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ABSTRACT

Membership inference attacks (MIAs) aim to infer whether a data point was used
to train a target model and are widely used to audit the privacy of machine learning
(ML) models. In this work, we present a new approach to asserting repudiation ev-
idence against MIA-supported claims. Existing strategies require computationally
intensive, case-by-case proofs. We introduce Proof of Forgeability (PoF), which
denies all membership claims with an universal repudiation. The key idea is to
generate forged examples that are non-members yet are misclassified as members
by MIAs. We construct forged examples by adding carefully designed perturba-
tions to non-members so that the attack signal distribution derived from model
outputs for the forged examples matches that of members. To achieve this, we
use quantile matching to derive a member-like signal estimator (MLSE) that maps
each non-member’s signal to its target member-like signal. We prove the optimal-
ity of this MLSE and derive closed-form expressions when the attack signal is the
logit-scaled true-label confidence. We then apply a first-order Taylor expansion
of the signal with respect to the input to bridge the input and signal space. This
relation converts the target signal change into an input perturbation and yields
the designed perturbation in closed form. Empirical results demonstrate that the
forged examples indeed confuse the MIAs in comparison with the genuine mem-
bers; meanwhile, the forged examples differ imperceptibly from the original non-
members in input content while fully preserving data utility.

1 INTRODUCTION

Machine learning (ML) models now proliferate across critical domains, including finance (Her-
nandez Aros et al., 2024) and healthcare (Zhang et al., 2022). However, modern ML models are
vulnerable to leakage of sensitive training data (Papernot et al., 2016). Membership inference at-
tacks (MIAs) (Shokri et al., 2017) are currently the most widely employed approaches for auditing
the privacy of ML models. Government agencies, including the UK Information Commissioner’s
Office (ICO) and the US National Institute of Standards and Technology (NIST), have highlighted
MIAs as a potential violation of confidentiality and a privacy threat to training data (Murakonda
and Shokri, 2020). MIAs aim to infer whether a specific data point was included in the training
dataset of a target model. A data point that was included is a member, and one that was not is a
non-member. The inferred training data membership supports audits of privacy risk, assessments
of copyright compliance, and broader AI safety evaluations (Liu et al., 2025). Numerous studies
have advanced MIAs’ performance and demonstrated their practical utility for auditing training data
leakage across diverse models (Carlini et al., 2022; Zarifzadeh et al., 2024).

There is growing demand for verifiable evidence to substantiate claims of privacy leakage and copy-
right infringement, driven by AI regulations that continue to evolve and become more clearly defined
(Voigt and Von dem Bussche, 2017). In response, the reliability of dominant MIA methodologies is
receiving increased attention. To illustrate, suppose an adversary performs MIA on a query (xq,yq)
and infers training data membership. Is this evidence sufficient to conclude that (xq,yq) was used
to train the target model? Following Chowdhury et al. (2025), we pose the central question:

Can a model owner plausibly deny a membership inference claim in practice?

1
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Figure 1: Court analogy comparing two repudiation strategies against a plaintiff’s copyright claim
supported by MIAs applied to a query. Proof-of-Repudiation (PoR): the defendant provides a de-
tailed training log showing that the target model can be obtained from a dataset without the queried
sample; this process must be repeated for each queried claim. Proof of Forgeability (PoF, ours): the
defendant shows that any non-member can be perturbed imperceptibly to produce a forged example
that MIAs misclassify as a member. Unlike PoR, PoF serves as a once-for-all repudiation across
queries.

An explicit repudiation would require disclosing the entire training dataset, which is infeasible in
practice. An implicit approach is to present a Proof-of-Repudiation (PoR), which demonstrates that
the target model is reproducible from an alternative dataset that excludes the query (xq,yq). A
verifiable PoR supports the counterclaim that (xq,yq) is de facto a non-member. This undermines
the MIA inference and may deter the adversary from pursuing legal action. While a PoR suffices
to raise reasonable doubt for a single claim, producing PoRs for every query incurs substantial
computational overhead. These computational burdens motivate a further question:

Can a model owner plausibly deny all membership inference claims with an universal repudiation?

We propose to demonstrate that membership inference claims are forgeable by constructing non-
members that MIAs would infer as members. We call this evidence Proof-of-Forgeability (PoF) and
refer to the constructed non-members as forged examples. A PoF discredits the membership evi-
dence by demonstrating that it can be replicated with forged examples, thereby enabling a universal
repudiation of all membership claims. The comparison of these two repudiations in a court analogy
is illustrated in Fig. 1.

To make PoF convincing, forged examples must satisfy three conditions: (1) they are excluded from
the target model’s training set (i.e., non-members); (2) state-of-the-art (SOTA) MIAs typically infer
them as members; and (3) they remain within the underlying data distribution of training data. We
achieve this forgeability objective under the specified conditions by adversarial example generation.
Specifically, we add carefully crafted perturbations to non-members so that SOTA MIAs cannot
distinguish them from members. Notably, MIAs typically distinguish members from non-members
based on the attack signal derived from target model outputs (Zhu et al., 2025). A common signal is
the true label confidence (TLC), the predicted probability assigned to the ground-truth label (Carlini
et al., 2022). Different MIAs apply distinct scoring functions and decision rules over such signals
to classify a query as a member or a non-member (Zarifzadeh et al., 2024). Therefore, it suffices to
fool these MIAs by matching the signal distribution of forged examples to that of members.

Matching signal distributions presents two challenges. First, under the assumption that members
and non-members are sampled from the same underlying data distribution, there exists a per-
example correspondence between the signal an example would produce as a member and as a
non-member. Estimating this correspondence reduces to deriving, for each non-member, its cor-
responding member-like signal, which we call the member-like signal estimator (MLSE). We de-
rive the MLSE using a quantile matching transformation and prove its optimality under this task.
For the logit-scaled TLC, which is approximately Gaussian (Carlini et al., 2022), we further derive
closed-form expressions for the MLSE. Second, the distribution matching is realized in signal space,
whereas the perturbation used to construct forged examples operates in data space. To bridge this
gap, we employ a first-order Taylor expansion of the signal with respect to the input to relate input
perturbations to the induced changes in signal space. This relation yields closed-form perturbation
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magnitudes based on the discrepancy between member-like and original signal for each non-member
query.

Empirically, we conduct extensive experiments to validate the properties of the forged examples
across standard datasets, including CIFAR-10/100 and CINIC-10. First, we show that it is computa-
tionally feasible to generate such forged examples with indistinguishability, such that SOTA MIAs
cannot distinguish them from the genuine members. Second, we find that these forged examples are
imperceptible relative to the original non-members, as evidenced by minor input changes and com-
parable data utility. These findings motivate a reassessment of how current MIAs quantify privacy
leakage in ML models and the development of robust MIAs that remain effective against forged
examples.

In summary, our contributions are summarized as follows:

• We introduce Proof of Forgeability (PoF), a single repudiation mechanism that applies to
all membership inference claims (§3.1).

• We propose an algorithm for generating forged examples that is backed by rigorous theo-
retical analysis and derivation. This elucidates why forged examples induce member-like
attack signals and thus evade MIAs (§3.2 and §3.3).

• Extensive experiments across datasets, MIAs, and attack configurations demonstrate that
the forged examples successfully evade SOTA MIAs, while differing imperceptibly from
the original non-members in both input contents and data utility (§4.2).

2 RELATED WORKS

2.1 MEMBERSHIP INFERENCE ATTACKS (MIAS)

MIAs (Shokri et al., 2017) aim to predict whether a data point was included in the training set of a
target model. Adversaries typically rely on the target model’s outputs as attack signal to classify a
query example as a member or a non-member (Zhu et al., 2025). Specifically, the attacker compares
the query’s signal against the distributions of member and non-member signals and then decides
membership accordingly (Carlini et al., 2022). Numerous studies have enhanced this framework by
extracting more fine-grained information to characterize these two distributions. For instance, Ye
et al. (2022) trains multiple reference models to simulate the signal distributions empirically. LiRA
(Carlini et al., 2022) formalizes this framework as a likelihood ratio test and employs a parametric
method to estimate the signal distributions. Building on these advances, Zarifzadeh et al. (2024)
leverages both population data and reference models to improve attack power and robustness. De-
spite their remarkable performance, these methods primarily model and compare attack-signal distri-
butions. This raises a question: if one constructs a forged non-member dataset whose attack signals
match those of members, would SOTA MIAs fail to provide reliable privacy auditing? In this work,
we illustrate how to generate such data using adversarial example generation to evade MIAs.

2.2 FORGEABILITY AND PROOF-OF-REPUDIATION

Forgeability (Thudi et al., 2022) was introduced in the context of machine unlearning (Bourtoule
et al., 2021). Informally, two datasets are forgeable if training on either dataset obtains the same
final weights, up to a small error. This obtainity is certified by a Proof-of-Learning (PoL) log (Jia
et al., 2021), which records the training trajectory from initialization to the final weights, including
the sequence of data points. The training rule refers to an update operator g that maps a checkpoint
and the data used at that step to the next checkpoint. Given a PoL log, one can verify its validity by
reproducing its computation. Specifically, a verifier reproduces the checkpoint at t using the items
in the log, including the (t − 1)-th checkpoint, data points used at step t, and the same update rule
g. The verifier then computes the distance between the logged t-th checkpoint and the reproduced
one in the parameter space. This distance is called the verification error, and the update at step t is
acceptable if the verification error is below a prescribed threshold.

Proof-of-Repudiation (PoR) (Kong et al., 2023) is a special case of PoL that empowers the model
owner to repudiate the membership claim. Given a target model and a claim that data point x∗ is
a member of its training dataset D, a valid PoR is essentially the PoL log that records a training
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trajectory obtaining the same model from an alternative dataset D− that excludes x∗. This provides
verifiable evidence that the model could have been obtained without using x∗ (Kong et al., 2022).
Although a PoR log can repudiate the claim, generating and verifying such logs can be computa-
tionally expensive. This motivates more efficient repudiation mechanisms.

2.3 ADVERSARIAL EXAMPLES

Adversarial examples (Szegedy et al., 2013) are minimally perturbed inputs that induce ML models
to misclassify while they retain high accuracy on unperturbed data. One widely-used and efficient
method to generate such examples is the fast gradient sign method (FGSM) (Goodfellow et al.,
2014), which perturbs the input along the element-wise sign of the loss gradient under an L∞ con-
straint. Let J(·) denote the loss and let θ be the model weights. For an input-label pair (x,y) , define
the gradient with respect to the input as g = ∇x(J(θ,x,y)). The FGSM adversarial example is

xadv = x+ ϵ · sign(g), (1)

where sign(·) is applied element-wise and ϵ is the L∞ perturbation budget. Kurakin et al. (2016)
refined FGSM to an iterative variant, I-FGSM, which improves attack success under the same budget
and enforces valid input bounds. With step size α and T iterations, the update rule are

xadv
t+1 = Projϵx

(
clipX

(
xadv
t + α · sign

(
∇xJ(θ,x

adv
t ,y

)))
, for i = 1, . . . , T − 1, (2)

where xadv
0 = x, Projϵx projects onto the L∞ ball of radius ϵ centered at the original input x, and

clipX enforces the valid input domain. A common choice of α is ϵ/T . Below, we follow this
paradigm to generate forged examples, and the main challenge here is to estimate an appropriate
perturbation budget of ϵ. After that, Later works extended this line of research in two main di-
rections: optimization-based attacks (Lin et al., 2020; Dong et al., 2018) and augmentation-based
attacks (Xie et al., 2019; Yun et al., 2024; Lin et al., 2020; Li et al., 2023; Wang et al., 2021).

3 CONSTRUCTION OF PROOF-OF-FORGEABILITY

3.1 PROBLEM FORMULATION

Formally, let the target classifier be fθt
: X → ∆K−1, parametrized by θt, and trained on dataset

DM = {(xM
i ,yM

i )}nM

i=1. The dataset DM consists of independent and identically distributed (i.i.d.)
samples drawn from the underlying data distribution Pdata over X × Y . Here, X denotes the input
space and ∆K−1 is the probability simplex over K classes. Each ground-truth yi ∈ {0, 1}K is

represented as a one-hot vector. We also define a non-member dataset DN = (xN
i ,yN

i )
nN

i=1 consists
of i.i.d. samples from the same distribution Pdata, with DN ∩DM = ∅ to ensure that non-members
are excluded from training set of fθ. Define an attack signal function s : ∆K−1×{1, . . . ,K} → S,
that maps the target model’s predicted probability vector and the ground-truth label to a signal in the
signal space S used for membership inference. We consider s to be scalar-valued, since SOTA MIAs
typically adopt scalar signals such as LOSS or the TLC and its variants. Suppose the underlying
distribution of the attack signal over members and non-members is SM and SN , respectively. Let
SM and SN denote the distribution of the attack signals for members and non-members. Using
s, we form empirical signal samples for SM and SN as {s(f(xM

i ),yM
i )}nM

i=1 = {sNi }nM

i=1 and
{s(f(xN

i ),yN
i )}nN

i=1 = {sNi }nN

i=1. These empirical samples approximate draws from SM and SN .

PoF seeks to construct forged examples {xF
i ,y

F
i }n

M

i=1 from non-member data {xN
i ,yN

i }nM

i=1, using
the adversarial example generation framework, such that the empirical distribution of the resulting
attack signals matches that of members. Let SF denote the distribution of the attack signal for

forged examples. The empirical samples for SF are {s(fθ(xF
i ), y

F
i )}

nN

i=1 = {sFi }
nN

i=1. PoF aims to
make SF indistinguishable from SM , the distribution of member signals, thereby inducing MIAs to
misclassify forged examples as members. In this work, we illustrate how to generate such forged
examples for scalar-valued signal functions. The overall pipeline is illustrated in Fig. 2.
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Target Model

Signal SpaceData Space

Member

Non-member

Forged Input

Bridge via Taylor expansion

Figure 2: Overview of the Proof-of-Forgeability pipeline. Members and non-members enter the
target model to obtain their signals SM and SN , respectively. We omit the labels here for the ease
of presentation. A non-member is perturbed by a small, bounded change to create a forged example.
Taylor expansion bridges data space and signal space and yields a proper perturbation that shifts
SN toward its estimated member-like counterpart. The signal distribution of forged examples SF

matches that of members, which fools MIAs operating on output signals to infer membership.

3.2 MEMBER-LIKE SIGNAL ESTIMATOR

Carlini et al. (2022) formulated membership inference as a likelihood-ratio test (LRT). Given a query
example (xq,yq) and a target model fθt , the LRT statistics is

Λ(fθt
;xq,yq) =

p
(
θt | Qin(xq,yq)

)
p
(
θt | Qout(xq,yq)

) , (3)

where for b ∈ {in, out}, p
(
θt | Qb(xq,yq)

)
denotes the probability density of θt under the model-

parameter distribution Qb(xq,yq). For the remainder of the paper, we write Qb as shorthand for
Qb(xq,yq). Here, Qin and Qout are the distributions over model parameters induced by training
on datasets that include, or exclude, the query example, respectively. Since Qin and Qout are ana-
lytically intractable and often inaccessible in the black-box setting, recent works typically employ
low-dimensional surrogates, Q̃in and Q̃out, that serve as proxies for the intractable parameter distri-
butions. These surrogates are defined as distributions of attack signals computed at (xq,yq) across
models trained with, or without, the query example. The selected attack signal should correlate with
the underlying parameters while remaining efficient to compute. Common choices include the loss
value (Shokri et al., 2017) and variants of the TLC (Carlini et al., 2022; Zarifzadeh et al., 2024).

For each query (xq,yq), the adversary compute the attack signal sq = s(fθ(xq),yq), and com-
pare the likelihoods p(sq|Q̃in) and p(sq|Q̃out). Take TLC as an example, p(s | Q̃in) assigns high
probability density on larger values than p(s | Q̃out) due to model overconfidence (Chen and Pat-
tabiraman, 2023). Consequently, a non-member query tends to produce a smaller TLC signal and
therefore has a higher likelihood under Q̃out. Our goal is to transform each such signal induced
by a non-member query that is more consistent with Q̃in, namely, a value whose likelihood under
Q̃in exceeds its likelihood under Q̃out. This amounts to estimating, for each non-member query, the
member-like signal that the query would have produced as if it had been included in training. To this
end, we propose a unified member-like signal estimator (MLSE) that maps a non-member’s signal
to its corresponding member-like signal.

Note that both the member and non-member data of the target model are sampled from the same
underlying data distribution Pdata. Hence, the discrepancy between the signal distributions of mem-
bers and non-members is attributable to the training process. This observation implies that any
alignment should correct the training-induced shift rather than a data-distribution mismatch. We
therefore posit that the optimal MLSE should align the distribution of the member-like signals with
that of true member signals at minimal transport cost. To achieve this, we employ a quantile match-
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ing transformation, where each non-member signal is paired with the member signal that shares the
same percentile rank in its respective empirical distribution. Formally, let FN and FM represent the
cumulative distribution functions (CDFs) of the non-member and member signal distributions, SM

and SN , respectively. For a non-member signal sNi , the forged member-like signal is

sFi = F−1
M (FN (sNi )), (4)

where F−1
M is the quantile function, i.e., the generalized inverse CDF. This establishes a correspon-

dence between SN and SM that aligns their CDFs. Quantile matching is monotonic and avoids
density estimation. As demonstrated in Lemma 3.1, this correspondence is the optimal transport so-
lution in one dimension for any convex cost on the displacement. Therefore, the quantile matching
transformation is theoretically optimal for the MLSE when signals are scalar-valued under com-
mon distance metrics. It is also stable and parameter-free. The proof of Lemma 3.1 is provided in
App. B.2.
Lemma 3.1 (Quantile matching is one-dimensional optimal transport). Consider two atomless prob-
ability measures µ and ν on R with strictly increasing CDFs Fµ and Fν , and quantile functions
Qµ = F−1

µ , Qν = F−1
ν . The quantile matching map is T (s) = Qν(Fµ(s)) = F−1

ν ◦ Fµ(s).

Then the map T is the unique optimal transport map that minimizes the expected cost
Es∼µ[c(s, T (s))] for any cost function c(s1, s2) = h(s2 − s1), where h : R → R is strictly convex.

Furthermore, we can reduce the computational cost of empirical estimation for certain attack signals.
When using parametric methods for modeling Qin and Qout with fewer reference models, Carlini
et al. (2022) adopts logit-scaled TLC, which empirically follows a normal distribution. For such
signals with a parametric form, we can derive a closed-form expression for the MLSE. Theorem 3.2
establishes this result for logit-scaled TLC, and the proof is provided in App. B.3.
Theorem 3.2 (Closed-form for Gaussian-distributed Signal). Assume the one-dimensional signals
for members follow SM ∼ N (µM , σ2

M ) and for non-members follow SN ∼ N (µN , σ2
N ). Then for

a non-member signal sNi , its member-like signal sFi via quantile matching is

sFi = µM +
σM

σN
(sNi − µN ). (5)

The target signal change ∆si is

∆si = sFi − sNi = (µM − µN ) +

(
σM

σN
− 1

)
(sNi − µN ). (6)

3.3 BRIDGE INPUT AND SIGNAL SPACE VIA TAYLOR EXPANSION

In the previous subsection, we justified the fraud to MIAs at the signal level and proposed estimating,
for each non-member signal, a corresponding member-like signal. Building on this idea, we now
construct forged examples from these estimated member-like signals. To substantiate the PoF, these
forged examples must satisfy three conditions: (1) they are excluded from the target model’s training
set and are therefore non-members, (2) SOTA MIAs typically infer them as members, and (3) they
remain within the underlying data distribution Pdata. Based on the analysis in §3.2, condition (2)
holds if the signal distribution of the forged examples matches that of the members. Moreover,
conditions (1) and (3) are satisfied when forged examples are produced by adding imperceptible
perturbations to non-members. This construction preserves the non-membership of forged examples
with respect to the fixed training set and keeps them within the support of the underlying data
distribution Pdata.

We instantiate the imperceptible perturbation using adversarial example generation methods. These
methods add carefully designed perturbations to inputs along the steepest ascent direction of the loss
function to induce model misclassifications. In this context, for a non-member query (xN

q ,yN
q ), the

forged input has the form of
xF
q = xq + ϵq · sign(gq), (7)

where ϵq ≥ 0 controls the perturbation magnitude, and gq = ∇x

(
s(fθt

(xq),yq)
)

is the gradient
of the attack signal with respect to the input, evaluated at the target model fθt . The sign operator
is applied element-wise. The forged input, paired with the original non-member label, forms the

6
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forged example (xF
q ,y

N
q ). For brevity, we present a single-step update and omit iterative refine-

ments and projection to the valid input range. To satisfy condition (2), the signal distribution of the
forged examples across all non-member queries must align with the members’ signal distribution.
As established in §3.2, this distribution is identical to the distribution of the member-like signals
for non-members. Let sNq and sFq denote the original signal and the member-like signal for a non-
member query (xq,yq). We therefore choose an appropriate perturbation magnitude ϵq such that the
forged example’s signal equals its member-like signal, namely s

(
fθt

(xF
q ),y

N
q

)
= sFq . This choice

aligns the signal distribution of forged examples with that of the members and thereby satisfies
condition (2).

While the move from the non-member signal sNq to the member-like signal sFq is defined in signal
space, the perturbation used to construct forged examples operates in input space. We therefore
require a bridge to link the desired signal change to the perturbation magnitude in input space. As
stated in Lemma 3.3, a first-order Taylor expansion of the signal with respect to the input provides
this bridge by relating small input perturbations to the induced change in the signal. This relation
yields a closed-form expression for the perturbation magnitude as a function of the discrepancy
between the member-like and original signal for each non-member query. The proof of Lemma 3.3
is provided in App. B.1.
Lemma 3.3 (Bridge Input and Signal Space via Taylor Expansion). Let s be a differentiable scalar
attack signal. For each non-member query (xq,yq) with signal sNq , let sMq denote its member-like
signal, and define the target signal change ∆sq = sMq − sNq . Let gq = ∇xs

(
fθt

(xF
q ),y

N
q

)
be the

gradient of the attack signal with respect to the input. Assume a perturbation δx = ϵ · sign(g) along
this gradient sign direction, where sign(·) denotes the element-wise sign function and ϵq > 0 is the
perturbation magnitude. Under the first-order Taylor approximation, the closed-form for ϵq is:

ϵq =
∆sq
∥gq∥1

, (8)

where ∥ · ∥1 denotes the l1 norm.

In summary, we demonstrate how to construct eligible forged examples to constitute convincing
Proof-of-Forgeability. Specifically, the model owner first samples non-members from the data dis-
tribution Pdata, and estimates their member-like signals using MLSE. For each non-member query,
the discrepancy between the member-like and original signal determines an appropriate perturbation
magnitude. In implementation, we apply the I-FGSM Kurakin et al. (2016) with these magnitudes to
the non-members, producing forged examples that typically evade SOTA MIAs. The pseudo-codes
of PoF are shown in Alg. 1.

4 EXPERIMENTS

We conduct experiments to validate the following properties of the constructed forged examples.

Indistinguishability Forged examples cannot be distinguished from genuine members by SOTA
MIAs across data augmentation settings and across different numbers of reference models.

Imperceptibility Forged examples differ minimally from their corresponding original non-member
data, preserving the input contents and data utility.

4.1 EXPERIMENTAL SETUP

Datasets and implementations. We evaluate our methodology on three publicly accessible bench-
marks: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and CINIC-10 (Darlow et al., 2018).

For a fair comparison, we employ Wide-ResNet (Zagoruyko and Komodakis, 2016) as the backbone
across all datasets and adopt an identical training protocol following established conventions (Carlini
et al., 2022; Zarifzadeh et al., 2024). This protocol fixes the optimizer, learning rate schedule, data
augmentation, and regularization to match the baseline configuration. Across all datasets, we follow
Carlini et al. (2022) to randomly partition the training set into two disjoint, equal-sized halves.
One-half is used to train the target model, and these examples are treated as members. The other half
is held out strictly for evaluation as non-members. This creates a 50/50 member versus non-member
split drawn from the same underlying distribution.
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Table 1: Comparison of MIA performances on forged examples constructed using different guiding
signals. We report AUC and TPR at FPRs of 0.01% and 0.0%. A lower TPR at low FPR indi-
cates stronger indistinguishability, and an AUC near 50% corresponds to chance and thus indicates
successful forgeability. N/A* denotes evaluation on the original non-members. The LiRA- and
RMIA-based guiding signals are variants of TLC and are detailed in App. C.3.

Guiding Signal Attack CIFAR-10 CIFAR-100 CINIC-10

AUC TPR@FPR AUC TPR@FPR AUC TPR@FPR
0.01% 0.0% 0.01% 0.0% 0.01% 0.0%

N/A∗

Attack-R 64.63 1.84 0.49 83.41 4.49 3.77 73.24 1.97 1.29
Online LiRA 72.42 3.90 3.01 91.52 13.23 3.83 82.23 6.78 3.51
Offline LiRA 55.63 1.17 0.61 76.11 1.92 0.99 63.49 1.11 0.95
Online RMIA 72.08 5.60 2.60 90.84 8.12 6.34 82.51 8.63 4.43
Offline RMIA 71.50 5.35 3.61 90.62 9.54 7.96 82.17 7.16 5.43

LiRA-based

Attack-R 47.33 0.21 0.14 49.21 0.14 0.04 46.03 0.14 0.10
Online LiRA 49.22 0.65 0.35 49.97 0.87 0.60 46.47 0.22 0.10
Offline LiRA 52.57 0.67 0.35 50.22 0.76 0.30 50.25 0.25 0.13
Online RMIA 48.13 0.41 0.0 50.55 0.00 0.00 47.39 0.00 0.00
Offline RMIA 45.76 0.64 0.44 49.40 0.18 0.16 44.42 0.17 0.16

RMIA-based

Attack-R 46.75 0.32 0.02 48.23 0.00 0.00 47.59 0.00 0.00
Online LiRA 51.76 0.83 0.55 52.33 0.60 0.32 49.28 0.24 0.14
Offline LiRA 53.62 0.66 0.57 48.98 0.00 0.00 52.71 0.11 0.04
Online RMIA 48.65 0.00 0.00 47.68 0.00 0.00 48.32 0.00 0.00
Offline RMIA 46.39 0.93 0.30 49.16 0.10 0.04 46.52 0.14 0.00

MIA Baselines. We consider three SOTA MIAs as baselines: Attack-R (Ye et al., 2022), LiRA
(online and offline)(Carlini et al., 2022), and RMIA (online and offline) (Zarifzadeh et al., 2024).
For the reference models used by these baselines, we employ the same Wide-ResNetbackbone and
training protocol, and resample 50/50 member versus nonmember splits consistent with the target-
model setting. This design ensures that, for each query point, it appears in the training set of half
of the reference models and is excluded from the training set of the other half. For each baseline,
we apply the same set of data augmentations as in RMIA (Zarifzadeh et al., 2024) to enhance attack
power.

Evaluation metrics. We evaluate forged examples along two aspects. First, we assess whether
forged examples evade MIAs. We report standard MIA metrics: the area under the receiver operating
characteristic curve (AUC score), and the true positive rate (TPR) at extremely low false positive
rates (FPRs). Specifically, we evaluate at FPRs of 0.01% and 0.0%. We deem forgeability successful
when MIAs cannot distinguish forged examples from genuine members. Second, to quantify the
discrepancy between forged and unperturbed data, we compute the ℓ∞ norm between each forged
example and its counterpart and the average change in accuracy across all reference models when
evaluated before and after perturbation. These measures capture the impact of the perturbation on
data utility.

4.2 MAIN RESULTS

Assessment of Indistinguishability To comprehensively assess indistinguishability, we compare
MIA performance across three cohorts: normal non-members, forged examples constructed based on
LiRA signals, and forged examples constructed based on RMIA signals. The results in Tab. 1 show
that when forged examples replace non-members in the evaluation set, MIA performance becomes
insensitive to the guiding signal. Across attacks, the metrics drop to near random guessing, with
an average AUC of 48.83%, regardless of whether the forged examples are constructed using LiRA
or RMIA signals. For instance, when evaluating on normal non-members, strong online MIAs,
specifically online RMIA and online LiRA, achieve a high attack success rate on CIFAR-100 with
an average AUC of 91.18% and a TPR at 0.01% FPR of 10.68%. While evaluating on forged
examples, the AUC consistently drops to approximately 50% and TPR decreases by a factor of 11.8,
effectively neutralizing the adversary’s advantage. The same pattern holds for offline MIAs. Using
forged examples lowers AUC to chance and reduces TPR at extremely low FPRs to negligible levels.
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Table 2: Effect of the number of data augmentations used by online LiRA on MIA performances
against forged examples on CIFAR-10.

Metric # of Data Augmentations

2 4 6 8 10 14 16 18

AUC 50.10 50.08 50.14 50.17 49.97 49.35 49.23 49.22
TPR@0.01% FPR 0.44 0.47 0.40 0.42 0.51 0.65 0.67 0.65
TPR@0.0% FPR 0.20 0.22 0.28 0.28 0.40 0.44 0.39 0.35

Table 3: Effect of the number of reference models used by online LiRA on MIA performances
against forged examples on CIFAR-10.

Metric # of Reference Models

2 64 128 192 254

AUC 51.45 49.74 49.38 49.32 49.22
TPR@0.01% FPR 0.17 0.43 0.66 0.63 0.65
TPR@0.0% FPR 0.03 0.21 0.28 0.33 0.35

We ablate the number of data augmentations (Tab. 2) and the number of reference models (Tab. 3)
to evaluate the indistinguishability of forged examples under different MIA configurations. As il-
lustrated in Tab. 2, the AUC remains near 50%, and TPR at FPRs of 0.01% and 0% is always below
0.7% and 0.05%, respectively, regardless of the number of augmentations used by the MIA. Like-
wise, Tab. 3 shows a consistent near-50% AUC and negligible TPR at these low FPRs when varying
the number of reference models from 2 to 254. Overall, the indistinguishability of forged exam-
ples is insensitive to the MIA configurations. Additional ablation studies demonstrating that forged
examples can mislead MIAs even when compared against other non-members are in App. D.

Assessment of Imperceptibility We assess the imperceptibility from the aspects of input contents
and data utility, which are measured by ℓ∞-norm distance between the original and forged input,
and the average accuracy of reference models when evaluated on forged examples, respectively. As
shown in Tab. 4, the input difference is negligible, with ℓ∞-norm close to zero (e.g., ≤ 0.007).
Moreover, the average accuracy of reference models on forged examples matches that on original
non-members, which indicates that forged examples preserve utility.

Table 4: Per-dataset ℓ∞-norm difference between original data and forged data, and corresponding
accuracy compared to original data. For Accuracy, the value in parentheses indicates the difference
relative to the accuracy on original data (%).

PoF signal CIFAR-10 CIFAR-100 CINIC-10

ℓ∞-norm Accuracy ℓ∞-norm Accuracy ℓ∞-norm Accuracy

LiRA-based 0.0012 98.94(+2.93) 0.0035 90.45(+6.96) 0.0025 94.20(+5.59)
RMIA-based 0.0018 98.80(+2.79) 0.0070 89.37(+5.88) 0.0042 94.03(+5.42)

5 CONCLUSION

This work introduces Proof-of-Forgeability (PoF) as a practical repudiation against membership in-
ference claims. Instead of disclosing the training set or producing time-consuming per-claim Proof-
of-Repudiation logs, PoF shows that the MIA-based claims are forgeable by constructing forged
examples that MIAs would misclassify as members. This undermines the validity of MIA and en-
ables an universial repudiation against all membership inference claims. We present a systematic
procedure for forging from non-member queries via imperceptible noise. For each query, MLSE
infers the member-like signal. We then determine the perturbation magnitude using a first-order
Taylor expansion and adjust the corresponding adjustment to the input. The resulting forged exam-
ples consistently fool MIAs while remaining imperceptibly close to the original non-members.
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6 ETHICS STATEMENT

Our study investigates the generation of forged examples to evade MIAs and hence discredits mem-
bership inference claims produced by these attacks. These findings motivate a reassessment of how
current MIAs quantify privacy leakage and call for robust MIAs that remain effective against forged
examples.

We acknowledge that PoF could be harmful if misused. To mitigate this risk, our work is framed
as an academic study of reliability in membership inference attacks and emphasizes responsible
communication of findings. The analysis and results are intended solely for scientific research, with
an emphasis on transparency and reproducibility.

7 REPRODUCIBILITY STATEMENT

We provide the pseudo-code for generating forged examples in App. A and describe experimental
setups in §4.1 and App. C. To support reproducibility, we release our implementation in the follow-
ing anonymized repository: https://anonymous.4open.science/r/348079E324098F428C/
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A PSEUDO-CODE FOR FORGED DATA GENERATION

In this section, We present the pseudo-code of forged data generation used in PoF. This algorithm
bridges signal space and data space, ensuring that non-member examples are perturbed just enough
to align their attack signals with the member distribution. Alg. 1 outlines the pseudo-code. The input
to this algorithm includes the target model fθ, a target data point (x,y), member and non-member
datasets (Dmem, Dnon), the iteration budget T , a perturbation bound ϵ, and a scalar signal function
J(·) (e.g., true-label confidence). We first compute attack signals on both Dmem and Dnon under
fθ and construct a MLSE sF = F−1

M (FN (s)) to obtain the member-like target sF . To map the
desired signal shift to the input domain, we approximate the perturbation scale via a first-order
Taylor expansion, and perform projected sign of gradient updates within the ℓ∞ ball of radius ϵ. The
procedure stops when the forged signal reaches sF or when T steps are exhausted.

Algorithm 1 Forged Data Generation

Require: Target data point (x,y); target model fθ; member set Dmem, non-member set Dnon; iter-
ations T ; norm bound ϵ; signal function J(·); method D(·) producing m augmented samples;
quantile functions F (·)

Ensure: Forged example x̂
1: Compute signal distribution on the target model:

SM = { J(fθ(xM ),yM ) | (xM ,yM ) ∈ Dmem }
SN = { J(fθ(xN ),yN ) | (xN ,yN ) ∈ Dnon }

2: sF = F−1
M (FN (s)) ▷ quantile matching for Eq. 4

3: x̂0 = x, s0 = J(fθ(x̂0),y)

4: η =
s0 − sF

∥∇xJ(fθ(x̂0),y)∥1
5: for t = 0 to T − 1 do
6: gt =

1
m

∑m−1
i=0 ∇xJ(fθ(D(x̂t)i),y)

7: x̂t+1 = Projϵx(x̂t + η · sign(gt))
8: st+1 = J(fθ(x̂t+1),y)
9: if st+1 > sF then

10: break
11: end if
12: end for
13: return x̂ = x̂t+1

B PROOF DETAILS

B.1 PROOF OF LEMMA 3.3

Proof. The first-order Taylor expansion of s around x for a small perturbation δx is:

s(x+ δx) ≈ s(x) + gT δx +O(∥δx∥2), (9)

where the higher-order terms can be neglected for a small scale of ϵ. Therefore, for the target signal
change of ∆s = s(x+ δx)− s(x), we have:

∆s ≈ gT δx. (10)

Choosing the direction δx = ϵ sign(g) aligns with the fast gradient sign method for efficient pertur-
bation, maximizing the change under L1 constraints:

g⊤δx = g⊤(ϵ sign(g)) = ϵ (|g|⊤ · 1) = ϵ∥g∥1, (11)

since gi × sign(gi) = |gi|. Solving for ϵ:

ϵ =
∆s

∥g∥1
. (12)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 PROOF OF LEMMA 3.1

Proof. We prove this in three steps: (1) pushforward, (2) Monotonicity and µ-almost everywhere
uniqueness, and (3) optimality among all measure-preserving maps via cyclical monotonicity and
the rearrangement inequality.

Step 1. Let U ∼ Uniform[0, 1]. Then Qµ(U) ∼ µ and Qν(U) ∼ ν. By construction,

T
(
Qµ(U)

)
= Qν

(
Fµ(Qµ(U))

)
= Qν(U), (13)

so T (Qµ(U)) ∼ ν. Hence T pushes µ forward to ν, denoted by T#µ = ν.

Step 2. Both Fµ and Qν are non-decreasing; hence T = Qν ◦ Fµ is also non-decreasing.

Let T ′ : R → R be any non-decreasing map with T ′
#µ = ν. Fix a continuity point u ∈ (0, 1) of Qν

and set su := Qµ(u). Then

ν
(
(−∞, T ′(su)]

)
= µ

(
{s : T ′(s) ≤ T ′(su)}

)
≥ µ

(
(−∞, su]

)
= u, (14)

so T ′(su) ≥ Qν(u). Repeating with u′ < u and using monotonicity gives T ′(su) ≤ Qν(u).
Hence T ′(su) = Qν(u). Since the continuity points of Qν have full Lebesgue measure in (0, 1) and
u = Fµ(s) holds for µ-a.e. s, we conclude T ′(s) = Qν(Fµ(s)) = T (s) for µ-a.e. s.

Step 3. The fundamental theorem of optimal transport (see Theorem 1.13 of Ambrosio et al. (2005))
claims that a transport plan γ is optimal if and only if its support is c-cyclically monotone, where
c(s1, s2) = h(s2 − s1). A set Γ ⊆ R × R is c-cyclically monotone if, for any finite sequence
{(si, ti)}Ni=1 ⊆ Γ, the inequality

N∑
i=1

c(si, ti) ≤
N∑
i=1

c(si, tσ(i)), (15)

holds for all permutations σ of {1, . . . , N}.

For N = 2, this reduces to c(s1, t1) + c(s2, t2) ≤ c(s1, t2) + c(s2, t1). Assume by contradiction
that an optimal plan has a crossing in its support: s1 < s2 but t1 > t2. Let δ = s2 − s1 > 0,
a = t1 − s1, b = t2 − s2. The inequality becomes h(a) + h(b) ≤ h(a + δ) + h(b − δ). Set
k = δ/(a− b) (assuming a > b for the crossing; otherwise swap). If k ∈ (0, 1), strict convexity of
h implies h(a+ δ) + h(b− δ) < h(a) + h(b), contradicting the ≤. Thus, optimal supports must be
graph-monotone (non-crossing).

Given strictly increasing CDFs, the measures have no atoms and are continuous, so the monotone
transport plan is unique and induced by T . Since an optimal plan exists and must be monotone, it
coincides with the plan from T , making T optimal. Complementarily, the rearrangement inequal-
ity asserts that for non-decreasing sequences, the minimal cost for convex h is achieved by sorted
(monotone) pairings, equivalent to quantile matching (see Theorem 2.12 of Villani et al. (2008)).
For quadratic cost, T explicitly minimizes the Wasserstein-2 distance.

B.3 PROOF OF THOREM 3.2

Proof. This derivation relies on the properties of the normal distribution and quantile matching,
which aligns the CDFs of two distributions to make them identical.

Note that the CDF of a normal distribution N (µ, σ2) is F (s) = Φ
(
s−µ
σ

)
, where Φ is the CDF of

the standard normal distribution N (0, 1). The quantile function (i.e., inverse CDF) for N (µ, σ2) is

F−1(u) = µ+ σΦ−1(u), u ∈ (0, 1). (16)

Suppose that FM , FN are CDFs for the SM ∼ N (µM , σ2
M ), SN ∼ N (µN , σ2

N ). The quantile
matching defines the transformation by T (·) = F−1

M (FN (·)), which pushes the non-member dis-

tribution SN to the member distribution SM , ensuring T (SN ) := SF
d∼ SM . Substituting the

14
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expressions gives:

FN (sNi ) = Φ

(
sNi − µN

σN

)
, (17)

T (sNi ) = F−1
M

(
Φ

(
sNi − µN

σN

))
= µM + σMΦ−1

(
Φ

(
sNi − µN

σN

))
. (18)

Since Φ−1 ◦ Φ(z) = z for z ∈ R, we have Φ−1
(
Φ
(

sNi −µN

σN

))
=

sNi −µN

σN
. Thus, Equations 18

simplifies to

T (sNi ) := sFi = µM + σM · s
N
i − µN

σN
= µM +

σM

σN
(sNi − µN ). (19)

This is an affine transformation, which preserves the Gaussian nature of the distribution SF .

The target signal change is

∆si = sFi −sNi =

(
µM +

σM

σN
(sNi − µN )

)
−sNi = µM−µN+

σM

σN
(sNi −µN )−(sNi −µN ). (20)

Rearranging terms:

∆si = (µM − µN ) +

(
σM

σN
− 1

)
(sNi − µN ). (21)

C DETAILED EXPERIMENTAL SETUP

In this subsection, we provide a detailed introduction of experimental settings.

C.1 MIA SETUP

for each MIA method, we use their default hyperparameters and the implementation from RMIA
repository. For RMIA, the γ is set to 1 for CIFAR-100 and 2 for other dataset. The soft-margin m
and the order n in Taylor-based functions are 0.6 and 4, respectively accorss all datasets.

C.2 QUANTILE MATCHING SETUP

ML models trained on the similar data usually share similar decision boundaries in input space.
These boundaries are locally sensitive , such that even the small can move inputs across them for
multiple models simultaneously,enabling the well-known phenomenon of adversarial transferabil-
ity (Szegedy et al., 2013). However, the transferability is inherently imperfect since models rarely
share identical decision boundaries due to the model specificity (e.g., initialization, architecture).
As a result, exact quantile matching performed on the target model may not perfectly align with the
distributions observed on reference models. To address this mismatch, we introduce an excessive ra-
tio κ, which slightly increases the mapped quantile position of each non-member signal. Intuitively,
κ controls a small upward shift in the quantile mapping, ensuring that forged signals are pushed
slightly further toward the member distribution, thereby improving robustness to slightly misaligned
decision boundaries between the target model and reference models. Formally, for a non-member
signal sNi , the forged member-like signal transformed from Eq. 4 into the refined formulation:

sFi = F−1
M

(
min{FN (sNi ) + κ, 1}

)
. (22)

The clipping at 1 ensures that the shifted quantile remains valid. The values of κ used in our experi-
ments are summarized in Tab. 5.

C.3 GUIDING SIGNALS DESCRIPTION

Our proposed PoF framework generates forged examples by explicitly aligning attack signals used
in SOTA MIAs. In particular, we instantiate it primarily using both LiRA-based and LiRA-based sig-
nals. Other type of signals may provide even stronger performance for generating forged examples.
we leave signal exploration for future work.
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Table 5: optimal excessive ratio κ for each dataset and each aligned signal.

Dataset LiRA-based Signal RMIA-based Signal
CIFAR-10 1.5% 3%
CIFAR-100 0.75% 3%
CINIC-10 0.75% 1.5%

Table 6: Results on CIFAR-10 under different scenarios. We report AUC and TPR at two extremely
low FPR levels (0.01% and 0.0%).

Scenario Attack AUC TPR@FPR

0.01% 0.0%

Original non-members v.s. Other non-members Online LiRA 50.55 0.06 0.06
Online RMIA 50.22 0.01 0.0

Forged examples v.s. Other non-members Online LiRA 73.38 1.28 1.09
Online RMIA 73.47 0.60 0.14

LiRA-based Guiding Signal. Following Carlini et al. (2022), we adopt TLC as the guiding signal.
For each query (x, y), the TLC is defined as the model fθt ’s logit for the ground-truth class, p =
fθt(x)y . We further apply logit scaling, ϕ(p) = log p

1−p . Hence, guiding signal function becomes
s(fθt(x), y) = ϕ(p).

RMIA-based Guiding Signal. We also adopt the Soft-Margin-Taylor-Softmax signal (Banerjee
et al., 2021) used in RMIA as the guiding signal. Specifically, let gi denote the logit for class i and T
controls temperature. Define ci = gi/T and the n-th order Taylor approximation of the exponential
by

apx(a) =

n∑
k=0

ak

k!
. (23)

With a soft-margin hyperparameter m ≥ 0 applied to the true class only, the guiding signal function
for a sample (x, y) under model θt is

s(fθt(x), y) =
apx(cy −m)

apx(cy −m) +
∑

i ̸=y apx(ci)
. (24)

D ADDITIONAL RESULTS

We examine whether forged examples can be distinguished from other non-members. Here, the
forged examples are generated by adding adversarial noise to the original non-members. This design
enables a direct comparison between non-members and forged examples, highlighting how forged
examples can still be misclassified as members by MIAs, though they are not part of training. As
shown in Tab. 6, when comparing original non-members against other non-members, MIAs perform
no better than random guessing (e.g., AUC ≈ 50%). Conversely, when forged examples are com-
pared against other non-members, both Online LiRA and Online RMIA demonstrate substantially
higher AUC and TPR at extremely low FPRs, indicating that MIAs misclassify forged examples as
members, thereby validating the indistinguishability induced by PoF.

E VISUALIZATION OF FORGED EXAMPLES

We present several representative visualizations of the forged examples in Fig. 3.
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Figure 3: Comparison between forged examples (top row) and their corresponding benign samples
(bottom row) on CIFAR10 using LiRA-based Signal.

F LLM USAGE DISCLOSURE

We only used LLMs as a writing assistant to polish the language of the manuscript. The LLM
was used only for stylistic refinement and improving readability. It did not contribute to research
ideation, experimental design, or interpretation of results. All conceptual contributions, methodol-
ogy, and experiments were designed and conducted entirely by the authors.

17


	Introduction
	Related Works
	Membership Inference Attacks (MIAs)
	Forgeability and Proof-of-Repudiation
	Adversarial Examples

	Construction of Proof-of-Forgeability
	Problem Formulation
	Member-like Signal Estimator
	Bridge Input and Signal Space via Taylor Expansion

	Experiments
	Experimental Setup
	Main Results

	Conclusion
	Ethics Statement
	Reproducibility statement
	Pseudo-code for Forged Data Generation 
	Proof Details
	Proof of lemma 3.3
	Proof of lemma 3.1
	Proof of thorem 3.2

	Detailed experimental Setup 
	MIA Setup 
	Quantile Matching Setup
	Guiding Signals Description

	Additional Results
	Visualization of forged examples
	LLM Usage Disclosure

