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Abstract

Particle accelerators are vital tools in physics, medicine, and industry, requiring precise
tuning to ensure optimal beam performance. However, real-world deviations from idealized
simulations make beam tuning a time-consuming and error-prone process. In this work,
we propose an explanation-driven framework for providing actionable insight into beamline
operations, with a focus on the injector beamline at the Continuous Electron Beam Accel-
erator Facility (CEBAF). We represent beamline configurations as heterogeneous graphs,
where setting nodes represent elements that human operators can actively adjust during
beam tuning, and reading nodes passively provide diagnostic feedback. To identify the most
influential setting nodes responsible for differences between any two beamline configurations,
our approach first predicts the resulting changes in reading nodes caused by variations in
settings, and then learns importance scores that capture the joint influence of multiple
setting nodes. Experimental results on real-world CEBAF injector data demonstrate the
framework’s ability to generate interpretable insights that can assist human operators in
beamline tuning and reduce operational overhead.

1 Introduction

Particle accelerators are complex scientific instruments designed to accelerate charged particles, such as
protons and electrons, to high energies (Wille, [2000; |Conte & MacKayl, 2008; Sessler, 2014 'Wiedemann, [2015;
Appleby et al.; |2020)). These devices have found application in a broad range of disciplines, such as particle
physics, nuclear physics, and materials science, which contribute to uncovering the fundamental properties
of matter and the universe (Briining & Myers| |2016). Particularly, accelerators can probe the structure of
the nucleus (Leemann et all 2001} Willeke & Beebe-Wang, 2021)), aid in the characterization of material
structures, and support medical fields through radiation therapy and advanced imaging technologies (Peach
et al., 2011; |Podgorsak, 2014} |[Flanz, [2015)).

As some of the most advanced and complex machines ever engineered, particle accelerators demand precise
operation (Kutsaev, [2021; |Friedrich et all 2017). High-fidelity beamline simulations are commonly used
to assist human operators in managing accelerator performance. However, these simulations are idealized
and often differ from the complexities of real-world implementations. This mismatch necessitates beam
tuning, an iterative process that seeks to align operational parameters with simulated performance. In
general, beam tuning can be a time-consuming and challenging task and is frequently a major contributor
to machine downtime. The current reliance on limited diagnostics and simulation interactions compounds
this inefficiency.

In this work, we introduce a novel explanation-driven framework for achieving actionable insights into com-
plex, high-dimensional systems by leveraging graph-based representations of accelerator beamline configura-
tions. The beamline is modeled as a heterogeneous graph where nodes represent different elements, divided
into setting nodes (which can be actively adjusted by human operators) and reading nodes (which are observ-
able but not tunable). Directed edges capture the beamline’s topology, where influence flows from upstream
to downstream nodes. Each node is associated with a unique feature vector representing its state. However,
two key challenges arise in this setting. First, only the setting nodes can be adjusted, while the reading nodes
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only passively reflect system outcomes. This imposes a constraint: it is infeasible to freely vary setting node
features, as the resulting changes in the reading nodes are not directly known. Second, adjusting multiple
setting nodes simultaneously can lead to complex, nonlinear interactions, making it difficult to disentangle
their individual contributions and interpret the resulting changes in reading node features. As a result, ex-
plaining the effects of specific adjustments remains a significant challenge. In concrete, understanding these
effects is essential for effective and informed beamline tuning.

To address these challenges, our method focuses on identifying and ranking influential nodes based on their
contribution to beamline changes. First, to isolate the impact of setting nodes, we train a representation
learner that predicts reading node features based solely on settings, thus enabling a clean comparison between
predicted and actual outcomes. Second, to model the joint influence of multiple setting nodes, we introduce
trainable node masks with regularization that help isolate the most influential adjustments. These masks are
optimized to highlight setting nodes that significantly impact downstream behavior, providing interpretable
node importance scores that can guide beam tuning. Moreover, evaluating our framework is challenging due
to the absence of ground truth for node importance. To address this, we estimate setting node influence
by measuring how individual adjustments affect the prediction error on reading nodes. This provides a
principled proxy for assessing explanation accuracy. The main contributions of this work are as follows:

1. Novel Representation: We model particle accelerator beamlines as heterogeneous, directed graphs,
where nodes represent beamline elements and edges capture their interactions. This enables effective
application of graph-based machine learning techniques for beamline analysis.

2. Explanation Mechanism: We propose an explanation-driven framework that identifies the most influ-
ential setting nodes responsible for observed beamline changes. This is achieved by training a node-mask
mechanism with regularization based on predicted versus actual reading node changes.

3. Practical Evaluation: Our approach is validated on real-world beamline datasets. To achieve ground
truth for evaluation, we design an efficient method to independently measure the impact of each node.
The results demonstrate its ability to identify important changed nodes and provide interpretable insights.

By focusing on explanations, our framework provides a practical tool for improving particle accelerator
operations while empowering operators with a greater understanding of a high-dimensional, complex system.

2 Preliminaries

2.1 Data Preparation

The Continuous Electron Beam Accelerator Facility (CEBAF), located at the Thomas Jefferson National
Accelerator Facility (JLab), is a powerful recirculating linear accelerator capable of simultaneously delivering
electron beams to four nuclear physics experimental stations (Reece,|2016;|Adderley et al.|[2024). A schematic
of CEBAF is shown in Figure For this study, we focus specifically on the injector beamline. The injector
serves as an excellent testbed due to its relatively compact scale, a diversity of beamline components, and
extensive historical tuning data archived from operations. This region is critical to beam performance
and serves as a focal point of operational adjustments, providing abundant data for the development of
data-driven models. To demonstrate how a beamline can be represented as a graph, consider the example
illustrated in Fig. [Ibl The beamline comprises various element types, including beam current monitors
(BCMs), beam position monitors (BPMs), quadrupoles, solenoids, and correctors, all represented as nodes
in the graph. Each node type is characterized by unique features: quadrupoles, correctors, and solenoids have
a single value corresponding to their field strength, BCMs provide beam current measurements, and BPMs
include the horizontal and vertical beam positions as well as the sum signal, which is proportional to the
beam current in the beamline. The resulting graph is a heterogeneous, directed graph, where heterogeneity
arises from the diverse node types and directionality reflects the causal flow along the beamline.

Edges between nodes are established based on a user-defined “window”. In the example in Fig. a window
size of 2 is applied, meaning each setting node is connected to the two immediate downstream setting
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Figure 1: (a) Schematic of the CEBAF accelerator. Electrons are generated in the injector. Multiple passes
through the north and south linacs accelerate the beam to multi-GeV energies. The beam is then sent to
the four nuclear physics experimental halls (A, B, C, and D). (b) Illustrations that showcase an arbitrary
accelerator beamline (top) and our approach for constructing a corresponding graph (bottom). Here, each
node represents an individual element, while the node features correspond to the relevant parameters of the
respective element. The edges between nodes are determined by a user-defined window size of 2. These
edges are directed to reflect the fact that an element cannot impact upstream elements in the beamline.

nodes, with any intermediate reading nodes also included. Setting nodes represent elements that operators
actively adjust during beam tuning (e.g., quadrupoles, solenoids, and correctors), whereas reading nodes
passively provide diagnostic feedback (e.g., BPMs and BCMs). The directed edges reflect the unidirectional
nature of the beamline, as upstream nodes cannot be influenced by downstream elements. Notably, the
window size is adjustable, allowing graph representations to be tailored for specific downstream tasks and
beamline characteristics. Following a previous work (Wang et al., |2024)), we choose the optimal window size
of 2. Moreover, in order to facilitate the integration of global beamline parameters, we additionally create a
master node that connects to all other nodes, enabling the inclusion of global features such as beam current,
environmental conditions (e.g., temperature and humidity), date and time information. This design allows
for a more comprehensive representation of the beamline. For this study, each beamline graph consists of
12 distinct node types, 207 nodes in total, 393 features, and 530 edges (based on a window size of 2), with
a master node connecting to all others. Each node type has specific features that can vary significantly in
magnitude due to the nature of the physical quantities they represent. To address this, we perform element-
wise normalization. For each dataset, we calculate the mean and standard deviation for each node feature
and standardize them accordingly.

2.2 Problem Formulation

In this section, we present a formal definition of the beamline explanation task. Consider a dataset D,
which is composed of multiple graphs: D = {G1,G5,...,G|p|}. Each individual graph G is characterized
by the triplet G = (V, &, X). Specifically, ¥V and £ denote the collection of nodes and edges, respectively.
An alternative representation of graph G is through its adjacency matrix A € R™*" where n corresponds
to the number of nodes in the graph. The element A; ; at the intersection of the i-th row and j-th column
is set to 1 if an edge exists between node ¢ and node j; otherwise, A; ; = 0.

Given that beamline graphs are inherently heterogeneous, we introduce a node type mapping function
7:Y — T, where T denotes the set of all node types. With this mapping function, the type of node v; is
given by 7(i). Furthermore, node features are encoded as X = {x1,Xs,...,X,}, where x; € R represents
the feature vector of node v;, and d,(;) corresponds to the dimensionality of features specific to the node
type 7(4).

The primary goal of our work is to develop an explanation-driven framework that identifies and ranks the
most influential nodes responsible for differences between two beamline graphs. Formally, given a pair of



Under review as submission to TMLR

Prediction Model Training Overall Explaining Framework

Predicted Reading Difference in

|
|
Predicted Reading | Prediction Attributes Setting Attril])lutes
Prediction Attributes | R Y +
el ey ! ‘ '
Y
Compare : O-@ [ Embedding Model
P I Node 1 Diff.
Input Graph ﬁ | @_ @ 9 T ﬂCompare SSSS
P Node 2 Diff. prganed Exgbedding
Q Reading . Rt .
. Reading Difference between
O Setting Attributes I the two Graphs @ Large Mask @ Small Mask
1

Graph 2

Figure 2: The overall framework of our method. On the left-hand side, we illustrate the training process of
the prediction model, which predicts the reading attributes, given the setting attributes of an input beamline
graph. On the right-hand side, the explanation framework takes two beamline graphs as input and computes
the difference in setting node features between them. Then the framework optimizes the node mask to learn
the importance.

graphs Ginie = (V,€,XM) and Genqg = (V, €, X?)), where both share the same topology but differ in node
features due to changes in a subset of setting nodes V. C V, the objective is to compute a ranking over
V. that reflects the importance of each node in contributing to the observed difference between Gj,i; and
Gena- This task enables interpretable analysis of how changes of specific elements can propagate through
the beamline graph, offering practical guidance for operators during beam tuning.

3 Methodology

The primary motivation for this work is to improve the physical intuition of accelerator operators about how
specific setting adjustments impact broader beamline configurations, thus improving operational efficiency.
Accelerator tuning, the process of converging to a desired operational point, is inherently iterative and
often time-consuming. By providing insights into the relationship between setting changes and embedding
movements, we not only explain the behavior of the system, but also offer practical guidance to recover
desired operational states. More precisely, we seek to determine the most significant setting nodes that
account for the movement of an embedding between two points in the learned representation space. This
formulation of explainability serves a practical purpose in accelerator operations.

Consider a common scenario: A beamline operating at optimal performance gradually drifts and degrades
over several days. This drift typically occurs as different operators make adjustments in response to beam
variations or environmental changes. While general guidelines exist for injector tuning, the specific imple-
mentation varies among operators. In such cases, identifying the primary setting changes relative to a known
stable operating point can provide valuable guidance for state recovery.

Determining these important nodes presents significant challenges. The heterogeneous nature of the acceler-
ator system means that the magnitude of setting changes alone is insufficient to determine node importance.
For instance, an equivalent normalized change in a quadrupole setting versus an accelerating cavity phase will
have substantially different effects on the beam. Moreover, the spatial location of the modified node within
the beamline critically influences its downstream effects. This complexity requires a more sophisticated
approach to ranking the significance of setting changes.

Workflow. Our framework follows a structured workflow consisting of three main components: an embedding
model, a prediction model, and an explanation model, as illustrated in Fig. Utilizing the representations
learned by the embedding model and the predicted reading attributes from the prediction model, the expla-
nation model identifies the most influential setting nodes that contribute the most to the changes between
any two beamline graphs.
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3.1 Embedding Model

This section presents our approach to learning graph embeddings for CEBAF injector beamline graphs,
while accounting for the diversity of node types. Particularly, the heterogeneous nature of the accelerator
system presents a significant challenge for learning the embeddings, as the magnitude of setting changes
alone is insufficient to determine node importance. For instance, an equivalent normalized change in a
quadrupole setting versus an accelerating cavity phase will have substantially different effects on the beam.
Therefore, for the embedding model, we introduce a heterogeneous graph convolution method to encode
beamline graphs (Hu et all |2019; [Yang et al.l 2023} |Zhao et all 2021). This approach addresses variations
in feature distributions across different node types by transforming them into a unified latent space through
linear layers.

Formally, given a beamline graphG = (V, &, X), we define the adjacency matrix with self-connections as
A’ = A +1, where I is the identity matrix of size n, with n = [V|. The degree matrix M is then given by

M“‘ = Z?:l Ai,j~

Generally, the propagation rule at each layer in the standard graph convolution operation (Kipf & Wellingj,
2017; |Xu et al., 2019; [Hamilton et al.; |2017ajb) for homogeneous graphs can be formulated as:

B{*) = MP ({b{) | w e N(0)},n), (1)

where MP(-) denotes the message-passing function that can aggregate representations from a set of nodes

(1+1)

and output a representation for a specific node. Moreover, hy denotes the representation of node v at

layer [ + 1. hg,o) corresponds to the initial node features of v. A, denotes the set of neighboring nodes of v.

To take into account the heterogeneity of node types and varying feature dimensions, we employ a hetero-
geneous graph convolution strategy (Hu et al.| 2019; [Liu et all 2020} (Chang et al., |2015; Hu et al., 2020),
allowing integration of multi-type node information. We first project the node features of different node
types into a common latent space:

h{®) =x, - W_(,) + b, where 7(v)€eT. (2)

Here W_(,y € R+ x4 and brw) € RY” are projection parameters for node type 7(v) of node v. Here,
dy(v) denotes the input feature dimension for nodes of type 7(v), and d©® is the dimension of layer 0. 7 is
the set of node types. Given this transformation, heterogeneous graph convolution is performed as:

H(+) = ReLU (Z A, (H(T” W b@)) v (3)

TET

where A = A’M~1! is the normalized adjacency matrix, and W® and b® are the trainable parameters for
layer . Wg) and bg) are layer-specific parameters for node type 7. Unlike standard GCN, we assign distinct
parameters to different node types, ensuring feature transformations into a shared latent space. Additionally,
A, represents a submatrix of A, encoding connections between nodes and their respective neighbors of type
T.

Self-Supervised Optimization for Representation Learning. To enable more comprehensive repre-
sentation learning for beamline graphs, we propose a self-supervised optimization strategy that encourages
alignment between node features and their learned embeddings. Specifically, we introduce an alignment
loss, which aims to preserve the pairwise distances between nodes in the original feature space within the
embedding space. This encourages the embedding space to maintain the structural geometry of the input
features and mitigates potential distortions introduced by heterogeneous transformations. Given a pair of
node feature vectors x1,xo and their corresponding learned embeddings hy, hs, we define the self-supervised
alignment loss as:

L =|D(x1,%x2) — D(hy,hy)|, where D(x1,x2) \/Zl 1 10— T2,4)2. (4)
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Here D(-,-) represents the Euclidean distance between standardized feature vectors, with standardization
given by: #1,; = (x1,; — p(x1))/0(x1). This ensures distances in the input feature space are appropriately
aligned with distances in the embedding space, promoting consistency in graph representations. An example
of nearly 52,000 learned representations after optimization are illustrated in Fig. [3] which reflects the CEBAF
operational run in 2022.
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Figure 3: Embeddings representing CEBAF injector operations in 2022. Markers are color-coded by month.
Note that there was a scheduled accelerator down during March, April, and May.

3.2 Prediction Model

In this subsection, we present the details of training our prediction model. The purpose of this model is
to estimate the features of reading nodes based on the features of setting nodes. This design aligns with
the physical constraints of real-world accelerator systems: operators can directly manipulate the values of
setting nodes (e.g., magnet strengths, RF phases), but not the values of reading nodes, which passively
reflect system diagnostics and feedback.

To capture the relationship between these two types of nodes, we train a dedicated prediction model that
learns to approximate the effect of setting adjustments on the readings. The prediction task involves learning
a mapping from setting node features to reading node features, which can be formalized as:

fread = f&(Vsetagset; Xset), where &gt = {(Uivvj)h}i)vj S Vset}; Xoet = {Xv‘v S Vset} (5)

where fp is a graph neural network parameterized by 6, Vst denotes the set of setting nodes, &t = {(vi,v;) |
v;, v € Vset } is the set of edges among setting nodes, and Xyt = {X,, | v € Vset } represents the corresponding
node features. The model is trained to minimize the mean squared error (MSE) between the predicted and
actual reading node features:

~

1 .
f = argmin — Z HXiread — Xiread
o Vi

(6)

‘ 2

This objective ensures that the model learns an accurate functional approximation of how beamline readings
respond to configuration changes.

3.3 Explanation Model

Our explanation model is designed to interpret the relationships between setting attributes and reading
attributes in a self-supervised manner. We first train a prediction model that learns to infer reading attributes
based on setting attributes.
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Given a trained GNN model ®, we aim to identify the most important setting nodes whose features and
connectivity explain the change between two beamline graphs. To achieve this, we seek to learn a continuous
node mask that highlights which nodes contribute most to the observed shift in representation between two
beamline graphs.

Let G = (V,&,X) be a beamline graph with node features X, and let H = g(V,&,X) € R? denote the
dense representation produced by the GNN. Given a pair of graphs Gi,i; and Gohq where certain setting
nodes have changed, we denote their respective representations as H) and H®. Our goal is to explain
the transition between these two states by identifying the explanation graph Gg, defined by the node mask
m = {my,ma,...,m,} € [0,1]", where n is the number of changed setting nodes. With the explanation
graph Gg, we aim to provide insights of nodes whose features and connectivity are most informative about
the latent transition from HM to H(?).

Optimization via Mutual Information. To effectively learn the masks to constitute Gg, we propose to
utilize the concept of mutual information for optimization. Particularly, we aim to maximize the mutual
information between the explanation graph Gg and the target representation shift:

max MI(H,Gs) = H(H) —H(H | G = Gs, X = Xs), (7)

where Xg denotes the masked input features corresponding to Gg, and H(-) denotes differential entropy.
Notably, H(H) is fixed for a trained representation model. Thus, maximizing the mutual information is
equivalent to minimizing conditional entropy:

HGliSn H(H | G =G5, X = Xs) = —Ep|g, [logp(H | Gs, Xs)] . (8)

In practice, we model this process through reconstruction: we seek a masked input of the beamline graph
that produces a representation as close as possible to the true representation H(). The explanation is thus
formulated as the mask that minimizes the distance between the masked-output representation and H®.

Variational Mask Optimization. To enable gradient-based optimization, we use a continuous relaxation
of the binary node mask m € [0, 1]™. This mask is applied individually to each setting node (on its features),
such that the node features of the masked graph becomes X' (m). The masked representation is then computed
as:

H® = &(V,£,X(m)), where X(m) = Xiet(m) U Xyepa(m). (9)

Here X (m) denotes the new node features. Particularly, we calculate X (m) separately for setting nodes and
reading nodes as follows. For setting nodes, we consider the difference between the two beamline graphs
Ginit and Gepg. If a specific setting node changes between these two graphs, we will learn a node mask for
it. In this way, the features of Gin; added with the node mask multiplied by the change will become the
new features. For setting nodes that are not changed, their features remain unchanged. The calculation is
as follows:

m; ifv € Vchangey

10
0 if Vi ¢ Vchangc~ ( )

(2

Kot (m) = {XZ(-l) +6; - (x@) - xl(.l)) | vi € Vset}, where §; = {

Here Vehange denotes the set of setting nodes changed between the two graphs. For the reading node features,
it is inappropriate to use the same adding strategy, as the changes of reading node features are dependent
on the collective impact of multiple setting nodes. Therefore, we leverage the trained prediction model fy to
obtain the predicted reading node feature:

Xread(m) = fG (Vseta gseta Kot (m)) (11)

The predicted reading node features, together with the new setting node features, will constitute the features
for Gg.

To optimize the node masks, i.e., m, we propose the following objective to obtain the optimal node masks

m
m = argmin [|[H® — H®||2 + \||m]; (12)



Under review as submission to TMLR

PCA Component 2

0.10

0.08 x

-10 -5 0 5 10 15 20
PCA Component 1

Figure 4: Visualizing 720 possible trajectories between the initial (green) and end (red) configuration. The
blue line represents the actual path taken in the experiment.

where A is a regularization hyperparameter that encourages sparsity in the learned mask, thereby improving
the interpretability of the explanation. The optimization objective is to minimize |[H?) — H®||, ensuring
that the modified graph remains as similar as possible to the target graph in the latent space. This enables
the model to effectively capture the underlying structure and reasoning behind the transformations in the
dataset.

By optimizing this loss, we obtain a soft mask m that highlights the most influential nodes driving the repre-
sentation shift between two graphs. The result is an interpretable explanation in terms of node importance,
revealing which setting changes contributed the most significantly to the transition. This explanation sup-
ports human operators in understanding beamline behavior and facilitates more effective control in real-world
accelerator settings.

3.4 Establishing the Ground Truth

In general, particle accelerator data lacks ground truth annotations for identifying important nodes in ex-
planations. This absence makes it difficult to evaluate the performance of our explanation framework and
compare it fairly with existing baselines. To address this challenge, we propose a statistical analysis approach
to approximate the ground truth by quantifying node importance based on their individual contributions
to changes between two beamline graphs. This serves as a principled way to construct a proxy for ground
truth, enabling more meaningful evaluation.

The core idea is to iterate over all possible permutations of the changed setting nodes, as the order in which
node changes are applied can also influence the resulting graph difference. This is illustrated in Fig.[d The
blue trace represents the actual trajectory in the low-dimensional space while moving between an initial
(green) and end (red) injector configuration during a beam study at CEBAF. The black traces represent the
719 other possible trajectories if we consider all permutations of the six setting node changes. By evaluating
every permutation, we can mitigate the effect of ordering bias and assess each node’s impact more fairly. For
each permutation, we compute the marginal contribution of each node by measuring how much it reduces
the MAE (Mean Absolute Error) between the readings of two beamline graphs. The nodes are then ranked
based on their average contribution across all permutations.

However, this exhaustive approach becomes computationally infeasible when the number of changed nodes is
large (e.g., 24! ~ 6 x 10%* permutations). To make this process tractable, we adopt a more efficient strategy:
first, we identify the top-k£ most influential nodes based on a heuristic ranking, and then we enumerate all
k! permutations of this reduced subset. In the experiments, we set kK = 4. This significantly reduces the
computational burden while preserving the fidelity of the importance estimates.
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Important Node Identification. We start by analyzing the impact of individual node modifications
within a graph. Specifically, we consider two distinct cases, each represented as a graph with a specific
number of nodes. We define one of these graphs as the starting case and systematically apply individual
node modifications to observe their effects. The key objective is to determine which nodes contribute most
significantly to changes in the overall graph behavior.

Formally, given an initial graph Ginit = (V, €, X') and a set of changed nodes Vehange, We iteratively apply
each modification v; € Venange to generate a modified graph Gmod(v;). The difference between the original
and modified graphs is quantified using the change in prediction error, defined as:

AD(U’L) = |f9(Gmod(vi>) - f@(Ginit)‘ 5 (13)

where AD(v;) denotes the prediction error of the model when modification v; is applied.

We rank all changed based on AD(v;) and identify the top k nodes that induce the most significant changes
in graph behavior. The selected nodes, Viop i, are as follows:

Viop,k = argmax Z AD(v;), where V' C Vehange, |V'|=k. (14)
’ v; eV’

Ground Truth Establishment via All Permutations. To evaluate the impact of these nodes, we
compute all possible permutations of these k nodes and analyze their contributions by running the prediction
model across all k! possible orderings. In this way, the specific node that causes the largest MAE reduction in
readings from Gipit t0 Geng is considered the most important node in this permutation. Ultimately, the nodes
that have the largest proportion of being the most important nodes across all permutations will be considered
the most influential nodes. This allows us to systematically assess the influence of node interactions.

4 Experiments

To empirically evaluate our proposed framework, we perform experiments on real-world datasets by analyzing
heterogeneous graph-based settings and their influence on prediction performance.

4.1 Experimental Setup

Our framework is implemented using Py-
Torch (Paszke et all [2017), scikit-learn (Pedregosa
et all [2011), and PyTorch Geometric (Fey &
Lenssen), |2019). We run the model on a single Dataset | # Graphs‘# Edges‘# NOdeS‘# Types
NVIDIA A6000 GPU with 48GB of memory. The Jan-Feb 25,916
batch size is set to 16 for self-supervised training  jup-Jul-Aug| 25,801
and 32 for supervised fine-tuning. The model is
trained for a total of 200 epochs with a learning rate of 0.001. The hidden size of the GNN models in our
framework is set to 16, and we use a 3-layer architecture. The model is optimized using Adam (Kingma &
Bal 2015). We conduct large-scale experiments on the 2022 dataset. Each graph represents a unique case,
and we analyze the impact of node modifications across a wide variety of graph structures. For the 2022
dataset, we consider two splits: (1) Jan-Feb and (2) Jun-Jul-Aug. The detailed statistics are provided in
Table We choose these two splits because they are closer in the time range. We randomly select 250
samples from each of the two splits to constitute the final test set. The empirical results using various
evaluation metrics are provided in Table [2]

Table 1: Statistics of two beamline datasets.

530 207 12

4.2 Baselines and Evaluation Metrics

To evaluate the effectiveness of our framework, we compare it with several state-of-the-art explanation
methods for graph-based learning:
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Table 2: Performance comparison across different methods.

Method Hits@1l Hits@3 Hits@Q5 Hits@10 Precision@3 Precision@5
Feature 6.35% 14.20% 34.06%  36.82% 25.49% 28.21%
Gradient Integration | 5.39% 12.69% 31.52% 35.73% 27.02% 29.35%
GNNExplainer 8.52% 16.39% 37.43%  41.90% 27.48% 32.50%
PGExplainer 9.07% 16.49% 38.34%  42.58% 28.25% 32.77%
Ours 8.76% 17.84% 42.25% 44.26% 28.55% 33.13%

e GNNExplainer (Ying et al. 2019): A model-agnostic approach that learns node importance by
optimizing a mutual information-based objective to explain GNN predictions.

e PGExplainer (Luo et al} |2020): A parameterized explainer that learns a probabilistic mask for graph
structures to highlight important nodes and edges.

e Gradient Integration: An explanation approach that utilizes backpropagated gradients to measure
the importance of features in node embeddings, identifying their influence on final predictions.

e Feature: A feature-based approach that evaluates the impact of individual node features by analyzing
the magnitude of node embeddings in trained graph models.

4.3 Evaluation Metrics

For each experiment, we randomly select two graphs G; and G5 and identify the most important node
differences between them. Using our framework, we rank nodes in Vchange With our explanation results. To
quantitatively assess the effectiveness of the results, we compute two metrics: (1) Precision@k measures the
overlap between the identified important nodes and a ground-truth set provided by expert annotations. (2)
Hits@¥k is a recall-based metric that measures whether at least one of the top-k predicted nodes appears in
the ground-truth set. These two metrics can be formulated as above:

L, if Voredk N Viopk # 0,
0, otherwise.

‘Vpred,k N Vtop,k|

- (15)

Precision@Qk = , Hits@Qk = {

Here Vpred,r represents the top-k nodes predicted as influential, and Viop i is the ground-truth set of the
top-k influential nodes, established in Eq. . Notably, unlike Precision@¥k, which quantifies the proportion
of correctly identified nodes, Hits@Qk provides a binary measure of whether at least one correct node was
retrieved within the top-k predictions. This metric is particularly useful for evaluating whether a method
can successfully identify critical nodes in high-dimensional settings. By considering both Precision@k and
Hits@k, we aim to provide a more comprehensive understanding of how well different methods identify
important nodes in beamline graphs.

4.4 Empirical Results on Large Datasets
The results demonstrate the effectiveness of our proposed method compared to various baselines. The key

observations are summarized as follows:

e Superior Performance of Our Method: Our approach achieves the highest performance across mul-
tiple metrics, particularly in Hits@5 (42.25%) and Hits@10 (44.26%), demonstrating its effectiveness in
identifying key nodes within graph structures.

¢ Incremental Gains from PGExplainer over GNNExplainer: PGExplainer slightly outperforms
GNNExplainer across all metrics, suggesting that incorporating additional probabilistic explanations en-
hances interpretability and accuracy.
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Table 3: Performance comparison under different initialization values.

Method ‘ Hits@1l Hits@3 Hits@5 Hits@l0 Precision@3 Precision@5
Ours (Init=0.5) | 8.76% 17.84% 42.25% 44.26% 28.55% 33.13%
Ours (Init=0.75) | 7.51% 16.94% 41.99%  43.05% 27.98% 32.97%
Ours (Init=1.0) | 7.13% 16.27%  39.82%  40.85% 27.91% 32.87%

Ours (Init=0) 6.56% 15.62%  38.92%  39.66% 27.47% 31.70%

Limited Performance of Gradient Integration: Gradient Integration lags behind other methods,
particularly in Hits@1 (5.39%) and Hits@3 (12.69%), indicating that it struggles to accurately highlight

the most influential nodes.

Feature Approach as a Weak Baseline: The Feature method consistently shows the lowest results,
with Hits@1 at only 6.35%, reaffirming the necessity of advanced explainability methods in graph-based
tasks.

Precision Trends: Our method also achieves the highest precision scores, with 28.55% at Precision@3
and 33.13% at Precision@5, highlighting its ability to prioritize correct nodes more effectively.

o Trade-off in Hits vs. Precision: While PGExplainer slightly improves over our method in the Hits@1
metric, its Precision@k value is lower than our method, indicating that PGExplainer enhances the ranking
of the top several nodes but does not drastically improve the correctness of top selections.

In sum, these results validate the effectiveness of our proposed approach, demonstrating superior generaliz-
ability and robustness in identifying critical nodes within large-scale graph datasets.

4.5 Parameter Sensitivity

In this subsection, we perform experiments to explore the effects of various hyperparameters in our method.
Specifically, we analyze the impact of different initialization values on the model’s performance. We experi-
ment with three initialization values of weight masks: Init=0, Init=0.5, and Init=1.0, and compare them
against the baseline methods. The results in Table [3| illustrate the sensitivity of our method to different
initialization values. Key observations include:

Optimal Performance at Init=0.5: Our method achieves the highest results at Init=0.5, outper-
forming all other initialization settings in Hits@k and Precision@k metrics.

Decreasing Performance with Init=0 or Init=1.0: Setting the initialization to 0 or 1.0 results in
a drop in performance across all metrics, indicating that an intermediate initialization provides a better
balance between model stability and adaptability.

Comparison with Baselines: Even under suboptimal initialization settings (Init=0 or Init=1.0), our
method still surpasses the Feature Value baseline in all metrics, demonstrating robustness.

Hits vs. Precision Trade-off: Although the overall Hits@k performance is the highest for Init=0.5,
the Precision@k scores show a smaller variance across different settings, suggesting that precision is less

sensitive to initialization values.

These findings highlight the importance of careful hyperparameter selection, particularly in choosing initial-
ization values that optimize both model convergence and prediction accuracy.
4.6 Ablation Study

To analyze the contribution of different components in our method, we conduct an ablation study by sys-
tematically removing key elements and evaluating their impact on performance. Specifically, we consider the

following variations:
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Table 4: Ablation study results showing the impact of different components on performance.

Method ‘ Hits@l Hits@3 Hits@5 Hits@l0 Precision@3 Precision@5
Ours 8.76% 17.84% 42.25% 44.26% 28.55% 33.13%
Ours w/o Graph | 6.68% 14.91% 39.06%  41.58% 26.80% 29.79%
Ours w/o Emb. | 7.28% 15.88% 40.26%  41.76% 27.32% 28.64%

e Ours: The full version of our method incorporating all three models, including the embedding model,
the prediction model, and the explanation model.

e Ours w/o Graph: A variant where the graph-based embedding model is removed, assessing the impact
of graph structures. In this variant, the GNN embedding model is replaced with multiple linear layers.

e Ours w/o Emb.: A variant where the optimization loss for the node masks is calculated based on
reading attributes instead of learned embeddings. As a result, the embedding model is not used in the
computation and optimization of the node masks.

The results in Table [4] highlight the importance of each component in our framework:

o Impact of Graph-Based Reasoning: Removing the graph-based embedding model (Ours w/o Graph)
leads to a noticeable decline in performance across all metrics, particularly in Hits@k scores, demonstrating
the crucial role of structured graph information in enhancing predictions.

o Effect of Removing Embedding Model in Explanation Computation: Excluding the embedding
model (Ours w/o Emb.) also results in a performance drop, though it is less pronounced than the
removal of graph-based reasoning. This suggests that embeddings contribute significantly to refining
node importance but are more effective when combined with graph structures.

¢ Overall Contribution of Components: The full model consistently outperforms both ablated versions,
confirming that both graph-based reasoning and embedding-based enhancements are complementary and
necessary for optimal performance.

This ablation study underscores the necessity of integrating structured graph reasoning and embedding-based
feature refinement to achieve superior reasoning performance in our framework.

5 Conclusion

In this work, we presented an explanation-driven framework for optimizing particle accelerator beamline
operations through graph-based machine learning. By representing beamline configurations as heteroge-
neous graphs and applying a novel node-masking approach, our method successfully identifies and ranks the
most influential setting nodes responsible for observed changes in beam behavior. Experimental results on
real-world CEBAF injector data demonstrate that our approach outperforms existing explainability meth-
ods across multiple metrics, with particular improvements in Hits@5 (42.25%) and Precision@5 (33.13%).
Ablation studies further confirm the importance of both graph-based reasoning and embedding-based en-
hancements in achieving these results. This framework offers a practical tool for accelerator operators,
providing interpretable insights that can significantly reduce tuning time and improve operational efficiency.
The successful proof-of-concept demonstration motivates use on more recent data and working towards de-
ploying it as an operational tool in the control system. By bridging the gap between complex physical
systems and interpretable Al, our work represents an important step toward more explainable and efficient
accelerator operations, with potential applications extending to other scientific instruments and industrial
systems, where understanding cause-effect relationships in high-dimensional settings is crucial.
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