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Abstract
Sparse coding is a popular approach to model natural images but has faced two main chal-

lenges: modelling low-level image components (such as edge-like structures and their oc-

clusions) and modelling varying pixel intensities. Traditionally, images are modelled as a

sparse linear superposition of dictionary elements, where the probabilistic view of this prob-

lem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel

model that instead uses a spike-and-slab prior and nonlinear combination of components.
With the prior, our model can easily represent exact zeros for e.g. the absence of an image

component, such as an edge, and a distribution over non-zero pixel intensities. With the

nonlinearity (the nonlinear max combination rule), the idea is to target occlusions; dictionary

elements correspond to image components that can occlude each other. There are major

consequences of the model assumptions made by both (non)linear approaches, thus the

main goal of this paper is to isolate and highlight differences between them. Parameter opti-

mization is analytically and computationally intractable in our model, thus as a main contri-

bution we design an exact Gibbs sampler for efficient inference which we can apply to

higher dimensional data using latent variable preselection. Results on natural and artificial

occlusion-rich data with controlled forms of sparse structure show that our model can ex-

tract a sparse set of edge-like components that closely match the generating process,

which we refer to as interpretable components. Furthermore, the sparseness of the solution

closely follows the ground-truth number of components/edges in the images. The linear

model did not learn such edge-like components with any level of sparsity. This suggests

that our model can adaptively well-approximate and characterize the meaningful

generation process.
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Introduction
Many natural signals, such as visual data, exist in a high-dimensional space. Understanding the
structure of visual data is a challenging task that is often approached by forming parametric
models of the data following some principles of optimality, in order to learn something about
the data’s content and composition. As many signals have a low intrinsic dimensionality, in
this paper we focus on the domain of sparse coding models to address the task of image model-
ling. The basic idea behind the sparsity principle is to represent a signal—such as an image—as
a combination of few basis functions or features. With roots in signal processing, it is often
thought that a model assuming or enforcing sparsity can recover the intrinsic signal dimen-
sions and therefore better represent the relevant information content in the signal (e.g. [1, 2]).
Furthermore, one would expect that if the algorithm learns meaningful hidden structure of the
signal, then this approach would be successful at many data-driven tasks. When an algorithm
can extract and represent the relevant information content from a signal that not only follows
the generating process of that data but can also be easily interpreted in the context of the task
at hand, we refer to this as interpretable data encoding.

Following early physiological recording studies [3] on simple cells in the visual cortex,
sparse coding became popular as a model of the visual data encoding process in the mammali-
an primary visual cortex [4] and has now become not only the standard model to describe cod-
ing in simple cells, but also a very popular feature learning algorithm (e.g. [5, 6]). Formally,
sparse coding (which will be referred to as ‘SC’) assumes that each image (also called an ‘obser-
vation’, or observed variables) y = (y1, . . ., yD)

T is associated with a sparse vector of latent vari-
ables s = (s1, . . ., sH)

T (also called latent ‘causes’ or coefficients of the data), where D and H
denote the dimensionality of the observed image and the latent variable space, respectively. In
the setting of visual data, the sparse latent vector s describes the set of the possible causes of an
observed image and is associated with a set of image components, or dictionary elements,W 2
R
D × H (low-level image components, e.g. edge-like structures) where the absence of such an

image component is associated with sh = 0. In this way, sparsity means that most of the coeffi-
cients sh in s are zero or close to zero.

The standard linear sparse coding problem is formulated as follows:

lossðyðnÞ;WÞ :¼ min
s

1

2
jjyðnÞ �Wsjj22 þ ajjsjj1; ð1Þ

with the objective to minimize the loss between the image y(n) and its linear reconstruction/es-
timationW s (or equivalently ∑h sh Wh whereW is the D ×Hmatrix ofWh dictionary ele-
ments/components), with a penalty on the l1-norm of the vector s. The penalty is controlled by
a regularization parameter a, which dictates how sparse the coefficients s in the reconstruction
of y will be. Objective Eq (1) and associated optimization algorithms are also often referred to
as basis pursuit[7] or the Lasso[8].

Probabilistically, linear SC can be formulated as a generative model:

pðy jYÞ ¼
Z
s

pðy j s;YÞ pðs jYÞ ds; ð2Þ

where the latent causes are characterized by p(sjΘ) with a sparse prior distribution. The obser-
vation/image described by p(yjs,Θ) is typically a Gaussian distribution with a mean μ = ∑h sh
Wh, i.e. centered at the linear superposition of componentsWh 2 R

D. If the Laplace distribu-
tion is used as prior distribution, it can be shown that the minimization of objective Eq (1) with
respect to the dictionary elements corresponds to expectation maximization (EM) learning
using the maximum a-posteriori (MAP) approximation for the posterior (e.g. [9]). For
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dictionary learning, the formulation of objective Eq (1) is often the method of choice, and the
focus is on efficient optimization of the dictionary. With these approaches, no prior parameters
can be learned directly and the sparsity penalty, therefore, has to be set by hand or it has to be
determined by cross-validation in another optimization loop. Furthermore, MAP estimates of
the posterior can lead to a relatively coarse approximation, which has motivated improved
probabilistic approaches for the standard model [10, 11].

The focus of this work is to investigate a new sparse coding model that forms a more realis-
tic image model than the standard linear model with Laplace prior. After motivating and defin-
ing the model, we will systematically evaluate the differences to standard sparse coding. The
problem setting we focus on is illustrated with the toy example in Fig 1. One can see that visual
components (such as edges) are either present or absent (i.e. coefficient sh = 0) in an image.
This however points to the first challenge that standard models for sparse coding face: standard
models using a Laplace or Cauchy prior distribution, which do not intrinsically represent exact
zeros, can only either yield coefficients with exact zeros as an artifact of the optimization that
artificially enforcing the coefficients to be zero (see e.g. [6, 11] for examples). These distribu-
tions are referred to as “weakly sparse”, as they have no coefficients actually at zero, but many
very close to zero [12]. Other models, with use of a binary prior distribution, can represent
exact zeros (to model e.g. the absence of a visual component with sh = 0) without need for opti-
mization techniques to induce them. These models cannot however model the range of intensi-
ties that the image components may manifest (e.g. when the component is present, it is
represented by sh = 1). An alternative and recently very popular prior is the spike-and-slab dis-
tribution (e.g. [12–15]), which is a distribution consisting of a discrete binary part and a contin-
uous Gaussian part (see the first column in Fig 2 for an illustration of the spike-and-slab and
Laplace priors). This prior can model not only the absence/presence of a component (via the
binary ‘spike’) but also the visual intensity of that component (via the ‘slab’). Second, the stan-
dard model assumes that visual components linearly superimpose to form an image, although
objects do not actually elicit summed intensity values when they happen to occlude each other.
In this setting, when evaluating the pixel intensities of two overlapping components, the stan-
dard linear model would sum the two pixels, which poorly estimates the intensity, whereas the
max infers that the pixel with the maximal intensity is occluding the other, offering a better es-
timate, illustrated in Fig 1C. Despite these two modelling caveats, the most work on SC models
focuses on efficient inference of the optimal parameters for the linear model (e.g., [6, 11]) and
not in assessing the model assumptions themselves. The standard linear model form offers
mathematical convenience for inference, namely allowing the use of convex approaches (i.e.

Fig 1. Toy example illustrating the problem setting: approximating occlusions in images.Given an image patch with occlusions (A), assume both the
linear and nonlinear sparse coding models were given the true generating dictionary elements (B) and the task is for each model to use a sparse set of these
to generate a reconstruction of the patch (C). A Example natural image with one patch to be reconstructed by the models.B 10 ground-truth dictionary
elements, assumed to be known and with only 2 of 10 having generated the image patch. C Image reconstruction using the sparse dictionary set of the 2
models: the standard linear sparse coding model and the nonlinear spike-and-slab SCmodel. The linear sum leads to inaccurate pixel estimates when
components overlap, whereas the nonlinear max aims to approximate this type of data more realistically in this scenario. Furthermore, the spike-and-slab
prior (shown here for the the nonlinear model) allows the model to adapt the intensity of each image component to match what it observed in the data.

doi:10.1371/journal.pone.0124088.g001
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the posteriors over latent variables have only one mode, allowing for efficiency/accuracy of
maximum a posteriori (MAP) estimations). Consequently, the standard model has continued
to use a Laplace prior with a linear superposition, because changing the prior or changing the
superposition assumption induces complex and multi modal posteriors and correspondingly
poses a challenge for MAP estimates due to many locally optimal solutions. As a result, each
proposed modification of the standard model has so far only been investigated in turn.

This work proposes a novel sparse coding model that combines both of these improve-
ments – a spike-and-slab distribution and nonlinear max combination of components – in order
to form a more realistic model of images. For our main technical contribution, we optimize our
model by using a combined approximate inference approach with preselection of latent vari-
ables (for truncated approximate EM [16]) in combination with Gibbs sampling [17]. Impor-
tantly, as we expect to see the most salient differences between the models when occlusions are
present, several sets of experiments focus on natural and artificial occlusion-rich datasets
where we consider the task of dictionary learning and image reconstruction.

In our experiments we show that we can efficiently train this nonlinear model and perform
inference assuming a reasonably high number of observed and latent variables. First, we show
on artificial data that the method efficiently and accurately infers all model parameters, includ-
ing data noise and sparsity. Next, we compare our nonlinear model to a state-of-the-art linear
model on occlusion-rich datasets for the task of dictionary learning and image reconstruction
on both artificial data with controlled forms of sparse structure as well as natural data. With ex-
periments comparing the reconstruction of images by the two models, we show that the non-
linear model extracts/uses a sparse set of interpretable, holistic components that match the
generating process, whereas the linear model (at all sparsity levels) uses components which are
difficult to interpret and not aligned with the generating process. Finally, with experiments on
image patches, we show that our model is consistent with in vivo neural recordings and learns

Fig 2. Illustration of choice of prior distribution andmultimodality in the latent space. A H = 2-dimensional spike-and-slab and Laplace priors over
latent variables and the multimodal posterior distribution induced by these priors for both linear and nonlinear data likelihoods.

doi:10.1371/journal.pone.0124088.g002
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image components with which linear models have struggled [18, 19]. With these data we also
show that our model is consistent in the sense that the average posterior over the latent vari-
ables is approximately equal to the prior.

The paper is organized as follows: first, the proposed model will be presented, second, the
details of the inference method will be described, third, all experimental results will be pre-
sented, and finally, the results will be discussed.

Model: Nonlinear spike-and-slab sparse coding
We formulate the data generation process as the probabilistic generative model:

pðyd j s;YÞ ¼ N ðyd; max
h

fshWdhg; s2Þ: ð3Þ

Here, in contrast to the standard linear formulation in Eq (2), the likelihood contains the non-
linear term maxh{sh Wdh} instead of the linear ∑h sh Wdh (the maxh which considers allH latent
components and takes the h yielding the maximum value for sh Wdh). Also, the latent variable
sh is drawn from a spike-and-slab distribution given by sh = bh zh, where bh is drawn from a
Bernoulli distribution and zh is drawn from a Gaussian distribution (ℬ andN, respectively),
and is parameterized by:

pðbh jYÞ ¼ Bðbh; pÞ ¼ pbh ð1� pÞ1�bh ð4Þ

pðzh jYÞ ¼ N ðzh; mpr; s
2
prÞ; ð5Þ

The columns of the matrixW = (Wdh) are the dictionary elements/generative fields, ðWhÞHh¼1,
with oneWh associated with each latent variable sh. We denote the set of all parameters with Θ
= (π, μpr, σpr,W, σ).

For inference and in order to optimize the parameters Θ of this model, we are interested in
working with the posterior over the latent variables given by

pðsjy; yÞ ¼ pðyjs; yÞ pðsjyÞR
s0pðyjs0; yÞ pðs0jyÞ ds0

: ð6Þ

Identical to the standard sparse coding formulation in Eqs (1) and (2), our model assumes
independent latent variables and Gaussian-distributed observations given the latent variables.
In contrast to the standard formulation, the latents are not distributed according to a Laplace
prior and the components (i.e. coefficients, dictionary elements, or generative fields) are not
combined linearly. Fig 1 contains a toy illustration of part of the generative process and model
differences between standard linear model and nonlinear model. Fig 1A shows an example nat-
ural image, eliciting naturally occurring occlusions of branches and twigs, from which a patch
has been extracted in order to illustrate the effects of each model’s (non)linearity assumption.
Fig 1B shows examples of how corresponding generating dictionary elements could look. For
the sake of simplicity, this example does not incoorporate the learning process, and assumes
each model is simply given these components and instructed which sparse set of components
in 1B generated the image patch in 1A. Fig 1C shows how the (non)linear assumptions of the
models manifest when the given components from 1B are combined according to each model
in order to reconstruct the patch in 1A. As can be seen for the sum operation in 1C, standard
linear sparse coding results in strong interference when the dictionary elements overlap, where-
as the max can reconstruct the patch using one element or the other when the two overlap,
thereby minimizing interference. This effect however leads to correlated multimodal posteriors
since each observed pixel yd must be explained by either one cause or the other, instead of the
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sum of both. An illustration of the posteriors of these models will be provided in the following
section. This example suggests that the max can better model the occluding components (e.g.
[19–21]). Furthermore, for simplification in this example, we implicitly forced all other dictio-
nary elements in 1B to be unused, i.e. associated with coefficients of sh = 0, which is only possi-
ble with a spike-and-slab prior (or other binary prior, which in turn, would not be able to
incoorporate the various gray value intensities of the dictionary elements). Additionally, with
the spike-and-slab prior (shown here for the nonlinear model in Fig 1C) allows the model to
adapt the intensity of each image component used to match what it observed in the data. Please
see [22] for a preliminary discussion of this model in a conference submission, in which a thor-
ough analysis of the model was not provided and additionally it contained an error in the com-
putation of expected values, which has been corrected here.

Related Work
While work on improved optimization approaches for the standard sparse coding continues
and is important for many applications, the above discussed limitations of the underlying gen-
erative data model have motivated a number of related studies on improved models. In recent
years, spike-and-slab priors for linear models have frequently been used. The resulting chal-
lenges for parameter optimization have been addressed by applying factorized variational EM
[13, 14, 23], truncated EM [15] or sampling [12]. Furthermore, the use of spike-and-slab priors
aligns well with the goals of compressed sensing approaches [24]. In a standard formulation,
an observed variable is re-expressed as a sum of bases where the corresponding coefficients
have hard zeros, and correspondingly the objective function includes an jj � jj0-norm instead of
the jj � jj1-norm seen in standard sparse coding (see e.g. [2] for a review).

Similarly, inference and learning for sparse coding models that replace the linear combina-
tion by nonlinear ones have been investigated. Hidden causes models with nonlinearly inter-
acting signal sources include the noisy-or combination rule [25–30], exclusive causes [31] or a
maximum superposition [19, 20, 32]. Also a combination of linear superposition followed by a
sigmoidal nonlinearity (post-linear nonlinearities) have been investigated (nonlinear ICA [33],
sigmoid belief networks [34]). By definition, noisy-or models and sigmoid belief networks as-
sume hidden units and observed units to be binary, which generally entails different applica-
tion domains than used for standard sparse coding. Furthermore, the implicit computational
challenges have prevented a scaling to large numbers of hidden dimensions. Nonlinear ICA
and models with maximum superposition can in principle assume continuous observed and
hidden variables, and are consequently applicable to the same data domain as standard sparse
coding. As for noisy-or models, nonlinear ICA is more challenging to scale to large hidden
spaces, however. For the maximum nonlinearity, earlier models [32] focused on inference in-
stead of unsupervised learning of model parameters. Recent approaches demonstrated scalabil-
ity of sparse coding with maximum nonlinearity to large hidden and observe dimensions
(Maximal causes analysis ‘MCA’, [19, 20]) but hidden variables were constrained to be binary
in these cases. Binary priors avoid the analytical intractability usually resulting from continu-
ous priors but they prevent a fine-tuned data representation and reconstruction with
continuous coefficients.

We will return to these approaches in context of the results in the Discussion section.

Methods
In this section we present the optimization of parameters in our model and the novel inference
method developed to address the associated intractabilities.

Nonlinear Spike-And-Slab Sparse Coding
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Parameter estimation
To estimate the model parameters Θ of the generative model in Eq (3) we use expectation max-
imization (EM). We do inference in the E-step with our proposed method combining sampling
and latent preselection [17], which we will introduce in the next section. Optimization in the
EM framework entails setting the free-energy to zero and solving for the model parameters
(M-step equations) (e.g., [35]).

As an example we obtain the following formula for the estimate of image noise:

ŝ2 ¼ 1

NDK

X
n

X
d

X
k

max
h

Wdhs
ðnÞ
kh

n o
� yðnÞd

� �2

; ð7Þ

where we average over all N observed data points, D observed dimensions, and K Gibbs sam-
ples. However, this notation is rather unwieldy for a simple underlying idea. As such we will
use the following notation:

ŝ2 ¼
D
Wdhs

ðnÞ
h � yðnÞd

E�
; ð8Þ

where we maximize for h and average over n and d. That is, we denote the expected values
h . i� to mean the following:

hf ðsÞi� ¼
X
n

R
s
pðsjyðnÞ;YÞ f ðsÞ dðh is maxÞ dsR
s
pðsjyðnÞ;YÞ dðh is maxÞ ds ; ð9Þ

where δ is the indicator function denoting the domain to integrate over, namely where h is the
maximum. See the S1 Derivation 1 for detailed derivation of update equations. Analogously, to
compute the expectations of the Gaussian part of the prior distribution’s parameters, the mean
m̂pr and the noise ŝ

2
pr, we denote h . i�� to mean the following:

hf ðsÞi�� ¼
X
n

R
s
pðsjyðnÞ;YÞ f ðsÞ dðsh 6¼ 0Þ dsR
s
pðsjyðnÞ;YÞ dðsh 6¼ 0Þ ds ; ð10Þ

which is identical to h . i� in Eq (9) except that we are interested in support from all of the pos-
terior distribution where bh = 1, regardless of whether sh is the maximal cause, and δ is
modified accordingly.

Using the condensed notation in Eqs (9) and (10) allows us to concisely express the update
equations for the remaining model parameters:

Ŵhd ¼
hshydi�
hs2hi�

; p̂ ¼ hdðsÞi; ð11Þ

m̂pr ¼ hshi��; ŝ2
pr ¼ hðsh � m̂prÞ2i�� ð12Þ

In this modelWh can be scaled by an arbitrary factor α when the corresponding sh is scaled
by 1

a. To preventW from becoming arbitrarily large (which would lead to arbitrarily small val-

ues of s), common practice is to constrain its columns (each latent cause) ðWhÞHh¼1 to have an
l2−norm less than or equal to one. Instead, we constrain all columnsWh to be equal to D
(equivalent to normalizing expectation ofWdh to one, i.e. all entries are approximately equal to
one). This normalization allows the m̂pr to be intuitively more interpretable when comparing

results on different datasets where the data dimensions Dmay vary.
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As one can see in the above equations, in order to compute the parameter updates, we need
to calculate several expectation values with respect to the posterior distribution. However, as
mentioned in the introduction, the posterior distribution of a model (linear or nonlinear) with
a spike-and-slab prior is strongly multimodal. See Fig 2 for illustration of the posteriors in the
two dimensional case for both (non)linear models with spike-and-slab and Laplace priors. Cal-
culating expectations of this posterior is intractable, thus we must develop a new inference
method in order to cope with these computations.

Inference: Exact Gibbs sampling with preselection of latents
As described, parameter optimization is very challenging in this model. Consequently, current
inference methods cannot address the task. In order to efficiently handle the intractabilities
and the complex posterior (multimodal, high dimensional) illustrated in Fig 2, we take a com-
bined approximate inference approach [17]. Specifically we design and propose an exact Gibbs
sampler for our model in order to draw samples from the unique form of our posterior after we
have reduced the set of latent variables to those with the most posterior mass. Reduction via
preselection is not strictly necessary, but significantly increases efficiency when considering
high dimensional posteriors, particularly in sparse models. As such, we will first describe the
sampling step and preselection only later.

Gibbs Sampling.Our main technical contribution for efficient inference in this model is an
exact Gibbs sampler for the multimodal posterior. Previous work has used Gibbs sampling in
combination with spike-and-slab models [36], and for increased efficiency in sparse Bayesian
inference [37].

Our aim is to construct a Markov chain with the target density given by the conditional pos-
terior distribution:

pðshjsHnh;y; yÞ ð13Þ

/ pðshjyÞ
YD
d¼1

pðydjsh; sHnh; yÞ: ð14Þ

We see from Eq (14) that the distribution factorizes into D+1 factors: a single factor for the
prior and D factors for each likelihood.

As the difficult part to sample from is the likelihood,
QD

d¼1 pðyd j sh; sHnh; yÞ, where the non-
linearity of the max plays a role, we begin with its construction and only afterwards will we
include the spike-and-slab prior. For the point-wise maximum nonlinear case we are consider-
ing, the likelihood of a single D dimension, yd, is a piecewise function defined as follows:

pðydjsh; sHnh; yÞ ð15Þ

¼ N ðyd; max
h0

fWdh0sh0 g; s2Þ ð16Þ

¼
N ðyd; max

h0nh
fWdh0sh0 g; s2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

constant

if sh < Pd

N ðyd; Wdhsh; s
2Þ if sh � Pd;

ð17Þ

8>>><
>>>:
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where the transition point, Pd, is defined as the point where sh Wdh becomes the maximal cause:

Pd ¼max h02fHnhgfWdh0sh0 g
Wdh

: ð18Þ

We refer to the two pieces of yd in Eqs (15)–(17) as the left and right pieces of the function: left,
ld(sh), when the latent cause is smaller than the transition point, sh< Pd, and right, rd(sh), when
the latent is greater than or equal to the transition point, sh � Pd. The left piece is constant with
respect to sh because the data is explained by another cause when the value of the latent sh is
smaller than the value of the transition point Pd, and the right piece is a truncated Gaussian
when considered a PDF of sh (see Fig 3A–3B), because sh is indeed explaining the data. Taking
the logarithm of p(ydjsh,sHnh, θ) transforms Eq (15) into a left-piece constant and right-piece
quadratic function. Expanding the expression for the logarithm of a given likelihood p(ydjsh,
sHnh, θ), each left and right piece (the respective sides of each transition point Pd) can be formu-
lated as

ldðshÞ ¼ � 1

2
log ð2pÞ � log ðsÞ þ 1

2s2
ðyd �max

h0 nh
fWdh0s

0
hgÞ2 ð19Þ

rdðshÞ ¼ � 1

2
log ð2pÞ � log ðsÞ þ 1

2s2
ðyd �WdhshÞ2; ð20Þ

or more compactly

ndðshÞ ¼
(
ldðshÞ if sh < Pd

rdðshÞ if sh � Pd;
ð21Þ

which from now on will be referred to as an individual function segment of the entire
likelihood function.

Now we generalize the likelihood expression in Eqs (15)–(17) to consider all observed D di-

mensions in y. We take the logarithm of
QD

d¼1 pðyd j sh; sHnh; yÞ, which results in D+1 left-piece

constant and right-piece quadratic functions to be summed. The sum of all of these pieces will
result in the desired D-dimensional likelihood function, which will be another piecewise

Fig 3. Construction of SSMCA-induced posterior for the Gibbs sampler. Left column: three contributing factors for the posterior/ p(sh j snh,y,Θ) in log
space.A andB: Log likelihood functions each defined by a transition point Pd and left and right pieces rd(sh) and ld(sh). C Log prior, which consists of an
overall Gaussian and the Dirac-peak at sh = 0. D Log posterior, the sum of functionsA, B, andC consists of D + 1 pieces plus the Dirac-peak at sh = 0. E
Exponentiation of theD log posterior. F CDF for sh from which we do inverse transform sampling.

doi:10.1371/journal.pone.0124088.g003
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function with D+1 disjoint segments. In order to implement the summation of all of these seg-
ments efficiently, we need to first sort them by their transition points Pd, from smallest to larg-
est values, which we denote by δ = argsortd(Pd). With this notation, the summation of the
pieces of the likelihood can be expressed:XD

d

log pðydjsh; sHnh; yÞ ð22Þ

¼ mðshÞ ð23Þ

¼

m1ðshÞ s < Pdð1Þ

m2ðshÞ Pdð1Þ � s < Pdð2Þ

m3ðshÞ Pdð2Þ � s < Pdð3Þ

..

. ..
.

mDþ1ðshÞ PdðDÞ � s:

ð24Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Importantly, we observe from Eqs (19)–(20) that each segmentmd(sh) is a 2nd degree poly-
nomial, which can be represented by computing three coefficients. Thus, we can elegantly com-
pute the operation in Eq (22) as the summation of the coefficients for each segmentmd(sh),
and since all pieces ld(sh) and rd(sh) are polynomials of 2nd degree, the result is still a 2nd de-
gree polynomial. So for all D+1 components of the likelihood in Eq (15), we can compactly for-
mulate Eq (22) with

mdðshÞ ¼
Xd�1

j¼1

rdðjÞðshÞ þ
XD

u¼d

ldðuÞðshÞ: ð25Þ

¼
XD

d0¼1

nd0 ðshÞ

for1 � d � Dþ 1

ð26Þ

Now that we have computed the difficult part of the posterior, we incoorporate the spike-and-
slab prior in two steps. The Gaussian ‘slab’ of the prior is taken into account by adding its 2nd
degree polynomial to all the piecesmd(sh), which also ensures that every piece is a Gaussian.
The sparsity, or the ‘spike’, will be included only after constructing the full piecewise cumula-
tive distribution function (CDF).

To construct the piecewise CDF, we relate each segment inmd(sh) to the Gaussian/ exp
(md(sh)) it defines. Next, the Bernoulli ‘spike’ of the prior is accounted for by introducing a step
into the CDF that corresponds to sh = 0 (see Fig 3F), where the height of the step is proportion-
al to the marginal probability p(sh = 0jsnh). Once the CDF is constructed, we simulate each sh
from the exact conditional distribution (sh* p(shjsnh = snh,y, θ)) by inverse transform sam-
pling. Fig 3 illustrates the entire process.

Preselection. To dramatically improve computational efficiency of inference in our model,
we can optionally preselect the most relevant latent variables before doing Gibbs sampling.
This can be formulated as a variational approximation to exact inference [16] where the
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posterior distribution p(sjy(n),Θ) is approximated by a truncated distribution qn(s;Θ) which
only has support on a subsetKn of the latent state space:

pðs jy ðnÞ;YÞ � qnðs;YÞ ¼ pðs jy ðnÞ;YÞZ
s 02Kn

pðs 0 jy ðnÞ;YÞ
dðs 2 KnÞ ð27Þ

where δ(s 2Kn) = 1 if s 2Kn and zero otherwise. The subsetsKn are chosen in a data-driven
way using a deterministic selection function, they vary per data point y(n), and should contain
most of the probability mass p(sjy) while also being significantly smaller than the entire latent
space. Using such subsetsKn, Eq 27 results in good approximations to the posteriors. We de-
fineKn asKn = {s j for all h =2 I: sh = 0} where I contains the indices of the latents estimated to
be most relevant for y(n). To obtain these latent indices we use the cosine similarity as our selec-
tion function:

Shðy ðnÞÞ ¼ WT
h y ðnÞ

jjWhjj2
ð28Þ

to select theH0 < H highest scoring latents for I. This boils down to selecting the H0 dictionary
elements that are most similar to each data point, hence being most likely to have generated
the data point. We then sample from this reduced set of latent variables.

Results
The above described procedure to optimize the parameters of the nonlinear spike-and-slab
model will be referred to as SSMCA. All numerical experiments for SSMCA used a parallel im-
plementation of the EM algorithm for parameter optimization [38], in which for the E-step we
use our developed approximate inference scheme based on Gibbs sampling and latent variable
preselection. For all described results, 1/3 of the samples are used for burn-in and 2/3 are used
for computing the expectations. We initialized our parameters by setting the σpr and σ equal to
the standard deviation observed in the data, the prior mean μpr is initialized to the observed
data mean.W is initialized at the observed data mean with additive Gaussian noise of the σ ob-
served in the data.

Parameter recovery on artificial ground-truth data
The goal of the first set of experiments is to verify that our model and inference method pro-
duce an algorithm that can Eq (1) recover ground-truth parameters Θ = (π, μpr, σpr,W, σ) from
data that is generated according to the model and Eq (2) that it reliably converges to locally (if
not globally) optimal solutions. We generate ground-truth data with N = 2,000 consisting of
D = 5 × 5 = 25 observed andH = 10 hidden dimensions according to our model: N images with
overlapping ‘bars’ of varying intensities and with Gaussian observation noise of variance σgt = 2
(Fig 4A). On average, each data point contains two bars, p ¼ 2

H
.

First, we optimize the model using just Gibbs sampling, which aims to do inference as exact-
ly as possible in this model. Namely, we do sampling without preselection and draw samples
from the entire latent space: we set the preselection parameter H0 =H and draw 30 samples
from the fullH-dimensional posterior. After this, we evaluate our combined approximate infer-
ence approach of preselection and Gibbs sampling. Results (Fig 4B and 4E) show that our algo-
rithm converges quickly and recovers the generating ground-truth parameters.

Next, we investigate a range of numbers of samples drawn and consider the range of prese-
lected latent variables H0 2 (4,10) from the entire H-dimensional posterior space. These
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Fig 4. Parameter recovery on synthetic data. Results of three differently parameterized sets of experiments, each with 10 experimental runs of 30 EM
iterations on identical artificial ground-truth data generated according to the SSMCAmodel: A N = 2,000, D = 5 × 5. Three shown experimental settings are: B
H0 = H = 10,C H0 = 5, andD H0 = 4, although the same results were obtained by the entire range of parametersH0 = [4, 10]. Importantly, the figure shows
accurate recovery of ground-truth parameters which are plotted with dotted lines.B, C andD show in each column the parameter convergence of each of the
three experiments, where the rows contain the following: data noise σ, sparsityH × π, prior standard dev. σpr, and the prior mean μpr. Finally, E shows the set
of learned generative fields/componentsWh corresponding to each experimental set B H0 = H = 10, C H0 = 5, andD H0 = 4.

doi:10.1371/journal.pone.0124088.g004
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experiments yield the same results: our algorithm reliably converges quickly to (at least) locally
optimal solutions of all parameters in all runs of the experiments with 30 EM iterations. This
suggests that our approximation parameters do not strongly affect the accuracy of our infer-
ence results. See Fig (Fig 4C, 4D, 4E) for some further convergence examples, namely where H0

= 4 and H0 = 5.

Occlusions data: Dictionary learning and image reconstruction
In order to directly evaluate the differences between our nonlinear SSMCAmodel and the stan-
dard linear sparse coding model (which will be referred to as LinSC), we consider dictionary
learning and image reconstruction on two datasets consisting of true occlusions. Here the task
is to learn the set of componentsW, i.e. the dictionary elements, that are behind the composi-
tion of a given observed dataset y, and consider reconstruction of individual images/data points
y(n). The goal of these experiments is to understand how the learned components are affected
by the models’ assumptions and furthermore the effect this has on the quality of the
image reconstruction.

For the linear SC comparison we use the sparse online dictionary learning algorithm [39],
which is a state-of-the-art matrix factorization sparse coding approach and is based on the ob-
jective function formulated in Eq (1). Furthermore, in order to study the effect of the spike-
and-slab prior, we apply the SSMCA algorithm with a narrow and fixed prior slab (small vari-
ance for the Gaussian of the prior distribution). Such a fixed narrow slab approximates a binary
prior. Binary priors have thus far been used with nonlinear approaches ([16, 19, 20, 25, 40]) in-
cluding previous MCA versions [16, 19, 20]. We will refer to the SSMCA algorithm with fixed
narrow slab as SSMCAfix. To make sure that the differences in the results using SSMCAfix vs.
SSMCA can be attributed to the difference between binary-like and spike-and-slab prior, we
make sure that SSMCA and SSMCAfix are identical except for the algorithmic aspects con-
cerned with learning the slab. Note that the data model underlying SSMCAfix connects to that
of standard MCA [16, 20] and becomes identical in the limit of an infinitely narrow slab (a
delta peak). However, the algorithms for parameter optimization remain different also in this
limit (SSMCAfix remains sampling based, for instance).

Realistic occlusion dataset. The first dataset we compare the algorithms on is one with
controlled forms of sparse structure, a realistic artificial dataset of true occlusions (data created
by actual occlusions and not following any model considered here). The data was generated
using the Python Image Library (PIL) to draw hundreds of overlapping edges/strokes in a
256 × 256 pixel image: each stroke had an integer intensity between (1,255), a width between
(2,4) pixels, and a length, starting, and ending position drawn independently from a uniform
distribution. The image was then cut into overlapping D = 9 × 9 patches, each of which con-
tained k 2 (0,5) overlapping strokes, for N = 61009. Gaussian observation noise of σ = 25 and μ
= 0 was then independently added to each patch, thus concluding the considered occlusion
dataset. Examples are shown in Fig 5. Additionally, the dataset also contains the corresponding
(automatically obtained) labels for each image, indicating the ground-truth number of occlud-
ing strokes k 2 (0,5) per image.

Such a dataset represents and isolates challenging aspects of low-level image statistics that
are present in all natural images. Particularly, it contains edges of varying intensities and their
occlusions. We have selected it because it is complex enough to narrow in on the consequences
of the different model assumptions, but simple enough that we know what generated/caused
the data. In this way, we can interpret the results and evaluate what each approach learns, par-
ticularly how they cope with occlusions.

Nonlinear Spike-And-Slab Sparse Coding

PLOS ONE | DOI:10.1371/journal.pone.0124088 May 8, 2015 13 / 25



We run the nonlinear SSMCA and the linear SC methods on the occlusions data set. We set
the number of dictionary elements to be learned from the dataset toH = 100, but we also ran
experiments learning larger (H = 256) dictionaries, which yielded the same results for both the
linear and nonlinear methods. For SSMCA and SSMCAfix we draw 40 samples per data point,
per variable (i.e. 40 × 100 = 40000 samples per data point when sampling 100 variables). The
number of preselected latent variables was set to H0 = 10 with 2 randomly chosen variables
each iteration. For LinSC, we used regularization parameters a = (1,50,100) in Eq 1 in order to
evaluate the reconstruction and the components learned across a range of sparse solutions.

The results showcase a number of notable effects. First, we see in Fig 6A the relationship be-
tween sparsity (number of components used for reconstruction) and data complexity (k num-
ber of strokes in the data). The complexity of the data reconstruction by SSMCA more closely
follows the actual complexity in the data: the SSMCA plot (blue curves) shows a nearly linear
relationship of the number of components used for reconstruction versus the number of com-
ponents (strokes) actually in the data. In other words, although all methods adapt the number
of fields used for reconstruction to the complexity of the data, our approach adapts to the ex-
tent of using nearly only as many components as are actually in the image (according to
ground-truth). Furthermore, Fig 6B shows the relationship of the reconstruction quality versus
the corresponding data complexity, in terms of the k number of strokes in the data. We quanti-

fy the quality of reconstruction with the mean squared error (MSE,
P

nðxn � x̂nÞ2, or the
mean MSE, MMSE, which is MSE averaged over the respective dataset), which is very sensitive
to subtle variances in an image versus its reconstruction. Notably, when the linear method is
regularized to yield a solution as sparse as the nonlinear method (LinSC a = 100, cyan curves),
its reconstruction MSE suffers.

Next, we investigate the actual components each model uses in order to reconstruct a given
image patch. Fig 7A–7E contains a comparison of the reconstruction of a handful of image
patches by the linear and the nonlinear methods. Evaluation of the fields/components learned
by each method suggests that the nonlinear max, which aims to model occlusions, is better able
to learn generating causes of the occlusion-rich images. Regardless of image complexity—how
many causes/strokes are in an image—the components used by the nonlinear method
(SSMCA) resemble the true causes of the image: each component contains a single, interpret-
able stroke. On the other hand, none of the a parameterizations of the linear method yield
stroke-like components, even when the solution is regularized to be as sparse as SSMCA. For

Fig 5. Synthetic occlusion dataset and cut–out original and noisy patches. Examples taken from the occlusion dataset. A shows an original noise-free
image of generated occluding strokes of random width, pixel intensity, and starting/ending points.B shows a handfull of overlapping image patches cut from
the original, noise-free data. C shows examples of the noisy training data, with independent σ = 25 noise added to B.

doi:10.1371/journal.pone.0124088.g005
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example, if we just consider sparse solutions, namely compare the methods which use fewest
components for reconstruction (SSMCA and LinSC with a = 100; blue and cyan curves, respec-
tively), we see that not only is the nonlinear SSMCA solution consistently better in terms of
MSE, but also the components learned/used are very different.

Although SSMCA extracts components resembling the generating causes, in some cases the
reconstruction MSE suffers because the model does not allow for error correction via adding
negative components (which, if it did allow for such corrections, would furthermore lead to a
less sparse solution). In contrast, the linear methods are optimized for the best image recon-
struction MSE using summation (as can be seen in the method’s objective function in Eq (1)),
and consequently are able to learn a set of components which can be added/subtracted for the
optimal MSE. This is particularly evident in the linear a = 1 case (green plots/highlighting),
where sparsity is weakly enforced, and thus a larger set of components can be used to fine-tune
a near-perfect reconstruction of the original image. Components learned by a control run with
SSMCAfix with σpr fixed to 0.25 look similar to those learned by SSMCA and quite different to
the ones of linear sparse coding (see Fig 8 for some examples). The learned sparsity is also simi-
lar to the one inferred by SSMCA but we observed only weak scaling with the complexity of the

Fig 6. Comparative experiments of linear and nonlinear sparse coding on dictionary learning and image reconstruction.WithH = 100 learned
dictionary components we evaluate the number learned and used for reconstruction. A shows the relationship between sparsity (number of components
used for reconstruction) and data complexity (number of strokes in the data). Interestingly, the SSMCA plot (blue curves) shows a nearly linear relationship of
the number of components used for reconstruction versus the number of components (strokes) actually in the data, suggesting that reconstruction-
complexity of the data by nonlinear model more closely follows the actual complexity in the data. On the contrary, the linear parameterization that yields good
reconstruction results a = 1 shown in green, does not adapt to the data complexity at all: it consistently uses nearly 80 of the learned 100 components per
reconstruction, regardless of the data point’s actual complexity (note the change in scale of the y-axis around 30 components in order to fit the green curve on
the plot). B shows the relationship of the mean squared error (MSE) of the reconstructions of all versus the corresponding data complexity (number of strokes
in the data). When the reconstruction-complexity (sparsity) is far from the actual complexity of the data (linear methods: red, a = 50 and green a = 1 cases) the
MSE improves. However, when the sparsity is more closely matched to the data, SSMCA and the weakly regularized linear methods result in a poorer MSE.
SSMCA nevertheless yields a better MSE in this case, even when it and linSC a = 100 have a very similarly sparse solutions/use the same number of
components. Note that the error of the least sparse LinSC approach (a = 1) is so low (mean MSE = 1.81), it does not even appear on this graph. Error bars
shown are scaled to be 10% of the standard deviation for all methods in all stroke-complexity cases. The meanMSE (averaged over the entire dataset) is
shown in the legend next to the respective algorithm.

doi:10.1371/journal.pone.0124088.g006
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Fig 7. Comparison of linear and nonlinear sparse coding on image reconstruction. Shown are a handfull of real data points of varying complexity in
terms of the number of strokes k in each image (k 2 (1,5) strokes per image), the components/fields learned by the various algorithms, the corresponding
reconstruction of the given data point, and the mean squared error (MSE) of each reconstruction. A image with k = 1 stroke, B k = 2 strokes,C k = 3 strokes,
D k = 4 strokes, and E k = 5 strokes. Regardless of image complexity—how many causes/strokes are in an image—the components used by the nonlinear
method (SSMCA) resemble the true causes of the image: each component contains a single, interpretable stroke. On the other hand, none of the a
parameterizations of the linear method yield stroke-like components, even when the solution is regularized to be as sparse as SSMCA (a = 100). Note: all
images in the a = 1 case appear brighter than they actually are, due to visualization with a python toolbox, but are in reality of the identical brightness scale to
the original data point (and all other shown cases), hence the reconstruction error (MSE) is very low.

doi:10.1371/journal.pone.0124088.g007
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patches (for σpr � 0.25) to no scaling (for σpr � 0.25). Also the sparsity values were consistently
higher for SSMCAfix compared to SSMCA (i.e., fewer components for SSMCAfix). Further-
more, the average image reconstruction errors significantly increases for SSMCAfix compared
to SSMCA (e.g. for σpr = 0.25 we get a MMSE of 1833). The significant increase in reconstruc-
tion error is due to a decreased ability to fine-tune dictionary coefficients to the intensities of
the components—the intensity range from which the coefficients can assume is lower. For the
SSMCAfix algorithm this also seems to indirectly influence the learned sparsity, maybe due to
SSMCAfix attributing components with a low pixel intensity to background noise. We observe
the reconstruction errors and sparsity to increase when we decrease the width of the fixed slab
(namely, when decreasing σpr).

Regarding all the results reported here, note that the max is also just an approximation of
the true occlusion combination rule. If a dark stroke is occluding a brighter stroke, for instance,
the true gray-value of the overlapping region is not reproduced by the max. Still, the SSMCA
reconstruction is (given ground-truth strokes as dictionary elements) at least as good as in the
linear case, and better except for boundary cases. Therefore, it seems to be easier for the nonlin-
ear model to learn dictionary elements close to the generating components, i.e.
interpretable components.

To summarize, SSMCA extracts meaningful, interpretable components—components close-
ly match the generating process, adapts to complexity in the data, as measured by the number
of strokes/edge components in an image, and uses correspondingly more or fewer components
for the reconstruction. The reconstruction solution SSMCA offers is much sparser than that of
LinSC, for any levels of reconstruction error (MSE).

As a control, we also ran the same set of experiments, but varying H and H0—learning a
larger set of latent components (dictionary set)H and ranging the SSMCA preselection param-
eterH0 values—all of which resulted in the same trends shown in Figs 6 and 7.

Natural image occlusions. We have shown that our approach can model realistic artificial
occlusions well. Now we are interested in investigating the performance of the linear and non-
linear approaches on naturally occurring occlusions. We use an image of underbrush in a forest
(taken bridge.jpg, which has been used for denoising benchmarking [39]), which is rich with
occluding branches and twigs. See Fig 9A for the original noise-free image, from which we cut

Fig 8. Results of nonlinear sparse coding using a binary prior on image reconstruction. The nonlinear sparse coding model if applied to artificial
strokes using a fixed narrow slab (SSMCAfix. The two figure columns show image reconstruction results for SSMCAfix with σpr = 0.25 for two different ground-
truth stroke numbers (k = 3 and k = 5). SSMCAfix was first trained with fixed σpr and then applied to the data. Reconstructions were computed as described for
Fig 7.

doi:10.1371/journal.pone.0124088.g008
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Fig 9. Results of comparative experiments of linear and nonlinear sparse codingmethods on component learning/image reconstruction on
natural image patches. A shows the original natural image data, bridge.jpg [39], from which we cut an occlusion-rich underbrush region.B shows the
original section taken from A, scaled up to 256 × 256 pixels, which was then cut into overlapping patches and given independent Gaussian noise with σ = 5 to
compose the considered dataset. C shows the mean squared error (MSE) of the compared nonlinear and linear methods’ reconstruction averaged over the
entire dataset, with the standard deviation indicated with error bars. The trend is the same as in the artificial occlusions data experiments: the nonlinear
method maintains reasonably low MSE, while learning a sparse set of interpretable components, whereas the linear method achieves a very low MSE only
when it does not learn a sparse (and never interpretable) solution of components.

doi:10.1371/journal.pone.0124088.g009
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a 110 × 110 pixel occlusion-rich section and scaled it up to 256 × 256 pixels to use in our data-
set, shown in Fig 9B. To compose the dataset as in the previous experiments, we cut the
256 × 256 image, with pixel values xi ranging from (0,255), into N = 61009 overlapping image
patches of D = 9 × 9 pixels, then add independent Gaussian noise with σ = 5. We run the exact
same set of experiments as with the original occlusions dataset, with both the nonlinear and
linear methods learning a dictionary size ofH = 100 latents. For SSMCA we again draw 40
samples per data point, per variable (i.e. 40 × 100 samples per data point), and set the number
of preselected latent variables to H0 = 10 with 2 randomly chosen per iteration. For linear SC,
we again used regularization parameters a = (1,50,100).

Because we do not have any ground-truth associated with this dataset as to how many
strokes/components are in a given image, we can only compare the average reconstruction
error for the entire dataset across methods. Fig 9C shows the mean MSE of each method with
the associated standard deviation. The results follow the trend outlined in the previous set of
experiments (in Fig 6B), where again if LinSC uses as sparse a reconstruction as SSMCA (in
a = 100 case), the mean reconstruction error is far poorer than that of SSMCA (MMSE =
269.96 vs. MMSE = 75.71). Furthermore, even when LinSC is less sparse (in a = 50 case), the
mean reconstruction error is still slightly poorer than SSMCA (MMSE = 83.89 vs. MMSE =
75.71). On the other hand, when the linear model uses a highly non-sparse solution (LinSC
a = 50, resulting in using 75 of 100 components for reconstruction), it can fine-tune its recon-
struction to achieve very low error (MMSE = 0.93). However, the components each linear
model uses for reconstruction are non-interpretable (e.g. do not resemble edge-like structures)
for any of the linear models, regardless of their sparsity or reconstruction error both nonlinear
models use components that indeed resemble edge-like structures and are interpretable.

When applying SSMCAfix as a control, the learned dictionary components are similar to the
ones by SSMCA, however, the reconstruction error is much worse than that of SSMCA with an
MMSE of 290 for σpr = 0.25 (see Fig 6 for comparison). When we make the slab still narrower,
the reconstruction error further increases (e.g., MMSE = 377 for σpr = 0.1), which is consistent
with a reduction of the ability to accurately match the varying stroke intensities using continu-
ous coefficients.

Natural image patches and neural consistency
Understanding the encoding provided by sparse coding and its capability to extract interpret-
able data components is important for functional applications but, furthermore, also of high
relevance for probabilistic models of the primary visual cortex (V1). Since the seminal study by
[41] sparse coding can be considered as a standard model for the response properties of V1
simple cells. Evidence that response properties of V1 simple cells may be better described by a
sparse coding model that reflects occlusions has been provided by a recent comparative study
[19]. To complete our investigation of the SSMCAmodel, we will apply it to the same data as
used in that study. In contrast to the binary sources assumed by [19], our model allows us to
study the statistics of basis functions under the standard assumption of continuous latents.

We apply our model to N = 50,000 image patches of D = 16 × 16 = 256 pixels and learn
H = 500 hidden dimensions/generative fields, and run 50 EM iterations with 100 samples per
data point. The patches were extracted from the van Hateren natural image database [42] and
subsequently preprocessed using pseudo-whitening [4]. We split the image patches into a posi-

tive and negative channel to ensure yd � 0: each image patch ~y of size ~D ¼ 16� 16 is con-

verted into a data point of size D ¼ 2 ~D by assigning yd ¼ ½~yd	þ and y~Dþd ¼ ½�~yd	þ, where [x]+
= x for x> 0 and [x]+ = 0 otherwise. This can be motivated by the transfer of visual informa-
tion by center-on and center-off cells of the mammalian lateral geniculate nucleus (LGN). In a
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final step, as a form of local contrast normalization, we scaled each image patch so that 0� yd
� 10.

All results are shown in Fig 10. In Fig 10A, we have a handful of the learned dictionary ele-
mentsWh (which are a variety of Gabor-Wavelet and Difference of Gaussians (DoG)-like
shapes). To quantitatively interpret the learned fields, we perform reverse correlation on the
learned generative fields and fit the resulting estimated receptive fields with Gabor wavelets
and DoGs (see S1 Results 2 for details). Next, we classify the fields as either orientation-sensi-
tive Gabor wavelets or ‘globular’ fields best matched by DoGs. In Fig 10B we compare the per-
centages of ‘globular’ fields to in vivo recordings. These results are consistent with neural
recordings: notably, the proportion of DoG-like fields in the same high range as the propor-
tions found in different species [18, 43, 44] (See [19] for data and a discussion), which is a result
not observed by the established linear SC variants. The learned prior and its parameters are
shown in Fig 10C: learned sparseness was πH = 6.2 (i.e. on average six active latent variables
per image patch), mean μpr = 0.47, with standard deviation σpr = 0.13. The learned data noise
was σ = 1.4. Exhibiting consistency with the learned prior, Fig 10D shows a handfull of the in-
ferred latent variables (coefficients) sh. These correspond to the actual activations of the diverse
dictionary elementsWh, each of which is visualized in the upper right of each subfigure. A part

Fig 10. Analysis of dictionary components learned by the SSMCA algorithm on natural image
patches. A Example dictionary elementsWh after learning.B Fraction of globular fields estimated from in
vivomeasurements, compared to ours (after fitting with Gabor wavelets and DoG’s; globular percentages
taken from [19] who analyzed data provided by [18] and estimated percentages of globular fields from data in
two further papers [43, 44]. C Learned prior. D Actual activations of diverse dictionary elements sh (posterior
averaged over data points).

doi:10.1371/journal.pone.0124088.g010
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of these results have also appeared in a preliminary application of this model in a conference
submission [22]. Please see S1 Results 2 for the complete set of generative fields learned and for
a larger set of the learned prior activations.

Since we have shown consistent predictions with neural recordings, we finally test the
model for consistency with the natural image patches dataset. Specifically, we are interested in
consistency of the prior beliefs with inferred beliefs, as it is a necessary condition of the correct
data model that the posterior averaged over the data points y(n) matches the prior (compare
e.g. [45]):

lim
N!1

1

N

X
n
pðsjyðnÞ;YÞ ¼ pðsjYÞ: ð29Þ

After the learning on image patches as described above, we observed that averaged posteriors
over data points closely resemble the learned prior (see Fig 10E for examples). Linear sparse
coding has reportedly struggled with this consistency condition (see [36] for a discussion).

Discussion
In this work we introduced a sparse coding model that modifies standard sparse coding in two
ways: it uses a spike-and-slab distribution instead of a Laplace prior and the nonlinear max su-
perposition instead of the standard linear superposition. With these additions, the proposed
model can realistically model low-level image effects. Particularly, the nonlinearity of the max
equips the approach to well-approximate occlusions.

As learning and inference in a model with these two modifications is difficult, we also pro-
posed a combined preselection-sampling scheme that constructs the conditional posterior with
high accuracy and efficiency. This inference approach allowed us to apply, for the first time, a
sparse coding model with continuous latents and strongly nonlinear combination to reason-
ably high-dimensional observed and hidden space dimensions. The approach is therefore ap-
plicable to the typical application domains of standard sparse coding. Furthermore, it offers
itself as a novel model for neural responses that encode component intensities. Unlike (linear
and nonlinear) models with binary latents [19, 46, 47], it can capture a more fine-tuned repre-
sentation of sensory stimuli.

Our main interest in this work was in gaining deeper understanding of the consequences of
the component combination assumption (linear or nonlinear) and to highlight these conse-
quences empirically in numerical experiments. First, in experiments on artificial data, we have
shown that the model and inference approach can learn ground truth parameters. Further-
more, using experiments on natural image patches, we showed consistency of our model in two
ways: its predictions are consistent with Eq (1) in vivo neural recordings and with Eq (2) its
prior beliefs. Our experiments on dictionary learning and image reconstruction show, as the
crucial difference, that the nonlinear method learns and uses interpretable image components
when reconstructing a given image patch (unlike the linear method [39]). Namely, we have de-
fined ‘interpretable’ to mean that the extracted components closely match the generating pro-
cess. Furthermore, we have shown that our method adapts to complexity in the data and uses
correspondingly more or fewer components for the reconstruction. Not only does our method
yield meaningful and adaptive solutions, but its solution is always much sparser than that of
any of the comparable parameterizations of the linear SC method, for any levels of correspond-
ing reconstruction error (MSE).

Our results consequently show that the max nonlinearity is sufficient to reproduce many
properties desired from a hidden causes approach to image patch modeling—especially “inter-
pretable” encoding. Future work could go even further, e.g., by taking into account object
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depths for a more explicit occlusion modeling. The challenges for inference are significantly in-
creasing in this case as unconstrained object permutations result in a super-exponential scaling
of hidden states. While explicit occlusion models can be developed based on similar methods
as used here (see [48] and citations therein), a combination with a prior for continuous vari-
ables such as the spike-and-slab distribution, poses a considerable and yet to be mastered scien-
tific challenge. Work using the max nonlinearity and related approaches, therefore, focuses on
capturing the essential properties of occlusion with more compact models, which allow for
larger-scale applications comparable, e.g., to those possible with linear sparse coding ap-
proaches. Work by Zoran and Weiss [49] aims at capturing occlusion nonlinearities using a
mixture model approach, and a comparison with linear models shows significant advantages
and improved interpretability. Other recent work combines translation invariance with the ex-
clusiveness property of occlusion [31]. Although that work offers a multiple-causes approach
as the one proposed here, they do not provide a model for a continuous distribution of compo-
nent intensities. Linear approaches are also being continuously further developed. By using a
massive increase in the number of hidden units [50], it can be observed that, e.g., globular com-
ponents (compare with the Results section on Natural image patches) can also emerge using
linear approaches (also see [19] for a discussion). In such highly overcomplete settings, sparsity
can be increased, which tends to increase the interpretability.

Further linear approaches include non-negative matrix factorization (NMF) methods which
are usually not formulated probabilistically. Previous work [20] quantitatively compared differ-
ent NMF versions to MCA with binary hidden units, which itself is approximated by the
SSMCAfix evaluated as a control here. Using the bars benchmark test (which can be considered
as a simplified version of the data used in the dictionary learning and image reconstruction ex-
periments, see Results), it was shown that MCA performs well in this nonlinear task. Already
for the comparably simple bars test, standard NMF was shown to fail (experimental data from
[51]). Only if constrained appropriately, using hand-tuned constraints on sparsity for weights
and latent activity, NMF was reported to learn the correct generating components. Such con-
strained extensions for NMF objective functions can be combined with any noise metric (e.g.,
Poisson, Gaussian, Manhatten; compare [52, 53]), but the sparsity parameter in these ap-
proaches is hand-fixed and cannot be learned. In a probabilistic formulation, constraints could
be reformulated as priors and indeed be learned, which could potentially make them more sim-
ilar to the approach used here. Regarding the inherent superposition assumption, all NMF ap-
proaches are, by definition, linear and thus in this respect more similar to linear sparse coding
than to SSMCA. Consequently, the linearity assumption used by NMF could explain why, e.g.,
the algorithm requires additional mechanisms in order to learn the correct solution for the
bars experiments.

In conclusion, this work marks first steps in uncovering the benefits and drawbacks of the
implicit assumptions made within sparse coding models, the understanding of which will help
researchers to select the most suitable model for their task. If the primary goal is for image re-
construction, our experiments suggest the linear model to be the better choice, whereas if the
goal is to extract a sparse dictionary set approximating the data generation, our approach
would be more beneficial.

Supporting Information
S1 Derivation. M-step Parameter Equation Derivations. The equations computed every EM
iteration in the M-step to update the model parameters to the current maximum likelihood so-
lution are shown here with their derivations.
(PDF)
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S1 Results. Experiments: Natural Image Patches. The complete set of generative fields
learnedW learned in the experiments on natural image patches and a larger set of the learned
prior activations are shown here.
(PDF)
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