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Abstract— This paper introduces GET-Zero, a model archi-
tecture and training procedure for learning an embodiment-
aware control policy that can immediately adapt to new
hardware changes without retraining. To do so, we present
Graph Embodiment Transformer (GET), a transformer model
that leverages the embodiment graph connectivity as a learned
structural bias in the attention mechanism. We use behavior
cloning to distill demonstration data from embodiment-specific
expert policies into an embodiment-aware GET model that
conditions on the hardware configuration of the robot to make
control decisions. We conduct a case study on a dexterous in-
hand object rotation task using different configurations of a
four-fingered robot hand with joints removed and with link
length extensions. Using the GET model along with a self-
modeling loss enables GET-Zero to zero-shot generalize to
unseen variation in graph structure and link length, yielding
a 20% improvement over baseline methods. All code and
qualitative video results are on our project website.

I. INTRODUCTION

Learning algorithms have significantly improved robots’
ability to adapt to external environments, yet most robots to-
day cannot tolerate minor changes in their internal hardware.
From missing links caused by damage to added joints for
design improvements, hardware modifications often require
retraining existing policies with embodiment-specific data.

Recent methods develop embodiment-aware policies that
condition on the hardware configuration of a robot design
to control a class of embodiments [1], [2], [3], [4], [5], [6],
which enables efficient data reuse across embodiments. How-
ever, these method often have incomplete embodiment repre-
sentations which ignore the graph connectivity of the robot,
and thus cannot generalize well to an embodiment with a var-
ied graph structure. Improving the performance under graph
variations would expand the applicability of embodiment-
aware methods in dexterous manipulation, where the number
of fingers may vary.

The goal of this work is to introduce an embodiment
representation that explicitly leverages the graph connectivity
of the robot to improve zero-shot control of robots with
variations in graph structure. We present GET-Zero, which
introduces the Graph Embodiment Transformer (GET)
model architecture that enables zero-shot adaptation to
new embodiments (Fig. 1). The key idea of GET is to
leverage the robot graph connectivity as a structural bias in
the transformer attention mechanism. By training this model
using behavior data from a variety of robot embodiments, we
can then zero-shot control previously unseen embodiments
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Fig. 1. GET-Zero is an embodiment-aware policy that is able to zero-shot
generalize to unseen embodiment designs with varied geometry, number of
joints, and graph structure.

with varied geometry, number of joints, and graph structure.
GET-Zero consist of three components:

1) Graph Embodiment Transformer (GET). GET is a
modified transformer architecture [7] that encodes joints
as separate tokens and uses the embodiment connectivity
as a learned bias in the transformer attention mechanism.
Our graph attention bias modulates communication based
on how the joints are physically connected. This extends
prior embodiment-aware transformer models which do
not encode the embodiment connectivity [3] or have
incomplete graph representations [4].

2) Embodiment-aware Distillation. To train GET-Zero we
first collect demonstration data from embodiment-specific
experts. By conditioning on embodiment information, we
then distill knowledge from embodiment-specific experts
into an embodiment-aware GET model using behavior
cloning (BC) that controls both training and unseen em-
bodiments with a single set of network weights. Prior
methods [2], [3], [4] use RL to simultaneously learn an
embodiment-aware model while learning to complete the
task across all embodiments. In contrast, our method sim-
plifies data generation by independently learning experts,
then jointly distilling expert behavior.

3) Self-modeling Loss. During the distillation BC phase,
we introduce a self-modeling loss to predict the position
of each joint in 3D space (i.e., forward kinematics). We
found that this simple and general supervision improves
zero-shot performance. Self-supervision is common in
NLP [8] and vision [9] domains, but is less explored in
cross-embodiment learning [10], [11], [12].

To validate GET-Zero, we conduct a case study to learn an
embodiment-aware, dexterous in-hand object rotation policy
across different hardware configurations of a multi-fingered
robot hand. In particular, we use the LEAP Hand [13],
which is a low-cost, four-fingered hand with four joints
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per finger consisting of 3D printed components and off-
the-shelf motors. We create 44 hardware configurations of
this hand by removing different combinations of finger joints
and associated links. Next, we follow the GET-Zero training
procedure to distill the expert behavior from these hands into
a GET model. Our experiments in simulation and real world
demonstrate how our graph encoding and self-modeling
improve zero-shot capability.

II. RELATED WORK

Cross-Embodiment pretraining with embodiment-
specific finetuning. Recent approaches leverage large-scale
pretraining, either on visual data, robot trajectories, language,
or tasks as an initialization for policy learning or generalist
agents [14], [15], [16], [17], [18], [19], [20]. Other ap-
proaches leverage cross-embodiment robot data to initialize
a generalist agent, and then fine-tune the base model or an
action head to adapt to new robot embodiments [21], [22].
These method often assume a unified action space, which
is reasonable for navigation [23] or for robot arm policies
where the end-effector pose is a shared representation across
arms [22], [24], [21], [25]. However, unified actions spaces
are often not sufficient for tasks where precise, low-level joint
actions matter, such as dexterous manipulation [26], [27],
[28], [29]. Our method uses the robot graph structure as an
embodiment representation to perform joint-level control for
tasks where a unified action space is not possible.

Embodiment-aware policy architectures. Most related
to our approach is the line of work developing embodiment-
aware policies. Prior methods [30], [31], [2] structure a
graph neural network (GNN) to match the embodiment graph
with joints as nodes and links as edges to control stick-
like walking characters in simulation. [3] shows that a GNN
matching the embodiment graph is outperformed with the
fully connected attention mechanism in transformers [7] de-
spite having no graph encoding. [4] extends this model with
dynamics and kinematics encodings, demonstrating zero-shot
generalization to these properties. However, these methods
do not generalize well to unseen embodiment graphs due
to no [3] or limited [4] graph representations. Our method
GET-Zero extends the transformer architecture in [3], [4] to
include an explicit graph representation that improves zero-
shot generalization to unseen embodiment graphs.

III. METHOD: GRAPH EMBODIMENT TRANSFORMER

We present Graph Embodiment Transformer (GET), an
embodiment-aware transformer [7] that uses the embodiment
graph as a structural bias in network architecture (Fig. 2). An
embodiment graph consists of nodes representing local joint
information, directed edges representing links connecting
parent and child joints, and undirected edges between joints
at the start of independent serial chains. GET represents each
joint as separate transformer tokens containing both local
sensory observations and local hardware properties (§III-A).
The graph edges (i.e., links) are encoded through a learned
attention bias in the self-attention layers (§III-B).

A. Embodiment Tokenization

For a robot with J joints, there are J input tokens to the
transformer encoder containing local observations and J cor-
responding output tokens for per-joint actions. The encoder
supports a variable number of tokens, enabling compatibility
as the number of joints varies across embodiments.

Observations can either be local l to specific joints or
global g across the entire embodiment. Additionally, ob-
servations are either fixed f or variable v if they change
during execution. This yields four types: variable local ovl
(e.g., joint angle/velocity), variable global ovg (e.g., a global
time encoding, or environment state), fixed local ofl (e.g.,
joint position in rest pose, or joint limit ranges) and fixed
global ofg (e.g., a task identifier). H past history steps,
indicated t → t−H , are included for variable observations.
The local observations for joint j are defined as o∗l,j . The
transformer token Tj for joint j at timestep t is constructed as
T t
j = [ot→t−H

vg , ofg, o
t→t−H
vl,j , ofl,j ]. The tokens pass through

a linear embedding before entering the transformer encoder.

B. Graph Encoding

One challenge is that the transformer encoder has no
direct graph encoding mechanism in the original implemen-
tation [7]. Input tokens are permutation invariant without
a positional encoding mechanism, but are often linearly
encoded with sinusoidal or learned positional encodings.
Prior embodiment-aware methods address this in multiple
ways. [3] use no positional encoding meaning no graph
representation is present. [4] linearizes the graph using
a depth-first search ordering then apply a learned linear
positional encoding. However, this approach is sensitive to
graph variations as the DFS ordering is not unique, which
empirically caused a ∼ 75% drop in performance with the
opposite node order in [4]. [32] use the adjacency matrix as
a binary attention mask to limit communication early in the
transformer to adjacent nodes.

Our GET model uses a learned attention bias in the
encoder self-attention mechanism to explicitly encode the
graph similar to the Graphormer work by [33]. The original
self-attention mechanism [7] computes A ∈ RJ×J attention
scores where Aij represents the score computed between
joints i and j. To encode the embodiment graph, we learn
two separate biases to the attention scores (A):

Spatial Encoding. The spatial encoding computes the
shortest path distance (SPD) ϕSPD between node i and node j
as ϕSPD(i, j), treating all edges as undirected. An embedding
table s is indexed with the SPD distance as sϕSPD(i,j) to get
a learned scalar that is added to the attention score Aij .

Parent-Child Encoding. Unlike Graphormer [33] that
only encodes undirected graph in the attention mechanism,
we introduce a new parent-child attention bias to encode
directed features. For joints i and j, we compute the parent
distance ϕP (i, j) = ϕSPD(i, j)1{i is parent of j} which is
the distance between i and j if j is the child of i at some
distance along the forward kinematic chain, otherwise 0.
We compute an analogous formula for the child distance as
ϕC(i, j) = ϕSPD(i, j)1{i is child of j}. There are associated



Fig. 2. Graph Embodiment Transformer (GET). GET is an embodiment-aware model based on a transformer encoder. Each joint forms separate tokens
containing local sensory and embodiment information. The self-attention layers use an undirected (Spatial Bias) and directed (Parent-Child Bias) graph
distance to bias the attention scores between joints according to the embodiment graph (grid color intensity indicates distance between nodes). A policy
head predicts actions and a self modeling head predicts meta-properties about the embodiment, such as forward kinematics.

scalar embedding tables p and c, meaning directed edges
have distinct biases from parent-to-child or child-to-parent.

Attention Bias Computation. For each head and encoder
layer, we add attention bias embeddings s, p, and c to com-
pute attention as: Âij = Aij + sϕSPD(i,j) + pϕP(i,j) + cϕC(i,j).
One key aspect of this approach is that this attention bias
is invariant to the ordering of the input tokens unlike the
depth-first linearization approach [4].

Output Heads. After passing J tokens through the trans-
former encoder, GET produces J corresponding features. We
include a policy head to predict actions and a self-modeling
head used to predict meta-features about the embodiment.
More details on the heads are discussed in §IV-C.

IV. CASE STUDY: IN-HAND OBJECT ROTATION

We conduct a case study on applying GET-Zero to in-hand
object rotation with variations of LEAP Hand [13]. Applying
GET-Zero requires three stages (Fig. 3): 1) generate embod-
iment variations (§IV-A), 2) train RL embodiment-specific
experts (§IV-B), and 3) distill knowledge from experts into
an embodiment-aware GET architecture (§IV-C).

A. Procedural Embodiment Generation

The LEAP Hand [13] consists of 3D printed components
and off-the-shelf motors, making it highly configurable. We
make variations to the hand graph by removing joints and to
the links through link length extensions. Further details are
in Section VII-A.

B. Train Embodiment-Specific Experts

We train embodiment-specific RL experts using PPO [34]
in Isaac Gym [35] to complete the in-hand rotation task,
adapted from the rewards and environments in [13]. These
learned policies operate only on proprioceptive joint states
and predict delta joint targets that guide a PD controller. We
pick the best of five RL seeds per embodiment and filter
embodiments that do not complete a full 2π rotation within
30s. This results in 44 training embodiments (19% of total
design space) with associated expert policies.

Fig. 3. Training procedure. We follow a teacher-student paradigam, where
the teachers are separate embodiment-specific experts trained using RL.
Then we distill knowledge from experts into a single embodiment-aware
transformer (i.e., the student policy) using behavior cloning. GET-Zero takes
as input embodiment definition and proprioception, and infers proper actions
to perform an in-hand rotation task for an unseen embodiment.

C. Distill Experts into Embodiment-Aware Transformer

We roll out embodiment-specific experts to collect 7
hours worth of demonstrations per embodiment. This data is
combined with embodiment information to form the dataset
used to train the GET model with behavior cloning (BC).

GET Training Setup. We train the GET architecture (§III)
using BC. Specifically, our token input has normalized joint
angles and PD target joint states (ovl), 3D joint position and
joint rotation with respect to the parent joint from the URDF
file (ofl), and a sinusoidal phase encoding with a period
of two seconds to encode cyclic progression of the rotation
cycle (ovg). The directed embodiment graph is an additional
input used in the graph attention encoding (§III-B).

Output Heads. A policy head predicts per-joint single-
step action. Each joint has a PD target state that is initialized
to the starting joint state. The action head predicts delta
actions that are added to this target state, which sets the
target state for the low-level PD controller. We supervise
these actions using L2 loss with the demonstration data.

A self-modeling head predicts the current 3D pose of each
joint in the robot local frame. This forward kinematics (FK)
task is simple and generally applicable across embodiments,
yet requires the network to use the spatial relationships from
the graph and current joint angles along the FK chain. We



supervise with the ground truth FK pose with L2 loss.

V. EXPERIMENTS

We procedurally generate 236 graph variations of the
LEAP hand [13] by removing various combinations of joints
and associated links from the embodiment (§IV-A). From
these, we obtain 44 embodiments with graph variations
with associated expert RL policies that achieve a baseline
level of performance (§IV-B). These 44 embodiments serve
as training embodiments and only have graph variations
(link length extensions are not seen during training). Our
experiments consist of using demonstration data from these
embodiments to train various baselines and ablations of
the GET architecture to evaluate zero-shot performance to
unseen embodiment graphs and link extensions.

Comparisons. MetaMorph [4] and Amorpheus [3] mod-
els are two prior embodiment-aware transformer methods.
We re-implement the positional encoding aspects of these
method in our setup to focus on comparing the impact
of our graph representation and self-modeling rather than
differences in task (locomotion v.s. manipulation), training
procedure (RL v.s. BC) or observation format.
• ET. The Embodiment Transformer (ET) matches the archi-

tecture of GET except without the graph encoding (§III-
B) or the self modeling. This ET baseline most closely
matches the encoding method in Amorpheus [3]. Note that
this model has no connectivity information about the joints.

• ET+DFS. This baseline uses positional encoding from
MetaMorph [4] that linearizes the embodiment graph in
depth-first search (DFS) ordering and applies a learned
linear positional encoding.
We also ablate different components of our method such as

self-modeling loss (SL), spatial encoding (SE), parent-child
encoding (PE). Results are summarized in Tab. I.

Evaluation Metric. The task performance is measured
by average rotational velocity along the yaw axis in de-
grees/second including standard deviation across five seeds.
We compute results by rolling out the embodiment-aware
policies in a physics simulator for a total of 42 minutes
of execution time per embodiment per seed. Each category
averages over 10 unseen embodiments.

We were able to train embodiment-specific RL experts
for all 10 embodiments with graph variations with sufficient
performance (2π rotation within 30 seconds), validating that
they are reasonable targets for zero-shot generalization.

A. Key Results and Findings

Table I shows GET-Zero’s performance on training em-
bodiments (Training Graph) and on multiple types of zero-
shot embodiments: unseen graph variations (New Graph),
unseen link length variations (New Geo) and both (New
Graph & Geo). Link length extensions were never seen
during training.

GET-Zero improves zero-shot capabilities to graph
and geometry variations. Compared to the best perform-
ing baseline for each category, GET-Zero achieves a 16%

TABLE I
SIMULATION RESULTS (AVERAGE ROTATIONAL VELOCITY DEG/SEC).
RL EXPERTS ARE EMBODIMENT-SPECIFIC POLICIES. ET: EMBODIMENT

TRANSFORMER, DFS: DEPTH-FIRST GRAPH ENCODING,
SL: SELF-MODELING LOSS, SE: SPATIAL GRAPH ENCODING,

PE: PARENT-CHILD GRAPH ENCODING

Training Graph New Graph New Geo New Graph&Geo

RL experts 16.50 — — —

ET [3] 14.82±0.15 8.68±0.34 12.92±0.36 8.12±0.46
ET+DFS [4] 15.03±0.37 6.45±0.28 14.37±0.34 6.27±0.22

ET+SL 14.68±0.33 8.19±0.74 12.71±0.72 7.60±1.12
ET+PE+SE 16.03±0.19 9.65±0.23 15.30±0.29 9.05±0.42
ET+PE+SL 16.10±0.22 9.56±0.47 15.59±0.32 8.81±0.42
ET+SE+SL 16.24±0.21 10.04±0.15 15.74±0.25 9.75±0.20
ET+PE+SE+SL 16.32±0.24 10.07±0.58 15.80±0.29 9.75±0.54

improvement with zero-shot to new graph, an 10% improve-
ment with zero-shot to link length variations, and a 20%
improvement with zero-shot to both graph and link length
variations (Tab. I).

Self-modeling improves performance only with graph
encoding present. We observe that adding self-modeling
(SL) to the baseline (ET) decreases zero-shot performance
by an average of 4.6% across the three categories, but yields
an average increase of 5.1% when added to the model with
graph encoding (ET+PE+SE) (Table I).

Spatial and parent-child encoding help policy learn-
ing. Relative to ET with self-modeling (ET+SL), adding
the parent-child graph encoding (ET+PE+SL) improves per-
formance by 19% and adding the spatial graph encoding
(ET+SE+SL) improves performance by 25% on average
across zero-shot tasks. Adding the parent-child bias when
the spatial bias is already present provides no statistically
significant improvement, indicating that our directed encod-
ing is not critical for performance.

Depth-first graph linearization lowers performance
under graph variations. The DFS linearization (ET+DFS)
serves as a simple, yet incomplete graph representation as the
DFS ordering is not unique. When only link length variations
are present, linearization improves zero-shot performance
over no positional encoding (ET) by 11% (Tab. I). However,
with unseen graph variations, performance drops by 26%.
This result intuitively makes sense as the linearized positional
encoding overfit to training embodiment graphs, but fail to
generalize to unseen graphs due to the aforementioned issue
with DFS. This motivates the need for the more complete
graph representation used in GET-Zero.

VI. CONCLUSION

We present GET-Zero, an embodiment-aware model archi-
tecture and training procedure that enables zero-shot control
of new robot designs. Through a case study on an in-
hand object rotation task, we demonstrate the ability of our
model to control a wide range of hardware configurations
of a multi-fingered hand under variations in embodiment
graph and geometry. Our results in simulation and real show
that the graph encoding and self-modeling features in GET-
Zero improve cross-embodiment transfer. We hope that GET-
Zero serves as a useful method for the robotics community
to share knowledge across similar robot designs.
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TABLE II
GET-ZERO SIM-TO-REAL EVALUATION. [COL 1] AN AR TAG TRACKS CUBE ROTATION. [COL 2] THE UNMODIFIED LEAP HAND (SEEN DURING

TRAINING). [COL 3-7] ZERO-SHOT EMBODIMENTS WITH UNSEEN GRAPH VARIATIONS AND/OR LINK LENGTH EXTENSIONS (ORANGE). WE REPORT

(ACROSS 3 MINUTE TRIAL): 1) AVERAGE CUBE ANGULAR VELOCITY IN DEGREES/SECOND 2) REAL AVERAGE VELOCITY AS A % OF SIM AVERAGE

VELOCITY FOR THE SAME EMBODIMENT AND POLICY (SIM-TO-REAL GAP) AND 3) NUMBER OF TIMES THE CUBE FELL OFF THE HAND.

Variation Training New Graph New Graph New Geo New Graph+Geo New Graph+Geo
ET 11.5, 55%, 0 5.9, 50%, 0 9.2, 93%, 1 8.6, 57%, 2 9.6, 67%, 18 -0.6, -6%, 0

GET-Zero 20.5, 70%, 0 8.3, 65%, 0 21.8, 133%, 0 19.0, 83%, 1 9.0, 53%, 16 1.2, 9%, 0

Fig. 4. Finger Variations. We procedurally generate variations of the
fingers in the LEAP Hand [13] by removing joints and links as well as
adding in 1.5cm link length extensions (orange).
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VII. SUPPLEMENTARY MATERIALS

A. Embodiment Variations

The hand features three main fingers which are identical
in structure and a thumb which has a separate structure. For
the main fingers, we construct five variations of the fingers (4
combinations + no finger config) and two different variations
of the thumb by removing various combinations of joints
(Fig. 4). This yields 53×2 = 250 embodiment configurations
from which we require 1) at least two fingers have at least
one joint and 2) that there is at least one main finger with
two joints, yielding 236 graph variation embodiments. We
additionally introduce 1.5cm link length extensions shown
in orange in Fig. 4 to the 236 designs to generate additional
hand designs.

B. Zero-shot with Fewer Training Embodiments

To validate that zero-shot performance isn’t solely due to a
large number of training embodiments that might be similar

Fig. 5. Impact of training embodiments on zero-shot graph gener-
alization. We observe that even with fewer training embodiments, GET-
Zero achieves reasonable in-hand rotation performance (5 seeds).

to the zero-shot embodiments, we evaluate our method on
smaller subsets of training embodiments as shown in Fig. 5.
GET-Zero achieves reasonable rotation performance even
with only 10 training embodiments, indicating that zero-shot
performance works when demonstration data is only avail-
able for fewer embodiments. The 44 training embodiments
for results in Tab. I is 19% of the 236 total graph variation
embodiments generated, though not all 236 embodiments are
equally capable of completing the rotation task.

C. Real-world Evaluation

We present results from a real-world evaluation of GET-
Zero on unseen embodiments in Tab. II following the same
evaluation methods as for simulation. We observe GET-Zero
outperforms the ET baseline for both the original LEAP
Hand [13] as well as unseen graph and link length variations.
Empirically, the ET policy struggles to continuously rotate
the cube, and we observe high finger precision is required
for stable control. We observe a sim-to-real gap, but GET-
Zero achieves zero-shot performance above simulation for
the third embodiment. For another embodiment (second
from right), a missing index finger causes the hand to drop
the cube many times. For the right-most embodiment, a
shortened index finger and thumb make it challenging for
the hand to start the rotation cycle.
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