
f(x̂t+i, ut+i, yt+i; θt) and

Fθ
t+i =

∂

∂θt
f(x̂t+i, ut+i, yt+i; θt).

(5)

By performing a multi-step propagation, we include the dy-
namics Jacobian Fx in the multi-step Jacobian computation
(4). This Jacobian captures how the current state influences
future states, and its recursive incorporation over multiple steps
provides a richer, long-term understanding of how the adapted
parameters θ influence the dynamics, improving the accuracy
of adaptation. We make the following assumption to simplify
computation of the multi-step Jacobian:

Assumption 3. Changes in the learned model output with
respect to changes in the state are negligible, i.e., ∂ζ/∂x ≈ 0.

We use the measurement selection matrix C ∈ R3×10 in
Algorithm 1 to select only the velocity measurements v for
parameter updates. With x̂t+1:t+h and Ht+i available, we
perform a Kalman update with lines 6 to 10 of Algorithm 1.
To prevent unnecessary parameter updates while the vehicle
is moving very slowly, we scale the update in line 9 with:

γt =
∥vt∥22
∥vt∥22 + ε

, (6)

where ε > 0 adjusts the scaling intensity. The updated
parameters are then used with the controller (Section II-B)
for the next h time steps.

C. Offline Meta-learning

With the adaptation framework established, our goal is to
optimize the basis functions W and the Kalman filter param-
eters Ps, Q, R, and ε offline to maximize the effectiveness



Algorithm 2 Offline Meta-Learning

1: Input: Dataset D
2: Output: Meta-learned parameters ϕ, ψ, Ps, Q,R, ε
3: for NE epochs do
4: while D ≠ ∅ do ▷ iterate over entire dataset
5: Sample NB trajectories from D w/o replacement
6: for each trajectory in batch do
7: θt ← Run Algorithm 1 from t− τ to t
8: Rollout dynamics (1) from t to t+ T with θt
9: Compute trajectory loss Li from t to t+ T

10: for each ξ ∈ {ϕ, ψ, Ps, Q,R} do
11: ξ ← ξ − α∇ξ

∑NB

i=1 Li ▷ optimizer step

of online adaptation. This is achieved through a two-phase
process: first, a data collection phase to gather diverse and
representative trajectories, followed by a training phase to
refine the parameterization and basis functions.

1) Data Collection: We begin by collecting autonomous
driving data on a diverse set of terrains and conditions. Data
are collected in discrete runs, with each run defined as a
continuous period during which the robot is actively operating.
Each run is subsequently partitioned into potentially overlap-
ping trajectories, stored in dataset D, where each trajectory is
represented as {xt−τ :t+T , ut−τ :t+T , yt−τ :t+T }, encapsulating
the state, control inputs, and external inputs over a period of
τ +T time steps. Here, each trajectory will be associated to a
unique reference time t, τ is the adaptation length, and T is
the MPPI prediction length (Section II-B). Each trajectory is
short relative to the overall duration of the runs—on the order
of seconds. Consequently, individual trajectories are generally
limited to a single terrain type and a specific terrain condition,
providing focused and localized data.

2) Training: We perform offline training (Algorithm 2)
with gradient-based meta-learning [8], which consists of an
inner θ adaptation phase and an outer loop which optimizes
ϕ, ψ Ps, Q, R, and ε (the tensor W is reshaped as a vector
and contained within learned parameters ϕ). For each sampled
trajectory, we can identify the adaptable parameters at the t-th
time step, θt, by running Algorithm 1 for a τ -step adaptation
period from t−τ to t. Once adaptation is complete, θt and the
dynamics model (1) are used to generate a T -step dynamics
prediction (x̂t+1:t+1+T ). The i-th predicted trajectory is then
evaluated against the corresponding ground truth trajectory
using the multi-step loss function Li

1:

Li =
1

T

T∑
j=0

∥x̂t+1+j − xt+1+j∥22 , (7)

where t is the reference time associated with the i-th trajectory.
Importantly, Li is indirectly a function of ϕ, ψ, Ps, Q, R, and
ε, which enables meta-learning of these parameters through
backpropagation. During this process, gradients are propagated

1For simplicity, we present the mean squared error (MSE) loss, however,
in practice, we use the negative log-likelihood (NLL) loss from [11]
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Fig. 3: Forward facing camera stills from the dataset highlighting a diverse
range of terrains: A) flat sandy beach with a mixture of packed wet sand and
loose dry sand; B) wet dense mud that forms deep ruts; C) dirt trails with low
dry grass that weave through dense trees; D) mixed vegetation including dry,
dense vehicle-height grass; E) dense overgrown mixed vegetation ranging in
crushability; and F) loose gravel, uneven ground, and steep slopes.

TABLE I: Dataset statistics.

Mean Std Min 5th % Median 95th % Max
Fwd. vel. (m/s) 4.55 2.91 -2.79 -0.01 4.56 9.62 15.25
Lat. vel. (m/s) 0.02 0.20 -1.31 -0.32 0.00 0.37 1.34
Yaw rate (rad/s) 0.00 0.19 -1.32 -0.32 0.00 0.31 1.40
Pitch (deg) -0.4 4.9 -24.2 -8.0 -0.4 7.9 31.3
Roll (deg) 0.2 4.8 -28.7 -7.8 0.2 8.7 28.8

through the entire procedure of Algorithm 1, allowing the
meta-learning framework to optimize both the adaptation
dynamics and the underlying Kalman filter parameters effec-
tively.

Remark 2. Since W is optimized through the meta-learning
process, meta-learning effectively determines the “directions”
in the parameter space along which the Kalman filter can
adapt. In other words, it specifies the subset of parameters
that the Kalman filter targets for adaptation, guiding the
adaptation process to focus on the most relevant and impactful
aspects of the system’s dynamics.

Remark 3. During the meta-learning process, we explicitly
learn the covariance matrices Q and R, which govern how
quickly the Kalman filter adapts θ to changes in the environ-
ment.

IV. EXPERIMENTS

We validate our approach through both real-world and
simulated experiments to investigate the following hypotheses:

Hypothesis 1. Meta-learned model adaptation reduces the
dynamics model’s prediction error during online operation.

Hypothesis 2. Effective model adaptation enhances closed-
loop behavior, improving both stability and safety.

A. Real-World Validation

1) Experimental Setup: We conducted real-world validation
of our approach on a full-scale autonomous off-road vehicle:
a modified Polaris RZR S4 1000 Turbo equipped with a
1.0L twin-cylinder engine, pictured in Fig. 1. The vehicle is
outfitted with an extensive suite of onboard computation and
sensors, including 2 LiDARs, 4 stereo/RGB cameras, IMUs,



TABLE II: Real-world validation results. The means and standard deviations over 4 runs of each configuration are displayed.

Completion Average Prediction # times crossed limit Time exceeds limit, s Cost (×104)
time, s speed, ms−1 Error, m Track Rollover Track Rollover Track Rollover

Baseline (no adaptation) 154.6 ± 16.9 5.06 ± 0.58 4.88 ± 0.47 8.0 ± 1.8 13 ± 5.4 5.32 ± 1.81 6.64 ± 2.09 40.8 20.2
Meta-adaptation (ours) 130.9 ± 7.8 5.84 ± 0.33 3.10 ± 0.18 3.3 ± 2.1 3.8 ± 1.7 0.57 ± 0.53 0.85 ± 0.59 1.95 0.36

Baseline (no adaptation) Meta-adaptation (ours)

Path of vehicle Rollover limit exceeded

Fig. 4: Trajectories for all 3-lap real-world runs. The baseline configuration exhibits erratic motion, frequently violating course boundaries and rollover
limits. In contrast, our adaptation configuration produces more deliberate and compliant trajectories, as the vehicle learns the terrain dynamics in real time.
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Fig. 5: Norm of the adapted parameters during one of the real-world runs.

GPS, and wheel encoders. State estimation is achieved using
a localization module that integrates LiDAR and IMU data
through a GTSAM-based Factor Graph Optimization (FGO)
framework [7, 24]. A 3D voxel map is constructed by fusing
geometric and semantic data to generate traversability and
elevation maps, providing track cost and ground slope [2]. The
vehicle is controlled via a power-assisted steering actuator, a
brake pressure pump, and electronic throttle control.

For offline meta-learning, we collected a dataset comprised
of approximately 1, 700, 000 trajectories (9.5 hours) of au-
tonomous driving that includes adverse weather conditions
like rain. Approximately 60% is from the Mojave Desert near
Helendale, CA; 30% from Halter Ranch near Paso Robles,
CA; 10% from coastal sage near Oceanside, CA; and 5% from

coastal dunes also nearby Oceanside, CA. At these locations,
we collect data from a diverse range of terrains that are
depicted and described in Fig. 3. We also provide statistics
on key dataset quantities in Table I.

For each trajectory, we use an adaptation length of τ =
1, 000 steps (20 s) and a prediction length of T = 250 steps
(5 s), with discrete time steps spaced (0.02 s) apart. Training
follows Algorithm 2 for NE = 20 epochs, starting with a
5-epoch pretraining phase without meta-learning (disabling
adaptation by setting θt = 0), followed by 15 epochs with
meta-learning enabled. For comparison, a baseline model was
also trained for 20 epochs on the exact same dataset without
meta-learning.

We perform online adaptation (Algorithm 1) at a rate of
5Hz by updating every h = 10 time steps. For control,
MPPI (Section II-B) runs at 30Hz, leveraging the most recent
set of adapted parameters θ for forward predictions. The car
completes 3 laps around a figure-8 track with additional curves
added to increase planning difficulty (see Fig. 1). We test the
Baseline (no adaptation) and Meta-adaptation (ours)
configurations for 4 repeated runs each.

To evaluate Hypothesis 1, we calculate the average model
prediction error over each run, defined as the Euclidean
distance between the endpoints of the predicted and actual
trajectories. For performance assessment (Hypothesis 2), we



log the completion time and average speed of each run. Safety
(Hypothesis 2) is analyzed by tracking the number of instances
the car exceeds safety limits, the duration spent outside these
limits, and the associated cost for both track boundary and
rollover ratio limit violations.

2) Results: Figure 4 compares trajectories for the Baseline
(no adaptation) and Meta-adaptation (ours) configura-
tions and Fig. 1 shows video stills capturing the adaptation
configuration in action. The Baseline (no adaptation) con-
figuration results in erratic behavior, with frequent violations
of track boundaries and rollover constraints. In contrast, the
Meta-adaptation (ours) configuration yields more stable
and compliant motion, as the dynamics model is adapted in
real-time (Fig. 5).

The quantitative results in Table II further support the advan-
tages of adaptation. The adapted model achieves significantly
lower prediction error, confirming that online adaptation ef-
fectively learns the terrain dynamics, validating Hypothesis 1.
Importantly, the Meta-adaptation (ours) configuration not
only improves performance—achieving faster track comple-
tion times and higher average speeds—but also enhances
safety metrics. Specifically, the adapted vehicle crosses safety
limits (e.g., track boundaries and rollover thresholds) far less
frequently and spends significantly less time in unsafe states
compared to the baseline. These improvements translate to a
dramatic reduction in associated track and rollover costs, high-
lighting the effectiveness of the adaptation method, confirming
Hypothesis 2.

In high-speed off-road driving, an inaccurate dynamics
model can lead MPPI to generate unsafe trajectories that fail
to account for real-world dynamics. By incorporating accu-
rate, environment-adapted predictions, our adaptation method
enables MPPI to generate control sequences that balance per-
formance and safety. These results underscore the importance
of real-time model adaptation in ensuring both reliable and
secure autonomous vehicle operation in challenging terrains.

B. Simulated Experiments

We perform extensive simulated experiments to further
confirm our hypotheses.

1) Experimental Setup: The simulated experiments use the
same baseline and meta-learned models trained for the real-
world validation (Section IV-A1) and identical adaptation
parameters. However, the physics simulator employs distinct
dynamics based on the bicycle model, creating a real2sim
transfer scenario where adaptation must account for the dy-
namics mismatch between the real-world training data and
the simulated environment. We procedurally generate four
diverse maps (Fig. 6), each with unique terrain and obstacle
configurations. The maps are categorized as shallow-sparse,
shallow-dense, steep-sparse, and steep-dense, where the first
term denotes the steepness of terrain features, and the second
describes the density of obstacles. This variety ensures that
the simulated environment tests the adaptation across a wide
range of scenarios.

Fig. 6: Procedurally generated maps for the simulated experiments;
horizontal and vertical axes are in meters.

Everything else remains consistent with the real-world
validation, except for a few key modifications. First, since
the maps are open with sufficiently distant boundaries, track
costs are omitted from the analysis. Next, we evaluate two
new configurations: Adaptation and Sliding LSQ. In the
Adaptation configuration, online adaptation is applied to the
baseline model to assess the impact of not meta-learning the
basis functions and Kalman filter parameters. For the Sliding
LSQ configuration, we implement the method of adaptation
from [22], which consists of using sliding-window regularized
least squares to adapt the weights of an ensemble model in real
time. To ensure statistical significance, we perform 25 runs per
configuration on each map.

2) Results: The results of the simulated experiments are
summarized in Table III. As expected, prediction errors in
simulation are generally higher than in real-world testing due
to the real2sim gap. Nevertheless, all adaptation configurations
outperform the baseline in prediction accuracy, with the meta-
learned adaptation mostly achieving the lowest prediction
errors, further confirming Hypothesis 1.

In terms of performance, the baseline configuration gen-
erally achieves shorter completion times and higher aver-
age speeds. However, this comes at the cost of compro-
mised safety, with the baseline configuration exhibiting higher
rollover occurrences, longer time spent exceeding limits, and
increased safety costs. In contrast, the adaptation configura-
tions demonstrate significantly improved safety, with the meta-
learned configuration generally achieving the greatest reduc-
tions across all safety metrics. These findings align with the



TABLE III: Results of the simulated experiments. The means over 25 runs of each configuration are displayed.

Completion time, s Average speed, ms−1 Prediction Error, m
Steepness shallow shallow steep steep shallow shallow steep steep shallow shallow steep steep
Obstacle Density sparse dense sparse dense sparse dense sparse dense sparse dense sparse dense
Baseline (no adaptation) 39.2 44.4 73.0* 86.2* 5.88* 5.32 4.06* 3.59* 7.19 7.62 8.17 9.03
Sliding LSQ 46.7 46.6 87.7 102.0 5.04 5.06 3.43 3.06 5.71 5.00 5.21 5.35
Adaptation 40.4 43.1* 83.0 95.3 5.70 5.47* 3.59 3.15 4.54 4.45 4.25 4.64
Meta-adaptation (ours) 40.1 44.7 88.8 105.9 5.75 5.27 3.34 2.99 2.96* 2.19* 3.67* 4.65

# times over rollover limit Time exceeding rollover limit, s Rollover Cost (×104)
Baseline (no adaptation) 2.7 3.6 5.4 9.9 1.30 5.31 5.09 7.50 1.09 1.75 1.82 8.91
Sliding LSQ 2.5 4.1 5.4 7.1 2.19 6.12 4.24 5.53 1.19 2.00 4.23 8.59
Adaptation 2.9 4.6 4.7 6.7 1.47 7.10 5.71 5.42 1.04 2.49 1.14 2.75
Meta-adaptation (ours) 1.9 5.3 3.2* 6.2 0.97 4.83 3.88 3.40* 0.99 1.15* 0.83 2.57
*Significant best result: bootstrapped 95% confidence intervals of the mean do not overlap with those of any other configuration.

real-world validation results, further supporting Hypothesis 2.
Crucially, the comparison between our meta-learned con-

figuration and the non-meta-learned adaptation configurations,
Adaptation and Sliding LSQ, highlights the importance of
meta-learning. Our configuration generally outperforms in pre-
diction error and safety metrics across all map types. The non-
meta-learned configurations rely on suboptimally selected ba-
sis functions, and the Sliding LSQ configuration requires hand
tuning of the window length and regularization parameter—
directly influencing the adaptation rate. In contrast, our method
learns both the basis functions and adaptation dynamics from
data, resulting in models that adapt more effectively, yield
better closed-loop performance, and bridge the substantial
dynamics mismatch from the real2sim gap.

V. CONCLUSION

In this work, we introduced a meta-learning framework for
online dynamics model adaptation applied to high-speed off-
road autonomous driving. By combining a Kalman filter-based
adaptation scheme with meta-learned parameters, our approach
addresses the challenges of unseen or evolving terrain dynam-
ics, enhancing prediction accuracy, performance, and safety.
Empirical validation through real-world and simulated experi-
ments demonstrates that our method outperforms baseline and
non-meta-learned adaptation strategies, particularly in safety-
critical scenarios. Our method is applicable to a broad range
of model-based control scenarios beyond off-road autonomous
driving, as it can be integrated with any model that is linear
in its adaptable parameters and any Model Predictive Control
(MPC)-type controller. This contribution represents a step
toward more robust and reliable autonomous systems capable
of adapting to complex and changing environments.
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