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Abstract

Pre-training state-of-the-art large language models (LLMs) requires vast
amounts of clean and diverse text data. While the open development of
large high-quality English pre-training datasets has seen substantial recent
progress, training performant multilingual LLMs remains a challenge, in
large part due to the inherent difficulty of tailoring filtering and deduplica-
tion pipelines to a large number of languages. In this work, we introduce
a new pre-training dataset curation pipeline based on FineWeb (Penedo
et al., 2024) that can be automatically adapted to support any language.
We extensively ablate our pipeline design choices on a set of nine diverse
languages, guided by a set of meaningful and informative evaluation tasks
that were chosen through a novel selection process based on measurable
criteria. Ultimately, we show that our pipeline can be used to create non-
English corpora that produce more performant models than prior datasets.
We additionally introduce a straightforward and principled approach to
rebalance datasets that takes into consideration both duplication count and
quality, providing an additional performance uplift. Finally, we scale our
pipeline to over 1000 languages using almost 100 Common Crawl snapshots
to produce FineWeb2, a new 20 terabyte (5 billion document) multilingual
dataset which we release along with our pipeline, training, and evaluation

codebases.
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One of the main drivers of the improving ca-
pabilities of large language models (LLMs)
is increased scale, in terms of both model
and pre-training dataset size. To satiate the
ever-growing hunger for text data, most pre-
training datasets include large amounts of
text scraped from the public internet (Raf-
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fel et al., 2020; Penedo et al., 2023; 2024). Figure 1: The FineWeb2 pipeline: Evalua-
Consequently, pre-training data tends to be  tlon results of models ’Fra1r}ed on 350 billion to-
most readily available in the “high-resource” kens show that each pipeline step — Language
languages (English, Chinese, etc.) that are Identification (LID), Deduplication (Dedup),
most prevalent on the internet. Since LLM  Filtering, and Dedup-informed upsampling
capabilities largely stem from the data they (Rehydration) — improves performance.

were trained on (Grosse et al., 2023; Roberts

et al., 2020; Razeghi et al., 2022), this has resulted in language models having better perfor-
mance on high-resource languages. Furthermore, commercial and open language model
development frequently only targets these languages (Grattafiori et al., 2024; Jiang et al.,
2024; 01.Al et al., 2025). This state of affairs leaves the majority of the world’s population
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(speaking over 7,000 languages (Eberhard et al., 2024)) unable to interact with state-of-the-art
LLMs in their native tongue.

Why not just curate datasets in underrepresented languages and train LLMs on them?
Putting aside the possible lack of data (recent LLM training runs typically require trillions
of tokens (Al@Meta, 2024; DeepSeek-Al et al., 2024)), a key challenge is that high-resource
languages benefit from the existence of well-tuned and battle-tested data processing and
curation pipelines, whereas low-resource languages face a vastly different landscape: eval-
uating corpora quality, ensuring accurate language identification, customizing filtering
recipes, and even separating words can be major challenges for many languages. While
some past work has successfully curated single-language pre-training datasets and used
them to produce strong language-specific models (Carmo et al., 2020; de Vries et al., 2019;
Le et al., 2020; Martin et al., 2020; Delobelle et al., 2020; Luukkonen et al., 2023; PLLuM
Consortium, 2025; Pipatanakul et al., 2023, etc.), hand-designing a different pipeline for each
language does not scale. Consequently, most past work on multilingual datasets (e.g. Xue
et al., 2021; Wenzek et al., 2020; De Gibert et al., 2024) has used a (mostly) fixed pipeline
across all languages. This one-size-fits-all approach risks applying inappropriate filtering to
different languages, obviating the goal of creating performant data in many languages.

In this work, we introduce a new data processing pipeline based on the approach used for
the state-of-the-art English pre-training dataset FineWeb (Penedo et al., 2024). Importantly,
our pipeline can be automatically adapted based on language-specific statistics to produce
high-quality pre-training corpora in any language. We follow a data-driven approach and
validate our design choices by running extensive ablation experiments where we train
monolingual models on a set of nine diverse languages and evaluate on tasks chosen
through a novel selection process based on measurable criteria that ensure a meaningful
signal. In addition, we introduce a straightforward and principled approach to rebalance
datasets using the original duplication counts and quality signals that allows globally near-
deduplicated datasets to obtain a performance uplift. Ultimately, we show that models
trained on language-specific corpora produced by our pipeline perform better than those
trained on other public web-based multilingual datasets by training models on additional
“unseen” languages that were not used to inform pipeline design decisions. Finally, we
use our pipeline to process almost 100 Common Crawl! snapshots spanning the summer
of 2013 to April 2024 to create FineWeb2, a new 20 terabyte (5 billion document) dataset
covering over 1000 languages. FineWeb2 is released under the permissive ODC-By License,
and we additionally release the pipeline, training, and evaluation codebases, as well as the
preliminary version of the dataset obtained after the deduplication stage, to facilitate further
research on multilingual pre-training dataset curation.

2 Preliminaries

Before detailing our dataset creation process, we first establish critical considerations that
arise when dealing with massively multilingual data.

Notation When considering thousands of languages, it’s important to have an unambigu-
ous way of referring to languages and scripts. In our work we identify languages by their
official ISO-639-3 codes? which cover significantly more languages than the commonly used
ISO-639-1 codes (such as “en”, “zh”, etc). As many languages use multiple writing systems
(scripts), we optionally designate individual “languages” by a (ISO-639-3 language code, ISO
15924 script code) pair. For instance, ‘arb_Arab’ is Standard Arabic in Arabic script, while
‘arb_Latn’ is Standard Arabic in Latin script.

Separating words Many parts of our processing and evaluation pipeline require the ability
to separate (tokenize) text into individual words. For example, we rely on word tokenization
when we filter documents based on the ratio of words that have a given property, when
selecting n-grams for deduplication, or even when evaluating generative tasks. While
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whitespace and punctuation often mark word boundaries, many writing systems use
different boundary markers or have no visible markers at all (Daniels & Bright, 1996). This
is particularly common in Southeast Asian languages, as well as Chinese, Japanese, and
Korean. Therefore, word tokenizers/segmentators tailored to each language and script are
needed. We collected a large number of tokenizers from SpaCy (Honnibal et al., 2020) and
Stanza (Qi et al., 2020), as well as from libraries targeting specific languages (or language
groups). We then assigned proxy tokenizers based on the closest language according to
language family data from the Ethnologue® to languages without a native word tokenizer.
For more details on this process, see Appendix A.1. These tokenizer assignments were
crucial to adapt filtering, deduplication, and evaluation setups to thousands of languages.

3 Experimental setup

To compare and validate pipeline design choices, we followed an experimental setup similar
to Penedo et al. (2024). Specifically, to assess data quality, we relied on training small models
and evaluating them on “early-signal” benchmark tasks, i.e., tasks where models perform
reasonably well after only a few tens of billions or hundreds of billions of training tokens,
allowing us to confidently establish comparisons between them. For each processing step,
we conducted comparative evaluations using two identical models that differed only in
their training data: one model was trained on data with the processing step applied, while
the other used the unprocessed (ablated) version. By keeping all other variables constant
(number of parameters, architecture, tokenizer, and training token count), we could isolate
the impact of each data processing step on downstream model quality.

While ideally we would have tested each processing step across every language, compu-
tational constraints and the lack of evaluation tasks for many of the languages made this
impractical. We therefore chose to conduct our experiments on a select set of nine canary
languages (i.e. test languages): Arabic, Chinese, French, Hindi, Russian, Swahili, Telugu,
Thai, and Turkish. Testing across these languages allowed us to evaluate the impact of each
design decision across different language families, scripts, and levels of resource availabil-
ity, while keeping computational requirements manageable. These details are available
on Table 1, where Resource Availability was determined following Joshi et al. (2020). We
trained separate models per language, rather than a single multilingual model, to avoid
introducing confounders between languages. This means that for every ablation experiment
or validation run reported in this paper, we trained nine different models (one per language).

3.1 Tokenizer and model architecture

Tokenizer The choice of tokenizer can induce differential downstream model performance
across different languages based on how compactly it maps a given language’s words
into tokens (Mielke et al., 2021). Given that our experiments target different languages
and, in particular, different scripts, we evaluated the subword fertility and proportion
of continued words (Rust et al., 2021) of different existing open-source tokenizers from
leading multilingual LLMs on our nine canary languages. Concretely, we split text from
each language’s Wikipedia into individual “real” words using our word-level tokenizers
(discussed in Appendix A.1) and then measured the average number of tokens per word
for each tokenizer. From the tokenizers that showed reasonable fertility on our nine canary
languages, we chose the tokenizer used in Gemma (Gemma Team et al., 2024), a modern
tokenizer with a vocabulary size of around 250,000 tokens that showed better average
fertility than similarly sized tokenizers. Detailed results are available in Appendix A.3.

Model architecture We used a similar model architecture setup to Penedo et al. (2024),
with a reduced number of layers given the additional embedding parameters due to the
larger vocabulary size. All models used in our experiments were trained using the nanotron
training framework, and followed the Llama (Touvron et al., 2023) architecture with 14 layers,
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32 attention heads, length-2048 sequences, and tied embeddings, for a total of 1.46 billion
parameters. Further details and training hyperparameters are provided in Appendix A.4.

3.2 Baseline datasets

We selected existing widely used multilingual datasets to use as comparison baselines. For
each language, we trained one model on language-specific data from each reference dataset:
CC-100 (Wenzek et al., 2020; Conneau et al., 2020), mC4 (Xue et al., 2021), CulturaX (Nguyen
et al., 2024), and HPLT (de Gibert et al., 2024). We additionally trained multiple models on
“raw” Common Crawl data (after text extraction and Language Identification, but without
any additional filtering or deduplication). Unfortunately, all datasets except raw Common
Crawl only contained a limited amount of data for Telugu and Swahili, and only CulturaX
and HPLT had enough data for a pre-training run in Hindi at 30 billion tokens without
requiring an excessive number of epochs over the training data.

3.3 Selecting evaluation (Fine)tasks

The selection of English evaluation tasks is straightforward due to the existence of well-
established benchmarks such as MMLU (Hendrycks et al., 2021) or HellaSwag (Zellers et al.,
2019), which are widely used and supported by all major evaluation frameworks. The
situation is significantly different for non-English languages, which often lack evaluation
tasks. When available, these tasks often lack broader community validation and suffer from
quality issues — many are machine-translated and may even include English words in their
formulations (Artetxe et al., 2020b). Additionally, we find that non-English tasks are often
unsuitable for early pre-training evaluation due to suboptimal task formulations and/or
excessive difficulty that results in random-level performance.

To identify informative evaluation tasks, we established four key criteria for what we call
early-signal tasks: Monotonicity — the performance of models evaluated on this task should
improve as training progresses, though possibly at different rates depending on the pre-
training dataset; Low noise — when comparing models trained on different datasets, we
want to ensure that the relative performance differences between them are due to inherently
better training data, and not due to evaluation noise; Non-random performance early in
training — tasks reflecting model capabilities that are only acquired later in training are
not informative for small scale pre-training ablations, as near-random scores cannot mean-
ingfully differentiate between datasets; Ordering consistency — if model A outperforms
model B, then falls behind, then leads again within a short span of training steps, we cannot
confidently determine which model (and, correspondingly, dataset variant) is superior and
we therefore need tasks that provide consistent relative performance.

We defined quantitative metrics to measure these characteristics and applied them to
hundreds of candidate zero-shot evaluation tasks targeting our 9 canary languages on the
models trained on our baseline datasets. See Appendix A.5 for the precise definition of
“early-signal” tasks and additional description of our evaluation setup. We strove to cover
different task types in all languages: Reading Comprehension, RC; General Knowledge,
GK; Natural Language Understanding, NLU; and Common-Sense Reasoning, CR.

Our in-depth analysis of existing evaluation tasks resulted in a final suite of 84 selected
benchmarks out of 197 tested across our nine canary languages. We list all the tasks and
employed metrics in Appendix A.5.3.

To produce an aggregate score across tasks, we follow the approach used by Fourrier
et al. (2024); Li et al. (2024b) and average scores across tasks after first rescaling scores
based on the random baseline — any score below the random baseline is considered 0, and
for the remaining scores we subtract the random baseline value and shift the scores as
new_score = (score — random_baseline) /(1 — random_baseline). As some languages might
have an unbalanced number of tasks for each task category (RC, GK, NLU and CR), during
score averaging we first average within categories themselves and then take the average of
each category. This per-category macro-average score is our final reported aggregate score.
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4 The FineWeb2 pipeline

4.1 Starting point: FineWeb

We started by applying the first few processing steps used in the creation of the English-only
FineWeb dataset (Penedo et al., 2024): downloaded WARC (web archive) files from all
available (almost 100) CommonCrawl snapshots, applied URL filtering using a blocklist
to remove adult content (an approach discussed in Penedo et al. (2023)), and used trafi-
latura (Barbaresi, 2021) to extract text content from the HTML in the WARC files. We then
aimed to adapt the remaining components of the FineWeb pipeline — filtering and dedupli-
cation — starting with all the data that was excluded during FineWeb’s language filtering
step (which uses the FastText language identifier (Joulin et al., 2016) to identify English
text with a threshold of 0.65). Since approximately 40% of all documents met the FineWeb
English language threshold, our starting point for FineWeb2 comprises the remaining 60%
of all the text extracted from CommonCrawl content.

4.2 Language Identification (LID)

A critical first step for curating a multilingual dataset from web scrapes is accurately
identifying the main language of each document. The choice of Language Identification
(LID) tool determines not only how reliably each language (label) is predicted, but also the
set of identifiable languages — if the LID does not have a label for a specific language, then
its content will either be removed or misclassified as some other language. Additionally, as
LID classifiers usually assign a confidence score to each prediction, the choice of filtering
thresholds further affects the amount of data retained, as well as its quality, as LID confidence
can often be correlated with the noisiness of a given document (NLLB Team et al., 2022).

Choice of classifier While Transformer-based LID classifiers exist (Bapna et al., 2022), they
are too slow and expensive to run at a large scale. Most commonly used LID classifiers are
simple character level n-gram models, including CLD3 (Salcianu et al., 2018) (107 supported
languages, used in mC4 (Xue et al., 2021)) and classifiers following the fastText architec-

ture (Joulin et al., 2016), such as FT176* (176 languages, used in CC-100 (Wenzek et al., 2020;
Conneau et al., 2020) and CulturaX (Nguyen et al., 2024)), OpenLID (Burchell et al., 2023)
(193 languages, used in HPLT2 (Burchell et al., 2025)), and the recent GlotLID (Kargaran
et al., 2023) (1880 languages). Although FineWeb Penedo et al. (2024) used FT'176, using
GlotLID would allow us to support a much larger number of languages, as well as to
run separate processing for different scripts of the same language, as GlotLID explicitly
separates them. Additionally, it includes special labels for non supported scripts and for
common formats of “noise” documents, preventing this content from being classified as one
of the other languages.

While GlotLID reports strong performance on language classification benchmarks and
supports a large number of languages, we are primarily interested in the downstream model
quality resulting from using a given LID tool. Therefore, for each canary language we trained
one model on documents classified as this language (regardless of confidence) by FT176 and
another based on GlotLID. We then evaluated the models on our set of evaluation tasks and
found that GlotLID outperforms FT176 (Fig. 5) on higher resource languages while being
slightly behind on lower resource languages. We consider the increased language coverage
to make up for this difference and employ GlotLID for our pipeline. See Appendix A.6.1 for
additional discussion and results.

Confidence thresholds In addition to providing the most likely language of a document,
LID classifiers typically also return a confidence threshold for that prediction. Many works
rely on a single confidence threshold applied to all languages, e.g., in mC4 (Xue et al,,
2021) only documents whose language prediction score is above 70% are kept, while in
CC-100 (Wenzek et al., 2020) a score of 50% is used for all languages. However, this does
not account for inherent differences in prediction confidence between languages — some
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languages have a closely related cousin that might confound the LID classifier, therefore
requiring a lower threshold, whereas a higher value can be employed for high resource
languages for which the classifier is often quite confident (NLLB Team et al., 2022). To
determine appropriate thresholds per language following our data-driven philosophy, we
train models for each of our nine languages at different confidence thresholds, corresponding
to removal rates of 5% of the data at a time.

Languages such as Arabic (Table 16) or Russian (Table 20) prefer high thresholds (>0.8),
while for Swahili a lower threshold around 0.3 (corresponding to a removal rate of almost
65%) performs best, as this language’s distribution is right-skewed. After analyzing the
score distributions and the highest performing thresholds, we defined filtering thresholds to
be one standard deviation below the median of the score distributions, clipped to the range
[0.3,0.9]: max{0.3, min{0.9,Med(X) — o(X)}}, where X is the distribution of confidence
scores for this language’s data. We found that this formula selects values within the highest
performing threshold regions for most languages (Table 15).

4.3 Deduplication

Deduplication is the process of removing highly similar documents from a pre-training
dataset to increase training efficiency and improve model performance (Lee et al., 2022).
While deduplication requires a large amount of computation and is therefore typically
applied as the very last processing step, we employ it as an initial step, before filtering. This
allowed us to directly observe the final dataset performance each time we ran one of our
many filtering experiments without the possibility of deduplication later influencing the
results.

We rely on MinHash (Broder, 1997), a “fuzzy” deduplication method that finds clusters of
similar documents that are then filtered to keep a single document per cluster. We used
the same MinHash hyperparameters used for FineWeb (14 buckets of size 8, with 5-grams)
and deduplicated globally per language. We used our word-level tokenizers (Section 2) to
obtain word n-grams. When keeping a single document per duplicate cluster, we record the
number of documents that were in the cluster to explore duplication-aware upsampling
schemes later in Section 4.5.

To measure the impact of deduplication on data quality, we trained per-canary-language
models on 350 billion tokens, both on the data before deduplication (with the LID filtering)
and after. Results in Fig. 1 show that while we generally observed improved performance
across languages, the impact of deduplication seems to vary significantly from language to
language, without any discernable relationship to the language’s resource level. However,
we note that even languages showing little to no improvement from deduplication still ben-
efit from rehydration (our duplication-aware upsampling scheme, described in Section 4.5).

4.4 Filtering recipe

Filtering aims to remove documents that are deemed to be “lower-quality” (i.e. those that
might worsen model performance) using heuristic rules, such as the number of times words
are repeated within the document, the average number of characters per words in the
document, or the ratio of lines ending with punctuation Albalak et al. (2024). Unfortunately,
many of these rules are language-specific: in languages like Chinese, words have, on
average, fewer characters, while in languages like German the opposite is true.

We began with the list of filtering rules from FineWeb and sought to devise methods that
would allow us to automatically adapt them to a large number of languages, tailoring
specific thresholds according to each language’s characteristics. To this end, we collected
statistics for each language on different corpora and used the distributions on different
metrics to determine adequate filtering thresholds. We relied on our nine canary languages
to inform our decisions and trained a large number of models to test how well each rule
adaptation method would generalize. We leveraged three main sources to collect statistics
for each language: Wikipedia, the Glotlid-Corpus (Kargaran et al., 2023) (used to train the
GlotLID classifier) and our language-filtered data obtained from Common Crawl.
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4.4.1 Stopwords

Stopwords are common words in a language that, while not indicative of text quality, when
absent can help identify non-linguistic “low-quality” content (e.g. boilerplate, non-natural
text, or gibberish), or content whose language was misclassified. The number of stop words
in a document is therefore used as a signal to remove such data, and stopword filtering is
part of the widely used Gopher quality filters (Rae et al., 2022) for English.

To determine stopwords for each language, we analyzed word frequencies in our reference
datasets, using our word tokenizers to identify the most frequently occurring words. Instead
of selecting a fixed number of words, we defined stop words as those exceeding a set
frequency threshold. This method allowed us to account for variations across languages.
For example, in English, “the” is highly frequent, whereas in German, its equivalents—"der,”
“die,” and “das”—share the same role. We additionally addressed specific issues: some
“words” were actually non-alphabetic and had to be excluded, and for some languages the
source data (particularly Wikipedia) contained large portions of English content that caused
a significant number of the stop words to be in English. This underscores the importance
of having clean data when creating filters in an automated fashion. Further discussion
in Appendix A.7.1. For our filtering pipeline, we require at least 2 words from the stopwords
list to be present in each document, in line with Rae et al. (2022).

4.4.2 Filtering threshold selection

To automatically determine filter thresholds for different languages, we propose an empirical
approach based on the distribution of the metric we are filtering. We consider a variety
of different methods: English, use English-based filtering values from FineWeb without
change (one of the baselines); MeanStd, assuming the threshold is n standard deviations
from the mean in the metric distribution in English, we set the threshold to the corresponding
distance from the mean in the target language distribution (a variation using the median
instead of mean produces similar values); Quantile, where we define the threshold for each
language so as to remove the same fraction of data as the English threshold removes in
English; 10Tail, inspired by CulturaX (Nguyen et al., 2024), we select a threshold to remove
the “tail’ — exactly 10% — of the reference data; MedianRatio, inspired by HPLT2 (de Gibert
et al., 2024), thresholds are selected such that the ratio between English and the target
language matches the ratio of the medians of English and the target language on this metric.
For each method, thresholds are computed on different reference corpora for each filter and
then models are trained on the data filtered using these filters. We then compare method for
each filter across all languages with each other, as well as with a “no filtering” baseline.

Precisely, we computed thresholds for each filter used in three of the FineWeb filter groups:
Gopher Quality (goq), Gopher Repetition (gor), and FineWeb Quality (fwq). We then trained
nine models (one per canary language) on data filtered using each method on each of
the filter groups, for all method-filter group combinations except those that removed an
excessive amount of data (more than 75%), or that did not remove any data at all. In total,
these experiments required a total of 207 ablation models, each trained for 29B tokens. We
report the average rank of the aggregate score of each method across languages, in Table 25.
Ultimately, we employ the best performing methods for each filter group: the 10Tail method
and Quantile methods computed on Wikipedia (or on GlotLID-Corpus for languages
without a Wikipedia) for the FineWeb and Gopher Quality filters, respectively, and the
MeanStd method computed on Common Crawl data for the Gopher Repetition filters. This
step noticeably improves performance for all languages (Fig. 1).

4.4.3 Precision filtering lower-resource languages

Low-resource languages often suffer from low LID precision: due to the large class imbalance
between high- and low-resource languages on web corpora, real precision is often much
lower than that measured on a balanced test set (Caswell et al., 2020). In practice, this means
that corpora for low-resource languages with a closely related high-resource language are
often heavily contaminated with false positives from the high-resource language, sometimes
accounting for more than 90% of the data.
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After inspecting data for low-resource languages produced by our pipeline, we decided
to employ a final filtering step exclusively to low-resource languages to address this issue.
Inspired by Caswell et al. (2020); Bapna et al. (2022), we compiled lists of words that are
common in each language but uncommon in other languages (i.e., have high affinity). We
then measured the “contamination” of each corpora as the ratio of documents not containing
any of these words. While the majority of languages had extremely low contamination
scores, roughly a third of the 1900 languages had contamination scores above 10%. For these
languages, we filtered documents using the high-affinity wordlists to remove false positive
documents. Additionally, since we noticed the high-affinity wordlists could be too short
and strict for some languages (such as English-based pidgins, for example), we also kept
documents removed by the wordlist filtering whose URLs included specific terms related
to the language (the language code, the language name, domain name extensions etc). A
manual audit of three lower-resouce languages shows precision improvements of almost
30% for some languages. We provide additional details in Appendix A.7.3.

4.5 Rehydration

In contrast to standard deduplication practices (Lee et al., 2022), Penedo et al. (2024) makes
the case for per-snapshot deduplication and claims that additional deduplication beyond
the removal of the largest duplicate clusters may actually harm model performance by
artificially upsampling documents that are completely unique but high-entropy and low-
quality. While we perform global deduplication, as mentioned in Section 4.3, we also save
the original size of each duplicate cluster in the metadata of the kept documents, which
allows us to selectively upsample specific documents (and therefore “rehydrate” the dataset),
to obtain more performant models.

In Tang et al. (2024), the authors explore one such strategy with hand-picked upsampling
weights based on MinHash cluster sizes: documents with 2 to 5 duplicates are repeated 3
times, 5-100 5 times, 101-1000 8 times, and documents with over 1000 duplicates are repeated
10 times. While this provides a duplication-aware upsampling strategy, it is heavily dataset-
dependent — smaller datasets will have their distribution of cluster sizes shifted left —and
therefore might not be scalable across different languages. Additionally, the chosen weights
favor highly duplicated documents the most, which we find are generally of lower quality,
and therefore should be repeated less rather than more.

While we initially trained models for each of our nine canary languages on data of different
ranges of minhash cluster sizes (e.g., we trained one model on data that had no duplicates,
another on data that had 2 duplicates, data that had 3-4 duplicates, etc) to empirically define
upsampling weights, a simpler and more scalable approach is to use the results from our
filtering stage as a proxy for cluster size quality: we obtain the global filtering rate (the
percentage of documents removed by our entire filtering process), as well as the filtering
rate for each value of metadata minhash cluster size, as shown in Fig. 2 (for French).
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Figure 2: Filtering rates by MinHash cluster size for French documents. The global filtering
rate represents the overall percentage of documents removed during the full filtering process.
Individual filtering rates are shown for each cluster size, providing a proxy for cluster
quality—higher removal rates may indicate lower-quality clusters. We assign upsampling
weights to each cluster size based on the filtering rates.
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The figure suggests that both data that was never repeated (cluster size of 1), as well as data
that is repeated many times (especially the most-repeated 0.1% “long tail” of data grouped
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as the last bar), is generally of lower quality, as our filters removed more than the global
removal rate. Surprisingly, this U looking shape we observe for French is present in most
languages we verified, but often shifted based on the size of the corpora for each language.

The differences we observe for different cluster sizes align closely with experimental results
from training runs on different ranges of cluster sizes for the languages we tested, and so
we experimented with setting upsampling weights based on the removal rates: we assigned
a weight of 10 (meaning documents should be repeated 10 times) to the cluster size with
the smallest removal rate, and a weight of 1 to every cluster size above the global removal
rate. For the remaining cluster sizes, we resorted to simple interpolation between these
2 endpoints. For French, the resulting weights are shown in Fig. 2. While upsampling
weights are dataset-dependent, using the filtering rates as a proxy for quality is a scalable
and affordable method to determine them and rehydration itself generally provides a strong
performance uplift (Fig. 1) with little downside.

5 Validating and Applying the FineWeb2 Pipeline

Having established the pipeline for FineWeb2, and having shown the positive effect of each
pipeline step (Fig. 1), we now perform additional evaluations to confirm the effectiveness of
our approach and use the pipeline to generate per-language datasets in over 1,000 languages.

Creating the FineWeb2 dataset We apply our pipeline to 96 Common Crawl snapshots,
spanning the summer of 2013 to April 2024, to produce the FineWeb2 dataset, comprising 20
terabytes of text content covering a total of 1,868 language-script pairs, of which 1,226 have
over 100 documents, 474 more than 1 thousand documents, and 203 at least 10 thousand
documents. Additional details and per-language statistics can be found in Appendix A.11.
In addition to the filtered dataset, we also release the preliminary version before filtering is
applied, to facilitate further research into alternative filtering methods. As FineWeb2 itself
does not include English, for full language coverage we recommend complementing it with
FineWeb, whose pipeline inspired FineWeb2.

Comparison to other datasets We now compare to other non-English datasets, both on
the canary languages used to design the pipeline as well as a set of unseen languages that
were not used for ablations. As discussed previously, prior multilingual datasets often
use fixed pipelines across languages, whereas FineWeb2’s pipeline adapts to the statistics
and characteristics of each language. By comparing to other multilingual datasets, we can
confirm the benefit of FineWeb2’s adaptive approach. To provide a point of comparison
against pipelines tuned to a specific language, we additionally evaluate single-language
datasets (whose pipelines are designed and tuned for a specific language, often by native
speakers) when available. For canary languages, we use the same set of benchmarks used for
pipeline design ablations. Since the FineWeb2 pipeline was designed specifically around the
canary languages, evaluating on unseen languages validates that the pipeline generalizes
effectively. To choose unseen languages, we first followed the same procedure (detailed
in Section 3.3) for selecting reliable evaluation tasks across a wide range of languages
and chose languages that had a sufficient number of reliable tasks: German, Indonesian,
Italian, Japanese and Vietnamese. The chosen tasks are detailed in Appendix A.10. Canary-
language and unseen-language models were trained for 29 billion and 100 billion tokens
respectively. All evaluated models follow the same architecture, hyperparameters, and
(Gemma) tokenizer as considered previously and detailed in Section 3.1.

A summary of the results is shown in Fig. 3, with detailed per-task results in Ap-
pendix A.10.2. Overall, we found that FineWeb2 produces more performant models than
prior multilingal datasets on 11 out of 14 of the languages we considered. In some cases,
FineWeb2 produces worse performance than a language-specific dataset, which highlights
that pipelines hand-designed by language experts can still outperform our adaptive pipeline
approach. These trends hold up both for our canary datasets as well as held-out datasets,
which supports the utility of the 1,000+ language-specific datasets we generated with the
FineWeb2 pipeline. On the whole, our results confirm the effectiveness and generalization
of our consistent-but-adaptable cross-lingual curation pipeline.
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Figure 3: High-level performance comparison of FineWeb2 to other multilingual and
language-specific datasets. We evaluate performance both on the canary languages used to
design the FineWeb2 pipeline as well as unseen languages. For brevity, for each language
we plot the performance of only the best-performing single-language dataset. The best-
performing dataset for each language is marked with . Expanded results are provided
in Appendix A.9 and Appendix A.10.2.

Inspecting low-resource corpora A natural concern is whether low-resource corpora,
often with fewer than 20 documents, contain content that is genuinely useful for training.
Manual inspection of over 500 languages reveals that many corpora are composed almost
exclusively of Bible and /or Wikipedia content. We categorized the most common document
domain names and computed the proportion belonging to Bible- or Wikipedia-related
sources: out of 1868 language-script pairs in the final dataset, 70% (1320 of them) have more
than half their documents from Bible- or Wikipedia-related domains. This reflects both the
limited availability of online data for many languages and the narrow diversity of sources
in the language identifier’s training data—where often the only “clean” data comes from
the Bible (Kargaran et al., 2023). While we hope these corpora remain useful to the research
community, their limited diversity highlights the broader challenges of collecting data for
the long tail of the world’s languages. For more details, see Appendix A.12.

6 Conclusion

In this paper, we used a data-driven approach to design a multilingual pre-training data
processing pipeline that can automatically adapt to all languages, in contrast to prior work
that employs fixed pipelines for each language. We extensively ablate our design choices
on a new suite of quantitatively identified multilingual benchmarks that provide a reliable
evaluation signal, ultimately covering 14 languages. We additionally show how duplication
counts and filtering results can be leveraged to selectively upsample higher quality content,
providing a performance uplift. Finally, we scaled our pipeline to create FineWeb2, a pre-
training dataset covering 1,868 language-script pairs, spanning 20 terabytes of text content
curated from 96 Common Crawl snapshots.

While our experiments show that our pipeline yields strong performance, we point out a few
limitations. First, although we strove to make the language coverage as wide as possible,
computational constraints, language-specific task availability, and excessively small low-
resource datasets only enabled us to test a small proportion of the languages in FineWeb?2.
These factors also forced us to only consider relatively short ablation runs. Second, we
studied “early-signal” properties of each task at the very early stages of model training, and
so it is possible that the properties could change significantly as training progresses, making
some tasks more viable. Additionally, we do not explore additional criteria for task selection,
such as “cultural alignment”, with which translated tasks struggle. Similarly, our chosen
tasks do not measure other important attributes such as bias or diversity. Lastly, while we
strove to include a large number of low-resource languages in our dataset, a large number
of them consist almost or even entirely of Bible- or Wikipedia-related content. Overall, we
hope our findings, datasets, and code pave the way for further improvement of datasets
that cover a wider range of languages.
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Ethics statement

While the Fineweb2 pipeline incorporates best efforts to support inclusivity and protect
personally identifiable information (PII) data, the vast scale of Common Crawl and auto-
matic processing cannot provide guarantees. For this reason, the processing pipeline and
datasets—including the removed samples—have been made public, allowing other parties
to investigate and improve upon them. Nevertheless, we address risks that could potentially
arise from using Fineweb2 more specifically below.

Bias Large Language Models are known to reproduce the bias present in their pre-training
data (Bender et al., 2021; Feng et al., 2023). As noted by Bender et al. (2021), even petabyte-
scale resources such as Common Crawl fail to capture the full range of human perspectives
due to disparities in internet participation, leading to the over-representation of certain view-
points. While our approach does not directly address disparities in internet participation, we
curate pre-training data that includes low-resource and historically excluded languages. By
broadening the linguistic and cultural coverage, we aim to incorporate diverse viewpoints
and support greater inclusivity.

PII Subramani et al. (2023) demonstrated that web data contains various types of personal
information, including phone numbers, email addresses, IP addresses, and credit card
numbers. Research has shown that malicious users can extract sensitive information from
LLMs’ training corpora by exploiting the models (Carlini et al., 2021; Chen et al., 2023).
However, processing Common Crawl at petabyte scale prohibits the use of computationally
intensive models, limiting the computational resources that can be used for detecting
personal information. Therefore, the FineWeb2 data processing pipeline implements best-
effort PII protection using regular expressions, targeting email and IP addresses. More
computationally intensive detection methods, the prevention of memorization, or other
techniques for responsible LLM training are left to the dataset’s end users.

Toxicity A challenge in detoxifying language models is that toxicity filters based on word
lists of automated methods often incorrectly flag neutral or positive content that mentions
marginalized groups, reducing the models’ ability to generate text about these groups,
even in positive contexts (Welbl et al., 2021). Yet fair treatment of all identity groups is
important. Our automated pipeline is designed to work across more than 1000 languages
and can be enhanced by the community. We use a URL blocklist to filter unwanted content.
This approach helps maintain representation of marginalized groups, while still reducing
harmful content in the data curation pipeline.

Intellectual property The vast majority of text on the internet is, under most legal frame-
works, protected by copyright. The legal implications of training language models on copy-
righted text are currently being deliberated in various lawsuits by rights holders against
LLM developers (Chat GPT Is Eating the World; Zakrzewski et al., 2024) and consequent
risks are therefore unclear (Bengio et al., 2025). Apart from legal risks, content creators have
objected to the use of their data on ethical grounds due to the lack of direct compensation
for using their content (Baack et al., 2025; Longpre et al., 2024). While Fineweb2 follows
current standard practice in not directly addressing these potential risks, the large scale of
our data could support efforts to study these issues in more detail (Kandpal et al., 2025).
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A Appendix

A.1 Word tokenizers for segmentation

For full language coverage, we relied on a wide range of word tokenizers from SpaCy (Hon-
nibal et al., 2020) and Stanza (Qi et al., 2020), as well as from libraries targeting spe-
cific languages (or language groups) like IndicNLP (Kunchukuttan, 2020) for Indic Lan-
guages, PyThaiNLP (Phatthiyaphaibun et al., 2024) for Thai, Kiwipiepy (Lee, 2024) for
Korean, KhmerNLTK (Hoang, 2020) for Khmer, LaoNLP (Phatthiyaphaibun, 2022) for Lao,
Botok (OpenPecha, 2025) for Tibetan, and Pyidaungsu (Sakana, 2024) for Burmese. For
languages without a native word tokenizer, we assigned a proxy tokenizer from another lan-
guage based on language family data from the Ethnologue® using the following approach:

1. Build a tree for each language family based on the taxonomy from the Ethnologue.

2. Assign tokenizers to each language+script pair that had a native tokenizer from one
of the libraries mentioned above

3. Perform an upward pass through the tree, propagating the available tokenizers to
the parent nodes, one per script. When multiple tokenizers for the same script are
present in the children of a given node, we pick the one from the language with
more available data. We do not propagate to the root node as different subfamilies
are usually quite different (for example, for Pidgin, “English-based” and “Swahili-
based” are two branches; for Indo-European, “Italic” and “Armenian”)

4. Perform a downward pass through the tree, assigning as a proxy tokenizer the
previously propagated parent node tokenizers when available.

This method allowed us to quickly scale tokenizer assignments for many languages by
assigning tokenizers from a closely related language. An illustrative example is available
in Fig. 4. We relied on the SpaCy multilingual tokenizer for the remaining languages with
Latin or Cyrillic scripts, which was trained on multiple languages that use these scripts. For
any remaining script, we assigned the remaining languages to the tokenizer of the highest
resource language that uses the script and has a native tokenizer.

Shttps://www. ethnologue.com/browse/families/
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Indo-European Language Family Tree

Indo-European
[-] (455)
Germanic Greek Indo-Iranian Italic
[english] (49) [greek] (6) [hindi] (312) [spanish] (45)
Romance Latino-Faliscan
[spanish] (44) [latin] (1)
Eastern Southern Italo-Western Latin
[romanian] (4) [spanish] (5) [spanish] (35) [latin]
Italo-Dalmatian Western
[italian] (6) [spanish] (29)

Italian Napoletano . Sicilian
[italian] [italian] [italian]

Figure 4: Example tokenizer assignments based on language family data in Indo-European.
Triangles correspond to languages for which a native word tokenizer was available, while
squares are languages for which a proxy tokenizer was assigned. The tokenizer assigned to
each language is written inside brackets [], and the number of languages in each subnode
is in parantheses (). The Italian word tokenizer was propagated to other languages in the
Italo-Dalmatian subfamily, while Spanish was propagated up the tree from the Western
branch, given that it is a higher resource language than Italian. Latin has its own native
tokenizer. Word tokenizers are propagated all the way to the first level, but not to the root
or across top level subfamilies.
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A.2 Canary Languages

While our corpus and pipeline covers more than a thousand languages, we perform in-depth
evaluations of the following subset of languages:

Language Family Script Resource Availability
Arabic Afro-Asiatic Arabic Medium

Chinese Sino-Tibetan Han High

French Indo-European (Italic) Latin High

Hindi Indo-European (Indo-Iranian) Devanagari Medium

Russian Indo-European (Balto-Slavic) ~ Cyrillic High

Swahili Niger-Congo Latin Low

Telugu Dravidian Telugu Low

Thai Kra-Dai Thai Medium

Turkish Turkic Latin Medium

Table 1: The 9 canary languages and their families, main script, and resource availability.
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A.3 Multilingual tokenizers comparison
Following Rust et al. (2021), we considered two metrics:

¢ Subword fertility (sf): the average number of tokens per “real” text word. Measures
how aggressively a tokenizer splits words. The theoretical minimum of 1 would
mean the tokenizer vocabulary contains every single word from the reference text;

¢ Proportion of continued words (pcw): the ratio of “real” text words encoded with
2 tokens or more. Measures how often a tokenizer splits words. A value of 0 means
that the tokenizer never splits and 1 that it always splits.

We split each language’s Wikipedia into individual words (see Section 2) and computed the
two metrics using tokenizers from a variety of popular multilingual models: Mistral-7B-
V3 (Jiang et al., 2023), Phi3 (Abdin et al., 2024), Llama3 (AI@Meta, 2024), Qwen2.5 (Yang
et al., 2024), mT5 (Xue et al., 2021), Bigscience-Bloom (Workshop et al., 2023), Command-
R (Cohere, 2024), Gemma (Gemma Team et al., 2024), and XGLM (Lin et al., 2022). We did
not include tokenizers in our comparison if they had a vocabulary size over 256,000, as these
would make the embedding layer consume a considerable number of paramaters: at the
relatively small model scale we targeted for our experiments (around 1.5 billion parameters),
this would force us to significantly reduce the number of model layers due to computational
constraints.

Following inspection of the computed metrics in Appendix A.3, where we additionally
show the average and worst-case (max), and lower is better for both metrics, we excluded
tokenizers that showed very low subword fertility or proportion of continued words on
at least one of our canary languages. The Mistral-7B-V3, Phi3, Command-R and Llama3
tokenizers all do not provide good coverage of Telugu. Additionally, while XGLM and mT5
both showed strong performance, they do not preserve whitespaces, and some characters
(particularly for Chinese) would be encoded as “unknown token” (JUNK]). Ultimately, our
tokenizer of choice was Gemma, a modern BPE tokenizer that performed slightly better
than Bigscience-Bloom on average for our experimental setup.

30



Published as a conference paper at COLM 2025

Tokenizer Mistralv3 Phi3 Llama3 Qwen2.5* mT5 Bloom Cmd-R Gemma XGLM
Vocab size 32,768 100,352 128,000 151,643 250,100 250,680 255,000 256,000 256,008

No [UNK] v v v v X v v v X

English sf 1.45 1.40 1.40 1.47 1.52 1.42 1.35 1.31 1.34
English pcw 0.23 0.28 0.28 0.29 0.45 0.31 0.22 0.19 0.28
Chinese sf 3.03 2.30 1.60 1.44 2.29 1.29 1.35 1.43 2.21
Chinese pcw 0.95 0.58 0.43 0.31 0.91 0.23 0.25 0.32 0.82
French sf 1.69 1.74 1.73 1.76 1.71 1.49 1.50 1.50 1.45
French pew 0.40 0.47 0.47 0.47 0.55 0.35 0.35 0.34 0.35
Russian sf 242 2.99 2.34 2.50 1.96 2.86 1.99 2.05 1.68
Russian pcw 0.59 0.66 0.62 0.64 0.73 0.63 0.56 0.57 0.50
Turkish sf 3.18 2.63 2.32 2.55 1.99 2.59 2.13 222 1.72
Turkish pcw 0.74 0.70 0.68 0.70 0.73 0.67 0.64 0.66 0.53
Arabic sf 4.76 3.72 2.32 2.23 2.10 1.86 2.16 2.19 1.72
Arabic pcw 0.92 0.86 0.74 0.67 0.79 0.60 0.68 0.69 0.52
Thai sf 4.87 3.80 2.18 2.44 1.99 3.96 4.01 1.92 1.78
Thai pcw 0.93 0.85 0.66 0.64 0.68 0.86 0.87 0.46 0.53
Hindi sf 4.99 4.60 2.71 3.98 2.02 1.59 3.39 2.22 1.52
Hindi pew 0.91 0.90 0.81 0.86 0.69 0.39 0.80 0.60 0.33
Swabhili sf 2.30 2.09 2.07 2.16 1.78 1.72 1.95 1.84 1.54
Swahili pcw 0.63 0.62 0.62 0.63 0.62 0.52 0.59 0.53 0.42
Telugu sf 9.83 10.11 10.11 8.41 244 2.10 9.74 3.51 2.24
Telugu pcw 0.79 0.76 0.76 0.77 0.86 0.59 0.78 0.74 0.69
Max sf 9.83 10.11 10.11 8.41 244 3.96 9.74 3.51 2.24
Max pcw 0.95 0.90 0.81 0.86 0.91 0.86 0.87 0.74 0.82
Avg sf 412 3.78 3.04 3.05 2.03 2.16 3.14 2.10 1.76
Avg pcw 0.76 0.71 0.64 0.63 0.73 0.54 0.61 0.55 0.52

Table 2: Multilingual Tokenizers Comparison on Wikipedia. * denotes tokenizers that were
not originally available when we first ran this comparison. [UNK] is the unknown token:
mT5 and XGLM are unable to encode some characters, particularly for Chinese. Avg is
the average across all languages, and Max the maximum (worst-case) across all languages.
Lower is better for all rows.
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A.4 Model architecture and training
Parameter Value
Architecture Llama
Number of attention heads 32
Number of hidden layers 14
Number of key-value heads 32
RMS Norm epsilon le-05
d_model 2048
Tied word embeddings True
Embedding size 256008
Total number of parameters 1.46B
Random initialization std 0.02
Tokenizer Gemma

Table 3: Architecture configuration for all models

Parameter 29BT 100BT 350BT
Data parallelism (dp) 64 56 64
Tensor parallelism (tp) 1 1 1
Pipeline parallelism (pp) 1 1 1
Sequence length 2048 2048 2048
Batch size (samples) 1024 840 1280
Batch size (tokens) 2097152 1720320 2621440

Table 4: Training settings for the 3 training scales we consider: 29, 100 and 350 billion
tokens. For 100BT and 350BT, we compute critical batch size based on DeepSeek-Al et al.

(2024)
Parameter 29BT 100BT 350BT
Adam betal 0.9 0.9 0.9
Adam beta2 0.95 0.95 0.95
Adam epsilon 1.0e-8 1.0e-8 1.0e-8
Gradient clipping 1.0 1.0 1.0
Weight decay 0.1 0.1 0.1
Learning rate 3e-4 8e-4 7e-4
Total train steps 14000 59000 134000
Warmup steps 500 2950 (5%) 6700 (5%)
Warmup style linear linear linear
Decay steps 13500 11800 (20%) 26800 (20%)
Decay starting step 500 47200 107200
Decay style cosine linear linear
Minimum decay LR 3.0e-5 0 0

Table 5: Optimizer settings for the 3 training scales we consider: 29, 100 and 350 billion
tokens. For 100BT and 350BT, we train with a constant learning rate until the last 20% of
steps (computed following DeepSeek-Al et al. (2024)), so that the resulting models can easily

undergo continued pretraining.
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A.5 Evaluation details

A.5.1 Task selection criteria

As noted in Section 3.3, we define precise quantitative criteria for each of the properties of
the early-signal task. To compute each criterion, we only use models trained on available
reference datasets for given language (see Section 3.2), denoted as M. Every task in our final
selection had to satisfy all of the following criteria requirements:

Monotonicity. To assess Monotonicity of a task, we compute the average Spearman rank
correlation between the evaluation steps and the corresponding model scores. For a given
model m, let the score at step s be denoted m(s). The average monotonicity across all models
is then defined as:

p= |A1/I m;MP ([s0,81,---,8n), [m(s0), m(s1),...,m(sy)])

Here, the Spearman correlation p(x,y) between sequences x = [x1,...,x,] and y =
[Y1,...,Yn] is computed as:

Y Y
p(x,y)=1- m

where d; = rank(x;) — rank(y;) is the rank difference for element i, and 7 is the number of
evaluation steps. We consider a task to meet the monotonicity criterion if:

p>05

Signal-to-Noise Ratio (SNR). Inspired by Madaan et al. (2024) we estimate how robust
is a task to training noise, by computing its Signal-to-Noise Ratio (SNR) using four models
trained on unfiltered CommonCrawl data under different random seeds:

¢ seed-3: Trained on a random subset with data and model seed set to 3

¢ seed-4: Trained on same subset as seed 3, with data and model seed set to 4

¢ seed-5: Trained on a different random subset with data and model seed set to 5

¢ seed-6: Trained on the same subset as 5 with data seed = 6 and model seed = 42

We refer to this set of four models as MC. For each evaluation step s, we define the mean
score (signal) as:

and the standard deviation (noise) as:

o = \/|Mlc| L (n(s) =)’

The overall task SNR is then the average ratio of signal to noise across all n training steps:

n *
SNR= Ly 15
=0 s
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We chose the minimum required SNR to 20, with the exception of generative tasks, which we
found to be considerably “noisier” in general, but we wanted to have at least one generative
task per language. Generative tasks are quite relevant in a multilingual context as they
provide insights into how the model behaves when prompted to generate unconstrained,
i.e., without a limited set of answer options. Models trained in multiple languages can
sometimes exhibit high scores in multiple choice tasks but reply in the wrong language for
generative tasks (“accidental translation”), or otherwise lack fluency (Xue et al., 2021).

Non-Random Performance. To assess that non-zero task results are not just a consequence
of random noise, we look at the best score at the last evaluation step among models from M.
We first compute the maximum improvement over a random baseline b:

maxy = max (m(n) —b)
meM

We then estimate the variance at the end of training using the standard deviation (from
previous calculation) averaged over the last 5 steps:

n
Oend = 2 Us
=n—

4

a1l =

S

Finally, The non-randomness score is defined as the ratio of max improvement to this
terminal variance:

max,
non_randomness =

end

A task satisfies the non-randomness criterion if:

non_randomness > 3

Ordering Consistency To compute how consistently models are ordered as training
progresses, we calculate the average Kendall Tau-a between model rankings at consecutive
steps in the second half of training. We ignore the first 15 billion tokens, as we are interested
in this property at a later stage of training, and in the first half, we found the ordering to
be very inconsistent, skewing the overall score. First, we define Kendall Tau-a of model
ranking as:

C-D

(2)
where C and D are the number of concordant and discordant pairs between the rankings x
and y of the model scores at steps s; and s; 1. The overall consistency is:

w(xy) =

1
ordering_consistency = — Y T, (r(s;),7(si+1))

] (siSit1)€P

where P is the set of consecutive step pairs in the latter half of the training, and r(s) is the
ranking of model scores in step s.

While we first considered using the criteria for selection, we could not determine a reliable
threshold for the criterion and therefore only use it for observational reasons.

A.5.2 Metrics and Formulation

For non-generative tasks, we compute accuracies using Cloze Formulation (CF, completing
with the full option text) in place of the more commonly used Multi-Choice Formulation
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(MCEF, completing with A/B/C/D), as previous work has shown that MCF has random
performance in the early stages of training (Gu et al., 2025; Li et al., 2024b).

Additionally, since all models that we compare use the same tokenizer, we normalize answer
log-probabilities based on token count instead of number of characters, and use pointwise
mutual information (PMI) (Gu et al., 2025) for more difficult tasks such as AGIEval (Zhong
et al., 2023b) or translated versions of MMLU (Hendrycks et al., 2021). For these tasks,
we use the Fl-score of overlapping words, as it is generally less noisy and more resilient
to small changes in the generations than exact matching (which in turn might be more
appropriate for math related tasks, which we do not evaluate on).
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A.5.3 List of selected evaluation tasks for canary languages

Task Type  Metric  Mono SNR Rand Order
Belebele (Almazrouei et al., 2023) RC Acc(Char) 0.61 5823 14.67 0.13
ArabicMMLU (Koto et al., 2024) GK Acc(PMI) 0.81 80.00 18.28 0.91
X-CSQA (Lin et al., 2021a) RES Acc(PMI) 0.65 3344 11.13 091
Alghafa: MCQ Exams (Almazrouei et al., 2023) GK Acc (Token) 0.51 3549 8.89 0.61
Alghafa: SOQAL (Almazrouei et al., 2023) RC Acc (Token) 0.74 4622 33.78 0.11
Alghafa: ARC Easy (Leaderboard, 2024) GK Acc (Token) 0.74 76.58 3541 0.91
Okapi: Hellaswag (Lai et al., 2023) NLU Acc (Token) 0.80 43.05 12.01 0.97
OALL2024: PIQA (Leaderboard, 2024) RES Acc (Token) 0.81 69.34 7.69 0.71
OALL2024: RACE (Leaderboard, 2024) RC Acc(Token) 0.82 66.01 1822 0.43
OALL2024: SCIQ (Leaderboard, 2024) GK Acc (Token) 0.80 74.06 32.87 0.70
X-CODAH (Lin et al., 2021a) RES Acc (Token) 0.75 2480 850 0.31
X-Story Cloze (Lin et al., 2021b) NLU Acc (Token) 0.87 93.20 9.76 0.83
ARCD (Mozannar et al., 2019) GK F1 0.83 2828 3558 0.83
MLQA (Lewis et al., 2020) RC F1 0.86 17.27 24.83 0.87
Tydiqa (Clark et al., 2020) RC F1 0.86 27.17 55.07 0.94

Table 6: Selected tasks for Arabic satisfying the early-signal conditions: Monotonicity
(Mono), Signal-to-noise ratio (SNR), Non-Randomness (Rand) and Ordering Consistency
(Order)

Task Type Metric  Mono SNR Rand Order
AGIEval (ZH subset) (Zhong et al., 2023a) GK Acc (PMI) 046 98.82 1586 0.86
X-CSQA (Lin et al., 2021a) RES Acc(PMI) 0.83 25.63 10.09 0.89
Belebele (Bandarkar et al., 2024) RC Acc (Token) 0.51 7430 15.36 0.70
C3 (Sun et al., 2020) RC Acc (Token) 0.87 72.89 36.01 0.66
C-Eval (Huang et al., 2023) GK Acc (Token) 0.75 50.20 8.04 0.53
CMMLU (Li et al., 2024a) GK Acc(Token) 091 11792 2193 0.96
Okapi: Hellaswag (Lai et al., 2023) NLU Acc (Token) 0.87 70.60 2195 0.97
M3Exam (Zhang et al., 2023) GK Acc(Token) 0.74 36.02 8.75 0.67
X-CODAH (Lin et al., 2021a) RES Acc (Token) 0.66 32.65 14.72 0.66
X-COPA (Ponti et al., 2020) RES Acc (Token) 0.80 7720 15.06 0.69
X-Story Cloze (Lin et al., 2021b) NLU Acc (Token) 0.87 79.20 1557 0.84
X-Winograd (Muennighoff et al., 2022) NLU Acc (Token) 0.88 102.87 21.83 0.86
Chinese SQuAD (Pluto-Junzeng, 2019) RC F1 0.85 2771 2740 0.90
CMRC (Cui et al., 2018) RC F1 091 2533 3443 0.67
MLQA (Lewis et al., 2020) RC F1 091 2376 20.40 0.86

Table 7: Selected tasks for Chinese satisfying the early-signal conditions: Monotonicity
(Mono), Signal-to-noise ratio (SNR), Non-Randomness (Rand) and Ordering Consistency
(Order)
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Task Type Metric Mono SNR Rand Order
Okapi: ARC (Lai et al., 2023) GK Acc(PMI) 0.69 30.10 3.33 047
Meta MMLU (Grattafiori et al., 2024) GK  Acc (PMI) 0.87 107.58 10.95 0.56
X-CSQA (Lin et al., 2021a) RES Acc(PMI) 0.83 3050 11.01 0.76
Belebele (Bandarkar et al., 2024) RC Acc(Token) 0.85 33.68 5.65 0.39
Okapi: Hellaswag (Lai et al., 2023) NLU Acc (Token) 096 71.11 30.84 0.70
X-CODAH (Lin et al., 2021a) RES Acc (Token) 0.74 33.68 9.19 0.74
FQuad (d’Hoffschmidt et al., 2020) RC F1 091 14.64 19.08 0.69
Mintaka (Sen et al., 2022) GK F1 082 691 1292 0.79

Table 8: Selected tasks for French satisfying the early-signal conditions: Monotonicity
(Mono), Signal-to-noise ratio (SNR), Non-Randomness (Rand) and Ordering Consistency
(Order)

Task Type  Metric Mono SNR Rand Order
Meta MMLU (Grattafiori et al., 2024) GK  Acc (PMI) 0.68 97.78 9.13 0.33
X-CSQA (Lin et al., 2021a) RES Acc(PMI) 0.60 2284 445 1.00
Belebele (Bandarkar et al., 2024) RC Acc (Token) 0.61 66.05 6.65 0.76
Okapi: Hellaswag (Lai et al., 2023) = NLU Acc (Token) 0.87 47.47 1635 1.00
Okapi: ARC (Lai et al., 2023) GK Acc(Token) 0.95 6219 23.11 0.67
X-CODAH (Lin et al., 2021a) RES Acc (Token) 0.53 39.83 14.13 0.67
X-Story Cloze (Lin et al., 2021b) NLU Acc (Token) 0.74 87.75 839 1.00
IndicQA (Singh et al., 2025) RC F1 094 1320 1220 0.81

Table 9: Selected tasks for Hindi satisfying the early-signal conditions: Monotonicity (Mono),
Signal-to-noise ratio (SNR), Non-Randomness (Rand) and Ordering Consistency (Order)

Task Type Metric  Mono SNR Rand Order
Okapi: ARC (Lai et al., 2023) GK Acc(PMI) 055 3517 376 0.3
RUMMLU (Fenogenova et al., 2024) GK Acc(PMI) 0.77 6424 6.10 0.56
X-CSQA (Lin et al., 2021a) RES Acc(PMI) 0.73 3845 16.03 0.71
Belebele (Bandarkar et al., 2024) RC Acc (Token) 0.81 61.97 19.26 0.71
Okapi: Hellaswag (Lai et al., 2023) NLU Acc (Token) 0.97 86.76 2822 0.83
Parus (Fenogenova et al., 2024) RES Acc (Token) 0.93 81.06 24.61 0.67
OpenBookQA (Fenogenova et al., 2024) RES Acc (Token) 0.73 43.43 18.08 0.73
X-CODAH (Lin et al., 2021a) RES Acc (Token) 0.85 2697 6.79 0.50
X-Story Cloze (Lin et al., 2021b) NLU Acc (Token) 0.93 66.81 12.04 0.84
Sber SQuAD (Efimov et al., 2020) RC F1 0.89 9.93 10.85 0.84
Tydiqa (Clark et al., 2020) RC F1 092 1044 11.28 0.83
X-QuAD (Artetxe et al., 2020a) RC F1 090 879 756 0.60

Table 10: Selected tasks for Russian satisfying the early-signal conditions: Monotonicity
(Mono), Signal-to-noise ratio (SNR), Non-Randomness (Rand) and Ordering Consistency
(Order)

Task Type  Metric  Mono SNR Rand Order
Okapi: ARC (Lai et al., 2023) GK Acc (Token) 0.88 60.69 6.32 -
Belebele (Bandarkar et al., 2024) RC Acc (Token) 044 6526 544 -
M3Exam (Zhang et al., 2023) GK Acc (Token) 0.63 34.82 3.52 -
X-COPA (Ponti et al., 2020) RES Acc (Token) 0.82 7471 4.66 -
X-Story Cloze (Lin et al., 2021b) NLU Acc (Token) 0.86 130.08 20.54 -
KenSWQuAD (Wanjawa et al., 2023) RC F1 091 1295 1243 -
Tydiqa (Clark et al., 2020) RC F1 0.65 12.67 15.01 -

Table 11: Selected tasks for Swahili satisfying the early-signal conditions: Monotonicity
(Mono), Signal-to-noise ratio (SNR), Non-Randomness (Rand) and Ordering Consistency
(Order)
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Task Type  Metric  Mono SNR Rand Order

Okapi: Hellaswag (Lai et al., 2023) NLU Acc (Token) 0.82 56.06 7.84 -
Okapi: MMLU (Lai et al., 2023) GK Acc (Token) 0.92 14857 4.11 -

X-COPA (Ponti et al., 2020) RES Acc (Token) 0.77 6931 6.01 -
X-Story Cloze (Lin et al., 2021b) NLU Acc (Token) 0.67 108.25 8.02 -
IndicQA (Singh et al., 2025) RC F1 072 1239 9.65 -

Table 12: Selected tasks for Telugu satisfying the early-signal conditions: Monotonicity
(Mono), Signal-to-noise ratio (SNR), Non-Randomness (Rand) and Ordering Consistency
(Order)

Task Type  Metric  Mono SNR Rand Order
Meta MMLU (Grattafiori et al., 2024) GK  Acc(PMI) 0.54 9351 642 0.60
Belebele (Bandarkar et al., 2024) RC Acc(Token) 0.63 53.88 13.65 0.66
Translated Hellaswag (Patteera, 2023) NLU Acc (Token) 0.69 52.78 11.51 0.53
M3Exam (Zhang et al., 2023) GK Acc(Token) 0.75 4532 424 0.50
ThaiQA (Trakultaweekoon et al., 2019) RC F1 090 20.39 1592 0.66
X-QuAD (Artetxe et al., 2020a) RC F1 090 17.45 20.07 0.80

Table 13: Selected tasks for Thai satisfying the early-signal conditions: Monotonicity (Mono),
Signal-to-noise ratio (SNR), Non-Randomness (Rand) and Ordering Consistency (Order)

Task Type Metric Mono SNR Rand Order
TR Leaderboard: ARC (Alhajar, 2024) GK Acc(Char) 091 49.33 21.32 0.79
Belebele (Bandarkar et al., 2024) RC Acc(Char) 050 4797 593 0.09
Exams (Hardalov et al., 2020) GK Acc(Char) 0.78 31.73 596 0.33
Okapi: Hellaswag (Lai et al., 2023) NLU Acc (Char) 095 5856 21.45 0.90
X-COPA (Ponti et al., 2020) RES Acc (Char) 0.61 81.18 1143 0.66
TR Leaderboard: MMLU (Alhajar, 2024) GK Acc (PMI) 0.81 9548 12.60 0.61
THQuAD (Soygazi et al., 2021) RC F1 093 17.06 20.03 0.60
X-QuAD (Artetxe et al., 2020a) RC F1 092 2633 28.74 0.73

Table 14: Selected tasks for Turkish satisfying the early-signal conditions: Monotonicity
(Mono), Signal-to-noise ratio (SNR), Non-Randomness (Rand) and Ordering Consistency
(Order)
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A.6 Language Identification
A.6.1 Classifier choice

While Transformer-based LID classifiers exist (Bapna et al., 2022), they are too slow and
expensive to run at a large scale. Most commonly used LID classifiers are simple models
based on character level n-grams like CLD3 (Salcianu et al., 2018) (107 supported languages),
used in mC4, or classifiers following the fastText architecture (Joulin et al., 2016), such
as FT176 (176 languages) used in CC-100 (Wenzek et al., 2020; Conneau et al., 2020), and
CulturaX (Nguyen et al., 2024), as well as in many English-only datasets (Soldaini et al., 2024;
Penedo et al., 2023); OpenLID (Burchell et al., 2023) (193 languages), used in HPLT2 (Burchell
et al., 2025); and the recent GlotLID (Kargaran et al., 2023) (1880 languages).

We used the GlotLID (Kargaran et al., 2023), specifically version V3—the latest available at
the time of our experiments (Kargaran et al., 2024). This LID classifier covers a large number
of languages and addresses some common issues in LID classifiers:

¢ Its large language coverage can reduce “out-of-model cousin” errors (Caswell et al.,
2020; Bapna et al., 2022), where unsupported languages can be misclassified as a
closely related supported language

¢ It explicitly distinguishes scripts (Latin, Arabic, Cyrillic, etc), improving detection
for languages that support multiple scripts
e It provides different labels based on script e.g. ‘arb_Arab’ is Standard Arabic in

Arabic script, while ‘arb_Latn’ is Standard Arabic in Latin script, allowing us to
tailor the filtering to each script

¢ It includes an “UND” label for non supported scripts, so that languages that use
them aren’t misclassified as supported languages

¢ Includes specific labels trained on “noise” documents, such as text decoded with
the wrong encoding, binary content, or misrendered PDFs, preventing it from being
classified as a natural text language

In Fig. 5 we present a comparison between GlotLID and FT176, without any threshold
filtering.

. FT176 [ GlotLID

15 -
B Arabic Chinese French Hindi Russian Swahili Telugu Thai Turkish

10

Aggregate Score (%)

5
0
Figure 5: FT176 vs GlotLID without any threshold filtering applied to either classifier. While
GlotLID seems to outperform in higher resource languages, FT176 performs slightly better

on lower resource languages. However, GlotLID supports a considerably larger number of
(lower-resource) languages.
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A.6.2 Confidence Threshold

For each language, we set thresholds at regular removal intervals (threshold to remove 5%
of data, 10% of data, etc) and at other values of interest (e.g., 0.7, 0.9). We then train models
on 30 billion tokens of the filtered data using each threshold and evaluate the resulting
models. In Tables 16 to 24, the highest scoring range of thresholds are marked in bold. Our
formula to automatically set thresholds based on the mean and standard deviation of each
language’s confidence scores distribution selects values within the highest scoring range for
all languages except Chinese and Hindi (Table 15).

Language Minimum Maximum Formula Valuein range

Arabic 0.883 0.9 0.8812 v
Chinese 0.895 0.937 0.7415 X
French 0.750 0.932 0.8195 v
Hindi 0.483 0.557 0.6827 X
Russian 0.8 - 0.9 v
Swahili 0.186 0.544 0.3 v
Telugu 0.701 0.701 0.7002 v
Thai 0.9 0.961 0.9 v
Turkish 0.866 - 0.8753 v

Table 15: Minimum and Maximum refer to the highest performing threshold range end-
points. Formula is the value defined by our threshold setting formula, which we ultimately
use for all languages.

Model1 Model 2 Model 3 Model 4 Model 5

Threshold 0.000 0.700 0.883 0.900 0.968
% Removed 0.0% 3.0% 5.0% 5.4% 10.0%
Aggregate Score  14.9% 15.2% 15.4% 16.1% 15.2%

Table 16: Arabic Threshold Analysis

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Threshold 0.000 0.214 0.429 0.678 0.806 0.895 0.937
% Removed 0.0% 50%  10.0%  15.0%  20.0%  25.0%  30.0%
Aggregate Score  14.4%  144%  14.8% 14.8% 144% 151% 15.1%

Table 17: Chinese Threshold Analysis
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Model 1 Model 2 Model 3 Model4 Model 5 Model 6 Model 7

Threshold 0.000 0467  0.723 0.750 0.800 0.867  0.932
% Removed 0.0% 50%  10.0% 10.7%  122%  15.0%  20.0%
Aggregate Score  10.1%  10.5%  10.5% 111% 10.7% 11.0% 11.2%

Table 18: French Threshold Analysis

Model1 Model2 Model 3 Model 4 Model 5

Threshold 0.000 0.483 0.557 0.616 0.669
% Removed 0.0% 5.0% 10.0%  15.0%  20.0%
Aggregate Score  9.7% 9.8% 9.8% 9.2% 9.3%

Model 6 Model7 Model 8 Model 9 Model 10 Model 11

Threshold 0.714 0.752 0.786 0.815 0.840 0.862
% Removed 250%  30.0%  35.0%  40.0% 45.0% 50.0%
Aggregate Score  9.5% 9.7% 9.0% 9.3% 9.2% 8.7%

Table 19: Hindi Threshold Analysis

Model1 Model 2 Model 3 Model 4

Threshold 0.000 0750  0.800  0.918
% Removed 0.0% 2.5% 2.9% 5.0%
Aggregate Score  12.0%  12.1%  124%  12.7%

Table 20: Russian Threshold Analysis

Model1 Model2 Model 3 Model4 Model 5 Model 6 Model 7 Model 8

Threshold 0.000 0.075 0.098 0.132 0.167 0.186 0.300 0.544
% Removed 0.0% 5.0% 10.0% 20.0% 30.0% 50.0% 64.2% 70.0%
Aggregate Score  8.8% 9.7% 8.7% 8.8% 9.2% 10.9% 10.9% 11.6%

Table 21: Swahili Threshold Analysis

Model1 Model2 Model 3 Model4 Model 5 Model 6 Model 7 Model 8

Threshold 0.000 0.207 0.262 0.297 0.515 0.600 0.701 0.996
% Removed 0.0% 5.0% 10.0%  15.0%  20.0% 224%  25.0%  30.0%
Aggregate Score  5.4% 5.0% 5.4% 5.1% 5.2% 5.3% 5.9% 5.4%

Table 22: Telugu Threshold Analysis

Model1 Model 2 Model 3 Model 4

Threshold 0.000 0.800 0.900 0.961
% Removed 0.0% 2.7% 3.5% 5.0%
Aggregate Score  6.8% 6.2% 6.8% 6.9%

Table 23: Thai Threshold Analysis

Model 1 Model 2 Model 3 Model4 Model 5 Model 6 Model 7

Threshold 0.000 0.704 0.724 0.750 0.800 0.866 0.932
% Removed 0.0% 5.0% 6.1% 6.6% 77%  10.0%  13.9%
Aggregate Score  10.9%  10.3% 9.3% 102%  10.5% 11.5%  11.4%

Table 24: Turkish Threshold Analysis
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A.7 Filtering
A.7.1 Stopwords

As mentioned in Section 4.4.1, we analyzed word frequencies in our reference datasets
(Wikipedia) using our word tokenizers to identify the most frequently occurring words.

After counting word occurrences directly on the raw data of our reference datasets, we
noticed that some stopwords were actually non-alphabetic symbols or numbers rather
than meaningful words. To refine the list, we removed all numbers and symbols. If fewer
than eight stopwords (eight being the number of stopwords in the original Gopher English
stopword list (Rae et al., 2022)) remained after this filtering, we lowered the frequency
threshold to increase the number of stopwords and ensure sufficient stopword coverage.

When analyzing English stopwords from the Wikipedia reference dataset, we found that
the original Gopher quality filter did not necessarily select the most frequent words. This
suggested a different selection criterion had been used. However, since our method is
scalable across languages and performs well in experiments, we adopted it as our approach
and collected stopwords for each language supported by GlotLID (on Wikipedia when
available, and on GlotLID-Corpus for languages that do not have their own Wikipedia).

When reviewing the languages with the largest amount of data after LID and stopwords
filtering, we noticed that some low resource languages had an unexpectedly large amount
of data. For example, Dagbani, a language from the Niger—-Congo family with around 1
million native speakers and low internet presence, ended up with a large amount (2TB)
of text data after language filtering. Through manual inspection, we found that most of
this data was misclassified English and German. We had expected that the stopwords filter
would remove most of this non-Dagbani content; however, the filter removed very little.
Inspecting the list of Dagbani stopwords revealed a high amount of English words (shown
in bold):

the, ni, of, a, in, ka, and, o, be, daa, to, di, n, nyela, or, is

Through further investigation, we found that many other languages had English stopwords
in their list. We traced this issue to the Wikipedias for lower resource languages, where many
articles are directly copied untranslated from the English wikipedia (for later translation)
and some boilerplate/meta pages exist in the original English. As language classifiers
are often trained on Wikipedia, this may explain why English data is mislabeled as these
lowe-resource languages in the first place.

We “cleaned” Wikipedias by: a) removing the notes and references sections, which some-
times are in other languages and follow a very specific format; b) dropping articles where
the most common script doesn’t match what we expected for the language; c) dropping
articles where our language classifier predicted English with above 70% confidence.

We then recomputed stopwords on this new clean version of Wikipedia, which resulted in a
>99% removal rate when filtering Dagbani data using the updated stopwords:

ni, ka, o, daa, di, n, nyela, din, ti, be, be, nye, maa

42



Published as a conference paper at COLM 2025

A.7.2 Filtering thresholds

Filtering details We employ the following filters from FineWeb with fixed thresholds for
all languages, only changing the way “words” are defined depending on each language’s
word-level tokenizer (Section 2):

¢ FineWeb Quality filters: ratio of characters in duplicate lines < 0.1;

* Gopher Quality filters: 50 < #words < 100000; ratio of symbols to #words < 0.1;
ratio of bullet points to #lines < 0.9; ratio of ellipsis to #lines < 0.3, stop words in
document > 2 (with stopwords determined following Section 4.4.1);

We tune the following filters with the different adaptation methods we consider:

* FineWeb Quality filters: maximum ratio of lines not ending with punctuation;
maximum ratio of #lines to #words

* Gopher Quality filters: maximum average word length; minimum average word
length; maximum ratio of non alphabetic words;

* Gopher Repetition filters: fraction of duplicate lines, fraction of characters taken
up by the most common 2-, 3- and 4-grams; fraction of characters taken up by every
single repeated 5-, 6-, 7-, 8-, 9-, and 10-gram

Results from training models on data obtained by applying the different adaptations meth-
ods to each group filters can be seen in Table 25. We select the best performing method for
each filter group (marked in bold) for our pipeline. We also show the average removal rates
across languages of each method in Table 26.

Filter cc wiki

Group | Baseline English | 10Tail MeanStd MedRatio Quant | 10Tail MeanStd MedRatio Quant
fwq 7.00 - - 522 4.00 433 | 3.00 5.00 3.89 3.56
goq 6.33 - 5.22 - 3.89 456 | 444 4.11 422 3.22
gor 6.22 422 3.33 2.22 - 4.11 - 3.89 - 4.00

Table 25: Average ranks by block and method across all languages. Baseline has no filtering,
English is the default FineWeb English thresholds. We then compute each of the other
4 methods — 10Tail, MeanStd, MedRatio (MedianRatio), and Quantile (Quant) — on both
Common Crawl (cc) data and on Wikipedia (wiki). Cells marked with - correspond to
method-filter-group combinations that would remove over 75% of data with a single filter
on at least one of the languages, or that would not remove anything at all. Lower ranks are
better.

Filter cc wiki

Group | English | 10Tail MeanStd MedRatio Quant | 10Tail MeanStd MedRatio Quant
fwq - - 36.81% 38.03% 33.82% | 40.35% 38.04% 37.61% 44.31%
goq - 41.42% - 47.09%  45.14% | 49.23% 47.58% 46.90% 46.81%
gor 26.39% |29.53% 25.63% - 26.08% - 24.79% - 26.50%

Table 26: Average removal rates by method across datasets. Values represent percentage of
data filtered.
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A.7.3 Precision filtering lower resource languages

Language Identification precision computed on a balanced test set does not correspond to
the precision on web crawled data, due to class imbalance between high- and low-resource
languages. Precision on the crawled corpora can be calculated as in Caswell et al. (2020),
where x is the real proportion of the target language in the full web crawl:

_ x - recall
crawl ™ x . recall + (1 — x) - fpr

precision

For low-resource languages (low x), a low false positive rate (fpr) is crucial, as higher false
positives significantly reduce precision. For high-resource languages, web presence is high,
so false positives are less critical.

If a low-resource language is sufficiently distinct from high-resource languages, the false
positive rate will often be low. However, if a closely related high-resource language exists,
the high-resource language may be misclassified as low-resource. In such scenarios, n-
gram-based LID fails because common n-grams lead to misclassification of high-resource
language sentences as low-resource.

Wordlist filtering To maintain high precision for low-resource languages after LID,
wordlist filtering is suggested to retain in-language documents (Caswell et al., 2020; Bapna
et al., 2022).

To build such wordlists, we propose a simple approach: only consider tokens whose affinity
exceeds a high threshold (we use v = 0.85) for each language. The affinity of a token ¢ in
language [ is defined as:

__ fu

Affinity(t,]) =
v Yrer fr

where f;; is the raw count of token t in language I, and ) ;i f;  is the total count of
token t across all languages in the set £. A text labeled as a low-resource language / is
considered in-language if some of its words appear in the wordlist created for [; otherwise, it
is considered contaminated. We used data from the GlotLID-Corpus (Kargaran et al., 2023)
to create wordlists, applying the tokenizer specific to each language from Appendix A.1.
For each language /, the same tokenizer (the tokenizer of language [) is used to compute f;
to ensure consistent separation of words.

We use wordlist filtering as an indicator of contamination, where the contamination score is
defined as the percentage of documents removed by the filter. This helps identify languages
with low quality for manual auditing. We select 10,000 random documents from each lan-
guage and calculate the percentage of documents filtered. glk_Arab is one of the languages
with the highest contamination score. We present the distribution of contamination scores
for 1,900 languages for which we have wordlists in Fig. 6. The majority of the languages
have their data in-language (non-contaminated). However, around a third of them have
contamination scores above 10%.

URL Whitelist Manual inspection of the filtering process revealed that some of the
wordlists were too strict. This was the case of some English-based Pidgin languages, such
as Nigerian Pidgin, for example, where the resulting wordlist was relatively short. To avoid
excessive filtering caused by strict wordlists, we additionally kept documents removed
by the wordlist filtering whose URLs contained specific terms related to the language (the
language code, the name of the language, possibly top level domains for that region and/or
names of regions where the language is spoken). For Nigerian Pidgin, this list contained
the following words: “pem”, “pidgin”, “naija”, “.ng”, “nigerianpidgin”, “nigeria”, and
“nigerian”. We show example URLs containing in-language content that had been removed
by wordlist filtering that are then caught by the URL Whitelist in Table 27.

44



Published as a conference paper at COLM 2025

1200 1 [

1000 |- [

8001 [

6001 [

Number of Languages

4004 |

200 1|

& 'bé\ b(é\
N & & & F© & & & @

Contamination Score (%)

Figure 6: Contamination scores for 1,900 languages via wordlist filtering. The plot indicates
that the majority of the languages have their data in-language (non-contaminated).

URL Matched Words

http://www.supersport.com/football/nigeria-naija/news/121221/ nigeria, nigerian, naija
Uefa_don_ban_Malaga

https://manutdinpidgin.com/2018/06/28/ pidgin
manchester-united-target-sergej-milinkovic-savic-don-react-ontop-the-transfer-rumour/
https://pcm.wikipedia.org/wiki/Japan pcm
https://www.bbc.com/pidgin/sport-43612518 pidgin

Table 27: Matched words for selected URLs in Nigerian Pidgin

Filtering results We audit three low-resource languages: glk_Arab, bar_Latn, and

ary_Arab, by asking native speakers to manually label 2,000 randomly sampled docu-

ments as being in-language or not. The results of applying wordlist filtering with the URL
Whitelist to these languages are shown in Table 28. Applying wordlist filtering maintains
recall while improving precision for both glk_Arab and bar_Latn. However, for ary_Arab,
the improvement is not very significant. This is because the training data for LID does not
adequately represent ary_Arab. Precision could be increased further by requiring a certain
fraction of the document to be contained in the wordlist (instead of just a single word), but
this would require manual tuning and could result in a drop in recall.

Pre-filtering Filtering
Language | Precision | Recall Precision
glk_Arab 2.10% 95.24%  27.21%
bar_Latn 69.45% 97.77%  94.90%
ary_Arab 1.75% 88.57%  4.14%

Table 28: Evaluation Results for wordlist filtering Based on the Audit

We publicly release our wordlists and code.®

Shttps: //github.com/huggingface/fineweb-2/tree/main/misc/precision_filtering
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A.8 Improvement from each pipeline step

¢ LID Language Identification and threshold

¢ LID + D LID & global MinHash deduplication
e LID + D + FLID + D & heuristic filtering

¢ FW2 (R) LID + D + F & rehydration (deduplication informed upsampling)

Random LID LID+D LID+D+F FW2 (R)
Task Baseline || Raw Rescaled | Raw Rescaled |Raw Rescaled | Raw Rescaled
Alghafa: MCQ Exams 25.0 37.1 16.1 35.5 14.0 35.6 14.1 36.3 15.1
(GK)
Belebele (RC) 25.0 32.1 9.4 314 8.5 32.6 10.1 33.9 11.9
Alghafa: SOQAL 20.0 64.0 55.0 62.3 52.9 67.9 59.9 67.9 59.9
(RC)
Alghafa: ARC Easy 25.0 38.1 17.5 39.2 189 40.9 21.2 41.1 21.5
(GK)
Okapi: Hellaswag 25.0 36.4 15.2 39.0 18.6 40.9 21.2 43.3 24.4
(NLU)
OALL2024: PIQA 50.0 58.4 16.8 60.9 21.8 61.8 23.6 61.9 23.8
(RES)
OALL2024: RACE 25.0 325 9.9 329 10.5 33.9 11.8 34.4 12.5
(RC)
OALL2024: SCIQ 25.0 66.8 55.7 67.3 56.4 68.8 58.4 67.9 57.2
(GK)
X-CODAH (RES) 25.0 35.8 14.4 34.0 12.0 40.0 19.9 38.5 18.0
X-CSQA (RES) 20.0 32.8 16.0 325 15.6 32.7 15.8 34.2 17.8
X-Story Cloze (NLU) 50.0 59.0 18.1 58.9 17.8 59.8 19.7 60.9 21.9
ARCD (GK) 0.0 29.9 29.9 32.0 32.0 33.0 33.0 33.1 33.1
MLQA (RC) 0.0 22.2 22.2 21.5 21.5 21.3 21.3 23.2 23.2
Tydiga (RC) 0.0 39.5 39.5 37.9 37.9 36.8 36.8 36.5 36.5
ArabicMMLU (GK) 28.0 39.9 16.6 40.0 16.7 40.1 16.9 41.1 18.2
GK tasks - 27.2 27.6 28.7 29.0
RC tasks - 27.2 26.2 28.0 28.8
RES tasks - 15.7 16.5 19.8 19.8
NLU tasks - 16.6 18.2 20.4 23.1
Aggregate Score - | 21.7 | 22.1 24.2 25.2

Table 29: Arabic Results

Random LID LID +D LID+D+F FW2 (R)
Task Baseline || Raw Rescaled | Raw Rescaled |Raw Rescaled | Raw Rescaled
Okapi: ARC (GK) 25.0 31.3 8.4 30.0 6.7 31.9 9.2 33.0 10.6
Belebele (RC) 25.0 33.8 11.7 33.1 10.8 35.2 13.5 36.0 14.6
Okapi: Hellaswag 25.0 45.1 26.8 47.3 29.7 51.8 35.8 52.6 36.8
(NLU)
X-CODAH (RES) 25.0 37.0 159 37.0 16.0 40.5 20.6 42.3 23.1
X-CSQA (RES) 20.0 38.0 225 34.6 18.2 39.8 24.7 40.4 25.5
FQuad (RC) 0.0 28.0 28.0 27.5 27.5 29.3 29.3 35.0 35.0
Mintaka (GK) 0.0 9.5 9.5 7.5 7.5 8.9 8.9 8.1 8.1
Meta MMLU (GK) 25.0 28.3 4.4 28.4 4.5 29.0 53 29.6 6.1
GK tasks - 7.4 6.2 7.8 8.3
RC tasks - 199 19.2 21.4 24.8
RES tasks - 19.2 17.1 22.7 24.3
NLU tasks - 26.8 29.7 35.8 36.8
Aggregate Score - 18.3 | 18.0 219 23.6

Table 30: French Results

46



Published as a conference paper at COLM 2025

Random LID LID +D LID+D+F FW2 (R)
Task Baseline || Raw Rescaled | Raw Rescaled |Raw Rescaled | Raw Rescaled
Okapi: ARC (GK) 25.0 29.1 54 30.4 7.1 33.8 11.7 32.2 9.6
Belebele (RC) 25.0 34.0 12.0 33.7 11.6 34.8 13.0 36.4 15.2
Okapi: Hellaswag 25.0 41.0 21.3 43.6 24.8 45.8 27.8 46.8 29.0
(NLU)
Parus (RES) 50.0 64.9 299 65.7 31.4 68.2 36.4 68.1 36.2
OpenBookQA (RES) 25.0 36.0 14.7 36.0 14.7 35.9 14.5 38.3 17.7
X-CODAH (RES) 25.0 33.9 11.8 349 13.2 35.4 13.8 37.1 16.2
X-CSQA (RES) 20.0 35.3 19.2 374 21.8 35.0 18.7 38.6 23.3
X-Story Cloze (NLU) 50.0 66.9 33.7 66.7 33.5 68.7 37.5 69.4 38.9
Sber SQuAD (RC) 0.0 27.8 27.8 324 324 32.9 32.9 37.1 37.1
Tydiqa (RC) 0.0 299 299 32.4 32.4 36.7 36.7 35.5 35.5
X-QuAD (RC) 0.0 19.6 19.6 22.8 22.8 23.6 23.6 25.2 25.2
RUMMLU (GK) 25.0 29.3 5.7 29.0 54 29.7 6.3 30.1 6.8
GK tasks - 5.6 6.3 9.0 8.2
RC tasks - 22.3 24.8 26.5 28.2
RES tasks - 189 20.2 20.9 23.4
NLU tasks - 27.5 29.1 32.6 34.0
Aggregate Score - 18.6 | 20.1 22.3 23.4

Table 31: Russian Results

Random LID LID +D LID+D+F FW2 (R)
Task Baseline || Raw Rescaled | Raw Rescaled |Raw Rescaled | Raw Rescaled
Belebele (RC) 25.0 31.6 8.7 31.5 8.7 32.0 94 329 10.5
Translated Hellaswag | 25.0 325 10.0 33.1 10.8 35.9 14.5 35.9 14.5
(NLU)
M3Exam (GK) 22.9 27.6 6.1 28.1 6.7 27.5 59 28.1 6.7
ThaiQA (RC) 0.0 27.2 27.2 23.8 23.8 22.1 22.1 26.3 26.3
X-QuAD (RC) 0.0 19.6 19.6 18.6 18.6 17.3 17.3 20.8 20.8
Meta MMLU (GK) 25.0 27.6 3.4 27.4 3.2 28.1 4.2 28.4 4.6
GK tasks - 4.7 5.0 5.1 5.6
RC tasks - 18.5 17.0 16.2 19.2
NLU tasks - 10.0 10.8 14.5 14.5
Aggregate Score - | 11.1 | 11.0 11.9 13.1

Table 32: Thai Results
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Random LID LID + D LID+D+F FW2 (R)
Task Baseline || Raw Rescaled | Raw Rescaled |Raw Rescaled | Raw Rescaled
TR Leaderboard:| 25.0 43.7 25.0 45.1 26.8 47.9 30.6 46.3 28.4
ARC (GK)
Belebele (RC) 25.0 31.5 8.7 32.3 9.7 33.0 10.7 34.2 12.2
Okapi:  Hellaswag| 25.0 424 23.3 433 24.3 45.3 27.1 46.8 29.1
(NLU)
X-COPA (RES) 50.0 60.7 21.3 60.7 21.5 62.8 25.6 62.7 25.3
THQuAD (RC) 0.0 20.4 20.4 25.6 25.6 20.6 20.6 26.1 26.1
X-QuAD (RC) 0.0 15.8 15.8 18.2 18.2 15.1 15.1 20.2 20.2
Exams (GK) 23.4 29.4 7.8 29.3 7.7 28.8 7.1 30.7 9.6
TR Leaderboard:| 25.0 29.8 6.4 30.0 6.7 29.8 6.5 29.2 5.7
MMLU (GK)
GK tasks - 13.1 13.7 14.7 14.6
RC tasks - 15.0 17.8 155 19.5
RES tasks - 21.3 21.5 25.6 25.3
NLU tasks - 23.3 243 27.1 29.1
Aggregate Score - 18.2 | 19.3 20.7 22.1

Table 33: Turkish Results

Random LID LID + D LID+D+F FW2 (R)
Task Baseline || Raw Rescaled | Raw Rescaled |Raw Rescaled | Raw Rescaled
Belebele (RC) 25.0 32.3 9.8 33.2 11.0 33.0 10.7 34.0 12.0
C3 (RO) 27.1 47.6 28.2 47.2 27.5 50.6 32.2 49.2 30.3
Okapi:  Hellaswag| 25.0 38.3 17.7 38.6 18.1 414 21.9 42.2 229
(NLU)
MB3Exam (GK) 25.9 32.8 9.3 32.6 9.0 34.1 11.1 34.3 11.3
X-CODAH (RES) 25.0 34.0 12.0 32.6 10.2 35.3 13.7 39.0 18.6
X-CSQA (RES) 20.0 38.9 23.6 41.9 27.4 41.2 26.6 39.8 24.7
X-COPA (RES) 50.0 60.9 21.8 62.5 25.0 62.0 24.0 64.5 28.9
X-Story Cloze (NLU) 50.0 63.0 26.0 61.6 23.1 63.1 26.2 65.5 30.9
X-Winograd (NLU) 50.0 70.2 40.3 70.9 41.7 72.1 44.2 74.9 49.8
Chinese SQuAD (RC) 0.0 23.5 23.5 24.1 24.1 24.1 241 26.3 26.3
CMRC (RC) 0.0 38.2 38.2 38.0 38.0 38.8 38.8 40.2 40.2
MLQA (RC) 0.0 26.8 26.8 27.8 27.8 28.5 28.5 29.5 29.5
AGIEval (ZH subset)| 26.8 329 8.3 33.4 9.1 34.1 10.0 33.8 9.6
(GK)
C-Eval (GK) 25.0 31.6 8.8 32.1 9.5 32.6 10.1 32.7 10.3
CMMLU (GK) 25.0 32.0 94 33.0 10.7 34.1 12.2 34.3 124
GK tasks - 8.9 9.6 10.9 10.9
RC tasks - 25.3 25.7 26.9 27.7
RES tasks - 19.1 20.9 21.4 24.1
NLU tasks - 28.0 27.7 30.8 34.6
Aggregate Score - 20.3 | 20.9 225 24.3

Table 34: Chinese Results
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A.9 Dataset comparison on Canary Languages

In addition to the Reference datasets (Section 3.2, we compare FineWeb2 with the concurrent
work de Gibert et al. (2024), as well as with the following language-specific datasets:

Arabic: ArabicWeb24 (Farhat et al., 2024), Arabic-101B (Aloui et al., 2024)
French: Croissant (Faysse et al., 2024)

Hindi & Telugu: Sangraha (Khan et al., 2024)

Hindi: Odaigen (Parida et al., 2024)

Russian: Omnia Russica (Omnia Russica Team, 2024)

Thai: Sea CommonCrawl (Dou et al., 2025)

Turkish: VNGRS-Web-Corpus (Turker et al., 2024)

Chinese: MNBVC (MOP-LIWU Community & MNBVC Team, 2023), Tiger-
Bot (TigerResearch, 2023), MAP-CC (Du et al., 2024)

Comparison of Datasets Across Languages

= FineWeb2 (Ours) = CulturaX HPLT-2 =— mC4 = CC-100 === Raw Common Crawl = HPLT
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Figure 7: Per language comparison of FineWeb?2 to other multilingual and language-specific
datasets. All models were trained for 30 billion tokens. The plots have sliding window
smoothing of size 3.
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A.10 Dataset comparison on Unseen Languages

A.10.1 List of selected evaluation tasks for unseen languages

Task Metric Std

Meta MMLU (Grattafiori et al., 2024) Acc (PMI) 0.0044
Belebele (Bandarkar et al., 2024) Acc (Token) 0.0097
Okapi: Hellaswag (Lai et al., 2023)  Acc (Token) 0.0043
X-CODAH (Lin et al., 2021a) Acc (Token) 0.0104
X-CSQA (Lin et al., 2021a) Acc (Token) 0.0040
Mintaka (Sen et al., 2022) F1 0.0028
MLQA (Lewis et al., 2020) F1 0.0192
X-QuAD (Artetxe et al., 2020a) F1 0.0134

Table 35: Selected tasks for German alongside approximate standard deviation of the scores

Task Type Metric Std

Okapi: ARC (Lai et al., 2023) GK  Acc (PMI) 0.0093
Indo-MMLU (Koto et al., 2023) GK  Acc (PMI) 0.0030
Belebele (Bandarkar et al., 2024) RC Acc (Token) 0.0060
Okapi: Hellaswag (Lai et al., 2023) NLU Acc (Token) 0.0063

X-COPA (Ponti et al., 2020) RES Acc (Token) 0.0061
X-Story Cloze (Lin et al., 2021b) NLU Acc (Token) 0.0053
Tydiqa (Clark et al., 2020) RC F1 0.0120

Table 36: Selected tasks for Indonesian alongside approximate standard deviation of the
scores

Task Type Metric Std

Okapi: ARC (Lai et al., 2023) GK  Acc(PMI) 0.0119
Meta MMLU (Grattafiori et al., 2024) GK  Acc (PMI) 0.0030
X-CSQA (Lin et al., 2021a) RES  Acc (PMI) 0.0096
Belebele (Bandarkar et al., 2024) RC  Acc (Token) 0.0036
Okapi: Hellaswag (Lai et al., 2023)  NLU Acc (Token) 0.0059
M3Exam (Zhang et al., 2023) GK Acc (Token) 0.0038
X-CODAH (Lin et al., 2021a) RES Acc (Token) 0.0203
X-COPA (Ponti et al., 2020) RES Acc (Token) 0.0059
Mintaka (Sen et al., 2022) GK F1 0.0029
SQuAD-It (Croce et al., 2018) RC F1 0.0155

Table 37: Selected tasks for Italian alongside approximate standard deviation of the scores
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Task Type  Metric Std

JMMLU (at Waseda University, 2023) GK  Acc (PMI) 0.0047
X-CSQA (Lin et al., 2021a) RES Acc (PMI) 0.0168
Belebele (Bandarkar et al., 2024) RC  Acc (Token) 0.0047
CommonSenseQA (Kurihara et al., 2022) RES Acc (Token) 0.0089
X-CODAH (Lin et al., 2021a) RES Acc (Token) 0.0088
X-Winograd (Muennighoff et al., 2022) NLU Acc (Token) 0.0092
JSQuAD (Kurihara et al., 2022) RC F1 0.0117

Table 38: Selected tasks for Japanese alongside approximate standard deviation of the scores

Task Type  Metric Std

Okapi: ARC (Lai et al., 2023) GK  Acc(PMI) 0.0045
Okapi: MMLU (Lai et al., 2023) GK  Acc(PMI) 0.0012
X-COPA (Ponti et al., 2020) RES Acc (PMI) 0.0140

Belebele (Bandarkar et al., 2024) RC Acc (Token) 0.0148
Okapi: Hellaswag (Lai et al., 2023) NLU Acc (Token) 0.0099

M3Exam (Zhang et al., 2023) GK Acc (Token) 0.0080
X-CODAH (Lin et al., 2021a) RES Acc (Token) 0.0045
X-CSQA (Lin et al., 2021a) RES Acc (Token) 0.0120
MLQA (Lewis et al., 2020) RC F1 0.0118
X-QuAD (Artetxe et al., 2020a) RC F1 0.0067

Table 39: Selected tasks for Vietnamese alongside approximate standard deviation of the
scores
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A.10.2 Full evaluation results

Random || FineWeb2 (ours) | Common Crawl CulturaX HPLT2
Task Baseline || Raw Rescaled |Raw Rescaled | Raw Rescaled | Raw Rescaled
Belebele (RC) 25.0 36.6 15.4 34.2 12.3 35.7 14.3 36.0 14.7
Okapi: Hellaswag | 25.0 425 23.4 37.1 16.2 40.8 21.0 413 21.7
(NLU)
X-CODAH (RES) 25.0 39.7 19.6 39.1 18.8 45.0 26.7 41.8 224
X-CSQA (RES) 20.0 29.1 114 26.7 8.3 26.8 8.5 29.0 11.3
Mintaka (GK) 0.0 5.9 5.9 6.4 6.4 4.6 4.6 7.7 7.7
MLQA (RC) 0.0 28.1 28.1 26.2 26.2 28.7 28.7 28.9 28.9
X-QuAD (RC) 0.0 26.2 26.2 24.3 24.3 23.7 23.7 24.3 24.3
Meta MMLU 25.0 29.5 6.0 27.9 3.8 29.0 53 30.0 6.7
(GK)
GK tasks - 6.0 5.1 5.0 7.2
RC tasks - 23.2 20.9 22.2 22.6
RES tasks - 15.5 13.6 17.6 16.8
NLU tasks - 23.4 16.2 21.0 21.7
Aggregate Score | - || 17.0 | 13.9 16.4 17.1

Table 40: German Results

Random || FineWeb2 (ours) | Common Crawl CulturaX HPLT2
Task Baseline || Raw Rescaled |Raw Rescaled | Raw Rescaled | Raw Rescaled
Okapi: ARC (GK) 25.0 30.8 7.8 29.1 5.4 30.5 7.4 33.7 11.6
Belebele (RC) 25.0 31.8 9.1 32.0 9.3 32.3 9.7 32.1 9.5
Okapi: Hellaswag 25.0 41.4 21.9 38.6 18.1 41.8 22.4 42.7 23.6
(NLU)
X-COPA (RES) 50.0 63.3 26.5 60.9 21.7 65.9 31.9 66.2 324
X-Story Cloze 50.0 66.0 32.1 63.6 27.1 63.9 27.9 65.7 315
(NLU)
Tydiqa (RC) 0.0 33.6 33.6 34.6 34.6 29.0 29.0 32.3 32.3
Indo-MMLU (GK) 25.0 28.9 5.2 28.7 49 28.0 4.0 29.6 6.1
GK tasks - 6.5 5.1 5.7 8.9
RC tasks - 21.4 21.9 19.4 20.9
RES tasks - 26.5 21.7 31.9 324
NLU tasks - 27.0 22.6 25.2 27.6
Aggregate Score | - || 20.3 | 17.9 20.5 224

Table 41: Indonesian Results
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Random || FineWeb2 (ours) | Common Crawl CulturaX HPLT2
Task Baseline || Raw Rescaled |Raw Rescaled |Raw Rescaled | Raw Rescaled
Okapi: ARC (GK) | 25.0 324 9.9 28.7 49 30.0 6.6 30.7 7.6
Belebele (RC) 25.0 31.9 9.2 28.7 5.0 30.5 74 30.4 7.2
Okapi: Hellaswag | 25.0 454 27.2 38.5 18.0 43.6 24.8 44 .4 25.8
(NLU)
MB3Exam (GK) 33.8 39.1 8.0 38.3 6.8 40.0 9.5 38.6 73
X-CODAH (RES) 25.0 39.3 19.1 38.7 18.2 38.0 17.3 38.7 18.2
X-CSQA (RES) 20.0 37.5 21.9 32.8 16.0 37.6 21.9 36.1 20.2
X-COPA (RES) 50.0 64.8 29.6 61.7 23.3 63.0 26.0 65.2 30.4
Mintaka (GK) 0.0 10.4 104 7.9 7.9 9.8 9.8 10.6 10.6
SQuAD-It (RC) 0.0 20.3 20.3 18.2 18.2 22.2 22.2 21.8 21.8
Meta MMLU| 25.0 30.1 6.7 29.0 5.3 29.1 5.5 29.5 5.9
(GK)
GK tasks - 8.8 6.2 7.8 79
RC tasks - 14.7 11.6 14.8 14.5
RES tasks - 23.5 19.2 21.8 229
NLU tasks - 27.2 18.0 24.8 25.8
Aggregate Score | - I 18.6 | 13.7 17.3 17.8

Table 42: Italian Results

Random || FineWeb2 (ours) | Common Crawl CulturaX HPLT2
Task Baseline || Raw Rescaled |Raw Rescaled | Raw Rescaled | Raw Rescaled
Belebele (RC) 25.0 32.5 10.0 31.7 8.9 30.3 7.1 29.3 5.8
CommonSenseQA| 20.0 67.5 59.4 60.9 51.2 63.5 54.4 50.3 37.8
(RES)
X-CODAH (RES) 25.0 37.7 16.9 37.7 16.9 38.7 18.2 37.4 16.6
X-CSQA (RES) 20.0 36.4 20.5 36.4 20.5 37.2 21.5 31.0 13.7
X-Winograd 50.0 60.3 20.6 54.4 8.9 57.7 154 59.0 18.0
(NLU)
JSQuAD (RC) 0.0 40.5 40.5 33.1 33.1 28.5 28.5 11.7 11.7
JMMLU (GK) 25.0 31.7 9.0 28.9 5.1 30.7 75 28.7 49
GK tasks - 9.0 5.1 7.5 49
RC tasks - 25.3 21.0 17.8 8.7
RES tasks - 32.2 29.5 31.4 22.7
NLU tasks - 20.6 8.9 154 18.0
Aggregate Score | - || 21.8 | 16.1 18.0 13.6

Table 43: Japanese Results
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Random || FineWeb2 (ours) | Common Crawl CulturaX HPLT2
Task Baseline || Raw Rescaled |Raw Rescaled |Raw Rescaled | Raw Rescaled
Okapi: ARC (GK) | 25.0 31.3 8.4 27.2 29 30.8 7.7 31.1 8.1
Belebele (RC) 25.0 33.0 10.6 32.6 10.2 33.1 10.8 34.1 12.1
Okapi: Hellaswag | 25.0 48.7 31.6 43.2 24.2 46.6 28.8 445 26.0
(NLU)
M3Exam (GK) 25.2 35.2 13.3 36.7 154 38.0 17.0 39.1 18.6
X-CODAH (RES) 25.0 40.3 20.4 35.6 14.1 38.2 17.6 38.4 17.9
X-CSQA (RES) 20.0 29.6 12.0 28.5 10.6 29.8 12.3 29.7 12.2
X-COPA (RES) 50.0 75.7 51.3 69.7 39.5 64.6 29.2 70.5 40.9
MLQA (RC) 0.0 194 194 18.6 18.6 23.4 23.4 22.3 22.3
X-QuAD (RC) 0.0 17.3 17.3 16.9 16.9 21.3 21.3 21.2 21.2
Okapi: MMLU| 25.0 29.4 5.8 28.5 4.7 28.1 41 28.8 5.0
(GK)
GK tasks - 9.2 7.6 9.6 10.6
RC tasks - 15.8 15.3 18.5 18.5
RES tasks - 27.9 214 19.7 23.7
NLU tasks - 31.6 24.2 28.8 26.0
Aggregate Score | - || 21.1 | 17.1 19.2 19.7

Table 44: Vietnamese Results
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A.11 FineWeb2 language composition

rus_Cuyrl deu_Latn
28.0% 7.2%

fra_Latn
5.3%

Afro-Asiatic (1.8%)  Turkic (1.7%)
nld_Latn

-~ .I .I

Austro-Asiatic (1.5%) Koreanic (1.0%)

vie_Latn kor_Hang
15% 1.0%

Kra-Dai (1.3%) -
ES I 1

Figure 8: Language composition of FineWeb2 Distribution of languages in the final
FineWeb2 dataset. Percentages refer to total utf-8 bytes of each language or language
family.
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Table 45: FineWeb2 80 largest language stats

ISO  Script Name Language  Words Documents Disk size

639-3 Family

rus Cyrl  Russian Indo- 588,579,493,780 699,083,579 5.82TB
European

cmn  Hani  Mandarin Chinese Sino-Tibetan 543,543,038,750 636,058,984 2.42TB

deu Latn German Indo- 262,271,052,199 495,964,485 1.51TB
European

jpn Jpan Japanese Japonic 331,144,301,801 400,138,563 1.50TB

spa Latn  Spanish Indo- 261,523,749,595 441,287,261 1.32TB
European

fra Latn  French Indo- 220,662,584,640 360,058,973 1.11TB
European

ita Latn Italian Indo- 139,116,026,491 238,984,437 739.24GB
European

por Latn Portuguese Indo- 109,536,087,117 199,737,979 569.24GB
European

pol Latn Polish Indo- 73,119,437,217 151,966,724  432.01GB
European

nld Latn Dutch Indo- 74,634,633,118 147,301,270  397.51GB
European

ind Latn Indonesian Austronesian 60,264,322,142 100,238,529 348.65GB

vie Latn Vietnamese Austro- 50,886,874,358 61,064,248 319.83GB
Asiatic

fas Arab Persian Indo- 39,705,799,658 58,843,652 304.62GB
European

arb Arab Standard Arabic Afro-Asiatic 32,812,858,120 61,977,525 293.59GB

tur Latn  Turkish Turkic 41,933,799,420 95,129,129 284.52GB

tha Thai Thai Kra-Dai 24,662,748,945 35,897,202 278.68GB

ukr Cyrl  Ukrainian Indo- 25,586,457,655 53,101,726 254.86GB
European

ell Grek Modern Indo- 22,827,957,288 47,421,073 222.05GB

(1453-) European

kor Hang Korean Koreanic 48,613,120,582 60,874,355 213.43GB

ces Latn Czech Indo- 35,479,428,809 66,067,904 206.33GB
European

swe Latn Swedish Indo- 35,745,969,364 59,485,306 202.96GB
European

hun Latn Hungarian Uralic 30,919,839,164 49,935,986 199.69GB

ron Latn Romanian Indo- 35,017,893,659 58,303,671 186.19GB
European

nob Latn Norwegian Bokmél Indo- 32,008,904,934 38,144,343 172.05GB
European

dan Latn Danish Indo- 28,055,948,840 45,391,655 150.72GB
European

bul Cyrl Bulgarian Indo- 16,074,326,712 25,994,731 145.75GB
European

fin Latn  Finnish Uralic 20,343,096,672 36,710,816 143.03GB

hin Deva Hindi Indo- 11,173,681,651 22,095,985 120.98GB
European

ben Beng Bengali Indo- 6,153,579,265 15,185,742 87.04GB
European

slk Latn Slovak Indo- 14,808,010,769 29,991,521 85.43GB
European

heb Hebr Hebrew Afro-Asiatic 8,462,976,117 14,491,748 68.71GB

56



Published as a conference paper at COLM 2025

Table 45 — Continued from previous page

ISO  Script Name Language  Words Documents  Disk size

639-3 Family

lit Latn Lithuanian Indo- 9,132,828,961 13,471,965 56.50GB
European

bos Latn Bosnian Indo- 9,086,837,979 21,243,255 49.18GB
European

slv Latn Slovenian Indo- 7,688,373,264 12,059,130 41.80GB
European

ekk Latn  Standard Estonian Uralic 6,564,292,000 10,218,587 40.82GB

cat Latn Catalan Indo- 8,348,091,726 17,136,414 40.35GB
European

tam Taml Tamil Dravidian 1,937,150,898 5,528,854 36.97GB

hrv Latn Croatian Indo- 6,609,299,440 6,195,824 35.91GB
European

lvs Latn Standard Latvian Indo- 5,371,151,279 8,030,316 33.36GB
European

zsm Latn Standard Malay Austronesian 5,648,387,840 9,421,248 31.94GB

azj Latn North Azerbaijani Turkic 3,894,255,826 7,291,231 26.90GB

srp Cyrl  Serbian Indo- 2,858,500,314 4,146,124 26.87GB
European

kat Geor Georgian Kartvelian  1,439,572,993 3,706,659 25.23GB

npi Deva Nepali (individual Indo- 1,642,856,349 4,888,163 25.13GB

language) European

mar Deva Marathi Indo- 1,541,225,070 3,912,702 22.57GB
European

mal Mlym Malayalam Dravidian 1,054,187,581 3,322,526 22.27GB

kaz Cyrl Kazakh Turkic 1,876,843,453 3,344,366 20.67GB

urd Arab Urdu Indo- 2,733,266,493 4,809,542 19.93GB
European

als Latn  Tosk Albanian Indo- 3,454,387,059 8,597,826 18.18GB
European

mkd Cyrl Macedonian Indo- 1,611,392,841 4,150,902 14.99GB
European

tel Telu Telugu Dravidian 891,002,487 1,964,395 14.42GB

kan Knda Kannada Dravidian 748,850,327 2,390,982 12.91GB

mya Mymr Burmese Sino-Tibetan 854,400,671 1,558,304 12.35GB

guj Gujr  Gujarati Indo- 934,124,052 2,127,094 11.71GB
European

bel Cyrl Belarusian Indo- 1,166,541,148 2,100,873 11.47GB
European

isl Latn Icelandic Indo- 1,696,354,360 3,014,429 10.27GB
European

khm Khmr Khmer Austro- 667,495,692 1,586,460 8.70GB
Asiatic

khk Cyrl Halh Mongolian Mongolic 824,211,882 1,622,882 8.52GB

fil Latn  Filipino Austronesian 1,636,238,017 2,349,050 8.13GB

ary Arab Moroccan Arabic  Afro-Asiatic 843,523,994 2,365,405 7.74GB

afr Latn Afrikaans Indo- 1,598,352,868 1,992,040 7.69GB
European

hye Armn Armenian Indo- 634,273,060 1,757 415 7.17GB
European

sin Sinh  Sinhala Indo- 512,453,069 1,185,323 7.05GB
European

glg Latn Galician Indo- 1,236,233,473 2,522,814 6.47GB
European

uzn Cyrl  Northern Uzbek Turkic 544,866,919 1,357,811 6.12GB
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Table 45 — Continued from previous page

ISO  Script Name Language  Words Documents  Disk size
639-3 Family
pan Guru Panjabi Indo- 522,788,467 944,160 5.64GB
European
ory Orya Odia Indo- 333,760,951 1,298,188 4.92GB
European
uzn Latn Northern Uzbek Turkic 687,002,994 1,233,463 4.45GB
kir Cyrl Kirghiz Turkic 397,449,282 1,069,582 4.36GB
eus Latn Basque Language 711,939,889 1,569,434 4.30GB
isolate
lat Latn Latin Indo- 714,764,848 1,473,541 3.86GB
European
tgk Cyrl  Tajik Indo- 396,209,383 688,384 3.75GB
European
gmh Latn Middle High Ger- Indo- 506,396,917 84,495 3.41GB
man (ca. 1050-1500) European
swh Latn Swahili (individual Niger- 569,542,024 1,206,300 3.08GB
language) Congo
arz Arab Egyptian Arabic =~ Afro-Asiatic 345,040,810 853,290 2.92GB
nno Latn Norwegian Indo- 522,740,774 1,214,870 2.68GB
Nynorsk European
cym Latn Welsh Indo- 523,226,616 831,878 2.50GB
European
amh Ethi Ambharic Afro-Asiatic 239,936,286 428,373 2.49GB
pbt Arab Southern Pashto Indo- 337,138,269 639,983 2.41GB
European
ckb Arab Central Kurdish Indo- 236,342,609 554,993 2.39GB
European
7
Total 3,339,271,691,958 5,018,505,566 20.78TB
7Full list available at https://github.com/huggingface/fineweb-2/blob/main/

fineweb2-language-distribution.csv
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A.12 Bible and Wikipedia content

For each language low resource language, we first compiled the distribution of documents
by domain name. We then averaged the frequency of each domain across all languages, to
find specific domains that were a common source of data for different languages (which from
manual inspection was the case for specific Bible websites and Wikipedia). We manually
labeled the top domains that belonged to Bible or Wikipedia websites (Table 46), and then
measured the fraction of each language corpora that belonged to these domains. Out of
1868 language-script pairs in the final dataset, 70% (1320 of them) have more than half
their documents from Bible- or Wikipedia-related domains. This is mostly driven by Bible
content, as can be seen in Fig. 9.

Bible Domains Wiki Domains
ebible.org wikipedia.org
bible.is wikimedia.org
jw.org wikisource.org
stepbible.org wiktionary.org
bibles.org

bible.com

breakeveryyoke.com

png.bible

americanbible.org
pngscriptures.org
globalrecordings.net
gospelgo.com
httlvn.org
biblegateway.com
jesusforafrica.net
bible.com.au
pacificbibles.org
scriptureearth.org
divinerevelations.info
beblia.com
aboriginalbibles.org.au
eevangelize.com
biblica.com
e-alkitab.org

alkitab.pw
amazinggracebibleinstitute.com
bibleforchildren.org
aionianbible.org
cyber.bible
biblehub.com
myanmarbs.org
baebol.org
christianchildmultilingualbibleverse.wordpress.com
femissionaria.blogspot.com
biblics.com
churchofjesuschrist.org
biblesa.co.za
bible-tools.org
torresstraitbibles.org.au

Table 46: List of Bible-related and Wiki-related domains
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Wiki Bible Total
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Figure 9: Ratio of Wikipedia and Bible content per language Most languages have a small

fraction of their content originating from Wikipedia (with some exceptions). Bible content,
on the other hand, is a big part of the corpora of many lower-resource languages.
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A.13 Train-Test Split

Our dataset release is split into a train and test set, per language. The test set should not
be used for training but instead can help research questions such as on memorization or
data attribution. The test set is obtained as a random subset (by a hash function applied
on the document content), and contains min{1%, 100k} of the documents per language
pre-filtering, with a reduction in size when these documents are filtered with the same
process as the train set. It is only provided for languages of sufficient size.
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