
Published in Transactions on Machine Learning Research (01/2026)

Explainable Graph Learning for Particle Accelerator Opera-
tions

Song Wang sw3wv@virginia.edu
Department of Electrical and Computer Engineering
University of Virginia

Christopher Tennant tennant@jlab.org
Thomas Jefferson National Accelerator Facility

Jundong Li jundong@virginia.edu
Department of Electrical and Computer Engineering
University of Virginia

Reviewed on OpenReview: https://openreview.net/forum?id=jnReRk2EX1

Abstract

Particle accelerators are vital tools in physics, medicine, and industry, requiring precise
tuning to ensure optimal beam performance. However, real-world deviations from idealized
simulations make beam tuning a time-consuming and error-prone process. In this work, we
propose an explanation-driven framework for actionable insight into beamline operations,
focusing on the injector beamline at the Continuous Electron Beam Accelerator Facility
(CEBAF). We represent beamline configurations as heterogeneous graphs, where setting
nodes represent elements that human operators can actively adjust during beam tuning,
and reading nodes passively provide diagnostic feedback. To identify the most influential
setting nodes responsible for differences between any two beamline configurations, our ap-
proach first predicts the resulting changes in reading nodes caused by variations in settings,
and then learns importance scores that capture the joint influence of multiple setting nodes.
Experimental results on real-world CEBAF injector data demonstrate the framework’s abil-
ity to generate interpretable insights that can assist human operators in beamline tuning
and reduce operational overhead.

1 Introduction

Particle accelerators are complex scientific instruments designed to accelerate charged particles, such as
protons and electrons, to high energies (Wille, 2000; Conte & MacKay, 2008; Sessler, 2014; Wiedemann, 2015;
Appleby et al., 2020). These devices have found application in a broad range of disciplines, such as particle
physics, nuclear physics, and materials science, which contribute to uncovering the fundamental properties of
matter and the universe (Brüning & Myers, 2016). Accelerators can probe nuclear structure (Leemann et al.,
2001; Willeke & Beebe-Wang, 2021), characterize material properties, and support medical fields through
radiation therapy and advanced imaging technologies (Peach et al., 2011; Podgoršak, 2014; Flanz, 2015).

As some of the most advanced and complex machines ever engineered, particle accelerators demand precise
operation (Kutsaev, 2021; Friedrich et al., 2017). High-fidelity beamline simulations are commonly used to
assist human operators in managing accelerator performance. However, these simulations are idealized and
often differ from the complexities of real-world implementations. This mismatch necessitates beam tuning,
an iterative process that seeks to align operational parameters with simulated performance. Beam tuning
is frequently time-consuming and challenging, contributing significantly to machine downtime. The current
reliance on limited diagnostics and simulation interactions compounds this inefficiency.

1

https://openreview.net/forum?id=jnReRk2EX1

Published in Transactions on Machine Learning Research (01/2026)

In this work, we introduce a novel explanation-driven framework for achieving actionable insights into com-
plex, high-dimensional systems by leveraging graph-based representations of accelerator beamline configura-
tions. The beamline is modeled as a heterogeneous graph where nodes represent different elements, divided
into setting nodes (which can be actively adjusted by human operators) and reading nodes (which are observ-
able but not tunable). Directed edges capture the beamline’s topology, where influence flows from upstream
to downstream nodes. Each node is associated with a unique feature vector representing its state. However,
two key challenges arise in this setting. First, only the setting nodes can be adjusted, while the reading nodes
only passively reflect system outcomes. This imposes a constraint: it is infeasible to freely vary setting node
features, as the resulting changes in the reading nodes are not directly known. Second, adjusting multiple
setting nodes simultaneously can lead to complex, nonlinear interactions, making it difficult to disentangle
their individual contributions and interpret the resulting changes in reading node features. As a result,
explaining the effects of specific adjustments remains a significant challenge. Understanding these effects is
essential for effective beamline tuning.

To address these challenges, our method identifies and ranks influential nodes based on their contribution
to beamline changes. To isolate the impact of setting nodes, we train a representation learner that predicts
reading node features based solely on settings, thus enabling a clean comparison between predicted and actual
outcomes. Second, to model the joint influence of multiple setting nodes, we introduce trainable node masks
with regularization that help isolate the most influential adjustments. These masks are optimized to highlight
setting nodes that significantly impact downstream behavior, providing interpretable node importance scores
that can guide beam tuning. Moreover, evaluating our framework is challenging due to the absence of ground
truth for node importance. To address this, we estimate setting node influence by measuring how individual
adjustments affect the prediction error on reading nodes. This provides a principled proxy for assessing
explanation accuracy. The main contributions of this work are as follows:

1. Novel Representation: We model particle accelerator beamlines as heterogeneous, directed graphs,
where nodes represent beamline elements and edges capture their interactions. This enables effective
application of graph-based machine learning techniques for beamline analysis.

2. Explanation Mechanism: We propose an explanation-driven framework that identifies the most influ-
ential setting nodes responsible for observed beamline changes. This is achieved by training a node-mask
mechanism with regularization based on predicted versus actual reading node changes.

3. Practical Evaluation: Our approach is validated on real-world beamline datasets. To achieve ground
truth for evaluation, we design an efficient method to independently measure the impact of each node.
The results demonstrate its ability to identify important changed nodes and provide interpretable insights.

By focusing on explanations, our framework provides a practical tool for improving particle accelerator
operations while empowering operators with a greater understanding of a high-dimensional, complex system.

2 Preliminaries

2.1 Data Preparation

The Continuous Electron Beam Accelerator Facility (CEBAF), located at the Thomas Jefferson National
Accelerator Facility (JLab), is a powerful recirculating linear accelerator capable of simultaneously delivering
electron beams to four nuclear physics experimental stations (Reece, 2016; Adderley et al., 2024). A schematic
of CEBAF is shown in Figure 1a. For this study, we focus specifically on the injector beamline. The injector
serves as an excellent testbed due to its relatively compact scale, diversity of beamline components, and
extensive archived tuning data. This region is critical to beam performance and serves as a focal point
of operational adjustments, providing abundant data for the development of data-driven models. To show
how a beamline can be represented as a graph, consider the example illustrated in Fig. 1b. The beamline
comprises various element types, including beam current monitors (BCMs), beam position monitors (BPMs),
quadrupoles (Q), solenoids (SOL), and correctors (CORR), all represented as nodes in the graph. Each
node type is characterized by unique features: quadrupoles, correctors, and solenoids have a single value

2

Published in Transactions on Machine Learning Research (01/2026)

(a) (b)

Figure 1: (a) Schematic of the CEBAF accelerator. Electrons are generated in the injector. Multiple passes
through the north and south linacs accelerate the beam to multi-GeV energies. The beam is then sent to
the four nuclear physics experimental halls (A, B, C, and D). (b) Illustrations that showcase an arbitrary
accelerator beamline (top) and our approach for constructing a corresponding graph (bottom). Here, each
node represents an individual element, while the node features correspond to the relevant parameters of the
respective element. The edges between nodes are determined by a user-defined window size of 2. These
edges are directed to reflect the fact that an element cannot impact upstream elements in the beamline.

corresponding to their field strength, BCMs provide beam current measurements, and BPMs include the
horizontal and vertical beam positions as well as the sum signal, which is proportional to the beam current
in the beamline. The resulting graph is heterogeneous and directed, where heterogeneity arises from the
diverse node types, and directionality reflects the causal flow along the beamline.

Edges between nodes are established based on a user-defined “window”. In the example in Fig. 1b, a window
size of 2 is applied, meaning each setting node is connected to the two immediate downstream setting nodes,
with any intermediate reading nodes also included. Setting nodes represent elements that operators actively
adjust during beam tuning, such as Q1 (the first quadrupole), SOL1 (the first solenoid), and CORR1 (the
first corrector), whereas reading nodes passively provide diagnostic feedback (e.g., BPMs and BCMs). The
directed edges reflect the unidirectional nature of the beamline, as upstream nodes cannot be influenced by
downstream elements. Notably, the window size is adjustable, allowing graph representations to be tailored
for specific downstream tasks and beamline characteristics. In a previous work (Wang et al., 2024), the results
shows that a window size of 2 achieves the best performance in the classification of beamline configurations,
compared to window sizes of 1, 3, and 5. This setting achieves a balance between capturing local interactions
and avoiding spurious long-range links. Thus, we follow this work and choose the optimal window size of
2. To facilitate the integration of global beamline parameters, we create a master node connecting to
all other nodes, enabling the inclusion of global features such as beam current, environmental conditions
(e.g., temperature and humidity), and temporal information. This design allows for a more comprehensive
representation of the beamline. For this study, each beamline graph consists of 12 distinct node types, 207
nodes in total, 393 features, and 530 edges (based on a window size of 2), with a master node connecting to
all others. Each node type has specific features that can vary significantly in magnitude due to the nature
of the physical quantities they represent. To address this, we perform element-wise normalization. For each
dataset, we calculate the mean and standard deviation for each node feature and standardize them.

2.2 Problem Formulation

In this section, we present a formal definition of the beamline explanation task. Consider a dataset D,
which is composed of multiple graphs: D = {G1, G2, . . . , G|D|}. Each individual graph G is characterized
by the triplet G = (V, E , X). Specifically, V and E denote the collection of nodes and edges, respectively.
An alternative representation of graph G is through its adjacency matrix A ∈ Rn×n, where n corresponds
to the number of nodes in the graph. The element Ai,j at the intersection of the i-th row and j-th column
is set to 1 if an edge exists between node i and node j; otherwise, Ai,j = 0. Given that beamline graphs

3

Published in Transactions on Machine Learning Research (01/2026)

Figure 2: The overall framework. On the left-hand side, we illustrate the training process of the prediction
model, which predicts the reading attributes, given the setting attributes of an input beamline graph. On the
right-hand side, the explanation framework takes two beamline graphs as input and computes the difference
in setting node features between them. Then the framework optimizes the node mask to learn the importance.

are inherently heterogeneous, we introduce a node type mapping function τ : V → T , where T denotes the
set of all node types. With this mapping function, the type of node vi is given by τ(i). Furthermore, node
features are encoded as X = {x1, x2, . . . , xn}, where xi ∈ Rdτ(i) represents the feature vector of node vi, and
dτ(i) corresponds to the dimensionality of features specific to the node type τ(i).

The primary goal is to develop an explanation-driven framework that identifies and ranks the most influential
nodes responsible for differences between two beamline graphs. Formally, given a pair of graphs Ginit =
(V, E , X (1)) and Gend = (V, E , X (2)), where both share the same topology but differ in node features due
to changes in a subset of setting nodes Vc ⊂ V, the objective is to compute a ranking over Vc that reflects
the importance of each node in contributing to the observed difference between Ginit and Gend. This task
enables interpretable analysis of how changes of specific elements can propagate through the beamline graph,
offering practical guidance for operators during beam tuning.

3 Methodology

The primary motivation is to improve accelerator operators’ physical intuition about how specific setting
adjustments impact broader beamline configurations, thus improving operational efficiency. Accelerator
tuning, the process of converging to a desired operational point, is inherently iterative and often time-
consuming. By providing insights into the relationship between setting changes and embedding movements,
we not only explain the behavior of the system, but also offer practical guidance to recover desired operational
states. We seek to determine the most significant setting nodes that account for embedding movement
between two points in the learned representation space. This formulation of explainability serves a practical
purpose in accelerator operations.

Consider a common scenario: A beamline operating at optimal performance gradually degrades over several
days as different operators make adjustments in response to beam variations or environmental changes.
While general guidelines exist for injector tuning, the specific implementation varies among operators. In
such cases, identifying the primary setting changes relative to a known stable operating point can provide
valuable guidance for state recovery.

Determining these important nodes presents significant challenges. The heterogeneous nature of the acceler-
ator system means that the magnitude of setting changes alone is insufficient to determine node importance.
For instance, an equivalent normalized change in a quadrupole setting versus an accelerating cavity phase will
have substantially different effects on the beam. Moreover, the spatial location of the modified node within
the beamline critically influences its downstream effects. This complexity requires a more sophisticated
approach to ranking the significance of setting changes.

4

Published in Transactions on Machine Learning Research (01/2026)

Workflow. Our framework follows a structured workflow consisting of three main components: an embedding
model, a prediction model, and an explanation model, as illustrated in Fig. 2. Utilizing the representations
learned by the embedding model and the predicted reading attributes from the prediction model, the expla-
nation model identifies the most influential setting nodes contributing to changes between any two beamline
graphs. By integrating these components into a comprehensive framework, we aim to enable the explanation
for the scientific domain of particle accelerators with unique constraints. Unlike generic contrastive learning,
our alignment loss preserves operational geometry between setting nodes, which is crucial for interpretable
state transitions in accelerators.

3.1 Embedding Model

This section presents our approach to learning graph embeddings for CEBAF injector beamline graphs while
accounting for node type diversity. The heterogeneous nature of the accelerator system presents a significant
challenge for learning the embeddings, as the magnitude of setting changes alone is insufficient to determine
node importance. Therefore, for the embedding model, we introduce a heterogeneous graph convolution
method to encode beamline graphs (Hu et al., 2019; Yang et al., 2023; Zhao et al., 2021). This approach
addresses variations in feature distributions across different node types by transforming them into a unified
latent space through linear layers.

Formally, given a beamline graph G = (V, E , X), we define the adjacency matrix with self-connections as
A′ = A + I, where I is the identity matrix of size n, with n = |V|. The degree matrix M is then given
by Mii =

∑n
j=1 Ai,j . Generally, the propagation rule at each layer in the standard graph convolution

operation (Kipf & Welling, 2017; Xu et al., 2019; Hamilton et al., 2017a;b) for homogeneous graphs can be
formulated as:

h(l+1)
v = MP

(
{h(l)

u | u ∈ N (v)}, h(l)
v

)
, (1)

where MP(·) denotes the message-passing function that can aggregate representations from a set of nodes
and output a representation for a specific node. Moreover, h(l+1)

v denotes the representation of node v at
layer l + 1. h(0)

v corresponds to the initial node features of v. Nv denotes the set of neighboring nodes of v.

To take into account the heterogeneity of node types and varying feature dimensions, we employ a hetero-
geneous graph convolution strategy (Hu et al., 2019; Liu et al., 2020; Chang et al., 2015; Hu et al., 2020),
allowing integration of multi-type node information. We first project the node features of different node
types into a common latent space:

h(0)
v = xv · Wτ(v) + bτ(v), where τ(v) ∈ T . (2)

Here Wτ(v) ∈ Rdτ(v)×d(0) and bτ(v) ∈ Rd(0) are projection parameters for node type τ(v) of node v. Here,
dτ(v) denotes the input feature dimension for nodes of type τ(v), and d(0) is the dimension of layer 0. T is
the set of node types. Given this transformation, heterogeneous graph convolution is performed as:

H(l+1) = ReLU
(∑

τ∈T
Ãτ ·

(
H(l)

τ · W(l)
τ + b(l)

τ

))
, (3)

where Ã = A′M−1 is the normalized adjacency matrix, and W(l) and b(l) are the trainable parameters for
layer l. W(l)

τ and b(l)
τ are layer-specific parameters for node type τ . Unlike standard GCN, we assign distinct

parameters to different node types, ensuring feature transformations into a shared latent space. Additionally,
Ãτ represents a submatrix of Ã, encoding connections between nodes and their neighbors of type τ .

Self-Supervised Optimization for Representation Learning. We propose a self-supervised optimiza-
tion strategy that encourages alignment between node features and their learned embeddings for more
comprehensive representation learning. Specifically, we introduce an alignment loss, which aims to preserve
the pairwise distances between nodes in the original feature space within the embedding space. This encour-
ages the embedding space to maintain the structural geometry of the input features and mitigates potential
distortions introduced by heterogeneous transformations. Given a pair of node feature vectors x1, x2 and

5

Published in Transactions on Machine Learning Research (01/2026)

their corresponding learned embeddings h1, h2, we define the self-supervised alignment loss as:

L = |D(x1, x2) − D(h1, h2)| , where D(x1, x2) =
√∑n

i=1
(x̃1,i − x̃2,i)2. (4)

Here D(·, ·) represents the Euclidean distance between standardized feature vectors, with standardization
given by: x̃1,i = (x1,i − µ(x1))/σ(x1). This ensures distances in the input feature space are appropriately
aligned with distances in the embedding space, promoting consistency in graph representations. This loss
aims to explicitly align distances in feature space with those in the latent embedding space, ensuring that
operationally meaningful differences (e.g., in quadrupole strengths or cavity phases) are preserved. The em-
bedding space, therefore, maintains a geometry consistent with the input features while also leveraging graph
connectivity to capture causal dependencies. This alignment guarantees that minimizing latent distance cor-
responds to recovering a physically plausible state. An example of nearly 52,000 learned representations
after optimization are illustrated in Fig. 3, which reflects the CEBAF operational run in 2022.

Figure 3: Embeddings representing CEBAF injector operations in 2022. Markers are color-coded by month.
Note that there was a scheduled accelerator down during March, April, and May.

3.2 Prediction Model

This subsection presents the training details of our prediction model (as shown in the left-hand side of Fig. 2).
The purpose of this model is to estimate the features of reading nodes based on the features of setting nodes.
This design aligns with the physical constraints of real-world accelerator systems: operators can directly
manipulate the values of setting nodes (e.g., magnet strengths, RF phases), but not the values of reading
nodes, which passively reflect system diagnostics and feedback.

To capture the relationship between these two types of nodes, we train a dedicated prediction model that
learns to approximate the effect of setting adjustments on the readings. The prediction task involves learning
a mapping from setting node features to reading node features, which can be formalized as:

X̂ read = fθ(Vset, Eset, Xset), where Eset = {(vi, vj)|vi, vj ∈ Vset}, Xset = {xv|v ∈ Vset} (5)

where fθ is a graph neural network parameterized by θ, Vset denotes the set of setting nodes, Eset = {(vi, vj) |
vi, vj ∈ Vset} is the set of edges among setting nodes, and Xset = {xv | v ∈ Vset} represents the corresponding
node features. The model is trained to minimize the mean squared error (MSE) between the predicted and
actual reading node features:

θ̂ = argmin
θ

1
|V|
∑
i∈V

∥∥∥X̂ read
i − X read

i

∥∥∥2
. (6)

6

Published in Transactions on Machine Learning Research (01/2026)

This objective ensures that the model learns an accurate functional approximation of how beamline readings
respond to configuration changes.

3.3 Explanation Model

Our explanation model interprets the relationships between setting attributes and reading attributes in a
self-supervised manner (as shown in the right-hand side of Fig. 2). We first train a prediction model that
learns to infer reading attributes based on setting attributes.

Given a trained GNN model Φ, we aim to identify the most important setting nodes whose features and
connectivity explain the change between two beamline graphs. To achieve this, we seek to learn a continuous
node mask that highlights which nodes contribute most to the observed shift in representation between two
beamline graphs.

Let G = (V, E , X) be a beamline graph with node features X , and let H = g(V, E , X) ∈ Rd denote the
dense representation produced by the GNN. Given a pair of graphs Ginit and Gend where certain setting
nodes have changed, we denote their respective representations as H(1) and H(2). Our goal is to explain
the transition between these two states by identifying the explanation graph GS , defined by the node mask
m = {m1, m2, . . . , mn} ∈ [0, 1]n, where n is the number of changed setting nodes. With the explanation
graph GS , we aim to provide insights of nodes whose features and connectivity are most informative about
the latent transition from H(1) to H(2).

Optimization via Mutual Information. To effectively learn the masks to constitute GS , we propose to
utilize the concept of mutual information for optimization. Particularly, we aim to maximize the mutual
information between the explanation graph GS and the target representation shift:

max
GS

MI(H, GS) = H(H) − H(H | G = GS , X = XS), (7)

where XS denotes the masked input features corresponding to GS , and H(·) denotes differential entropy.
Notably, H(H) is fixed for a trained representation model. Thus, maximizing the mutual information is
equivalent to minimizing conditional entropy:

min
GS

H(H | G = GS , X = XS) = −EH|GS
[log p(H | GS , XS)] . (8)

In practice, we model this process through reconstruction: we seek a masked input of the beamline graph
that produces a representation as close as possible to the true representation H(2). The explanation is thus
formulated as the mask that minimizes the distance between the masked-output representation and H(2).

Variational Mask Optimization. To enable gradient-based optimization, we use a continuous relaxation
of the binary node mask m ∈ [0, 1]n. This mask is applied individually to each setting node (on its features),
such that the node features of the masked graph becomes X (m). The masked representation is then computed
as:

Ĥ(2) = Φ(V, E , X (m)), where X (m) = Xset(m) ∪ Xread(m). (9)

Here X (m) denotes the new node features. Particularly, we calculate X (m) separately for setting nodes and
reading nodes as follows. For setting nodes, we consider the difference between the two beamline graphs
Ginit and Gend. If a specific setting node changes between these two graphs, we will learn a node mask for
it. In this way, the features of Ginit added with the node mask multiplied by the change will become the
new features. For setting nodes that are not changed, their features remain unchanged. The calculation is
as follows:

Xset(m) = {x(1)
i + δi · (x(2)

i − x(1)
i) | vi ∈ Vset}, where δi =

{
mi if vi ∈ Vchange,

0 if vi /∈ Vchange.
(10)

Here Vchange denotes the set of setting nodes changed between the two graphs. For the reading node features,
it is inappropriate to use the same adding strategy, as the changes of reading node features are dependent

7

Published in Transactions on Machine Learning Research (01/2026)

on the collective impact of multiple setting nodes. Therefore, we leverage the trained prediction model fθ to
obtain the predicted reading node feature:

Xread(m) = fθ(Vset, Eset, Xset(m)). (11)

The predicted reading node features, together with the new setting node features, will constitute the features
for GS . To optimize the node masks, i.e., m, we propose the following objective to obtain the optimal node
masks m̂ as follows:

m̂ = argmin ∥Ĥ(2) − H(2)∥2 + λ∥m∥1 (12)
where λ is a regularization hyperparameter that encourages sparsity in the learned mask, thereby improving
the interpretability of the explanation. The optimization objective is to minimize ∥Ĥ(2) − H(2)∥, ensuring
that the modified graph remains as similar as possible to the target graph in the latent space. This enables
the model to effectively capture the underlying structure and reasoning behind the transformations in the
dataset.

By optimizing this loss, we obtain a soft mask m that highlights the most influential nodes driving the repre-
sentation shift between two graphs. The result is an interpretable explanation in terms of node importance,
revealing which setting changes contributed the most significantly to the transition. This explanation sup-
ports human operators in understanding beamline behavior and facilitates more effective control in real-world
accelerator settings.

3.4 Establishing the Ground Truth

Figure 4: Visualizing 720 possible trajectories between the initial
(green) and end (red) configuration. The blue line represents the
actual path taken in the experiment.

Particle accelerator data lacks ground
truth annotations for identifying impor-
tant nodes in explanations, making it dif-
ficult to evaluate our explanation frame-
work’s performance and compare it fairly
with existing baselines. To address this
challenge, we propose a statistical analy-
sis approach to approximate the ground
truth by quantifying node importance
based on their individual contributions
to changes between two beamline graphs.
This serves as a principled way to con-
struct a proxy for ground truth, enabling
more meaningful evaluation. The core
idea is to iterate over all possible permu-
tations of the changed setting nodes, as
the order in which node changes are applied can also influence the resulting graph difference. This is illus-
trated in Fig. 4. The blue trace represents the actual trajectory in the low-dimensional space while moving
between an initial (green) and end (red) injector configuration during a beam study at CEBAF. The black
traces represent the 719 other possible trajectories if we consider all permutations of the six setting node
changes. By evaluating every permutation, we can mitigate the effect of ordering bias and assess each node’s
impact more fairly. For each permutation, we compute the marginal contribution of each node by measuring
how much it reduces the MAE (Mean Absolute Error) between the readings of two beamline graphs. The
nodes are then ranked based on their average contribution across all permutations.

This exhaustive approach becomes computationally infeasible when the number of changed nodes is large
(e.g., 24! ≈ 6 × 1023 permutations). To make this process tractable, we adopt a more efficient strategy:
first, we identify the top-k most influential nodes based on a heuristic ranking, and then we enumerate all
k! permutations of this reduced subset. In the experiments, we set k = 4. This significantly reduces the
computational burden while preserving the fidelity of the importance estimates.

Important Node Identification. We analyze the impact of individual node modifications within a graph,
considering two distinct cases, each represented as a graph with a specific number of nodes. We define one

8

Published in Transactions on Machine Learning Research (01/2026)

of these graphs as the starting case and systematically apply individual node modifications to observe their
effects. The key objective is to determine which nodes contribute most significantly to changes in the overall
graph behavior.

Formally, given an initial graph Ginit = (V, E , X) and a set of changed nodes Vchange, we iteratively apply
each modification vi ∈ Vchange to generate a modified graph Gmod(vi). The difference between the original
and modified graphs is quantified using the change in prediction error, defined as:

∆D(vi) = |fθ(Gmod(vi)) − fθ(Ginit)| , (13)

where ∆D(vi) denotes the prediction error of the model when modification vi is applied.

We rank all changed based on ∆D(vi) and identify the top k nodes that induce the most significant changes
in graph behavior. The selected nodes, Vtop,k, are as follows:

Vtop,k = argmax
V ′

∑
vi∈V ′

∆D(vi), where V ′ ⊂ Vchange, |V ′| = k. (14)

Ground Truth Establishment via All Permutations. To evaluate the impact of these nodes, we
compute all possible permutations of these k nodes and analyze their contributions by running the prediction
model across all k! possible orderings. In this way, the specific node that causes the largest MAE reduction
in readings from Ginit to Gend is considered the most important node in this permutation. Ultimately,
the nodes that have the largest proportion of being the most important nodes across all permutations will
be considered the most influential nodes. This allows us to systematically assess the influence of node
interactions. Notably, the established ground truth is based on marginal contribution to prediction error,
not directly on the masks learned by the explanation model. Thus, while both use the prediction model,
the explanation model optimizes in the embedding space, whereas the established ground truth evaluates
marginal error reduction. Although the real ground truth is not available at the current stage, future
directions will include collaborating with CEBAF operators for validation and integrating expert feedback.

Order-Dependence. Notably, our establishment of ground truth naturally incorporates the order-
dependence effect, which is explicitly considered among the most influential k nodes. Rather than simply
averaging over all permutations, our method applies a principled filter that balances computational feasibil-
ity with fairness in evaluating node importance. Importantly, this design also reflects the practical reality
of accelerator operations, where operators often make iterative adjustments, making it difficult to define a
strict sequential ground truth.

Case Study. In Fig. 4, six setting nodes change between the two graphs. In this case, we exhaustively
evaluated all 720 possible permutations of the six node changes and compared them with the results produced
by our framework. Our framework ranked the nodes in descending order of importance as 6, 1, 2, 4, 5, 3.
Notably, both approaches consistently identified the same most influential node: the setting node associated
with the last change, which shifted the value of PCA component 1 from 10 to -12. This agreement between
the exhaustive permutation analysis and our framework highlights the validity of our explanation method.

4 Experiments

To evaluate our proposed framework, we perform experiments on real-world datasets by analyzing heteroge-
neous graph-based settings and their influence on prediction performance.

4.1 Experimental Setup

Our framework is implemented using PyTorch (Paszke et al., 2017), scikit-learn (Pedregosa et al., 2011), and
PyTorch Geometric (Fey & Lenssen, 2019). We run the model on a single NVIDIA A6000 GPU with 48GB
of memory. The batch size is set to 16 for self-supervised training and 32 for supervised fine-tuning. The
model is trained for a total of 200 epochs with a learning rate of 0.001. The hidden size of the GNN models in
our framework is set to 16, and we use a 3-layer architecture. The model is optimized using Adam (Kingma
& Ba, 2015). We conduct large-scale experiments on the 2022 dataset. Each graph represents a unique case,
and we analyze the impact of node modifications across a wide variety of graph structures. For the 2022

9

Published in Transactions on Machine Learning Research (01/2026)

Table 1: Statistics of two beamline datasets.
Dataset # Graphs # Edges # Nodes # Types

Jan-Feb 25,916
530 207 12

Jun-Jul-Aug 25,801

dataset, we consider two splits: (1) Jan-Feb and (2)
Jun-Jul-Aug. The detailed statistics are provided in
Table 1. We choose these two splits because they
are closer together in time. We randomly select 250
samples from each of the two splits to constitute the
final test set. The empirical results using various
evaluation metrics are provided in Table 2. Code is at https://github.com/SongW-SW/CEBAF-Exp.

4.2 Baselines and Evaluation Metrics

We compare our framework with several state-of-the-art explanation methods for graph-based learning:

• GNNExplainer (Ying et al., 2019): A model-agnostic approach that learns node importance by
optimizing a mutual information-based objective to explain GNN predictions.

• PGExplainer (Luo et al., 2020): A parameterized explainer that learns a probabilistic mask for graph
structures to highlight important nodes and edges.

• Gradient Integration: An explanation approach that utilizes backpropagated gradients to measure
the importance of features in node embeddings, identifying their influence on final predictions.

• Feature: A feature-based approach that evaluates the impact of individual node features by analyzing
the magnitude of node embeddings in trained graph models.

4.3 Evaluation Metrics

For each experiment, we randomly select two graphs G1 and G2 and identify the most important node
differences between them. Using our framework, we rank nodes in Vchange with our explanation results. To
quantitatively assess the effectiveness of the results, we compute two metrics: (1) Precision@k measures the
overlap between the identified important nodes and the ground-truth. (2) Hits@k is a recall-based metric
that measures whether at least one of the top-k predicted nodes appears in the ground-truth set. These two
metrics can be formulated as above:

Precision@k = |Vpred,k ∩ Vtop,k|
k

, Hits@k =
{

1, if Vpred,k ∩ Vtop,k ̸= ∅,

0, otherwise.
(15)

Here Vpred,k represents the top-k nodes predicted as influential, and Vtop,k is the ground-truth set of the
top-k influential nodes, established in Eq. (14). Notably, unlike Precision@k, which quantifies the proportion
of correctly identified nodes, Hits@k provides a binary measure of whether at least one correct node was
retrieved within the top-k predictions. This metric is particularly useful for evaluating whether a method
can successfully identify critical nodes in high-dimensional settings. By considering both Precision@k and
Hits@k, we aim to provide a more comprehensive understanding of how well different methods identify
important nodes in beamline graphs.

4.4 Empirical Results on Large Datasets

The results demonstrate the effectiveness of our proposed method compared to various baselines. The key
observations are summarized as follows:

• Superior Performance: Our approach achieves the highest performance across multiple metrics, par-
ticularly in Hits@5 (42.25%) and Hits@10 (44.26%), demonstrating its effectiveness in identifying key
nodes within graph structures.

• Incremental Gains from PGExplainer over GNNExplainer: PGExplainer slightly outperforms
GNNExplainer across all metrics, suggesting that incorporating additional probabilistic explanations en-
hances interpretability and accuracy.

10

https://github.com/SongW-SW/CEBAF-Exp

Published in Transactions on Machine Learning Research (01/2026)

Table 2: Performance comparison across different methods.

Method Hits@1 Hits@3 Hits@5 Hits@10 Precision@3 Precision@5

Feature 6.35% 14.20% 34.05% 36.82% 25.49% 28.21%
Gradient Integration 5.39% 12.69% 31.52% 35.73% 27.02% 29.35%

GNNExplainer 8.52% 16.39% 37.43% 41.90% 27.48% 32.50%
PGExplainer 9.07% 16.49% 38.34% 42.58% 28.25% 32.77%

Ours 8.76% 17.84% 42.25% 44.26% 28.55% 33.13%

Table 3: Performance comparison under different initialization values.

Method Hits@1 Hits@3 Hits@5 Hits@10 Precision@3 Precision@5

Ours (Init=0.5) 8.76% 17.84% 42.25% 44.26% 28.55% 33.13%
Ours (Init=0.75) 7.51% 16.94% 41.99% 43.05% 27.98% 32.97%
Ours (Init=1.0) 7.13% 16.27% 39.82% 40.85% 27.91% 32.87%
Ours (Init=0) 6.56% 15.62% 38.92% 39.66% 27.47% 31.70%

• Limited Performance of Gradient Integration: Gradient Integration lags behind other methods,
particularly in Hits@1 (5.39%) and Hits@3 (12.69%), indicating that it struggles to accurately highlight
the most influential nodes.

• Feature Approach as a Weak Baseline: The Feature method consistently shows the lowest results,
with Hits@1 at only 6.35%, reaffirming the necessity of advanced explainability methods in graph-based
tasks.

• Precision Trends: Our method also achieves the highest precision scores, with 28.55% at Precision@3
and 33.13% at Precision@5, highlighting its ability to prioritize correct nodes more effectively.

• Trade-off in Hits vs. Precision: While PGExplainer slightly improves over our method in the Hits@1
metric, its Precision@k value is lower than our method, indicating that PGExplainer enhances the ranking
of the top several nodes but does not drastically improve the correctness of top selections.

Notably, all values are below 50% under the challenging setting in our experiments, as multiple nodes
may plausibly contribute to observed outcomes. Importantly, our method consistently outperforms baseline
approaches and demonstrates clear relative effectiveness. In sum, these results validate the effectiveness of
our proposed approach, demonstrating superior generalizability and robustness in identifying critical nodes
within large-scale graph datasets.

4.5 Parameter Sensitivity

We explore the effects of various hyperparameters, specifically analyzing how different initialization val-
ues impact model performance. We experiment with three initialization values of weight masks: Init=0,
Init=0.5, and Init=1.0, and compare them against the baseline methods. The results in Table 3 illustrate
the sensitivity of our method to different initialization values. Key observations include:

• Optimal Performance at Init=0.5: Our method achieves the highest results at Init=0.5, outper-
forming all other initialization settings in Hits@k and Precision@k metrics.

• Decreasing Performance with Init=0 or Init=1.0: Setting the initialization to 0 or 1.0 results in
a drop in performance across all metrics, indicating that an intermediate initialization provides a better
balance between model stability and adaptability.

11

Published in Transactions on Machine Learning Research (01/2026)

Table 4: Ablation study results showing the impact of different components on performance.

Method Hits@1 Hits@3 Hits@5 Hits@10 Precision@3 Precision@5

Ours 8.76% 17.84% 42.25% 44.26% 28.55% 33.13%
Ours w/o Graph 6.68% 14.91% 39.06% 41.58% 26.80% 29.79%
Ours w/o Emb. 7.28% 15.88% 40.26% 41.76% 27.32% 28.64%

• Comparison with Baselines: Even under suboptimal initialization settings (Init=0 or Init=1.0), our
method still surpasses the Feature Value baseline in all metrics, demonstrating robustness.

• Hits vs. Precision Trade-off: Although the overall Hits@k performance is the highest for Init=0.5,
the Precision@k scores show a smaller variance across different settings, suggesting that precision is less
sensitive to initialization values.

These findings highlight the importance of careful hyperparameter selection, particularly in choosing initial-
ization values that optimize both model convergence and prediction accuracy.

4.6 Ablation Study

We conduct an ablation study by systematically removing key components and evaluating their impact on
performance. Specifically, we consider the following variations:

• Ours: The full version of our method incorporating all three models, including the embedding model,
the prediction model, and the explanation model.

• Ours w/o Graph: A variant where the graph-based embedding model is removed, assessing the impact
of graph structures. In this variant, the GNN embedding model is replaced with multiple linear layers.

• Ours w/o Emb.: A variant where the optimization loss for the node masks is calculated based on
reading attributes instead of learned embeddings. As a result, the embedding model is not used in the
computation and optimization of the node masks.

The results in Table 4 highlight the importance of each component in our framework:

• Impact of Graph-Based Reasoning: Removing the graph-based embedding model (Ours w/o Graph)
leads to a noticeable decline in performance across all metrics, particularly in Hits@k scores, demonstrating
the crucial role of structured graph information in enhancing predictions.

• Effect of Removing Embedding Model in Explanation Computation: Excluding the embedding
model (Ours w/o Emb.) also results in a performance drop, though it is less pronounced than the
removal of graph-based reasoning. This suggests that embeddings contribute significantly to refining
node importance but are more effective when combined with graph structures.

• Overall Contribution of Components: The full model consistently outperforms both ablated versions,
confirming that both graph-based reasoning and embedding-based enhancements are complementary and
necessary for optimal performance.

This ablation study underscores the necessity of integrating structured graph reasoning and embedding-based
feature refinement to achieve superior reasoning performance in our framework.

5 Conclusion

In this work, we presented an explanation-driven framework for optimizing particle accelerator beamline
operations through graph-based machine learning. By representing beamline configurations as heteroge-
neous graphs and applying a novel node-masking approach, our method successfully identifies and ranks the

12

Published in Transactions on Machine Learning Research (01/2026)

most influential setting nodes responsible for observed changes in beam behavior. Experimental results on
real-world CEBAF injector data demonstrate that our approach outperforms existing explainability meth-
ods across multiple metrics, with particular improvements in Hits@5 (42.25%) and Precision@5 (33.13%).
Ablation studies further confirm the importance of both graph-based reasoning and embedding-based en-
hancements in achieving these results. This framework offers a practical tool for accelerator operators,
providing interpretable insights that can significantly reduce tuning time and improve operational efficiency.
This successful proof-of-concept demonstration motivates its use on more recent data and deployment as
an operational tool in the control system. By bridging the gap between complex physical systems and
interpretable AI, our work represents an important step toward more explainable and efficient accelera-
tor operations, with potential applications extending to other scientific instruments and industrial systems,
where understanding cause-effect relationships in high-dimensional settings is crucial.

Acknowledgements

This material is based on work supported by the U.S. Department of Energy, Office of Science, Office of
Nuclear Physics under Contract No. DE-AC05-06OR23177.

References
PA Adderley, S Ahmed, T Allison, R Bachimanchi, K Baggett, M BastaniNejad, B Bevins, M Bevins,

M Bickley, RM Bodenstein, et al. The continuous electron beam accelerator facility at 12 gev. Physical
Review Accelerators and Beams, 27(8):084802, 2024.

Rob Appleby, Graeme Burt, James Clarke, and Hywel Owen. The science and technology of particle accel-
erators. Taylor & Francis, 2020.

Oliver Brüning and Stephen Myers. Challenges and Goals for Accelerators in the XXI Century. WORLD
SCIENTIFIC, 2016. doi: 10.1142/8635. URL https://www.worldscientific.com/doi/abs/10.1142/8635.

Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and Thomas S Huang. Heterogeneous
network embedding via deep architectures. In SIGKDD, 2015.

Mario Conte and William W MacKay. An introduction to the physics of particle accelerators. world scientific,
2008.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Jacob Flanz. Accelerators for charged particle therapy. Modern Physics Letters A, 30(17):1540020, 2015.

Thilo Friedrich, Christian Hilbes, and Annika Nordt. Systems of systems engineering for particle acceler-
ator based research facilities: A case study on engineering machine protection. In 2017 Annual IEEE
International Systems Conference (SysCon), pp. 1–8. IEEE, 2017.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NeurIPS, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. IEEE Data Engineering Bulletin, 40, 2017b.

Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, and Xiaoli Li. Heterogeneous graph attention networks for
semi-supervised short text classification. In EMNLP-IJCNLP, 2019.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In TheWebConf,
2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

13

https://www.worldscientific.com/doi/abs/10.1142/8635

Published in Transactions on Machine Learning Research (01/2026)

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
ICLR, 2017.

SV Kutsaev. Advanced technologies for applied particle accelerators and examples of their use. Technical
Physics, 66:161–195, 2021.

Christoph W Leemann, David R Douglas, and Geoffrey A Krafft. The continuous electron beam accelerator
facility: Cebaf at the jefferson laboratory. Annual Review of Nuclear and Particle Science, 51(1):413–450,
2001.

Zheng Liu, Xiaohan Li, Hao Peng, Lifang He, and S Yu Philip. Heterogeneous similarity graph neural
network on electronic health records. In IEEE Big Data, 2020.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Pa-
rameterized explainer for graph neural network. Advances in neural information processing systems, 33:
19620–19631, 2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NeurIPS, 2017.

Ken Peach, Puthenparampil Wilson, and Bleddyn Jones. Accelerator science in medical physics. The British
journal of radiology, 84(special_issue_1):S4–S10, 2011.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. JMLR, 2011.

Ervin B Podgoršak. Particle accelerators in medicine. Compendium to Radiation Physics for Medical Physi-
cists: 300 Problems and Solutions, pp. 1041–1099, 2014.

Charles E. Reece. Continuous wave superconducting radio frequency electron linac for nuclear physics
research. Phys. Rev. Accel. Beams, 19:124801, Dec 2016. doi: 10.1103/PhysRevAccelBeams.19.124801.
URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.19.124801.

Andrew Sessler. Engines of discovery: a century of particle accelerators. World Scientific, 2014.

Song Wang, Chris Tennant, Daniel Moser, Theo Larrieu, and Jundong Li. Graph learning for particle
accelerator operations. Frontiers in big Data, 7:1366469, 2024.

Helmut Wiedemann. Particle accelerator physics. Springer Nature, 2015.

Klaus Wille. The physics of particle accelerators: an introduction. Clarendon Press, 2000.

Ferdinand Willeke and J Beebe-Wang. Electron ion collider conceptual design report 2021. Technical report,
Brookhaven National Lab.(BNL), Upton, NY (United States); Thomas Jefferson . . . , 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
ICLR, 2019.

Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. Simple and efficient heterogeneous
graph neural network. In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
10816–10824, 2023.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating
explanations for graph neural networks. Advances in neural information processing systems, 32, 2019.

Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye. Heterogeneous graph struc-
ture learning for graph neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 4697–4705, 2021.

14

https://link.aps.org/doi/10.1103/PhysRevAccelBeams.19.124801

	Introduction
	Preliminaries
	Data Preparation
	Problem Formulation

	Methodology
	Embedding Model
	Prediction Model
	Explanation Model
	Establishing the Ground Truth

	Experiments
	Experimental Setup
	Baselines and Evaluation Metrics
	Evaluation Metrics
	Empirical Results on Large Datasets
	Parameter Sensitivity
	Ablation Study

	Conclusion

