

000 001 002 003 004 005 PROOF OF FORGEABILITY: UNIVERSAL REPUDIATION 006 AGAINST MEMBERSHIP INFERENCE ATTACKS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Membership inference attacks (MIAs) aim to infer whether a data point was used to train a target model and are widely used to audit the privacy of machine learning (ML) models. In this work, we present a new approach to asserting repudiation evidence against MIA-supported claims. Existing strategies require computationally intensive, case-by-case proofs. We introduce Proof of Forgeability (PoF), which denies all membership claims with an universal repudiation. The key idea is to generate forged examples that are non-members yet are misclassified as members by MIAs. We construct forged examples by adding carefully designed perturbations to non-members so that the attack signal distribution derived from model outputs for the forged examples matches that of members. To achieve this, we use quantile matching to derive a member-like signal estimator (MLSE) that maps each non-member's signal to its target member-like signal. We prove the optimality of this MLSE and derive closed-form expressions when the attack signal is the logit-scaled true-label confidence. We then apply a first-order Taylor expansion of the signal with respect to the input to bridge the input and signal space. This relation converts the target signal change into an input perturbation and yields the designed perturbation in closed form. Empirical results demonstrate that the forged examples indeed confuse the MIAs in comparison with the genuine members; meanwhile, the forged examples differ imperceptibly from the original non-members in input content while fully preserving data utility.

1 INTRODUCTION

035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Machine learning (ML) models now proliferate across critical domains, including finance (Hernandez Aros et al., 2024) and healthcare (Zhang et al., 2022). However, modern ML models are vulnerable to leakage of sensitive training data (Papernot et al., 2016). Membership inference attacks (MIAs) (Shokri et al., 2017) are currently the most widely employed approaches for auditing the privacy of ML models. Government agencies, including the UK Information Commissioner's Office (ICO) and the US National Institute of Standards and Technology (NIST), have highlighted MIAs as a potential violation of confidentiality and a privacy threat to training data (Murakonda and Shokri, 2020). MIAs aim to infer whether a specific data point was included in the training dataset of a target model. A data point that was included is a *member*, and one that was not is a *non-member*. The inferred *training data membership* supports audits of privacy risk, assessments of copyright compliance, and broader AI safety evaluations (Liu et al., 2025). Numerous studies have advanced MIAs' performance and demonstrated their practical utility for auditing training data leakage across diverse models (Carlini et al., 2022; Zarifzadeh et al., 2024).

There is growing demand for verifiable evidence to substantiate claims of privacy leakage and copyright infringement, driven by AI regulations that continue to evolve and become more clearly defined (Voigt and Von dem Bussche, 2017). In response, the reliability of dominant MIA methodologies is receiving increased attention. To illustrate, suppose an *adversary* performs MIA on a query $(\mathbf{x}_q, \mathbf{y}_q)$ and infers training data membership. Is this evidence sufficient to conclude that $(\mathbf{x}_q, \mathbf{y}_q)$ was used to train the target model? Following Chowdhury et al. (2025), we pose the central question:

Can a model owner plausibly deny a membership inference claim in practice?

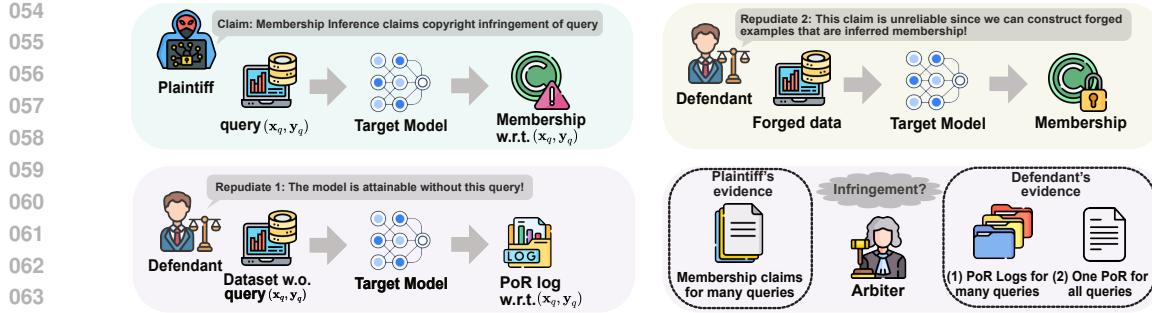


Figure 1: Court analogy comparing two repudiation strategies against a plaintiff’s copyright claim supported by MIAs applied to a query. Proof-of-Repudiation (PoR): the defendant provides a detailed training log showing that the target model can be obtained from a dataset without the queried sample; this process must be repeated for each queried claim. Proof of Forgeability (PoF, ours): the defendant shows that any non-member can be perturbed imperceptibly to produce a forged example that MIAs misclassify as a member. Unlike PoR, PoF serves as a once-for-all repudiation across queries.

An explicit repudiation would require disclosing the entire training dataset, which is infeasible in practice. An implicit approach is to present a *Proof-of-Repudiation* (PoR), which demonstrates that the target model is reproducible from an alternative dataset that excludes the query (x_q, y_q) . A verifiable PoR supports the counterclaim that (x_q, y_q) is *de facto* a non-member. This undermines the MIA inference and may deter the adversary from pursuing legal action. While a PoR suffices to raise reasonable doubt for a single claim, producing PoRs for every query incurs substantial computational overhead. These computational burdens motivate a further question:

*Can a model owner plausibly deny **all** membership inference claims with **an universal** repudiation?*

We propose to demonstrate that membership inference claims are forgeable by constructing non-members that MIAs would infer as members. We call this evidence *Proof-of-Forgeability* (PoF) and refer to the constructed non-members as *forged examples*. A PoF discredits the membership evidence by demonstrating that it can be replicated with *forged examples*, thereby enabling a universal repudiation of all membership claims. The comparison of these two repudiations in a court analogy is illustrated in Fig. 1.

To make PoF convincing, forged examples must satisfy three conditions: (1) they are excluded from the target model’s training set (i.e., non-members); (2) state-of-the-art (SOTA) MIAs typically infer them as members; and (3) they remain within the underlying data distribution of training data. We achieve this forgeability objective under the specified conditions by *adversarial example generation*. Specifically, we add carefully crafted perturbations to non-members so that SOTA MIAs *cannot* distinguish them from members. Notably, MIAs typically distinguish members from non-members based on the *attack signal* derived from target model outputs (Zhu et al., 2025). A common signal is the true label confidence (TLC), the predicted probability assigned to the ground-truth label (Carlini et al., 2022). Different MIAs apply distinct scoring functions and decision rules over such signals to classify a query as a member or a non-member (Zarifzadeh et al., 2024). Therefore, it suffices to fool these MIAs by matching the signal distribution of forged examples to that of members.

Matching signal distributions presents two challenges. First, under the assumption that members and non-members are sampled from the same underlying data distribution, there exists a per-example correspondence between the signal an example would produce as a member and as a non-member. Estimating this correspondence reduces to deriving, for each non-member, its corresponding member-like signal, which we call the member-like signal estimator (MLSE). We derive the MLSE using a quantile matching transformation and prove its optimality under this task. For the logit-scaled TLC, which is approximately Gaussian (Carlini et al., 2022), we further derive closed-form expressions for the MLSE. Second, the distribution matching is realized in signal space, whereas the perturbation used to construct forged examples operates in data space. To bridge this gap, we employ a first-order Taylor expansion of the signal with respect to the input to relate input perturbations to the induced changes in signal space. This relation yields closed-form perturbation

108 magnitudes based on the discrepancy between member-like and original signal for each non-member
 109 query.
 110

111 Empirically, we conduct extensive experiments to validate the properties of the forged examples
 112 across standard datasets, including CIFAR-10/100 and CINIC-10. First, we show that it is computa-
 113 tionally feasible to generate such forged examples with indistinguishability, such that SOTA MIAs
 114 cannot distinguish them from the genuine members. Second, we find that these forged examples are
 115 imperceptible relative to the original non-members, as evidenced by minor input changes and com-
 116 parable data utility. These findings motivate a reassessment of how current MIAs quantify privacy
 117 leakage in ML models and the development of robust MIAs that remain effective against forged
 118 examples.
 119

In summary, our contributions are summarized as follows:

- 120 • We introduce Proof of Forgeability (PoF), a single repudiation mechanism that applies to
 121 all membership inference claims (§3.1).
- 122 • We propose an algorithm for generating forged examples that is backed by rigorous theo-
 123 retical analysis and derivation. This elucidates why forged examples induce member-like
 124 attack signals and thus evade MIAs (§3.2 and §3.3).
- 125 • Extensive experiments across datasets, MIAs, and attack configurations demonstrate that
 126 the forged examples successfully evade SOTA MIAs, while differing imperceptibly from
 127 the original non-members in both input contents and data utility (§4.2).
 128

130 2 RELATED WORKS

132 2.1 MEMBERSHIP INFERENCE ATTACKS (MIAs)

133 MIAs (Shokri et al., 2017) aim to predict whether a data point was included in the training set of a
 134 target model. Adversaries typically rely on the target model’s outputs as *attack signal* to classify a
 135 query example as a member or a non-member (Zhu et al., 2025). Specifically, the attacker compares
 136 the query’s signal against the distributions of member and non-member signals and then decides
 137 membership accordingly (Carlini et al., 2022). Numerous studies have enhanced this framework by
 138 extracting more fine-grained information to characterize these two distributions. For instance, Ye
 139 et al. (2022) trains multiple reference models to simulate the signal distributions empirically. LiRA
 140 (Carlini et al., 2022) formalizes this framework as a likelihood ratio test and employs a parametric
 141 method to estimate the signal distributions. Building on these advances, Zarifzadeh et al. (2024)
 142 leverages both population data and reference models to improve attack power and robustness. De-
 143 spite their remarkable performance, these methods primarily model and compare attack-signal distri-
 144 butions. This raises a question: if one constructs a forged non-member dataset whose attack signals
 145 match those of members, would SOTA MIAs fail to provide reliable privacy auditing? In this work,
 146 we illustrate how to generate such data using adversarial example generation to evade MIAs.
 147

148 2.2 FORGEABILITY AND PROOF-OF-REPUDIATION

149 Forgeability (Thudi et al., 2022) was introduced in the context of machine unlearning (Bourtoule
 150 et al., 2021). Informally, two datasets are forgeable if training on either dataset obtains the same
 151 final weights, up to a small error. This obtainability is certified by a *Proof-of-Learning* (PoL) log (Jia
 152 et al., 2021), which records the training trajectory from initialization to the final weights, including
 153 the sequence of data points. The training rule refers to an update operator g that maps a checkpoint
 154 and the data used at that step to the next checkpoint. Given a PoL log, one can verify its validity by
 155 reproducing its computation. Specifically, a verifier reproduces the checkpoint at t using the items
 156 in the log, including the $(t - 1)$ -th checkpoint, data points used at step t , and the same update rule
 157 g . The verifier then computes the distance between the logged t -th checkpoint and the reproduced
 158 one in the parameter space. This distance is called the verification error, and the update at step t is
 159 acceptable if the verification error is below a prescribed threshold.

160 Proof-of-Repudiation (PoR) (Kong et al., 2023) is a special case of PoL that empowers the model
 161 owner to repudiate the membership claim. Given a target model and a claim that data point x^* is
 a member of its training dataset D , a valid PoR is essentially the PoL log that records a training

162 trajectory obtaining the same model from an alternative dataset D^- that excludes x^* . This provides
 163 verifiable evidence that the model could have been obtained without using x^* (Kong et al., 2022).
 164 Although a PoR log can repudiate the claim, generating and verifying such logs can be computa-
 165 tionally expensive. This motivates more efficient repudiation mechanisms.
 166

167 **2.3 ADVERSARIAL EXAMPLES**
 168

169 Adversarial examples (Szegedy et al., 2013) are minimally perturbed inputs that induce ML models
 170 to misclassify while they retain high accuracy on unperturbed data. One widely-used and efficient
 171 method to generate such examples is the fast gradient sign method (FGSM) (Goodfellow et al.,
 172 2014), which perturbs the input along the element-wise sign of the loss gradient under an L_∞ con-
 173 straint. Let $J(\cdot)$ denote the loss and let θ be the model weights. For an input-label pair (\mathbf{x}, \mathbf{y}) , define
 174 the gradient with respect to the input as $\mathbf{g} = \nabla_{\mathbf{x}}(J(\theta, \mathbf{x}, \mathbf{y}))$. The FGSM adversarial example is
 175

$$\mathbf{x}^{adv} = \mathbf{x} + \epsilon \cdot \text{sign}(\mathbf{g}), \quad (1)$$

176 where $\text{sign}(\cdot)$ is applied element-wise and ϵ is the L_∞ perturbation budget. Kurakin et al. (2016)
 177 refined FGSM to an iterative variant, I-FGSM, which improves attack success under the same budget
 178 and enforces valid input bounds. With step size α and T iterations, the update rule are
 179

$$\mathbf{x}_{t+1}^{adv} = \text{Proj}_{\mathcal{X}}^\epsilon \left(\text{clip}_{\mathcal{X}} \left(\mathbf{x}_t^{adv} + \alpha \cdot \text{sign}(\nabla_{\mathbf{x}} J(\theta, \mathbf{x}_t^{adv}, \mathbf{y})) \right) \right), \text{ for } i = 1, \dots, T-1, \quad (2)$$

180 where $\mathbf{x}_0^{adv} = \mathbf{x}$, $\text{Proj}_{\mathcal{X}}^\epsilon$ projects onto the L_∞ ball of radius ϵ centered at the original input \mathbf{x} , and
 181 $\text{clip}_{\mathcal{X}}$ enforces the valid input domain. A common choice of α is ϵ/T . Below, we follow this
 182 paradigm to generate forged examples, and the main challenge here is to estimate an appropriate
 183 perturbation budget of ϵ . After that, Later works extended this line of research in two main di-
 184 rections: optimization-based attacks (Lin et al., 2020; Dong et al., 2018) and augmentation-based
 185 attacks (Xie et al., 2019; Yun et al., 2024; Lin et al., 2020; Li et al., 2023; Wang et al., 2021).
 186

187 **3 CONSTRUCTION OF PROOF-OF-FORGEABILITY**
 188

189 **3.1 PROBLEM FORMULATION**
 190

191 Formally, let the target classifier be $f_{\theta_t} : \mathcal{X} \rightarrow \Delta^{K-1}$, parametrized by θ_t , and trained on dataset
 192 $D_M = \{(\mathbf{x}_i^M, \mathbf{y}_i^M)\}_{i=1}^{n^M}$. The dataset D_M consists of independent and identically distributed (i.i.d.)
 193 samples drawn from the underlying data distribution P_{data} over $\mathcal{X} \times \mathcal{Y}$. Here, \mathcal{X} denotes the input
 194 space and Δ^{K-1} is the probability simplex over K classes. Each ground-truth $\mathbf{y}_i \in \{0, 1\}^K$ is
 195 represented as a one-hot vector. We also define a non-member dataset $D_N = (\mathbf{x}_i^N, \mathbf{y}_i^N)_{i=1}^{n^N}$ consists
 196 of i.i.d. samples from the same distribution P_{data} , with $D_N \cap D_M = \emptyset$ to ensure that non-members
 197 are excluded from training set of f_{θ} . Define an attack signal function $s : \Delta^{K-1} \times \{1, \dots, K\} \rightarrow \mathcal{S}$,
 198 that maps the target model's predicted probability vector and the ground-truth label to a signal in the
 199 signal space \mathcal{S} used for membership inference. We consider s to be scalar-valued, since SOTA MIAs
 200 typically adopt scalar signals such as LOSS or the TLC and its variants. Suppose the underlying
 201 distribution of the attack signal over members and non-members is S^M and S^N , respectively. Let
 202 S^M and S^N denote the distribution of the attack signals for members and non-members. Using
 203 s , we form empirical signal samples for S^M and S^N as $\{s(f(\mathbf{x}_i^M), \mathbf{y}_i^M)\}_{i=1}^{n^M} = \{s_i^M\}_{i=1}^{n^M}$ and
 204 $\{s(f(\mathbf{x}_i^N), \mathbf{y}_i^N)\}_{i=1}^{n^N} = \{s_i^N\}_{i=1}^{n^N}$. These empirical samples approximate draws from S^M and S^N .
 205

206 PoF seeks to construct forged examples $\{\mathbf{x}_i^F, \mathbf{y}_i^F\}_{i=1}^{n^M}$ from non-member data $\{\mathbf{x}_i^N, \mathbf{y}_i^N\}_{i=1}^{n^M}$, using
 207 the adversarial example generation framework, such that the empirical distribution of the resulting
 208 attack signals matches that of members. Let S^F denote the distribution of the attack signal for
 209 forged examples. The empirical samples for S^F are $\{s(f_{\theta}(x_i^F), y_i^F)\}_{i=1}^{n^N} = \{s_i^F\}_{i=1}^{n^N}$. PoF aims to
 210 make S^F indistinguishable from S^M , the distribution of member signals, thereby inducing MIAs to
 211 misclassify forged examples as members. In this work, we illustrate how to generate such forged
 212 examples for scalar-valued signal functions. The overall pipeline is illustrated in Fig. 2.
 213

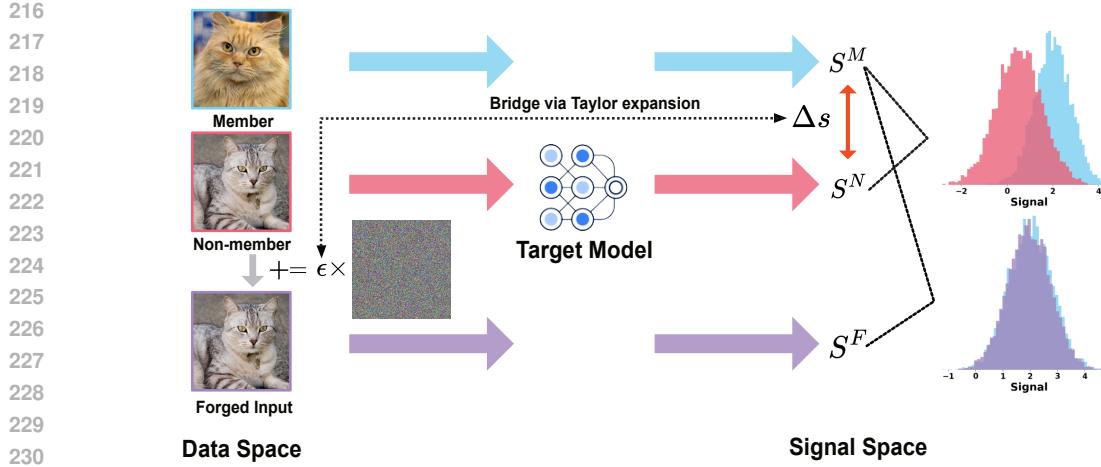


Figure 2: Overview of the Proof-of-Forgeability pipeline. Members and non-members enter the target model to obtain their signals S^M and S^N , respectively. We omit the labels here for the ease of presentation. A non-member is perturbed by a small, bounded change to create a forged example. Taylor expansion bridges data space and signal space and yields a proper perturbation that shifts S^N toward its estimated member-like counterpart. The signal distribution of forged examples S^F matches that of members, which fools MIAs operating on output signals to infer membership.

3.2 MEMBER-LIKE SIGNAL ESTIMATOR

Carlini et al. (2022) formulated membership inference as a likelihood-ratio test (LRT). Given a query example $(\mathbf{x}_q, \mathbf{y}_q)$ and a target model f_{θ_t} , the LRT statistics is

$$\Lambda(f_{\theta_t}; \mathbf{x}_q, \mathbf{y}_q) = \frac{p(\theta_t | \mathbb{Q}_{\text{in}}(\mathbf{x}_q, \mathbf{y}_q))}{p(\theta_t | \mathbb{Q}_{\text{out}}(\mathbf{x}_q, \mathbf{y}_q))}, \quad (3)$$

where for $b \in \{\text{in, out}\}$, $p(\theta_t | \mathbb{Q}_b(\mathbf{x}_q, \mathbf{y}_q))$ denotes the probability density of θ_t under the model-parameter distribution $\mathbb{Q}_b(\mathbf{x}_q, \mathbf{y}_q)$. For the remainder of the paper, we write \mathbb{Q}_b as shorthand for $\mathbb{Q}_b(\mathbf{x}_q, \mathbf{y}_q)$. Here, \mathbb{Q}_{in} and \mathbb{Q}_{out} are the distributions over model parameters induced by training on datasets that include, or exclude, the query example, respectively. Since \mathbb{Q}_{in} and \mathbb{Q}_{out} are analytically intractable and often inaccessible in the black-box setting, recent works typically employ low-dimensional surrogates, $\tilde{\mathbb{Q}}_{\text{in}}$ and $\tilde{\mathbb{Q}}_{\text{out}}$, that serve as proxies for the intractable parameter distributions. These surrogates are defined as distributions of attack signals computed at $(\mathbf{x}_q, \mathbf{y}_q)$ across models trained with, or without, the query example. The selected attack signal should correlate with the underlying parameters while remaining efficient to compute. Common choices include the loss value (Shokri et al., 2017) and variants of the TLC (Carlini et al., 2022; Zarifzadeh et al., 2024).

For each query $(\mathbf{x}_q, \mathbf{y}_q)$, the adversary compute the attack signal $s_q = s(f_{\theta}(\mathbf{x}_q), \mathbf{y}_q)$, and compare the likelihoods $p(s_q | \tilde{\mathbb{Q}}_{\text{in}})$ and $p(s_q | \tilde{\mathbb{Q}}_{\text{out}})$. Take TLC as an example, $p(s | \tilde{\mathbb{Q}}_{\text{in}})$ assigns high probability density on larger values than $p(s | \tilde{\mathbb{Q}}_{\text{out}})$ due to model overconfidence (Chen and Patrabiraman, 2023). Consequently, a non-member query tends to produce a smaller TLC signal and therefore has a higher likelihood under $\tilde{\mathbb{Q}}_{\text{out}}$. Our goal is to transform each such signal induced by a non-member query that is more consistent with $\tilde{\mathbb{Q}}_{\text{in}}$, namely, a value whose likelihood under $\tilde{\mathbb{Q}}_{\text{in}}$ exceeds its likelihood under $\tilde{\mathbb{Q}}_{\text{out}}$. This amounts to estimating, for each non-member query, the *member-like signal* that the query would have produced as if it had been included in training. To this end, we propose a unified *member-like signal estimator* (MLSE) that maps a non-member's signal to its corresponding member-like signal.

Note that both the member and non-member data of the target model are sampled from the same underlying data distribution P_{data} . Hence, the discrepancy between the signal distributions of members and non-members is attributable to the training process. This observation implies that any alignment should correct the training-induced shift rather than a data-distribution mismatch. We therefore posit that the optimal MLSE should align the distribution of the member-like signals with that of true member signals at minimal transport cost. To achieve this, we employ a *quantile match*-

270 *ing transformation*, where each non-member signal is paired with the member signal that shares the
 271 same percentile rank in its respective empirical distribution. Formally, let F_N and F_M represent the
 272 cumulative distribution functions (CDFs) of the non-member and member signal distributions, S^M
 273 and S^N , respectively. For a non-member signal s_i^N , the forged member-like signal is

$$274 \quad 275 \quad s_i^F = F_M^{-1}(F_N(s_i^N)), \quad (4)$$

276 where F_M^{-1} is the quantile function, i.e., the generalized inverse CDF. This establishes a correspondence
 277 between S^N and S^M that aligns their CDFs. Quantile matching is monotonic and avoids
 278 density estimation. As demonstrated in Lemma 3.1, this correspondence is the optimal transport solution
 279 in one dimension for any convex cost on the displacement. Therefore, the quantile matching
 280 transformation is theoretically optimal for the MLSE when signals are scalar-valued under common
 281 distance metrics. It is also stable and parameter-free. The proof of Lemma 3.1 is provided in
 282 App. B.2.

283 **Lemma 3.1** (Quantile matching is one-dimensional optimal transport). *Consider two atomless probability
 284 measures μ and ν on \mathbb{R} with strictly increasing CDFs F_μ and F_ν , and quantile functions
 285 $Q_\mu = F_\mu^{-1}$, $Q_\nu = F_\nu^{-1}$. The quantile matching map is $T(s) = Q_\nu(F_\mu(s)) = F_\nu^{-1} \circ F_\mu(s)$.*

286 *Then the map T is the unique optimal transport map that minimizes the expected cost
 287 $\mathbb{E}_{s \sim \mu}[c(s, T(s))]$ for any cost function $c(s_1, s_2) = h(s_2 - s_1)$, where $h : \mathbb{R} \rightarrow \mathbb{R}$ is strictly convex.*

289 Furthermore, we can reduce the computational cost of empirical estimation for certain attack signals.
 290 When using parametric methods for modeling \mathbb{Q}_{in} and \mathbb{Q}_{out} with fewer reference models, Carlini
 291 et al. (2022) adopts logit-scaled TLC, which empirically follows a normal distribution. For such
 292 signals with a parametric form, we can derive a closed-form expression for the MLSE. Theorem 3.2
 293 establishes this result for logit-scaled TLC, and the proof is provided in App. B.3.

294 **Theorem 3.2** (Closed-form for Gaussian-distributed Signal). *Assume the one-dimensional signals
 295 for members follow $S^M \sim \mathcal{N}(\mu_M, \sigma_M^2)$ and for non-members follow $S^N \sim \mathcal{N}(\mu_N, \sigma_N^2)$. Then for
 296 a non-member signal s_i^N , its member-like signal s_i^F via quantile matching is*

$$297 \quad 298 \quad s_i^F = \mu_M + \frac{\sigma_M}{\sigma_N}(s_i^N - \mu_N). \quad (5)$$

299 The target signal change Δs_i is

$$301 \quad 302 \quad \Delta s_i = s_i^F - s_i^N = (\mu_M - \mu_N) + \left(\frac{\sigma_M}{\sigma_N} - 1 \right) (s_i^N - \mu_N). \quad (6)$$

304 3.3 BRIDGE INPUT AND SIGNAL SPACE VIA TAYLOR EXPANSION

306 In the previous subsection, we justified the fraud to MIAs at the signal level and proposed estimating,
 307 for each non-member signal, a corresponding member-like signal. Building on this idea, we now
 308 construct forged examples from these estimated member-like signals. To substantiate the PoF, these
 309 forged examples must satisfy three conditions: (1) they are excluded from the target model’s training
 310 set and are therefore non-members, (2) SOTA MIAs typically infer them as members, and (3) they
 311 remain within the underlying data distribution P_{data} . Based on the analysis in §3.2, condition (2)
 312 holds if the signal distribution of the forged examples matches that of the members. Moreover,
 313 conditions (1) and (3) are satisfied when forged examples are produced by adding *imperceptible*
 314 perturbations to non-members. This construction preserves the non-membership of forged examples
 315 with respect to the fixed training set and keeps them within the support of the underlying data
 316 distribution P_{data} .

317 We instantiate the imperceptible perturbation using adversarial example generation methods. These
 318 methods add carefully designed perturbations to inputs along the steepest ascent direction of the loss
 319 function to induce model misclassifications. In this context, for a non-member query $(\mathbf{x}_q^N, \mathbf{y}_q^N)$, the
 320 forged input has the form of

$$321 \quad \mathbf{x}_q^F = \mathbf{x}_q + \epsilon_q \cdot \text{sign}(\mathbf{g}_q), \quad (7)$$

322 where $\epsilon_q \geq 0$ controls the perturbation magnitude, and $\mathbf{g}_q = \nabla_{\mathbf{x}}(s(f_{\theta_t}(\mathbf{x}_q), \mathbf{y}_q))$ is the gradient
 323 of the attack signal with respect to the input, evaluated at the target model f_{θ_t} . The sign operator
 is applied element-wise. The forged input, paired with the original non-member label, forms the

forged example $(\mathbf{x}_q^F, \mathbf{y}_q^N)$. For brevity, we present a single-step update and omit iterative refinements and projection to the valid input range. To satisfy condition (2), the signal distribution of the forged examples across all non-member queries must align with the members' signal distribution. As established in §3.2, this distribution is identical to the distribution of the member-like signals for non-members. Let s_q^N and s_q^F denote the original signal and the member-like signal for a non-member query $(\mathbf{x}_q, \mathbf{y}_q)$. We therefore choose an appropriate perturbation magnitude ϵ_q such that the forged example's signal equals its member-like signal, namely $s(f_{\theta_t}(\mathbf{x}_q^F), \mathbf{y}_q^N) = s_q^F$. This choice aligns the signal distribution of forged examples with that of the members and thereby satisfies condition (2).

While the move from the non-member signal s_q^N to the member-like signal s_q^F is defined in signal space, the perturbation used to construct forged examples operates in input space. We therefore require a bridge to link the desired signal change to the perturbation magnitude in input space. As stated in Lemma 3.3, a first-order Taylor expansion of the signal with respect to the input provides this bridge by relating small input perturbations to the induced change in the signal. This relation yields a closed-form expression for the perturbation magnitude as a function of the discrepancy between the member-like and original signal for each non-member query. The proof of Lemma 3.3 is provided in App. B.1.

Lemma 3.3 (Bridge Input and Signal Space via Taylor Expansion). *Let s be a differentiable scalar attack signal. For each non-member query $(\mathbf{x}_q, \mathbf{y}_q)$ with signal s_q^N , let s_q^M denote its member-like signal, and define the target signal change $\Delta s_q = s_q^M - s_q^N$. Let $\mathbf{g}_q = \nabla_{\mathbf{x}} s(f_{\theta_t}(\mathbf{x}_q^F), \mathbf{y}_q^N)$ be the gradient of the attack signal with respect to the input. Assume a perturbation $\delta_{\mathbf{x}} = \epsilon \cdot \text{sign}(\mathbf{g})$ along this gradient sign direction, where $\text{sign}(\cdot)$ denotes the element-wise sign function and $\epsilon_q > 0$ is the perturbation magnitude. Under the first-order Taylor approximation, the closed-form for ϵ_q is:*

$$\epsilon_q = \frac{\Delta s_q}{\|\mathbf{g}_q\|_1}, \quad (8)$$

where $\|\cdot\|_1$ denotes the l_1 norm.

In summary, we demonstrate how to construct eligible forged examples to constitute convincing Proof-of-Forgeability. Specifically, the model owner first samples non-members from the data distribution P_{data} , and estimates their member-like signals using MLSE. For each non-member query, the discrepancy between the member-like and original signal determines an appropriate perturbation magnitude. In implementation, we apply the I-FGSM Kurakin et al. (2016) with these magnitudes to the non-members, producing forged examples that typically evade SOTA MIAs. The pseudo-codes of PoF are shown in Alg. 1.

4 EXPERIMENTS

We conduct experiments to validate the following properties of the constructed forged examples.

Indistinguishability Forged examples cannot be distinguished from genuine members by SOTA MIAs across data augmentation settings and across different numbers of reference models.

Imperceptibility Forged examples differ minimally from their corresponding original non-member data, preserving the input contents and data utility.

4.1 EXPERIMENTAL SETUP

Datasets and implementations. We evaluate our methodology on three publicly accessible benchmarks: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and CINIC-10 (Darlow et al., 2018).

For a fair comparison, we employ Wide-ResNet (Zagoruyko and Komodakis, 2016) as the backbone across all datasets and adopt an identical training protocol following established conventions (Carlini et al., 2022; Zarifzadeh et al., 2024). This protocol fixes the optimizer, learning rate schedule, data augmentation, and regularization to match the baseline configuration. Across all datasets, we follow Carlini et al. (2022) to **randomly partition the training set into two disjoint, equal-sized halves**. One-half is used to train the target model, and these examples are treated as *members*. The other half is held out strictly for evaluation as *non-members*. This creates a 50/50 member versus non-member split drawn from the same underlying distribution.

378
 379 Table 1: Comparison of MIA performances on forged examples constructed using different guiding
 380 signals. We report AUC and TPR at FPRs of 0.01% and 0.0%. A lower TPR at low FPR indi-
 381 cates stronger indistinguishability, and an AUC near 50% corresponds to chance and thus indicates
 382 successful forgeability. N/A* denotes evaluation on the original non-members. The LiRA- and
 383 RMIA-based guiding signals are variants of TLC and are detailed in App. C.3.

384 Guiding Signal	385 Attack	386 CIFAR-10			387 CIFAR-100			388 CINIC-10		
		389 AUC	390 TPR@FPR	391 0.01% 0.0%	392 AUC	393 TPR@FPR	394 0.01% 0.0%	395 AUC	396 TPR@FPR	397 0.01% 0.0%
398 N/A*	399 Attack-R	64.63	1.84	0.49	83.41	4.49	3.77	73.24	1.97	1.29
	400 Online LiRA	72.42	3.90	3.01	91.52	13.23	3.83	82.23	6.78	3.51
	401 Offline LiRA	55.63	1.17	0.61	76.11	1.92	0.99	63.49	1.11	0.95
	402 Online RMIA	72.08	5.60	2.60	90.84	8.12	6.34	82.51	8.63	4.43
	403 Offline RMIA	71.50	5.35	3.61	90.62	9.54	7.96	82.17	7.16	5.43
404 LiRA-based	405 Attack-R	47.33	0.21	0.14	49.21	0.14	0.04	46.03	0.14	0.10
	406 Online LiRA	49.22	0.65	0.35	49.97	0.87	0.60	46.47	0.22	0.10
	407 Offline LiRA	52.57	0.67	0.35	50.22	0.76	0.30	50.25	0.25	0.13
	408 Online RMIA	48.13	0.41	0.0	50.55	0.00	0.00	47.39	0.00	0.00
	409 Offline RMIA	45.76	0.64	0.44	49.40	0.18	0.16	44.42	0.17	0.16
410 RMIA-based	411 Attack-R	46.75	0.32	0.02	48.23	0.00	0.00	47.59	0.00	0.00
	412 Online LiRA	51.76	0.83	0.55	52.33	0.60	0.32	49.28	0.24	0.14
	413 Offline LiRA	53.62	0.66	0.57	48.98	0.00	0.00	52.71	0.11	0.04
	414 Online RMIA	48.65	0.00	0.00	47.68	0.00	0.00	48.32	0.00	0.00
	415 Offline RMIA	46.39	0.93	0.30	49.16	0.10	0.04	46.52	0.14	0.00

416 **MIA Baselines.** We consider three SOTA MIAs as baselines: Attack-R (Ye et al., 2022), LiRA
 417 (online and offline)(Carlini et al., 2022), and RMIA (online and offline) (Zarifzadeh et al., 2024).
 418 For the reference models used by these baselines, we employ the same Wide-ResNet backbone and
 419 training protocol, and resample 50/50 member versus nonmember splits consistent with the target-
 420 model setting. This design ensures that, for each query point, it appears in the training set of half
 421 of the reference models and is excluded from the training set of the other half. For each baseline,
 422 we apply the same set of data augmentations as in RMIA (Zarifzadeh et al., 2024) to enhance attack
 423 power.

424 **Evaluation metrics.** We evaluate forged examples along two aspects. First, we assess whether
 425 forged examples evade MIAs. We report standard MIA metrics: the area under the receiver operating
 426 characteristic curve (AUC score), and the true positive rate (TPR) at extremely low false positive
 427 rates (FPRs). Specifically, we evaluate at FPRs of 0.01% and 0.0%. We deem forgeability successful
 428 when MIAs cannot distinguish forged examples from genuine members. Second, to quantify the
 429 discrepancy between forged and unperturbed data, we compute the ℓ_∞ norm between each forged
 430 example and its counterpart and the average change in accuracy across all reference models when
 431 evaluated before and after perturbation. These measures capture the impact of the perturbation on
 432 data utility.

433 4.2 MAIN RESULTS

434 **Assessment of Indistinguishability** To comprehensively assess indistinguishability, we compare
 435 MIA performance across three cohorts: normal non-members, forged examples constructed based on
 436 LiRA signals, and forged examples constructed based on RMIA signals. The results in Tab. 1 show
 437 that when forged examples replace non-members in the evaluation set, MIA performance becomes
 438 insensitive to the *guiding signal*. Across attacks, the metrics drop to near random guessing, with
 439 an average AUC of 48.83%, regardless of whether the forged examples are constructed using LiRA
 440 or RMIA signals. For instance, when evaluating on normal non-members, strong online MIAs,
 441 specifically online RMIA and online LiRA, achieve a high attack success rate on CIFAR-100 with
 442 an average AUC of 91.18% and a TPR at 0.01% FPR of 10.68%. While evaluating on forged
 443 examples, the AUC consistently drops to approximately 50% and TPR decreases by a factor of 11.8,
 444 effectively neutralizing the adversary’s advantage. The same pattern holds for offline MIAs. Using
 445 forged examples lowers AUC to chance and reduces TPR at extremely low FPRs to negligible levels.

432 Table 2: Effect of the number of data augmentations used by online LiRA on MIA performances
 433 against forged examples on CIFAR-10.

435 Metric	# of Data Augmentations							
	2	4	6	8	10	14	16	18
AUC	50.10	50.08	50.14	50.17	49.97	49.35	49.23	49.22
TPR@0.01% FPR	0.44	0.47	0.40	0.42	0.51	0.65	0.67	0.65
TPR@0.0% FPR	0.20	0.22	0.28	0.28	0.40	0.44	0.39	0.35

441 Table 3: Effect of the number of reference models used by online LiRA on MIA performances
 442 against forged examples on CIFAR-10.

445 Metric	# of Reference Models				
	2	64	128	192	254
AUC	51.45	49.74	49.38	49.32	49.22
TPR@0.01% FPR	0.17	0.43	0.66	0.63	0.65
TPR@0.0% FPR	0.03	0.21	0.28	0.33	0.35

451 We ablate the number of data augmentations (Tab. 2) and the number of reference models (Tab. 3)
 452 to evaluate the indistinguishability of forged examples under different MIA configurations. As il-
 453 lustrated in Tab. 2, the AUC remains near 50%, and TPR at FPRs of 0.01% and 0% is always below
 454 0.7% and 0.05%, respectively, regardless of the number of augmentations used by the MIA. Like-
 455 wise, Tab. 3 shows a consistent near-50% AUC and negligible TPR at these low FPRs when varying
 456 the number of reference models from 2 to 254. Overall, the indistinguishability of forged exam-
 457 ples is insensitive to the MIA configurations. Additional ablation studies demonstrating that forged
 458 examples can mislead MIAs even when compared against other non-members are in App. D.

459
 460 **Assessment of Imperceptibility** We assess the imperceptibility from the aspects of input contents
 461 and data utility, which are measured by ℓ_∞ -norm distance between the original and forged input,
 462 and the average accuracy of reference models when evaluated on forged examples, respectively. As
 463 shown in Tab. 4, the input difference is negligible, with ℓ_∞ -norm close to zero (e.g., ≤ 0.007).
 464 Moreover, the average accuracy of reference models on forged examples matches that on original
 465 non-members, which indicates that forged examples preserve utility.

466 Table 4: Per-dataset ℓ_∞ -norm difference between original data and forged data, and corresponding
 467 accuracy compared to original data. For Accuracy, the value in parentheses indicates the difference
 468 relative to the accuracy on original data (%).

470 PoF signal	471 CIFAR-10		472 CIFAR-100		473 CINIC-10	
	474 ℓ_∞ -norm	475 Accuracy	476 ℓ_∞ -norm	477 Accuracy	478 ℓ_∞ -norm	479 Accuracy
LiRA-based	0.0012	98.94(+2.93)	0.0035	90.45(+6.96)	0.0025	94.20(+5.59)
RMIA-based	0.0018	98.80(+2.79)	0.0070	89.37(+5.88)	0.0042	94.03(+5.42)

475 5 CONCLUSION

478 This work introduces Proof-of-Forgeability (PoF) as a practical repudiation against membership in-
 479 ference claims. Instead of disclosing the training set or producing time-consuming per-claim Proof-
 480 of-Repudiation logs, PoF shows that the MIA-based claims are forgeable by constructing forged
 481 examples that MIAs would misclassify as members. This undermines the validity of MIA and en-
 482 ables an universal repudiation against all membership inference claims. We present a systematic
 483 procedure for forging from non-member queries via imperceptible noise. For each query, MLSE
 484 infers the member-like signal. We then determine the perturbation magnitude using a first-order
 485 Taylor expansion and adjust the corresponding adjustment to the input. The resulting forged exam-
 486 ples consistently fool MIAs while remaining imperceptibly close to the original non-members.

486 6 ETHICS STATEMENT**487**
488 Our study investigates the generation of forged examples to evade MIAs and hence discredits mem-
489 bership inference claims produced by these attacks. These findings motivate a reassessment of how
490 current MIAs quantify privacy leakage and call for robust MIAs that remain effective against forged
491 examples.**492** We acknowledge that PoF could be harmful if misused. To mitigate this risk, our work is framed
493 as an academic study of reliability in membership inference attacks and emphasizes responsible
494 communication of findings. The analysis and results are intended solely for scientific research, with
495 an emphasis on transparency and reproducibility.
496**497 7 REPRODUCIBILITY STATEMENT****498**
499 We provide the pseudo-code for generating forged examples in App. A and describe experimental
500 setups in §4.1 and App. C. To support reproducibility, we release our implementation in the follow-
501 ing anonymized repository: <https://anonymous.4open.science/r/348079E324098F428C/>
502**503**
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient flows: in metric spaces and in the*
543 *space of probability measures*. Springer, 2005.

544 Kunal Banerjee, Vishak Prasad C., Rishi Raj Gupta, Karthik Vyas, Anushree H., and Biswa-
545 jit Mishra. Exploring alternatives to softmax function. In *Proceedings of the 2nd Interna-*
546 *tional Conference on Deep Learning Theory and Applications, DeLTA 2021, Online Streaming,*
547 *July 7-9, 2021*, pages 81–86. SCITEPRESS, 2021. doi: 10.5220/0010502000810086. URL
548 <https://doi.org/10.5220/0010502000810086>.

549 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
550 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE*
551 *symposium on security and privacy (SP)*, pages 141–159. IEEE, 2021.

552 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
553 bership inference attacks from first principles. In *2022 IEEE symposium on security and privacy*
554 *(SP)*, pages 1897–1914. IEEE, 2022.

555 Zitao Chen and Karthik Patabiraman. Overconfidence is a dangerous thing: Mitigating membership
556 inference attacks by enforcing less confident prediction. *arXiv preprint arXiv:2307.01610*, 2023.

557 Amrita Roy Chowdhury, Zhifeng Kong, and Kamalika Chaudhuri. On the reliability of member-
558 ship inference attacks. In *2025 IEEE Conference on Secure and Trustworthy Machine Learning*
559 *(SatML)*, pages 534–549. IEEE, 2025.

560 Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
561 or cifar-10. *arXiv preprint arXiv:1810.03505*, 2018.

562 Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
563 ing adversarial attacks with momentum. In *Proceedings of the IEEE conference on computer*
564 *vision and pattern recognition*, pages 9185–9193, 2018.

565 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
566 examples. *arXiv preprint arXiv:1412.6572*, 2014.

567 Ludivia Hernandez Aros, Luisa Ximena Bustamante Molano, Fernando Gutierrez-Portela, John Jo-
568 hver Moreno Hernandez, and Mario Samuel Rodríguez Barrero. Financial fraud detection through
569 the application of machine learning techniques: a literature review. *Humanities and Social Sci-*
570 *ences Communications*, 11(1):1–22, 2024.

571 Hengrui Jia, Mohammad Yaghini, Christopher A Choquette-Choo, Natalie Dullerud, Anvith Thudi,
572 Varun Chandrasekaran, and Nicolas Papernot. Proof-of-learning: Definitions and practice. In
573 *2021 IEEE Symposium on Security and Privacy (SP)*, pages 1039–1056. IEEE, 2021.

574 Zhifeng Kong, Amrita Roy Chowdhury, and Kamalika Chaudhuri. Forgeability and membership
575 inference attacks. In *Proceedings of the 15th ACM Workshop on Artificial Intelligence and Secu-*
576 *rity, AISec’22*, page 25–31, New York, NY, USA, 2022. Association for Computing Machinery.
577 ISBN 9781450398800. doi: 10.1145/3560830.3563731.

578 Zhifeng Kong, Amrita Roy Chowdhury, and Kamalika Chaudhuri. Can membership inferencing be
579 refuted? *arXiv preprint arXiv:2303.03648*, 2023.

580 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-
581 ages.(2009), 2009.

582 Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
583 *arXiv preprint arXiv:1607.02533*, 2016.

584 Qizhang Li, Yiwen Guo, Wangmeng Zuo, and Hao Chen. Towards evaluating transfer-based attacks
585 systematically, practically, and fairly. *Advances in Neural Information Processing Systems*, 36:
586 41707–41726, 2023.

594 Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E. Hopcroft. Nesterov accelerated
 595 gradient and scale invariance for adversarial attacks. In *ICLR*, 2020.
 596

597 Ken Ziyu Liu, Christopher A Choquette-Choo, Matthew Jagielski, Peter Kairouz, Sanmi Koyejo,
 598 Percy Liang, and Nicolas Papernot. Language models may verbatim complete text they were not
 599 explicitly trained on. *arXiv preprint arXiv:2503.17514*, 2025.

600 Sasi Kumar Murakonda and Reza Shokri. MI privacy meter: Aiding regulatory compliance by
 601 quantifying the privacy risks of machine learning. *arXiv preprint arXiv:2007.09339*, 2020.
 602

603 Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. Towards the science of
 604 security and privacy in machine learning. *arXiv preprint arXiv:1611.03814*, 2016.

605 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 606 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 607 pages 3–18. IEEE, 2017.

608 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 609 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.
 610

611 Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable
 612 algorithmic definitions for machine unlearning. In *31st USENIX security symposium (USENIX
 613 Security 22)*, pages 4007–4022, 2022.

614 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2008.
 615

616 Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). *A practical
 617 guide, 1st ed.*, Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

618 Xiaosen Wang, Xuanran He, Jingdong Wang, and Kun He. Admix: Enhancing the transferability
 619 of adversarial attacks. In *Proceedings of the IEEE/CVF international conference on computer
 620 vision*, pages 16158–16167, 2021.

621 Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille.
 622 Improving transferability of adversarial examples with input diversity. In *Proceedings of the
 623 IEEE/CVF conference on computer vision and pattern recognition*, pages 2730–2739, 2019.

624 Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. En-
 625 hanced membership inference attacks against machine learning models. In *Proceedings of the
 626 2022 ACM SIGSAC conference on computer and communications security*, pages 3093–3106,
 627 2022.

628 Zebin Yun, Achi-Or Weingarten, Eyal Ronen, and Mahmood Sharif. The ultimate combo: Boosting
 629 adversarial example transferability by composing data augmentations. In *Proceedings of the 2024
 630 Workshop on Artificial Intelligence and Security*, pages 113–124, 2024.

631 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint
 632 arXiv:1605.07146*, 2016.

633 Sajjad Zarifzadeh, Philippe Liu, and Reza Shokri. Low-cost high-power membership inference
 634 attacks. In *Proceedings of the 41st International Conference on Machine Learning*, 2024.

635 Angela Zhang, Lei Xing, James Zou, and Joseph C Wu. Shifting machine learning for healthcare
 636 from development to deployment and from models to data. *Nature biomedical engineering*, 6
 637 (12):1330–1345, 2022.

638 Meiyi Zhu, Caili Guo, Chunyan Feng, and Osvaldo Simeone. On the impact of uncertainty and
 639 calibration on likelihood-ratio membership inference attacks. *IEEE Transactions on Information
 640 Forensics and Security*, 2025.

641

642

643

644

645

646

647

648 A PSEUDO-CODE FOR FORGED DATA GENERATION
649

650 In this section, We present the pseudo-code of forged data generation used in PoF. This algorithm
651 bridges signal space and data space, ensuring that non-member examples are perturbed just enough
652 to align their attack signals with the member distribution. Alg. 1 outlines the pseudo-code. The input
653 to this algorithm includes the target model f_θ , a target data point (\mathbf{x}, \mathbf{y}) , member and non-member
654 datasets $(D_{\text{mem}}, D_{\text{non}})$, the iteration budget T , a perturbation bound ϵ , and a scalar signal function
655 $J(\cdot)$ (e.g., true-label confidence). We first compute attack signals on both D_{mem} and D_{non} under
656 f_θ and construct a MLSE $s^F = F_M^{-1}(F_N(s))$ to obtain the member-like target s^F . To map the
657 desired signal shift to the input domain, we approximate the perturbation scale via a first-order
658 Taylor expansion, and perform projected sign of gradient updates within the ℓ_∞ ball of radius ϵ . The
659 procedure stops when the forged signal reaches s^F or when T steps are exhausted.

660
661 **Algorithm 1** Forged Data Generation

662 **Require:** Target data point (\mathbf{x}, \mathbf{y}) ; target model f_θ ; member set D_{mem} , non-member set D_{non} ; iter-
663 ations T ; norm bound ϵ ; signal function $J(\cdot)$; method $D(\cdot)$ producing m augmented samples;
664 quantile functions $F(\cdot)$

665 **Ensure:** Forged example $\hat{\mathbf{x}}$

666 1: **Compute signal distribution on the target model:**

$$667 \quad S^M = \{ J(f_\theta(\mathbf{x}^M), \mathbf{y}^M) \mid (\mathbf{x}^M, \mathbf{y}^M) \in D_{\text{mem}} \} \\ 668 \quad S^N = \{ J(f_\theta(\mathbf{x}^N), \mathbf{y}^N) \mid (\mathbf{x}^N, \mathbf{y}^N) \in D_{\text{non}} \}$$

669 2: $s^F = F_M^{-1}(F_N(s))$ ▷ quantile matching for Eq. 4

670 3: $\hat{\mathbf{x}}_0 = \mathbf{x}$, $s_0 = J(f_\theta(\hat{\mathbf{x}}_0), \mathbf{y})$

$$671 \quad s_0 - s^F$$

$$672 \quad 4: \eta = \frac{s_0 - s^F}{\|\nabla_{\mathbf{x}} J(f_\theta(\hat{\mathbf{x}}_0), \mathbf{y})\|_1}$$

673 5: **for** $t = 0$ to $T - 1$ **do**

$$674 \quad 6: \quad g_t = \frac{1}{m} \sum_{i=0}^{m-1} \nabla_{\mathbf{x}} J(f_\theta(D(\hat{\mathbf{x}}_t)_i), \mathbf{y})$$

$$675 \quad 7: \quad \hat{\mathbf{x}}_{t+1} = \text{Proj}_{\mathbf{x}}^{\epsilon}(\hat{\mathbf{x}}_t + \eta \cdot \text{sign}(g_t))$$

$$676 \quad 8: \quad s_{t+1} = J(f_\theta(\hat{\mathbf{x}}_{t+1}), \mathbf{y})$$

677 9: **if** $s_{t+1} > s^F$ **then**

678 10: **break**

679 11: **end if**

680 12: **end for**

681 13: **return** $\hat{\mathbf{x}} = \hat{\mathbf{x}}_{t+1}$

682
683 B PROOF DETAILS

684 B.1 PROOF OF LEMMA 3.3

685 *Proof.* The first-order Taylor expansion of s around \mathbf{x} for a small perturbation $\delta_{\mathbf{x}}$ is:

$$686 \quad s(\mathbf{x} + \delta_{\mathbf{x}}) \approx s(\mathbf{x}) + \mathbf{g}^T \delta_{\mathbf{x}} + \mathcal{O}(\|\delta_{\mathbf{x}}\|^2), \quad (9)$$

687 where the higher-order terms can be neglected for a small scale of ϵ . Therefore, for the target signal
688 change of $\Delta s = s(\mathbf{x} + \delta_{\mathbf{x}}) - s(\mathbf{x})$, we have:

$$689 \quad \Delta s \approx \mathbf{g}^T \delta_{\mathbf{x}}. \quad (10)$$

690 Choosing the direction $\delta_{\mathbf{x}} = \epsilon \text{ sign}(\mathbf{g})$ aligns with the fast gradient sign method for efficient pertur-
691 bation, maximizing the change under L_1 constraints:

$$692 \quad \mathbf{g}^T \delta_{\mathbf{x}} = \mathbf{g}^T (\epsilon \text{ sign}(\mathbf{g})) = \epsilon (|\mathbf{g}|^\top \cdot \mathbf{1}) = \epsilon \|\mathbf{g}\|_1, \quad (11)$$

693 since $\mathbf{g}_i \times \text{sign}(\mathbf{g}_i) = |\mathbf{g}_i|$. Solving for ϵ :

$$694 \quad \epsilon = \frac{\Delta s}{\|\mathbf{g}\|_1}. \quad (12)$$

695 □

702 B.2 PROOF OF LEMMA 3.1
703

704 *Proof.* We prove this in three steps: (1) pushforward, (2) Monotonicity and μ -almost everywhere
705 uniqueness, and (3) optimality among all measure-preserving maps via cyclical monotonicity and
706 the rearrangement inequality.

707 **Step 1.** Let $U \sim \text{Uniform}[0, 1]$. Then $Q_\mu(U) \sim \mu$ and $Q_\nu(U) \sim \nu$. By construction,
708

$$709 \quad T(Q_\mu(U)) = Q_\nu(F_\mu(Q_\mu(U))) = Q_\nu(U), \quad (13)$$

710 so $T(Q_\mu(U)) \sim \nu$. Hence T pushes μ forward to ν , denoted by $T_\# \mu = \nu$.

712 **Step 2.** Both F_μ and Q_ν are non-decreasing; hence $T = Q_\nu \circ F_\mu$ is also non-decreasing.
713

714 Let $T' : \mathbb{R} \rightarrow \mathbb{R}$ be any non-decreasing map with $T'_\# \mu = \nu$. Fix a continuity point $u \in (0, 1)$ of Q_ν
715 and set $s_u := Q_\mu(u)$. Then

$$716 \quad \nu((-\infty, T'(s_u)]) = \mu(\{s : T'(s) \leq T'(s_u)\}) \geq \mu((-\infty, s_u]) = u, \quad (14)$$

718 so $T'(s_u) \geq Q_\nu(u)$. Repeating with $u' < u$ and using monotonicity gives $T'(s_u) \leq Q_\nu(u)$.
719 Hence $T'(s_u) = Q_\nu(u)$. Since the continuity points of Q_ν have full Lebesgue measure in $(0, 1)$ and
720 $u = F_\mu(s)$ holds for μ -a.e. s , we conclude $T'(s) = Q_\nu(F_\mu(s)) = T(s)$ for μ -a.e. s .

721 **Step 3.** The fundamental theorem of optimal transport (see Theorem 1.13 of Ambrosio et al. (2005))
722 claims that a transport plan γ is optimal if and only if its support is c -cyclically monotone, where
723 $c(s_1, s_2) = h(s_2 - s_1)$. A set $\Gamma \subseteq \mathbb{R} \times \mathbb{R}$ is c -cyclically monotone if, for any finite sequence
724 $\{(s_i, t_i)\}_{i=1}^N \subseteq \Gamma$, the inequality

$$726 \quad \sum_{i=1}^N c(s_i, t_i) \leq \sum_{i=1}^N c(s_i, t_{\sigma(i)}), \quad (15)$$

728 holds for all permutations σ of $\{1, \dots, N\}$.

729 For $N = 2$, this reduces to $c(s_1, t_1) + c(s_2, t_2) \leq c(s_1, t_2) + c(s_2, t_1)$. Assume by contradiction
730 that an optimal plan has a crossing in its support: $s_1 < s_2$ but $t_1 > t_2$. Let $\delta = s_2 - s_1 > 0$,
731 $a = t_1 - s_1$, $b = t_2 - s_2$. The inequality becomes $h(a) + h(b) \leq h(a + \delta) + h(b - \delta)$. Set
732 $k = \delta/(a - b)$ (assuming $a > b$ for the crossing; otherwise swap). If $k \in (0, 1)$, strict convexity of
733 h implies $h(a + \delta) + h(b - \delta) < h(a) + h(b)$, contradicting the \leq . Thus, optimal supports must be
734 graph-monotone (non-crossing).

735 Given strictly increasing CDFs, the measures have no atoms and are continuous, so the monotone
736 transport plan is unique and induced by T . Since an optimal plan exists and must be monotone, it
737 coincides with the plan from T , making T optimal. Complementarily, the rearrangement inequality
738 asserts that for non-decreasing sequences, the minimal cost for convex h is achieved by sorted
739 (monotone) pairings, equivalent to quantile matching (see Theorem 2.12 of Villani et al. (2008)).
740 For quadratic cost, T explicitly minimizes the Wasserstein-2 distance.

741 \square 744 B.3 PROOF OF THOREM 3.2
745

746 *Proof.* This derivation relies on the properties of the normal distribution and quantile matching,
747 which aligns the CDFs of two distributions to make them identical.

748 Note that the CDF of a normal distribution $\mathcal{N}(\mu, \sigma^2)$ is $F(s) = \Phi\left(\frac{s-\mu}{\sigma}\right)$, where Φ is the CDF of
749 the standard normal distribution $\mathcal{N}(0, 1)$. The quantile function (i.e., inverse CDF) for $\mathcal{N}(\mu, \sigma^2)$ is
750

$$751 \quad F^{-1}(u) = \mu + \sigma \Phi^{-1}(u), \quad u \in (0, 1). \quad (16)$$

752 Suppose that F_M, F_N are CDFs for the $S_M \sim \mathcal{N}(\mu_M, \sigma_M^2), S_N \sim \mathcal{N}(\mu_N, \sigma_N^2)$. The quantile
753 matching defines the transformation by $T(\cdot) = F_M^{-1}(F_N(\cdot))$, which pushes the non-member dis-
754 tribution S_N to the member distribution S_M , ensuring $T(S_N) := S_F \stackrel{d}{\sim} S_M$. Substituting the
755

756 expressions gives:

$$758 \quad F_N(s_i^N) = \Phi\left(\frac{s_i^N - \mu_N}{\sigma_N}\right), \quad (17)$$

$$760 \quad 761 \quad T(s_i^N) = F_M^{-1}\left(\Phi\left(\frac{s_i^N - \mu_N}{\sigma_N}\right)\right) = \mu_M + \sigma_M \Phi^{-1}\left(\Phi\left(\frac{s_i^N - \mu_N}{\sigma_N}\right)\right). \quad (18)$$

763 Since $\Phi^{-1} \circ \Phi(z) = z$ for $z \in \mathbb{R}$, we have $\Phi^{-1}\left(\Phi\left(\frac{s_i^N - \mu_N}{\sigma_N}\right)\right) = \frac{s_i^N - \mu_N}{\sigma_N}$. Thus, Equations 18
764 simplifies to

$$766 \quad 767 \quad T(s_i^N) := s_i^F = \mu_M + \sigma_M \cdot \frac{s_i^N - \mu_N}{\sigma_N} = \mu_M + \frac{\sigma_M}{\sigma_N} (s_i^N - \mu_N). \quad (19)$$

768 This is an affine transformation, which preserves the Gaussian nature of the distribution S_F .

769 The target signal change is

$$771 \quad \Delta s_i = s_i^F - s_i^N = \left(\mu_M + \frac{\sigma_M}{\sigma_N} (s_i^N - \mu_N)\right) - s_i^N = \mu_M - \mu_N + \frac{\sigma_M}{\sigma_N} (s_i^N - \mu_N) - (s_i^N - \mu_N). \quad (20)$$

773 Rearranging terms:

$$774 \quad 775 \quad \Delta s_i = (\mu_M - \mu_N) + \left(\frac{\sigma_M}{\sigma_N} - 1\right) (s_i^N - \mu_N). \quad (21)$$

776 \square

778 C DETAILED EXPERIMENTAL SETUP

780 In this subsection, we provide a detailed introduction of experimental settings.

782 C.1 MIA SETUP

784 for each MIA method, we use their default hyperparameters and the implementation from RMIA
785 repository. For RMIA, the γ is set to 1 for CIFAR-100 and 2 for other dataset. The soft-margin m
786 and the order n in Taylor-based functions are 0.6 and 4, respectively across all datasets.

788 C.2 QUANTILE MATCHING SETUP

789 ML models trained on the similar data usually share similar decision boundaries in input space.
790 These boundaries are locally sensitive, such that even the small can move inputs across them for
791 multiple models simultaneously, enabling the well-known phenomenon of adversarial transferability
792 (Szegedy et al., 2013). However, the transferability is inherently imperfect since models rarely
793 share identical decision boundaries due to the model specificity (e.g., initialization, architecture).
794 As a result, exact quantile matching performed on the target model may not perfectly align with the
795 distributions observed on reference models. To address this mismatch, we introduce an *excessive ratio* κ ,
796 which slightly increases the mapped quantile position of each non-member signal. Intuitively,
797 κ controls a small upward shift in the quantile mapping, ensuring that forged signals are pushed
798 slightly further toward the member distribution, thereby improving robustness to slightly misaligned
799 decision boundaries between the target model and reference models. Formally, for a non-member
800 signal s_i^N , the forged member-like signal transformed from Eq. 4 into the refined formulation:

$$801 \quad s_i^F = F_M^{-1}\left(\min\{F_N(s_i^N) + \kappa, 1\}\right). \quad (22)$$

802 The clipping at 1 ensures that the shifted quantile remains valid. The values of κ used in our experiments
803 are summarized in Tab. 5.

805 C.3 GUIDING SIGNALS DESCRIPTION

807 Our proposed PoF framework generates forged examples by explicitly aligning attack signals used
808 in SOTA MIAs. In particular, we instantiate it primarily using both *LiRA-based* and *LiRA-based*
809 signals. Other type of signals may provide even stronger performance for generating forged examples.
we leave signal exploration for future work.

810
811
812 Table 5: optimal excessive ratio κ for each dataset and each aligned signal.
813
814
815
816

Dataset	LiRA-based Signal	RMIA-based Signal
CIFAR-10	1.5%	3%
CIFAR-100	0.75%	3%
CINIC-10	0.75%	1.5%

817
818 Table 6: Results on CIFAR-10 under different scenarios. We report AUC and TPR at two extremely
819 low FPR levels (0.01% and 0.0%).
820

Scenario	Attack	AUC	TPR@FPR	
			0.01%	0.0%
Original non-members v.s. Other non-members	Online LiRA	50.55	0.06	0.06
	Online RMIA	50.22	0.01	0.0
Forged examples v.s. Other non-members	Online LiRA	73.38	1.28	1.09
	Online RMIA	73.47	0.60	0.14

821
822
823
824
825
826
827
828
829
830 **LiRA-based Guiding Signal.** Following Carlini et al. (2022), we adopt TLC as the guiding signal.
831 For each query (x, y) , the TLC is defined as the model f_{θ_t} 's logit for the ground-truth class, $p =$
832 $f_{\theta_t(x), y}$. We further apply logit scaling, $\phi(p) = \log \frac{p}{1-p}$. Hence, guiding signal function becomes
833 $s(f_{\theta_t}(x), y) = \phi(p)$.
834

835 **RMIA-based Guiding Signal.** We also adopt the Soft-Margin-Taylor-Softmax signal (Banerjee
836 et al., 2021) used in RMIA as the guiding signal. Specifically, let g_i denote the logit for class i and T
837 controls temperature. Define $c_i = g_i/T$ and the n -th order Taylor approximation of the exponential
838 by

$$839 \quad \text{apx}(a) = \sum_{k=0}^n \frac{a^k}{k!}. \quad (23)$$

$$840$$

$$841$$

842 With a soft-margin hyperparameter $m \geq 0$ applied to the true class only, the guiding signal function
843 for a sample (x, y) under model θ_t is
844

$$845 \quad s(f_{\theta_t}(x), y) = \frac{\text{apx}(c_y - m)}{\text{apx}(c_y - m) + \sum_{i \neq y} \text{apx}(c_i)}. \quad (24)$$

$$846$$

$$847$$

848 D ADDITIONAL RESULTS

$$849$$

$$850$$

851 We examine whether forged examples can be distinguished from other non-members. Here, the
852 forged examples are generated by adding adversarial noise to the original non-members. This design
853 enables a direct comparison between non-members and forged examples, highlighting how forged
854 examples can still be misclassified as members by MIAs, though they are not part of training. As
855 shown in Tab. 6, when comparing original non-members against other non-members, MIAs perform
856 no better than random guessing (e.g., AUC $\approx 50\%$). Conversely, when forged examples are com-
857 pared against other non-members, both Online LiRA and Online RMIA demonstrate substantially
858 higher AUC and TPR at extremely low FPRs, indicating that MIAs misclassify forged examples as
859 members, thereby validating the indistinguishability induced by PoF.
860

861 E VISUALIZATION OF FORGED EXAMPLES

$$862$$

$$863$$

We present several representative visualizations of the forged examples in Fig. 3.

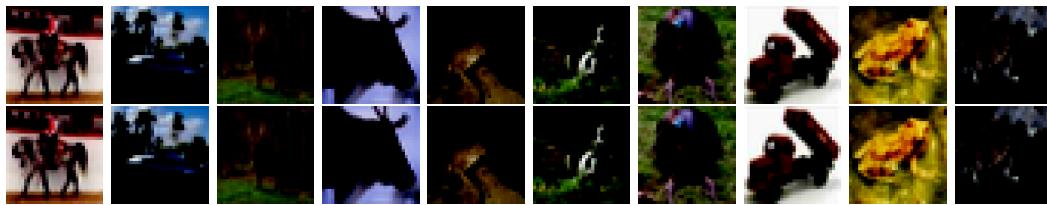


Figure 3: Comparison between forged examples (top row) and their corresponding benign samples (bottom row) on CIFAR10 using LiRA-based Signal.

F LLM USAGE DISCLOSURE

We only used LLMs as a writing assistant to polish the language of the manuscript. The LLM was used only for stylistic refinement and improving readability. It did not contribute to research ideation, experimental design, or interpretation of results. All conceptual contributions, methodology, and experiments were designed and conducted entirely by the authors.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917