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Abstract
The detection of the maneuvers of the surrounding vehicles is important for autonomous vehicles to act accordingly to
avoid possible accidents. This study proposes a framework based on contrastive representation learning to detect potentially
dangerous cut-in maneuvers that can happen in front of the ego vehicle. First, the encoder network is trained in a self-
supervised fashion with contrastive loss where two augmented videos of the same video clip stay close to each other in the
embedding space, while augmentations from different videos stay far apart. Since nomaneuver labeling is required in this step,
a relatively large dataset can be used. After this self-supervised training, the encoder is fine-tuned with our cut-in/lane-pass
labeled datasets. Instead of using original video frames, we simplified the scene by highlighting surrounding vehicles and ego-
lane. We have investigated the use of several classification heads, augmentation types, and scene simplification alternatives.
The most successful model outperforms the best fully supervised model by ∼2% with an accuracy of 92.52%.

Keywords Contrastive representation learning · Vehicle maneuver classification · Driver assistance systems

1 Introduction

An important area of research regarding advanced driver
assistance systems (ADAS) is the detection of intended
maneuvers of nearby vehicles. It is also one of the tough chal-
lenges to develop fully autonomous vehicles. In this study,we
propose a method to detect possible dangerous lane change
maneuvers (cut-ins) performed by nearby vehicles, which
are among the top three causes of fatal accidents, according
to a report published by the U.S. Department of Transporta-
tionNational Highway Traffic SafetyAdministration in 2018
[1]. Therefore, our study focuses on vehicles in front and
only employs a single in-vehicle RGB camera, which brings
simplicity to our approach compared toother studies in the lit-
erature that use multiple sensors including radar and LiDAR
[2–5].
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Since there is no benchmark dataset for the classification
of potentially dangerous cut-in maneuvers in traffic, we have
prepared a classification dataset with the videos of the pub-
licly available Berkeley Deep Drive (BDD) dataset [6]. The
dataset consists of videos collected via the vehicle’s front
camera on various highways. We have cut and labeled 875
video clips containing vehicle maneuvers belonging to cut-
in or lane-pass classes (Fig. 1). Additionally, to evaluate our
method’s performance in a different dataset, we created a cut-
in/lane-pass subset from the Prevention dataset [7], which
consists of 500 videos (167 cut-in, 333 lane-pass).

Although the studies focused on cut-in maneuvers are
few in number, we can discuss the studies on classifying
vehicle maneuvers, which is a broader perspective. Some
studies on that task try to predict the future trajectories of
all the vehicles in sight using their previous positions. Then,
those predicted trajectories are used to classify each vehi-
cle’s maneuver [2,8,9]. Some other studies try to classify
maneuvers by using features like speed, acceleration, dis-
tance to the lane line, and distance between ego-vehicle and
target vehicle, which are obtained from the image or image
sequence data collected from ego-vehicle vision or surveil-
lance cameras [3,10,11]. Recently, with the success of deep
learning methods and higher computational power, vision
data has been used directly as input to a deep neural net-
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Fig. 1 Lane-pass and cut-inmaneuvers (green area indicates considered
safety region for ego vehicle)

work to extract various features and detect the target vehicle’s
maneuver [12,13].

In parallel to recent work, we develop a deep learning
framework for cut-in maneuver detection. Unlike previous
studies, we employ self-supervised contrastive learning fol-
lowing the video representation learning approach of Qian
et al. [14]. Our framework comprises two phases: self-
supervised training and fine-tuning for classification (Fig. 2).
In the self-supervised training phase, the encoder network
is pre-trained with unlabeled highway-recorded video clips
with contrastive loss to learn vehicle maneuver representa-
tions and their interactions with the ego-lane. To enhance
self-supervised learning, we convert recorded videos to
high-level representations of the scene, which is done by seg-
menting vehicles and ego-lane and subtracting background.
The same high-level representation extraction is applied to
the prepared cut-in/lane-pass datasets and used to fine-tune
the encoder while training a classification head to classify
the scene whether a cut-in maneuver exists in front or not.

Our contributions can be summarized as:

1. Weemployed self-supervised learning formaneuver clas-
sification for the first time. Although our study only
considers a certain maneuver type in a two-class classi-
fication setting, multi-class approaches, as well as other
two-class detection studies (e.g. lane change detection)
can benefit from contrastive representation learning to
increase their performance.

2. We adopted self-supervised video representation learn-
ing to the simplified real-world video clips.We compared
different simplification choices and various data augmen-
tations for traffic scene representation.

2 Related work

Maneuver classification studies in the literature either use
trajectories of surrounding vehicles or vision information
directly as an input to detect their maneuvers. In trajectory-
based approaches, former studies project each surrounding

vehicle’s trajectory on the ground plane using an on-vehicle
camera, radar, or external sensors and classify the trajectory
[2,8,9], whereas the latter extracts features from an image
sequence and performs classification. While some studies
included maneuvers like any lane-change or drift-into-ego-
lane [2,8,9], some decided whether the maneuver is cut-in
or not by predicting the future trajectory of the surrounding
vehicles and then looking at whether this trajectory crosses
into the lane of the ego-vehicle [3–5].

Most works in vision-based approaches use convolutional
neural networks (CNNs). The usual practice is using a CNN
to extract features from video frames and using an RNN
or an LSTM as a classifier. In [11], features are extracted
by a CNN on region-of-interest (ROI) and width, height,
and center coordinate values are added to the feature vec-
tor. Then, the classification of the lane change maneuvers is
performed by an LSTM. Their best model achieved 74.5%
accuracy. Another approach in the same study [11] was con-
vertingmovements of objects into contours in an RGB image
and feeding CNNs with this motion history image. How-
ever, the performance was worse. Another study [13], that
first crops ROIs from the original frames, exploited two
modes of input video, which are high frame rate video itself
and its optical flows. They compared two-stream CNNs and
spatio-temporal multiplier networks. In a follow-up study
[12], authors also included a slow-fast network (the one that
uses videos of high and low frame rate) into the comparison
which achieved 90.8% lane change detection accuracy and
performed slightly better than other alternatives.

The studies discussed above used the Prevention dataset
[7] which has left and right lane change and no lane change
labeled videos.We see that the vision-based lane change clas-
sification results can reach ∼90% [12]. As will be detailed
in Sect. 4.3, we also achieved a similar supervised learn-
ing accuracy for cut-in maneuver classification, but more
importantly, we were able to improve the performance with
self-supervised pre-training.

2.1 Self-supervised contrastive learning

Supervised learning usually requires a decent amount of
labeled data, which is not easy to obtain for many applica-
tions. With self-supervised learning, we can use inexpensive
unlabeled data to learn good enough representations and then
fine-tune with supervised training with a smaller amount
of labeled data. Self-supervised contrastive learning has
recently gained popularity due to its achievements in com-
puter vision [15,16]. Implemented with Siamese networks,
these self-supervised approaches try to learn an embed-
ding space in which similar samples stay close to each
other while dissimilar ones are far apart. While MoCo [17]
and SimCLR [18] use the negative (dissimilar) examples
directly along with the positive (similar) ones, BYOL [19]

123



Signal, Image and Video Processing

Fig. 2 Overview of the
proposed framework. After
self-supervised learning with
contrastive loss, the MLP head
is discarded, a new classification
head is added to the 3D ResNet
backbone, and supervised
retraining is conducted

and SimSiam [20] achieved close performances just with the
positive examples (different augmentations of the same sam-
ple). Qian et al. [14] introduced a self-supervised learning
technique called Contrastive Video Representation Learning
(CVRL) to obtain spatiotemporal visual features from unla-
beled videos. The learned features are obtained through a
contrastive loss function, which aims to bring together two
augmented video clips from the same video in the embedding
space while pushing apart the clips from different videos.
In parallel, Tao et al. [21] proposed a method for learning
video representations using an inter-intra contrastive frame-
work. In addition to the negative samples coming from other
videos, authors extracted negative samples from the same
video (intra-negative samples) by applying undesired aug-
mentations. Also additional inputs (e.g. optical flow) are used
to get positive samples from the same video (intra-positive
samples). Han et al. [22] introduced a self-supervised co-
training approach for video representation learning, in which
two different networks are trained concurrently on different
inputs (RGB streams and optical flow) obtained from the
same video. Each network provides ‘hard’ positives to each
other. Lin et al. [23] combined contrastive learningwithmeta-
learning in Meta Contrastive Network (MCN) to enhance
video representation learning. Knights et al. [24] proposed a
method to learn temporally coherent frame embeddings for
video representation learning. They introduced a temporal
coherence loss that encourages the embeddings of succes-
sive frames to be close.

The studies above concentrated on human action classifi-
cation and worked on benchmark datasets of that task. Both
action recognition and vehicle maneuver classification are
tasks that involve video clips. However, there are some key
differences between these two tasks. Actions may have spe-
cific features that could indicate what they are, like the tool
employed (bike, golf club etc.) or the environment (in sky, on
grass etc.) in which the action occurs. In addition, the order
of the movements is not important most of the time (skiing,
boxing etc.), which lets some studies in action recognition
use some of the frames in video clips [24]. On the con-
trary, vehicle maneuver happens in the same environment
(highways with similar background), there are no specific
visual features to distinguish between different maneuvers

Fig. 3 Generation of scene representation with an example cut-in
maneuver from BDD-100K Cut-in/Lane-pass Subset. Overlapping
masks of vehicles and ego-lane are in different colors. The figure shows
four frames of a single sequence, whereas the 3D network uses 20 of
them for classification. The frame height is reduced from 600 to 400
pixels to remove ego-vehicle’s hood and some sky

and temporal information (order of movements) is the key
to detect the maneuver of the vehicle. Our work is based on
Qian et al.’s [14] self-supervised learning approach, but to
overcome the challenges of vehicle maneuver classification,
we employed simplified video clips and augmentations were
chosen accordingly.

3 Methodology

3.1 Scene representation

Since the detection of maneuvers is directly related to vehi-
cles and lane lines, we chose to feed the framework with a
simpler representation of the scene, which includes the vehi-
cles in front and ego-lane, rather than the original image
sequence (Fig. 3). Vehicle representations were created by
a state-of-the-art instance segmentation method [25] and the
ego-lanemaskwas applied by vision-basedmethods.We also
down-sampled the original video clips from 60 to 20 frames
by taking one of every three frames.

3.2 Maneuver representation learning

Self-supervised training has been done by applying an
InfoNCE contrastive loss [26] on feature tensors extracted
fromoriginal and augmented video clipswith a 3D-ResNet18
and MLP network. For a given video clip, contrastive loss
regards augmented versions of the clip as positive pairs and
other clips as negatives. Furthermore, it allows positive pairs
to be close and lets others to be distant on feature space by
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Fig. 4 ContrastiveManeuver Representation Learning. First, we create
simplified video clips by extracting the vehicle and ego-lanemasks from
raw videos. Then, different temporally consistent augmentations (e.g.
crop, flip, shear, rotation) are applied to the simplified video clips ran-
domly before giving them as input to our video encoder (3D-ResNet18).

For self-supervised learning, extracted feature tensors of each sample in
mini-batch are comparedwith InfoNCE loss such that representations of
positive pairs (green arrows) are brought together, and representations
of negative pairs (red arrows) are put far apart

Fig. 5 Example outputs of applied augmentations on cut-in and lane-
pass maneuvers. Each row shows a different augmentation of the orig-
inal sequence (top row). Only temporal elastic transformation (TET)

augmentation is not included in the figure. Since it stretches/shrinks the
video sequence in time, showing the effect with a few frames is not
possible

using the equation L = 1
N

∑N
i=1 Li and Li :

Li = − log
exp

(
sim

(
zi , z′i

)
/τ

)

∑2N
k=1 1[k �=i] exp (sim (zi , zk) /τ)

(1)

where zi , z′i denotes the encoded representations of the two
augmented clips of the i th video, N is the number of samples
in the batch producing a total of 2N augmentations per batch,
sim(u, v) = u�v/‖u‖2‖v‖2 is the inner product between
two �2 normalized vectors, 1[.] is an indicator to exclude
the self-similarity of video zi , and τ > 0 is a temperature
parameter. Figure4 shows details of the proposed maneuver
representation learning phase.

3.3 Augmentations

To enable the self-supervised model to learn the spatial and
temporal attributes of the scene, the augmentations we use
should imitate different situations that may not be included in
the labeled data set. At the same time, augmentations should
not include cases that would not occur in real life. For that
reason, we employed five different augmentations for video
representation learning. Of these methods, random rotation
and random shear were used to imitate the various differ-
ences in the road view of the in-vehicle camera, horizontal
flip to simulate that the maneuver could take place on the
opposite side, and center crop to simulate that the cameramay
have a narrower field of view. To ensure that representations
are not affected by the random selection of augmentations,
they are kept consistent temporally. In other words, the same
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augmentation is applied to all frames of a video clip in the
same way (Fig. 5).

In addition to the four augmentations mentioned above,
considering that the speed of the maneuvering vehicle can
change in time, we employed another augmentation which
is called temporal elastic transformation (TET) [27]. The
method works in one of the two different paths. In the first
possibility, it stretches the beginning and the end of the video,
shrinks the middle, and in the second, it does the opposite.

Algorithm 1 conveys the details of producing spatial and
temporal augmentations in self-supervised contrastive learn-
ing.

4 Experiments

4.1 Dataset

We created unlabeled and labeled datasets from Berkeley
Deep Drive Dataset [6]. Originally this dataset consisted of
100K driving videos labeled for ten tasks (road object detec-
tion, instance segmentation, drive-able area, etc.). The videos
were collected from the front camera of the vehicles at vari-
ous times of the day in New York, Berkeley, San Francisco,
and Tel Aviv.We selected videos that happened on highways.
1220 video clips with unknown maneuver information were
extracted to be used in the self-supervised learning phase.
875 video clips were cut for the fine-tuning phase, contain-
ing 405 cut-in and 470 lane-pass samples.Unlabeled versions
of all 2095 video clips were used in self-supervised learning,
while the labeled 875 video clips were used in the fine-tuning
phase. All these clips cover two seconds of the action corre-
sponding to 60 frames.

In addition to our main dataset, we created a Cut-in/Lane-
pass subset from Prevention dataset [7] with the same
labeling technique. Asmentioned before, this subset consists
of 500 videos (167 cut-in, 333 lane-pass). The unlabeled ver-
sion of this subset was used in the self-supervised learning
phase.

Figure6 shows the principle while labeling cut-in samples
in our dataset. At the starting frame of the sequence, the
target vehicle is on the other lane, and there is no indication
of whether a cut-in will occur or not. The lane change event
occurs as the target vehicle enters the safety field (the polygon
indicated with green lines in Fig. 6). The sequence is cut
when the vehicle is entered the ego-lane with its full body
(no need to be aligned in the center). For the lane-pass class,
the vehicles those pass by the ego vehicle from the right-
hand side or left-hand side are labeled during their stay in
the safety field.

Fig. 6 Start and end points of maneuvers that are labeled as cut-in

Fig. 7 Evaluated network architecture alternatives for classification
head a and self-supervised training b

4.2 Video encoder

Weprocessed video frames using ResNet3D-18 [28] with 3D
convolution kernels instead of the 2D convolution kernels as
in original ResNet architectures to encode spatio-temporal
features of scenes. We trained two different backbone
architectures, one is single ResNet3D-18, and the other is
ResNet3D-18 with a multi-layer projection (MLP) head on
top, as suggested in [14,18]. During supervised retraining,
we dropped the MLP head and added the classification head
onto ResNet3D-18 (Fig. 7b).

For the supervised retraining phase, we evaluated three
different classification heads (one linear layer, two nonlin-
ear layers, and four nonlinear layers) on top of backbones.
Evaluated architectures are depicted in Fig. 7a.
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Algorithm 1 Random Temporally Consistent Augmentation
Input: Video clip V = {

I1, I2, · · · , IN
}
with N frames // N equal to 20 frames

Crop: Randomly select a scale value s from [0.6, 1.0] Define newwidth = width ∗ s and newheight = height ∗ s
Resize: Resize the cropped region to size of 224 × 224
Rotate: Randomly select a rotation degree d from [−5◦, 5◦]
Flip: Select a flag F f from {0, 1} with 50% on 1
Shear: Randomly select a shear value sh for x and y coordinates from [−0.2, 0.2]
TET: Randomly select operation type from {−1, 1}
Select: Randomly select a number from [1, 5]
for n ∈ {1, 2, · · · , N } do

number = Select()
I ′n = Flip(In ) if F f = 1 and if number = 1
I ′n = Rotate(In ) by d degree if number = 2
I ′n = Resi ze(Crop(In , newwidth, newhight)) if number = 3
I ′n = Shear(In ) transform x and y with sh shear value if number = 4
I ′n = T ET (In ) if number = 5

end
Output: Augmented video clip V ′ = {I ′1, I ′2, · · · , I ′N }

Table 1 5-fold cross-validation results of both supervised baselines and self-supervised approaches on BDD-100K Cut-in/Lane-pass subset

Approach Backbone
Classification
head type

Best fold
acc (%)

5-fold CV
acc (%)

Best fold
F1 score

5-fold CV
F1 score

Linear 87.69 79.12 88.13 80.01

Baseline 1 MobileNetV2+LSTM 2-layer nonlin 83.21 82.03 83.50 82.53

4-layer nonlin 81.54 75.72 81.46 77.24

Linear 87.79 85.19 87.91 85.19

Baseline 2 R3D-18 2-layer nonlin 93.89 90.69 93.94 90.59

4-layer nonlin 91.60 88.70 91.84 88.70

Linear 94.66 91.15 94.58 91.18

Self-sup.1 R3D-18 2-layer nonlin 95.42 92.37 95.40 92.30

4-layer nonlin 94.66 92.52 94.58 92.54

Linear 93.13 90.99 93.23 90.98

Self-sup.2 R3D-18+MLP 2-layer nonlin 93.89 92.21 93.85 92.18

4-layer nonlin 94.66 92.21 94.61 92.16

Bold indicates the best value per metric

Self-supervised training of video encoder was performed
with Adam optimizer [29], 0.1 as initial learning rate, 32 as
batch size, and 0.1 for temperature τ . In the supervised re-
training phase, the same optimizer was used, but the batch
size was reduced to 8 and the learning rate to 0.001. Different
numbers of epochs (between 200 and 500) were evaluated.

4.3 Experimental results

We compared the classification performances of three
approaches by reporting the best fold and 5-fold cross-
validation accuracies and F1 scores of each approach on
the Cut-in/Lane-pass maneuver detection task. As super-
vised baselines, first we used a 2D-CNN(MobileNetV2 [30])
to extract features from each frame of the clip and give
those as input to an LSTM (Baseline 1), secondly, the same
3D-CNN architecture of our CVRL approach which is a
ResNet3D-18 was evaluated as Baseline 2. Baselines 1 and
2 achieved 5-fold CV accuracy of 82.03% and 90.69% with
2-layer nonlinear classification head on the BDD cut-in/lane-

pass subset (Table 1). Classification accuracy increased by
∼2% and achieved 92.52% with self-supervised pre-trained
ResNet3D-18 network and 4-layer nonlinear head.

When we performed the same experiment on the Pre-
vention cut-in/lane-pass subset, Baselines 1 and 2 achieved
86.20% and 89.40% average accuracies with 4-layer nonlin-
ear classification head respectively (Table 2). There, the pro-
posed self-supervised trained ResNet3D-18+MLP network
(with linear classification head) exceeded the performance of
the best fully-supervisedmodel by 2% and achieved 91.60%.

Themost successfulmethod among previous vision-based
studies had reached a lane change classification accuracy of
90.8% with supervised learning (without cross-validation)
on Prevention Dataset [12]. Although our task and the video
samples in the experiments are not exactly the same (we cre-
ated a cut-in/lane-pass subset), our 5-fold average accuracies
of 92.52% and 91.60% are competitive. More importantly,
experiments with self-supervised pretraining increased their
fully supervised counterparts by 2–6% which indicates the
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Table 2 5-fold cross-validation results of both supervised baselines and self-supervised approaches on the Prevention Cut-in/Lane-pass subset

Approach Backbone
Classification
head type

Best fold
acc (%)

5-fold CV
acc (%)

Best fold
F1 score

5-fold CV
F1 score

Linear 88.00 80.80 86.45 76.77

Baseline 1 MobileNetV2+LSTM 2-layer nonlin 88.00 84.00 86.79 82.09

4-layer nonlin 91.00 86.20 89.70 84.32

Linear 93.00 88.60 92.20 87.09

Baseline 2 R3D-18 2-layer nonlin 91.00 88.80 90.14 87.44

4-layer nonlin 92.00 89.40 90.94 88.00

Linear 93.00 90.20 92.00 88.77

Self-sup.1 R3D-18 2-layer nonlin 92.00 88.60 90.85 87.01

4-layer nonlin 89.00 87.00 87.36 85.03

Linear 94.00 91.60 93.33 90.41

Self-sup.2 R3D-18+MLP 2-layer nonlin 93.00 90.20 92.00 88.79

4-layer nonlin 95.00 90.00 94.32 88.58

Bold indicates the best value per metric.

Table 3 5-fold CV accuracies
(%) with different data types to
evaluate the effect of simplified
scene representation. Video
clips’ original versions and
simplified versions were
evaluated with different
highlighted information in the
scene

Input type
Vehicle
masks

Ego-lane
mask

Linear
layer

2-layer
nonlinear

4-layer
nonlinear

Original x x 57.29 58.86 59.00

Original � x 57.57 60.14 60.14

Original � � 70.29 69.43 60.29

Simplified � x 67.00 69.86 67.43

Simplified � � 91.15 92.37 92.21

Bold indicates the best value per metric.

Table 4 Experimental results of
different augmentation types
applied in the self-supervised
learning phase. Self-sup.1
approach’s (ResNet3D-18)
results are given since it is the
best performer in Table 1

Classification
head type

Augmentations
Best fold
acc (%)

5-fold CV
acc (%)

Best fold
F1 score

5-fold CV
F1 score

Linear Spatial 93.13 90.53 93.03 90.40

2-layer nonlin Spatial 93.89 92.06 93.85 92.03

4-layer nonlin Spatial 93.89 92.21 93.94 92.18

Linear Temporal 88.55 87.63 88.50 87.58

2-layer nonlin Temporal 85.50 81.22 85.33 81.02

4-layer nonlin Temporal 83.21 80.31 82.95 80.01

Linear Spatial&Temporal 94.66 91.15 94.58 91.18

2-layer nonlin Spatial&Temporal 95.42 92.37 95.40 92.30

4-layer nonlin Spatial&Temporal 94.66 92.52 94.58 92.54

Bold indicates the best value per metric.

potential of self-supervised learning for maneuver classifica-
tion tasks.

4.4 Ablation study

Here, we present the ablation studies on augmentation types
and data types. All experiments were performed on the BDD-
100K Cut-in/Lane-pass subset.

First, we performed regards what would be the perfor-
mance if we used original RGB frameswith orwithoutmasks
instead of simplified views. As results in Table 3 indicate, the
simplified version outperformed the original RGB input type
in either masked or unmasked form. We can also infer that
the use of vehicle and ego-lane masks positively affects the
classification performance in both input types.

In another ablation study, we investigate the contribution
of individual augmentations to the performance of our best-
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performing approach, which is Self-sup.1 in Table 1. We get
the best results when all augmentations are on during the
training (Table 4). We also see that the temporal augmenta-
tion itself is not sufficient, however, when added to spatial
augmentations it increases the performance.

5 Conclusions

In this work, we investigated the effectiveness of self-
supervised contrastive video representation learning to clas-
sify the scene whether it contains a cut-in maneuver or not.
Additionally, traffic scenes were simplified to a representa-
tion of vehicles and ego-lane to enhance the self-supervised
learning performance of the model. In the self-supervised
learning phase, we learned from a large set of video clips
without maneuver labels. Whereas a smaller labeled dataset
was prepared and used to train the classifier. The proposed
approach improved the fully supervised method’s perfor-
mance by ∼2% on 5-fold CV average accuracy. The results
indicate that other supervised maneuver classification meth-
ods can benefit strongly from self-supervised learning.

Augmentations that we employed in our study are mostly
extensions of the typical 2D augmentation types such as rota-
tion, crop, flip, etc. In future,weplan toworkonmore creative
versions where augmentations are applied to different vehi-
cles and ego-lane separately.
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