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ABSTRACT

Although recent advances in machine learning have shown its success to learn
from independent and identically distributed (IID) data, it is vulnerable to out-of-
distribution (OOD) data in an open world. Domain generalization (DG) deals with
such an issue and it aims to learn a model from multiple source domains that can be
generalized to unseen target domains. Existing studies on DG have largely focused
on stationary settings with homogeneous source domains. However, in many
applications, domains may evolve along a specific direction (e.g., time, space).
Without accounting for such non-stationary patterns, models trained with existing
methods may fail to generalize on OOD data. In this paper, we study domain
generalization in non-stationary environment. We first examine the impact of
environmental non-stationarity on model performance and establish the theoretical
upper bounds for the model error at target domains. Then, we propose a novel
algorithm based on invariant representation learning, which leverages the non-
stationary pattern to train a model that attains good performance on target domains.
Experiments on both synthetic and real data validate the proposed algorithm.

1 INTRODUCTION

Many machine learning (ML) systems are built based on the assumption that training and test data
are sampled independently and identically from the same distribution. However, this is commonly
violated in real applications where the environment changes during model deployment, and there exist
distribution shifts between train and test data. The problem of training models that are robust under
distribution shifts is typically referred to as domain adaptation (or generalization), where the goal is
to train a model on source domain that can generalize well on a target domain. Specifically, domain
adaptation (DA) aims to deploy model on a specific target domain, and it assumes the (unlabeled)
data from this target domain is accessible during training. In contrast, domain generalization (DG)
considers a more realistic scenario where target domain data is unavailable during training; instead it
leverages multiple source domains to learn models that generalize to unseen target domains.

For both DA and DG, various approaches have been proposed to learn a robust model with high
performance on target domains. However, most of them assume both source and target domains are
sampled from a stationary environment; they are not suitable for settings where the data distribution
evolves along a specific direction (e.g., time, space). Indeed, evolvable data distributions have
been observed in many applications. For example, satellite images change over time due to city
development and climate change (Christie et al., 2018), clinical data evolves due to changes in
disease prevalence (Guo et al., 2022), facial images gradually evolve because of the changes in
fashion and social norms (Ginosar et al., 2015). Without accounting for the non-stationary patterns
across domains, existing methods in DA/DG designed for stationary settings may not perform well in
non-stationary environments. As evidenced by Guo et al. (2022), clinical predictive models trained
under existing DA/DG methods cannot perform better on future clinical data compared to empirical
risk minimization.

In this paper, we study domain generalization (DG) in non-stationary environments. The goal is to
learn a model from a sequence of source domains that can capture the non-stationary patterns and
generalize well to unseen target domains (Figure 1). We first examine the impacts of non-stationary
distribution shifts and study how the model performance attained on source domains can be affected
when the model is deployed on target domains. Based on the theoretical findings, we propose an
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Figure 1: An illustrative comparison between conventional DG and DG in non-stationary environment:
domains in conventional DG are independently sampled from a stationary environment, whereas DG
in non-stationary environment considers domains that evolve along a specific direction. As shown in
the right plot, data (i.e., images) changes over time and the model trained on past data may not have
good performance on future data due to non-stationarity (i.e., temporal shift).

algorithm named Adaptive Invariant Representation Learning (AIRL); it minimizes the error on
target domains by learning a sequence of representations that are invariant for every two consecutive
source domains but are adaptive across these pairs of source domains.

In particular, AIRL consists of two components: (i) representation network, which is trained on
the sequence of source domains to learn invariant representations between every two consecutive
source domains, (ii) classification network that minimizes the prediction errors on source domains.
Our main idea is to create adaptive representation and classification networks that can evolve in
response to the dynamic environment. In other words, we aim to find networks that can effectively
capture the non-stationary patterns from the sequence of source domains. At the inference stage, the
representation network is used to generate the optimal representation mappings and the classification
network is used to make predictions in the target domains, without the need to access their data. To
verify the effectiveness of AIRL, we conduct extensive experiments on both synthetic and real data
and compare AIRL with various existing methods.

2 RELATED WORK

This work is closely related to the literature on domain generalization, continuous (or gradual) domain
adaptation, continual learning. We introduce each topic and discuss their differences with our work.

Domain generalization (DG). The goal is to learn a model on multiple source domains that can
generalize to the out-of-distribution samples from an unseen target domain. Depending on the learning
strategy, existing works for DG can be roughly classified into three categories: (i) methods based
on domain-invariant representation learning (Phung et al., 2021; Nguyen et al., 2021); (ii) methods
based on data manipulation (Qiao et al., 2020; Zhou et al., 2020); (iii) methods by considering DG in
general ML paradigms and using approaches such as meta-learning (Li et al., 2018a; Balaji et al.,
2018), gradient operation (Rame et al., 2021; Tian et al., 2022), self-supervised learning (Jeon et al.,
2021; Li et al., 2021), and distributional robustness (Koh et al., 2021; Wang et al., 2021). However,
these works assume both source and target domains are sampled from a stationary environment and
they do not consider the non-stationary patterns across domains; this differs from our setting.

Non-stationary environment DG. To the best of our knowledge, only a few concurrent works study
domain generalization in non-stationary environments (Bai et al., 2022; Wang et al., 2022; Qin et al.,
2022; Zeng et al., 2023). However, the problem settings considered in these works are rather limited.
For example, Wang et al. (2022); Qin et al. (2022) only focus on the environments that evolve based
on a consistent and stationary transition function; the approaches in Bai et al. (2022); Wang et al.
(2022); Zeng et al. (2023) can only generalize the model to a single subsequent target domain. In
contrast, this paper considers a more general setting where data may evolve based on non-stationary
dynamics, and the proposed algorithm can generate models for multiple unseen target domains.

Continuous domain adaptation (DA). Unlike conventional DA/DG methods that only consider
categorical domain labels, continuous DA admits continuous domain labels such as space, time
(Ortiz-Jimenez et al., 2019; Wang et al., 2020; Mancini et al., 2019). Specifically, this line of research
considers scenarios where the data distribution changes gradually and domain labels are continuous.
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Similar to conventional DA, samples from target domain are required to guide the model adaptation
process. This is in contrast to this study, which considers the target domains whose samples are
inaccessible during training.

Gradual domain adaptation. Similar to continuous DA, Gradual DA also considers continuous
domain labels, and the samples from the target domain are accessible during training (Kumar et al.,
2020; Chen et al., 2020; Chen & Chao, 2021). The prime difference is that continuous DA focuses on
the generalization from a single source domain to a target domain, whereas there are multiple source
domains in gradual DA.

Continual learning (CL). The goal is to learn a model continuously from a sequence of tasks. The
main focus in CL is to overcome the issue of catastrophic forgetting, i.e., prevent forgetting the old
knowledge as the model is learned on new tasks (Chaudhry et al., 2018; Kirkpatrick et al., 2017;
Mallya & Lazebnik, 2018). This differs from time-evolving DG (i.e., a special case of our setting)
which aims to train a model on past data that can generalize to future.

3 PROBLEM FORMULATION

We first introduce the notations used throughout the paper and then formulate the problem.

Notations. Let X and Y denote the input and output space, respectively. We use capitalized letters
X,Y to denote random variables that take values in X ,Y and small letters x, y their realizations. A
domain D is specified by distribution PX,Y

D : X × Y → [0, 1] and labeling function hD : X → Y∆,
where ∆ is a probability simplex over Y . For simplicity, we also use PV

D (or PV |U
D ) to denote the

induced marginal (or conditional) distributions of random variable V (given U ) in the domain D.

Non-stationary domain generalization setup. Consider a domain generalization problem where a
learning algorithm has access to data sampled from a sequence of T source domains {Dt}Tt=1. We
assume there exists a mechanism M that captures non-stationary patterns in the data. Specifically,
M can generate a sequence of mapping functions {mt}t∈N in which mt : X × Y → X × Y
captures the transition from domain Dt−1 to domain Dt. In other words, we can regard PX,Y

Dt
as

the push-forward distribution induced from PX,Y
Dt−1

using the mapping function mt−1 (i.e., PX,Y
Dt

:=

mt−1♯P
X,Y
Dt−1

). Note that this setup should not be considered as multiple DA problems where mt are
not related to each other. In non-stationary domain generalization, mt depends on previous mappings
{m1,m2, · · · ,mt−1} via mechanism M .

Our goal is to learn a model ĥ : X → Y∆ from samples collected in source domains that can perform
well on unseen target domains {Dt}t∈N,t≥T+1. Specifically, we investigate under what conditions
and by what algorithms we can ensure that attaining high accuracy at source domains {Dt}Tt=1
implies high accuracy at unknown target domains {Dt}t≥T+1 under non-stationary environment.
Formally, the accuracy can be measured using an error metric defined below.

Error metric. Consider a model ĥ : X → Y∆ in a hypothesis class H, we denote ĥ(x)y as
the element on y-th dimension which predicts Pr(Y = y|X = x). Then the expected error of
ĥ under domain D for some loss function L : Y∆ × Y → R+ (e.g., 0-1, cross-entropy loss)
can be defined as ϵD

(
ĥ
)
= Ex,y∼D

[
L
(
ĥ(X), Y

)]
. Similarly, the empirical error of ĥ over n

samples Sn drawn i.i.d. from PX,Y
D is defined as ϵ̂D

(
ĥ
)

= 1
n

∑
x,y∈Sn

L
(
ĥ(x), y

)
. We also

denote a family of functions LH associated with loss function L and hypothesis class H as LH ={
(x, y) → L

(
ĥ (x) , y

)
: ĥ ∈ H

}
.

4 THEORETICAL RESULTS

In this section, we aim to understand how a model trained with source domain data would perform
when deployed in a target domain under non-stationary distribution shifts. Specifically, we will
develop theoretical upper bounds of the model error at target domains. These theoretical findings will
provide guidance for the algorithm design in Section 5. All proofs are in Appendix A.
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To learn a model ĥ that performs well on an unseen target domain, we need to take into account the
non-stationary patterns across domains. However, these patterns are unknown and must be estimated
from a sequence of available source domains. Therefore, in addition to the model ĥ, we need to learn
a hypothesis mechanism M̂ from a hypothesis class M that estimates the ground-truth M , and the
model ĥ needs to be learned by leveraging the estimation M̂ . Because the target data is inaccessible,
we expect that the model performance on the target will highly rely on the accuracy of the hypothesis
M̂ . That is, the non-stationary patterns explored from the source data should well-estimate the target.
To formally characterize the consistency in terms of performance of mechanism M̂ on capturing
non-stationary patterns on source and target domains, we introduce a discrepancy measure below.
Definition 4.1. Given a sequence of source domains {Dt}Tt=1 and a target domain DT+1, the
non-stationary consistency of hypothesis mechanism M̂ can be measured as:

Φ
(
M̂
)
=

∣∣∣∣∣D (PX,Y
DT+1

, PX,Y

D̂T+1

)
− 1

T − 1

T∑
t=2

D
(
PX,Y
Dt

, PX,Y

D̂t

)∣∣∣∣∣
where PX,Y

D̂t
= m̂t−1♯P

X,Y
Dt−1

is a push-forward distribution induced from PX,Y
Dt−1

using mapping

function m̂t−1 generated by hypothesis mechanism M̂ , and D(·, ·) is a statistical distance that
measures the distance between two distributions. In our study, we consider Kullback–Leibler (KL)
divergence or Jensen–Shannon (JS) divergence as D(·, ·).
Remark 4.2. Φ

(
M̂
)

consists of two quantities: average error of M̂ on sequence of source do-

mains 1
T−1

∑T
t=2 D

(
PX,Y
Dt

, PX,Y

D̂t

)
and error of M̂ on the target domain D

(
PX,Y
DT+1

, PX,Y

D̂T+1

)
. In

essence, Φ
(
M̂
)

measures how consistent in terms of performance of mechanism M̂ on capturing
non-stationary patterns on source and target domains.

Next, we impose the following assumption on the learnability of mechanism M with respect to
hypothesis class M as follows.
Assumption 4.3. We assume the mechanism M is (ϵ, δ)-learnable with respect to hypothesis class
M. That is, for ϵ, δ > 0, with probability at least 1 − δ, we have Φ (M∗) ≤ ϵ where M∗ =

argmin
M̂∈M

1
T−1

∑T
t=2 D

(
PX,Y
Dt

, PX,Y

D̂t

)
.

We note that Assumption 4.3 is mild because it is required only for the optimal mechanism M∗. This
assumption implies that there exists at least one hypothesis in M under which the non-stationary
patterns learned from source can generalize sufficiently well to the target (with bounded Φ). During
training, we can feasibly achieve small error of M∗ on sequence of source domains by selecting
high-capacity hypothesis class (e.g., neural network). Thus, Assumption 4.3 also implies that error of
M∗ on target domain is small (≈ ϵ).

In practice, the model has access to data sample only. To construct an analysis with finite data, we
leverage Rademacher complexity which measures the richness of a class of real-valued functions with
respect to a probability distribution. Definition of Rademacher complexity is given below.
Definition 4.4. Let F be a set of real-valued functions defined over a set Z . Let Sn = {z1, · · · , zn} ∈
Zn be a set of examples drawn i.i.d. from PZ . The empirical Rademacher complexity of F is defined
as follows:

R̂n(F) = Eσ

[
sup
f∈F

(
1

n

n∑
i=1

σif(zi)

)]
where σ = (σ1, · · · , σn) are independent random variables uniformly chosen from {−1, 1}.

Based on the Rademacher complexity and the generalizability measure defined above, we can
establish an upper bound on the expected error of the target domain DT+1 in Theorem 4.5 below.
Theorem 4.5. Suppose loss function L is upper bounded by C and Assumption 4.3 holds. For any
0 < δ < 1, then with probability at least 1− δ, the following holds for all ĥ : X → Y∆:

ϵDT+1

(
ĥ
)
≤ ϵ̂D∗

T+1

(
ĥ
)
+ 2R̂n (LH) + 3C

√
log(4/δ)

2n + CK

√
ϵ+ 1

T−1

∑T
t=2 D

(
PX,Y
Dt

, PX,Y
D∗

t

)
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where PX,Y
D∗

t
= m∗

t−1♯P
X,Y
Dt−1

is a push-forward distribution induced from PX,Y
Dt−1

using mapping

function m∗
t−1 generated by M∗ = argmin

M̂∈M
1

T−1

∑T
t=2 D

(
PX,Y
Dt

, PX,Y

D̂t

)
, n is the sample

size of domain DT , and K = 1√
2

(resp. K =
√
2) when D is KL-divergence (resp. JS-divergence).

Theorem 4.5 suggests one way to minimize the error in target domain DT+1: to minimize ϵDT+1

(
ĥ
)
,

we need to (i) learn the optimal M∗ = argmin
M̂∈M

1
T−1

∑T
t=2 D

(
PX,Y
Dt

, PX,Y

D̂t

)
from the se-

quence of T source domains; and (ii) find a classifier that minimizes the empirical error ϵ̂D∗
T+1

(ĥ) in
domain D∗

T+1 induced from domain DT by function m∗
T .

Learning M∗ requires the model to find the optimal mapping m∗
t−1 : X ×Y → X ×Y that minimizes

the distance of the joint distributions D
(
PX,Y
Dt

, PX,Y

D̂t

)
. In our setting, we handle this problem by

first minimizing the distance of output distribution between the two domains Dt, Dt−1, then finding
an optimal mapping function in input space X . That is, minimize the distance of joint distributions in
output and input space separately. This approach is formally stated in Proposition 4.6 below.

Proposition 4.6. Let PX,Y
Dw

t−1
be the distribution induced from PX,Y

Dt−1
by importance weighting with

factors {wy}y∈Y where wy = PY=y
Dt

/PY=y
Dt−1

(i.e., PX=x,Y=y
Dw

t−1
= wy × PX=x,Y=y

Dt−1
). Then for any

mechanism M̂ that generates {m̂t : X → X}t∈N, we have the following:

D
(
PX,Y
Dt

, PX,Y

D̂w
t

)
= Ey∼PY

Dt

[
D
(
P

X|Y
Dt

, P
X|Y
D̂w

t

)]
where PX,Y

D̂w
t

= m̂t−1♯P
X,Y
Dw

t−1
is a push-forward distribution induced from PX,Y

Dw
t−1

using m̂t−1.

Figure 2: Visualization of learning in
non-stationary environment. (a) Learn-
ing directly from input space X . (b)
Learning via representation space Z .

Proposition 4.6 suggests that to learn m∗
t : X × Y →

X ×Y , we can first reweight PX,Y
Dt−1

with factors {wy}y∈Y
(i.e., to minimize the distance of output distribution be-
tween domains Dt, Dt−1), then learn m∗

t : X → X in
input space that minimizes the distance of conditional
distribution D

(
P

X|Y
Dt

, P
X|Y
D̂w

t

)
.

Since the input space X may be of high dimension, es-
timating M∗ in high-dimensional space can be challeng-
ing in practice. To tackle this issue, we leverage the
representation learning approach to first map inputs to
a representation space Z , which often has a lower di-
mension than X . In particular, for all t < T , instead
of using m∗

t : X → X to map PX
Dw

t
to PX

D∗
t+1

, we use

f∗
t : X → Z and g∗t : X → Z to map PX

Dw
t

and PX
Dt+1

to f∗
t ♯P

Z
Dw

t
and g∗t ♯P

Z
Dt+1

such that

E
[
D
(
g∗t ♯P

Z|Y
Dt+1

, f∗
t ♯P

Z|Y
Dw

t

)]
is minimal. Then, we learn the classifier ĥZ : Z → Y∆ from repre-

sentation to output spaces that minimizes the empirical error with respect to the distribution f∗
T ♯P

Z,Y
Dw

T
.

This representation learning-based method is visualized in Figure 2 and is summarized below.
Remark 4.7 (Representation learning). Given the sequence of T source domains, we estimate:

(i) Representation mappings F ∗ = {f∗
t : X → Z}, G∗ = {g∗t : X → Z} with

F ∗, G∗ = argmin
F̂∈F,Ĝ∈G

1

T − 1

T∑
t=2

E
[
D
(
ĝt−1♯P

Z|Y
Dt

, f̂t−1♯P
Z|Y
Dw

t−1

)]
,

where F̂ =
{
f̂t : X → Z

}
, Ĝ = {ĝt : X → Z}, F and G are the function class of F̂ and Ĝ.

(ii) Classifier ĥZ : Z → Y∆ that minimizes the empirical error with respect to distribution f∗
T ♯P

Z,Y
Dw

T
.

Remark 4.8 (Comparison with conventional DG). A key distinction from non-stationary DG is
that the model evolves over the domain sequence to capture non-stationary patterns (i.e., learn
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invariant representations between two consecutive domains but adaptive across domain sequence).
This stands in contrast to the conventional DG (Ganin et al., 2016; Phung et al., 2021) which relies
on an assumption that target domains lie on or are near the mixture of source domains, then enforcing
fixed invariant representations across all source domains can help to generalize the model to target
domains. We argue that this assumption may not hold in non-stationary DG where the target domains
may be far from the mixture of source domains resulting in the failure of the existing methods. This
argument is also validated in our experiment in Appendix C.

5 PROPOSED ALGORITHM

Figure 3: Overall architecture of AIRL and the
visualization of its learning process.

Overview. Based on Remark 4.7, we propose
AIRL, a novel model that learns adaptive invari-
ant representations from a sequence of T source
domains. AIRL includes two components: (i)
representation network that learns the sequences
of mapping functions F ∗ = [f∗

1 , f
∗
2 , · · · , f∗

T−1]
and G∗ = [g∗1 , g

∗
2 , · · · , g∗T−1] from input space

to representation space, (ii) classification net-
work that learns the sequence of classifiers
H∗ = [h∗

1, h
∗
2, · · · , h∗

T−1]
1 from representation

to the output spaces. Figure 3 shows the overall
architecture of AIRL; the technical details of
each component are presented in Appendix B.
The learning and inference processes of AIRL
are formally stated as follows.

5.1 LEARNING

Representation mappings F ∗ and G∗, and classifiers H∗ in AIRL can be learned by solving an
optimization problem over T source domains {Dt}Tt=1:

F ∗, G∗, H∗ = argmin
F̂ ,Ĝ,Ĥ

T−1∑
t=1

Lt
cls + αLt

inv (1)

where Lt
cls is the prediction loss on source domains Dt and Dt+1; Lt

inv enforces the representations
are invariant across a pair of consecutive domains Dt, Dt+1; hyper-parameter α controls the trade-
off between two objectives. Note that unlike the theoretical results in Section 4 which suggests
minimizing the prediction loss on last source domain DT , objective equation 1 minimizes the total
prediction loss on previous source domains {Dt}t<T . The reason is that we want to learn the
representations that are not only invariant but also helpful for learning the sequence of classifiers H∗.

Next, we present the detailed architecture of the representation network and the classification network.
To satisfy Assumption 4.3 and ensure the patterns learned from source can generalize well to the
target, the function classes F and G should be chosen such that the discrepancy Φ(F ∗, G∗) (adapted
from Definition 4.1 for representation learning method) below is sufficiently small

Φ(F ∗, G∗) =

∣∣∣∣∣D (g∗T ♯PZ,Y
DT+1

, f∗
T ♯P

Z,Y
Dw

T

)
− 1

T − 1

T∑
t=2

D
(
g∗t−1♯P

Z,Y
Dt

, f∗
t−1♯P

Z,Y
Dw

t−1

)∣∣∣∣∣
In other words, the representation network needs to learn non-stationary patterns from source domains
such that f∗

T and g∗T generated from this network can minimize D
(
g∗T ♯P

Z,Y
DT+1

, f∗
T ♯P

Z,Y
Dw

T

)
.

In practice, the representation mappings may be complex (e.g., ResNet (He et al., 2016)), then
explicitly capturing the evolving of these mappings is challenging. We surpass this bottleneck by
capturing the evolving of representation space induced by these mappings instead. Formally, our
representation network consists of an encoder Enc which maps from input to representation spaces,

1To avoid complex notation, we use h∗ and ĥ instead of h∗
Z and ĥZ in this section.
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and Transformer layer Trans which learns the non-stationary pattern from a sequence of source
domains using attention mechanism. Given the batch sample B := {xt, yt}t≤T from T source
domains where {xt, yt} = {xj

t , y
j
t }nj=1 are samples for domain Dt, the encoder first maps each

input xj
t to a representation zjt = Enc

(
xj
t

)
, ∀t ≤ T, j ≤ n. Then, Transformer layer (Vaswani

et al., 2017) Trans is used to generate representation ẑjt from the sequence zj≤t =
[
zj1, z

j
2, · · · , z

j
t

]
.

Specifically, ∀j, t, Trans leverages four feed-forward networks Q,K, V, U to compute ẑjt as follow:

ẑjt =
(
aj≤t

)⊤
V
(
zj≤t

)
+ U

(
zjt

)
with aj≤t =

K
(
zj≤t

)⊤
Q
(
zjt

)
√
d

In our design, the computational paths from xj
t+1 to zjt+1 and from xj

t to ẑjt are considered as ĝt and
f̂t, respectively. In particular, zjt+1 = ĝt(x

j
t+1) and ẑjt+1 = f̂t(x

j
t+1). The main goal of this design is

as follows: By incorporating historical data into computation, representation space constructed by f̂t
can capture evolving pattern across domain sequence. However, this design requires access to the
historical data during inference which might not be feasible in practice. To avoid it, we enforce ĝt,
which obviates the need to access historical data, to mimic representation space constructed by f̂t.

As shown in Remark 4.7, our goal is to enforce invariant representation constraint (i.e., Lt
inv in

objective (1)) for every pair of two consecutive domains Dt, Dt+1 constructed by f̂t and ĝt instead of
learning a network that achieves invariant representations for all source domains together. Thus, the
representations constructed by f̂t and ĝt might not be aligned with the ones constructed by f̂t′ and
ĝt′ . This implies that we should also make the classification network adaptive to changes in domain
to achieve the best performance. Due to the simplicity of the classifier (i.e., 1 or 2-layer network), we
leverage long short-term memory (Hochreiter & Schmidhuber, 1997) LSTM to explicitly capture
the evolving of the classifier over domain sequence. Specifically, the weights of previous classifiers
ĥ<t =

[
ĥ1, ĥ2, · · · , ĥt−1

]
are vectorized and put into LSTM to generate the weights of ĥt.

Because f̂t, ĝt, ĥt ∀t < T are functions of the representation network and the classification network,
the weights of these two networks are updated using the backpropagated gradients for objective (1).
The pseudo-code of the complete learning process for AIRL is shown in Algorithm 1, Appendix B.
Next, we present the details of each loss term used in optimization.

Prediction loss Lt
cls: We adopt cross-entropy loss for classification tasks. Specifically, Lt

cls for the
optimization over domains Dt, Dt+1 is defined as follows.

Lt
cls = EDw

t

[
− log

(
ĥt(f̂t(X))Y∑

y′∈Y ĥt(f̂t(X))y′

)]
+ EDt+1

[
− log

(
ĥt (ĝt(X))Y∑

y′∈Y ĥt (ĝt(X))y′

)]
(2)

Invariant representation constraint Lt
inv: It aims to minimize the distance between f̂t♯P

Z|Y=y
Dw

t

and ĝt♯P
Z|Y=y
Dt+1

, ∀y ∈ Y , two conditional distributions induced from domains Dw
t and Dt+1 using

representation mappings f̂t, ĝt, respectively. In other words, for any inputs X from domains Dw
t and

X ′ from Dt+1 whose labels are the same, we need to find representation mappings f̂t, ĝt such that
the representations f̂t(X), ĝt(X

′) have similar distributions. Inspired by correlation alignment loss
(Sun & Saenko, 2016), we enforce this constraint by using the following as loss Lt

inv:

Lt
inv =

∑
y∈Y

1

4d2
∥∥Cy

t − Cy
t+1

∥∥2
F

(3)

where d is the dimension of representation space Z , ∥ · ∥2F is the squared matrix Frobenius norm, and
Cy

t and Cy
t+1 are covariance matrices defined as follows:

Cy
t =

1

nt
y − 1

(
f̂t (X

y
t )

⊤
f̂t (X

y
t )−

1

nt
y

(
1⊤f̂t (X

y
t )
)⊤ (

1⊤f̂t (X
y
t )
))

Cy
t+1 =

1

nt+1
y − 1

(
ĝt
(
Xy

t+1

)⊤
ĝt
(
Xy

t+1

)
− 1

nt+1
y

(
1⊤ĝt

(
Xy

t+1

))⊤ (
1⊤ĝt

(
Xy

t+1

)))
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Table 1: Prediction performances (i.e., OODAvg and OODWrt) of AIRL and baselines under Eval-D
scenario (K = 5). We report average results (w. standard deviation) over 5 random seeds. For
CLEAR dataset, due to only one split between train and test sets, OODAvg and OODWrt are similar.

Algorithm Circle Circle-Hard RMNIST Yearbook CLEAR
OODAvg OODWrt OODAvg OODWrt OODAvg OODWrt OODAvg OODWrt OODAvg /OODWrt

ERM 89.63 (0.89) 79.84 (1.84) 66.94 (1.69) 58.43 (0.05) 56.61 (1.83) 51.85 (4.15) 90.79 (0.16) 71.03 (1.74) 69.04 (0.18)
LD 76.60 (6.45) 56.88 (3.74) 58.13 (1.67) 51.58 (1.87) 37.54 (2.77) 25.80 (4.12) 77.10 (0.30) 57.97 (0.88) 57.01 (2.15)
FT 85.57 (1.82) 71.99 (4.11) 59.02 (5.20) 50.80 (2.79) 60.73 (0.87) 47.30 (3.77) 87.04 (0.58) 66.83 (2.22) 66.71 (0.46)
DANN 88.80 (1.17) 78.32 (3.23) 65.10 (0.93) 56.68 (0.59) 58.25 (1.15) 53.61 (1.61) 90.57 (0.22) 69.58 (1.38) 67.48 (1.19)
CDANN 89.75 (0.14) 80.75 (2.97) 64.05 (1.33) 58.68 (0.22) 58.19 (0.93) 54.45 (1.40) 90.46 (0.30) 70.37 (1.44) 66.12 (0.37)
G2DM 89.40 (2.27) 79.61 (2.94) 67.75 (2.69) 59.65 (1.61) 57.62 (0.39) 53.93 (0.31) 87.57 (0.37) 66.69 (1.15) 56.98 (2.77)
CORAL 90.13 (0.52) 83.14 (1.27) 66.12 (1.48) 59.62 (1.17) 51.41 (2.63) 44.95 (3.64) 90.41 (0.20) 69.53 (2.00) 70.96 (1.06)
GROUPDRO 90.50 (1.75) 81.07 (6.12) 67.08 (1.67) 58.51 (0.12) 54.37 (2.98) 46.21 (5.69) 90.65 (0.20) 71.21 (1.51) 70.63 (0.04)
MIXUP 88.49 (0.86) 76.78 (2.49) 63.03 (1.53) 56.21 (1.20) 52.13 (2.54) 34.60 (16.81) 89.75 (0.05) 68.73 (1.36) 69.58 (0.99)
IRM 85.78 (1.11) 74.80 (1.73) 62.43 (2.70) 54.96 (1.78) 26.96 (1.11) 16.25 (1.87) 84.65 (0.31) 64.30 (2.44) 49.54 (1.08)
SELFREG 90.33 (0.14) 82.20 (0.93) 68.23 (2.47) 60.28 (0.90) 50.58 (2.35) 42.15 (4.63) 91.47 (0.12) 73.88 (0.37) 69.18 (0.68)
FISH 90.65 (0.25) 79.09 (2.46) 62.69 (0.63) 56.97 (0.49) 56.53 (1.32) 52.23 (1.47) 89.92 (0.20) 70.58 (0.90) 69.46 (0.47)
EWC 89.18 (1.72) 79.59 (4.63) 68.31 (3.31) 61.34 (2.18) 66.53 (1.26) 50.63 (5.35) 89.47 (0.17) 59.09 (7.70) 45.58 (4.92)
CIDA 87.25 (0.88) 77.91 (0.23) 65.38 (2.77) 58.15 (0.88) 53.42 (4.35) 35.21 (17.85) 91.29 (0.16) 70.19 (1.45) 65.10 (0.12)
DRAIN 86.78 (0.65) 74.57 (1.82) 67.44 (4.65) 57.76 (3.42) 67.09 (4.06) 59.49 (8.31) 89.62 (0.39) 70.36 (2.32) 64.67 (0.65)
DPNET 91.76 (0.16) 83.35 (1.32) 64.19 (0.95) 59.94 (0.18) 74.39 (0.23) 71.03 (0.37) 92.11 (0.26) 75.04 (1.16) 64.05 (0.64)
LSSAE 90.21 (1.95) 80.92 (3.53) 66.43 (0.81) 61.22 (0.71) 33.30 (2.14) 18.83 (3.85) 60.48 (4.99) 50.35 (4.67) 22.61 (0.25)
DDA 72.06 (4.51) 48.81 (0.97) 65.26 (3.20) 56.16 (2.45) 78.18 (0.88) 73.70 (0.31) 86.72 (0.56) 67.60 (2.66) 70.12 (1.10)
AIRL 92.28 (0.27) 82.81 (2.70) 73.50 (2.21) 63.29 (1.26) 77.49 (0.86) 74.99 (0.57) 93.10 (0.21) 78.22 (0.92) 73.04 (0.67)

where 1 is the column vector with all elements equal to 1, Xy
t = {xi : xi ∈ Dw

t , yi = y} is the
matrix whose columns are {xi}, f̂t and ĝt are column-wise operations applied to Xy

t and Xy
t+1,

respectively, and nt
y is cardinality of Xy

t .

5.2 INFERENCE

At the inference stage, the well-trained representation network and classification network can be used
to make predictions about input x from any target domain DT+K , K > 0. In particular, we first map
input x to representation z using the encoder Enc in the representation network (i.e., g∗T+K−1). Then
the classification network (i.e., LSTM) is used sequentially to generate h∗

T+K−1 from the sequence of
classifiers

[
h∗
1, · · · , h∗

T+K−2

]
, and the prediction about z can be made by h∗

T+K−1. Note that at the
learning stage, both g∗t−1 and f∗

t are used to map input x from domain Dt to the representation space
while at the inference stage, only g∗T+K−1 is needed for target domain DT+K (we do not use f∗

T+K

because it requires access to data from all domains {Dt}t≤T+K which generally are not available
during inference). The complete inference process is shown in Algorithm 2, Appendix B.

6 EXPERIMENTS

In this section, we present the experimental results of the proposed AIRL and compare AIRL with a
wide range of existing algorithms. We evaluate these algorithms on synthetic and real-world datasets.
Next, we first introduce the experimental setup and then present the empirical results.

Experimental setup. Datasets and baselines used in the experiments are briefly introduced below.
Their details are shown in Appendix C.

Datasets. We consider five datasets: Circle (Pesaranghader & Viktor, 2016) (a synthetic dataset
containing 30 domains where each instance is sampled from 30 two-dimensional Gaussian distri-
butions), Circle-Hard (a synthetic dataset adapted from Circle dataset such that domains do not
uniformly evolve), RMNIST (a semi-synthetic dataset constructed from MNIST (LeCun et al., 1998)
by R-degree counterclockwise rotation), Yearbook (Ginosar et al., 2015) (a real dataset consisting
of frontal-facing American high school yearbook photos from 1930-2013), and CLEAR (Lin et al.,
2021) (a real dataset capturing the natural temporal evolution of visual concepts that spans a decade).

Baselines. We compare the proposed AIRL with existing methods from related areas, including
the followings: empirical risk minimization (ERM), last domain training (LD), fine tuning (FT),
domain invariant representation learning (G2DM (Albuquerque et al., 2019), DANN (Ganin et al.,
2016), CDANN (Li et al., 2018b), CORAL (Sun & Saenko, 2016), IRM (Arjovsky et al., 2019)), data
augmentation (MIXUP (Zhang et al., 2018)), continual learning (EWC (Kirkpatrick et al., 2017)),
continuous DA (CIDA (Wang et al., 2020)), distributionally robust optimization (GroupDRO (Sagawa
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et al., 2019)), gradient-based DG (Fish (Shi et al., 2022)) contrastive learning-based DG (i.e.,
SelfReg (Kim et al., 2021)), non-stationary environment DG (DRAIN (Bai et al., 2022), DPNET
(Wang et al., 2022), LSSAE (Qin et al., 2022), and DDA (Zeng et al., 2023)). To ensure a fair
comparison, we adopt similar architectures for AIRL and baselines, including both representation
mapping and classifier. The implementation details are described in Appendix B.

Table 2: Ablation study for AIRL on Circle-Hard
dataset under Eval-D scenario (K = 5).

LSTM Trans Linv OODAvg OODWrt

✗ ✓ ✓ 69.06 61.05
✓ ✗ ✓ 65.51 58.69
✓ ✗ ✗ 68.33 60.16
✓ ✓ ✓ 73.50 63.29

Evaluation method. In the experiments,
models are trained on a sequence of source
domains Dsrc, and their performance is
evaluated on target domains Dtgt under
two different scenarios: Eval-S and Eval-
D. In the scenario Eval-S, models are
trained one time on the first half of do-
main sequence Dsrc = [D1, D2, · · · , DT ]
and are then deployed to make predictions on the second half of domain sequence Dtgt =
[DT+1, DT+2, · · · , D2T ]. In the scenario Eval-D, source and target domains are not static but
are updated periodically as new data/domain becomes available. For each of these two scenarios,
we use two accuracy measures, OODAvg and OODWrt, to evaluate the average- and worst-case
performances. Their details are shown in Appendix C. We train each model with 5 different random
seeds and report the average prediction performances.

Results. Next, we evaluate the model performance under Eval-D scenario. The results for Eval-S
scenario are presented in Appendix C.

Non-stationary environment DG results. Performance of AIRL and baselines on synthetic (i.e., Cir-
cle, Circle-Hard) and real-world (i.e., RMNIST, Yearbook) data are presented in Table 1. We
observe that AIRL consistently outperforms other methods over all datasets and metrics. These
results indicate that AIRL can effectively capture non-stationary patterns across domains, and such
patterns can be leveraged to learn the models that generalize better on target domains compared to
the baselines. Among baselines, methods designed specifically for non-stationary environment DG
(i.e., DRAIN, DPNET, LSSAE) and continual learning method (i.e., EWC) achieve better performance
than other methods. However, such improvement is inconsistent across datasets.

Comparison with existing non-stationary environment DG methods. DPNET assumes that the evolv-
ing pattern between two consecutive domains is constant and the distances between them are small.
Thus, this method does not achieve good performance for Circle-Hard dataset where distance be-
tween two consecutive domains is proportional to domain index. DRAIN utilizes Bayesian framework
and generates the whole models at every domain. This method, however, is only capable for small
neural networks and does not scale well to real-world applications. Moreover, DPNET, DRAIN,
and DDA can only generalize to a single subsequent target domain. LSSAE leverages sequential
variational auto-encoder (Li & Mandt, 2018) to learn non-stationary pattern. However, this model
assumes the availability of aligned data across domain sequence, which may pose challenges to its
performance in non-stationary DG. In contrast, AIRL is not limited to the constantly evolving pattern.
It is also scalable to large neural networks and can handle multiple target domains. In particular,
compared to the base model (ERM), our method has only one extra Transformer and LSTM layers.
Note that these layers are used during training only. In the inference stage, predictions are made by
Enc and classifier pre-generated by LSTM which then results in a similar inference time with ERM.

Ablation studies. We conduct experiments to investigate the roles of each component in AIRL. In
particular, we compare AIRL with its variants; each variant is constructed by removing LSTM (i.e.,
use fixed classifier instead), Trans (i.e., use fixed representation instead), Linv (i.e., without invariant
constraint) from the model. As shown in Table 2, model performance deteriorates when removing any
of them. These results validate our theorems and demonstrate the effectiveness of each component.

7 CONCLUSION

In this paper, we theoretically and empirically studied domain generalization under non-stationary
environments. We first established the upper bounds of prediction error on target domains, and then
proposed a representation learning-based method that learns adaptive invariant representations across
source domains. The resulting models trained with the proposed method can generalize well to
unseen target domains. Experiments on both synthetic and real data demonstrate the effectiveness of
our proposed method.
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A PROOFS

A.1 PROOF OF THEOREM 4.5

We first introduce the following lemmas which are used to proof Theorem 4.5.

Lemma A.1. Suppose loss function L is upper bounded by C. For any classifier ĥ : X → Y∆ and
any hypothesis mechanism M̂ = {m̂t : X × Y → X × Y}, the expected error of ĥ in an unseen
target domain DT+1 can be upper bounded:

ϵDT+1

(
ĥ
)
≤ ϵD̂T+1

(
ĥ
)
+ CK

√
D
(
PX,Y
DT+1

, PX,Y

D̂T+1

)

where K is a constant dependent on distance metric D(·, ·), D̂T+1 is the domain specified by the
push-forward distribution PX,Y

D̂T+1
:= m̂T+1♯P

X,Y
DT

.

Lemma A.2. Suppose loss function L is upper bounded by C. Then, for any δ > 0, with probability
at least 1− δ over samples Sn drawn i.i.d from domain D, for all ĥ ∈ H, the expected error of ĥ in
domain D can be upper bounded:

ϵD

(
ĥ
)
≤ ϵ̂D

(
ĥ
)
+ 2R̂n (LH) + 3C

√
log(2/δ)

2n

Proof of Lemma A.1 We first show the proof for KL-divergence. Based on that, the proof for
JS-divergence is given.

Let U = (X,Y ) and L(U) = L(ĥ(X), Y ). We first prove
∫
E

∣∣∣PU=u
DT+1

− PU=u
D̂T+1

∣∣∣ du =

1
2

∫ ∣∣∣PU=u
DT+1

− PU=u
D̂T+1

∣∣∣ du where E is the event that PU=u
DT+1

≥ PU=u
D̂T+1

(∗) as follows:

∫
E

∣∣∣PU=u
DT+1

− PU=u
D̂T+1

∣∣∣ du =

∫
E

(
PU=u
DT+1

− PU=u
D̂T+1

)
du

=

∫
E∪E

(
PU=u
DT+1

− PU=u
D̂T+1

)
du−

∫
E

(
PU=u
DT+1

− PU=u
D̂T+1

)
du

(1)
=

∫
E

(
PU=u
D̂T+1

− PU=u
DT+1

)
du

=

∫
E

∣∣∣PU=u
DT+1

− PU=u
D̂T+1

∣∣∣ du
=

1

2

∫ ∣∣∣PU=u
DT+1

− PU=u
D̂T+1

∣∣∣ du

where E is the complement of E . We have
(1)
= because

∫
E∪E

(
PU=u
DT+1

− PU=u
D̂T+1

)
du =∫

U

(
PU=u
DT+1

− PU=u
D̂T+1

)
du = 0. Then, we have:
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ϵDT+1

(
ĥ
)
= EDT+1

[L(U)]

=

∫
U
L(u)PU=u

DT+1
du

=

∫
U
L(u)PU=u

D̂T+1
du+

∫
U
L(u)

(
PU=u
DT+1

− PU=u
D̂T+1

)
du

= ED̂T+1
[L(U)] +

∫
U
L(u)

(
PU=u
DT+1

− PU=u
D̂T+1

)
du

= ϵD̂T+1

(
ĥ
)
+

∫
E
L(u)

(
PU=u
DT+1

− PU=u
D̂T+1

)
du+

∫
E
L(u)

(
PU=u
DT+1

− PU=u
D̂T+1

)
du

(2)

≤ ϵD̂T+1

(
ĥ
)
+

∫
E
L(u)

(
PU=u
DT+1

− PU=u
D̂T+1

)
du

(3)

≤ ϵD̂T+1

(
ĥ
)
+ C

∫
E

(
PU=u
DT+1

− PU=u
D̂T+1

)
du

= ϵD̂T+1

(
ĥ
)
+ C

∫
E

∣∣∣PU=u
DT+1

− PU=u
D̂T+1

∣∣∣ du
(4)
= ϵD̂T+1

(
ĥ
)
+

C

2

∫ ∣∣∣PU=u
DT+1

− PU=u
D̂T+1

∣∣∣ du
(5)

≤ ϵD̂T+1

(
ĥ
)
+

C

2

√
2min

(
DKL

(
PU
D̂T+1

, PU
DT+1

)
,DKL

(
PU
DT+1

, PU
D̂T+1

))
≤ ϵD̂T+1

(
ĥ
)
+

C√
2

√
DKL

(
PU
D̂T+1

, PU
DT+1

)
(∗∗)

We have
(2)

≤ because
∫
E L(u)

(
PU=u
DT+1

− PU=u
D̂T+1

)
du ≤ 0;

(3)

≤ because L(u) is non-negative function

and is bounded by C;
(4)
= by using (∗);

(5)

≤ by using Pinsker’s inequality between total variation norm
and KL-divergence. From (∗∗), we can see that when D is DKL, K = 1√

2
. Next, we give the proof

when D is DJS (JS-divergence).

Let PU
D′

T+1
= 1

2

(
PU
DT+1

+ PU
D̂T+1

)
. Apply (∗∗) for two domains DT+1 and D′

T+1, we have:

ϵDT+1

(
ĥ
)
≤ ϵD′

T+1

(
ĥ
)
+

C√
2

√
DKL

(
PU
DT+1

, PU
D′

T+1

)
(4)

Apply (∗∗) again for two domains D′
T+1 and D̂T+1, we have:

ϵD′
T+1

(
ĥ
)
≤ ϵD̂T+1

(
ĥ
)
+

C√
2

√
DKL

(
PU
D̂T+1

, PU
D′

T+1

)
(5)

Adding Eq. (4) to Eq. (5) and subtracting ϵD′
T+1

, we have:

ϵDT+1

(
ĥ
)
≤ ϵD̂T+1

(
ĥ
)
+

C√
2

(√
DKL

(
PU
DT+1

, PU
D′

T+1

)
+

√
DKL

(
PU
D̂T+1

, PU
D′

T+1

))
(6)

≤ ϵD̂T+1

(
ĥ
)
+

C√
2

√
2
(
DKL

(
PU
DT+1

, PU
D′

T+1

)
+DKL

(
PU
D̂T+1

, PU
D′

T+1

))
= ϵD̂T+1

(
ĥ
)
+

C√
2

√
4DJS

(
PU
D̂T+1

, PU
DT+1

)
= ϵD̂T+1

(
ĥ
)
+
√
2C

√
DJS

(
PU
D̂T+1

, PU
DT+1

)

We have
(6)

≤ by using Cauchy–Schwarz inequality. We can also see that K =
√
2 when D is DJS .
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Proof of Lemma A.2 We start from the Rademacher bound Koltchinskii & Panchenko (2000)
which is stated as follows.
Lemma A.3. Rademacher Bounds. Let F be a family of functions mapping from Z to [0, 1]. Then,
for any 0 < δ < 1, with probability at least 1 − δ over sample Sn = {z1, · · · , zn}, the following
holds for all f ∈ F:

E [f(z)] ≤ 1

n

n∑
i=1

f(zi) + 2R̂n(F) + 3

√
log 2

δ

2n

We then apply Lemma A.3 to our setting with Z = (X,Y ), the loss function L bounded by C, and
the function class LH =

{
(x, y) → L

(
ĥ (x) , y

)
: ĥ ∈ H

}
. In particular, we scale the loss function

L to [0, 1] by dividing by C and denote the new class of scaled loss functions as LH/C. Then, for
any δ > 0, with probability at least 1− δ, we have:

ϵD

(
ĥ
)

C
≤

ϵD̂

(
ĥ
)

C
+ 2R̂n (LH/C) + 3

√
log 2

δ

2n

(1)
=

ϵD̂

(
ĥ
)

C
+

2

C
R̂n (LH) + 3

√
log 2

δ

2n
(6)

We have
(1)

≤ by using the property of Redamacher complexity that R̂n(αF) = αR̂n(F). We derive
Lemma A.2 by multiplying Eq. (6) by C.

Proof of Theorem 4.5 We then apply Lemmas A.1 and A.2 for the two domains DT+1 and D̂T+1.
In particular, for any 0 < δ < 1 and any M̂ = {m̂t : X × Y → X × Y}, with probability at least
1− δ over sample Sn of domain D̂T+1, for all ĥ : X → Y∆, we have the following inequality :

ϵDT+1

(
ĥ
)
≤ ϵ̂D̂T+1

(
ĥ
)
+ 2R̂n (LH) + 3C

√
log(2/δ)

2n
+ CK

√
D
(
PU
DT+1

, PU
D̂T+1

)
= ϵ̂D̂T+1

(
ĥ
)
+ 2R̂n (LH) + 3C

√
log(2/δ)

2n

+ CK

√√√√D
(
PU
DT+1

, PU
D̂T+1

)
− 1

T − 1

T∑
t=2

D
(
PU
Dt

, PU
D̂t

)
+

1

T − 1

T∑
t=2

D
(
PU
Dt

, PU
D̂t

)
≤ ϵ̂D̂T+1

(
ĥ
)
+ 2R̂n (LH) + 3C

√
log(2/δ)

2n

+ CK

√√√√∣∣∣∣∣D (PU
DT+1

, PU
D̂T+1

)
− 1

T − 1

T∑
t=2

D
(
PU
Dt

, PU
D̂t

)∣∣∣∣∣+ 1

T − 1

T∑
t=2

D
(
PU
Dt

, PU
D̂t

)
= ϵ̂D̂T+1

(
ĥ
)
+ 2R̂n (LH) + 3C

√
log(2/δ)

2n

+ CK

√√√√Φ
(
M̂
)
+

1

T − 1

T∑
t=2

D
(
PX,Y
Dt

, PX,Y

D̂t

)
(7)

Applying Eq. (7) for M∗, we have the following inequality with probability at least 1− δ:

ϵDT+1

(
ĥ
)
≤ ϵ̂D∗

T+1

(
ĥ
)
+ 2R̂n (LH) + 3C

√
log(2/δ)

2n

+ CK

√√√√Φ (M∗) +
1

T − 1

T∑
t=2

D
(
PX,Y
Dt

, PX,Y
D∗

t

)
(8)
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According Assumption 4.3, we also have the following inequality with probability at least 1− δ:

Φ (M∗) ≤ ϵ (9)

Using union bound for Eq. (8) and Eq. (9), we also have the following inequality with probability at
least 1− 2δ:

ϵDT+1

(
ĥ
)
≤ ϵ̂D∗

T+1

(
ĥ
)
+ 2R̂n (LH) + 3C

√
log(2/δ)

2n
+ CK

√√√√ϵ+
1

T − 1

T∑
t=2

D
(
PX,Y
Dt

, PX,Y
D∗

t

)
(10)

Replacing δ by δ
2 in Eq. (10) gives us the inequality in Corollary 4.5.

A.2 PROOF OF PROPOSITION 4.6

∀y ∈ Y , we have the following (∗):

PY=y
Dw

t−1
=

∫
X
PX=x,Y=y
Dw

t−1
dx

=

∫
X
wy × PX=x,Y=y

Dt−1
dx

=

∫
X

PY=y
Dt

PY=y
Dt−1

× PX=x,Y=y
Dt−1

dx

= PY=y
Dt

∫
X
P

X=x|Y=y
Dt−1

dx

= PY=y
Dt

Then we show the proof for DKL. Based on that, the proof for DJS is given. We have:

DKL

(
PX,Y
Dt

, PX,Y

D̂w
t

)
= EPX,Y

Dt

[
logPX,Y

Dt
− logPX,Y

D̂w
t

]
= EPX,Y

Dt

[
logPY

Dt
+ logP

X|Y
Dt

]
− EPX,Y

Dt

[
logPY

D̂w
t

+ logP
X|Y
D̂w

t

]
= EPX,Y

Dt

[
logPY

Dt
− logPY

D̂w
t

]
+ EPX,Y

Dt

[
logP

X|Y
Dt

− logP
X|Y
D̂w

t

]
(1)
= EPY

Dt

[
E
P

X|Y
Dt

[
logP

X|Y
Dt

− logP
X|Y
D̂w

t

]]
= EPY

Dt

[
DKL

(
P

X|Y
Dt

, P
X|Y
D̂w

t

)]
(11)

We have
(1)
= because PY

D̂w
t

= m̂t−1♯P
Y
Dw

t−1
= PY

Dw
t−1

for m∗
t−1 : X → X and PY

Dw
t−1

= PY
Dt

by (∗).

For JS-divergence DJS , let PX,Y
D′

t
= 1

2

(
PX,Y
Dt

+ PX,Y

D̂w
t

)
. Then, we have:

DJS

(
PX,Y
Dt

, PX,Y

D̂w
t

)
=

1

2
DKL

(
PX,Y
Dt

, PX,Y
D′

t

)
+

1

2
DKL

(
PX,Y

D̂w
t

, PX,Y
D′

t

)
(2)
=

1

2

(
EPY

Dt

[
DKL

(
P

X|Y
Dt

, P
X|Y
D′

t

)]
+ EPY

D̂w
t

[
DKL

(
P

X|Y
D̂w

t

, P
X|Y
D′

t

)])
= EPY

Dt

[
1

2

(
DKL

(
P

X|Y
Dt

, P
X|Y
D′

t

)
+DKL

(
P

X|Y
D̂w

t

, P
X|Y
D′

t

))]
= EPY

Dt

[
DJS

(
P

X|Y
Dt

, P
X|Y
D̂w

t

)]
We have

(2)
= by applying Eq. (11) for DKL

(
PX,Y
Dt

, PX,Y
D′

t

)
and DKL

(
PX,Y

D̂w
t

, PX,Y
D′

t

)
.

16



Under review as a conference paper at ICLR 2024

B MODEL DETAILS

B.1 PSEUDO CODES FOR AIRL’S LEARNING AND INFERENCE PROCESSES

Algorithm 1: Learning process for AIRL

Input: Training datasets from T source domains {Dt}Tt=1, representation network = {Enc,
Trans}, classification network = {LSTM, ĥ1}, α, n

Output: Trained Enc,Trans,LSTM, h∗
1

1 Linv = 0, Lcls = 0
/* Estimate {wt

y}y∈Y,t<T for important weighting */
2 for t = 1 : T − 1 do
3 for y ∈ Y do
4 wt

y = PY=y
Dt+1

/PY=y
Dt

/* Learn weights for Enc,Trans,LSTM */
5 while learning is not end do
6 Sample batch B = {xt, yt}Tt=1 ∼ {Dt}Tt=1 where {xt, yt} =

{
xj
t , y

j
t

}n

j=1

7 z1 = Enc (x1)
8 for t = 1 : T − 1 do
9 zt+1 = Enc (xt+1)

10 ẑt = Trans (z≤t)
11 {ẑt(w), yt(w)} = Reweight {ẑt, yt} with wt = {wt

y}y∈Y
12 Calculate Lt

inv from ẑt(w), zt+1 by Eq. (3)
13 Linv = Linv + Lt

inv
14 if t > 1 then
15 ht = LSTM(h<t)

16 Calculate Lt
cls from yt(w), yt+1, ĥt (ẑt(w)) , ĥt (zt+1) by Eq. (2)

17 Lcls = Lcls + Lt
cls

18 Update Enc,Trans,LSTM, ĥ1 by optimizing Linv + αLcls

Algorithm 2: Inference process for AIRL
Input: Testing dataset from domain DT+K , trained Enc,LSTM, h∗

1
Output: Predictions for testing dataset

1 for t = 2 : (T +K − 1) do
2 h∗

t = LSTM(h∗
<t)

3 while inference is not end do
4 Sample batch B = xT+K ∼ DT+K

5 zT+K = Enc (xT+K)
6 Generate predictions h∗

T+K−1 (zT+K)

B.2 DETAILS OF MODEL ARCHITECTURES

Our proposed model AIRL consists of three components: (i) encoder Enc that maps inputs to
representation (i.e., equivalent to ĝt in our theoretical results), (ii) transformer layer Trans that
helps to enforce the invariant representation (i.e., Enc + Trans equivalent to f̂t in our theoretical
results), and (iii) classification network LSTM that generates classifiers mapping representations to
the output space. At each target domain, LSTM layer is used to generate the new classifier based
on the sequences of previous classifiers. The detailed architectures of these networks used in our
experiment are presented in Tables 3 and 4 below.
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Table 3: Detailed architecture of AIRL for RMNIST (n_channel = 1, n_output = 10), Yearbook
(n_channel = 3, n_output = 1), and CLEAR (n_channel = 3, n_output = 10) datasets.

Networks Layers

Representation Mapping G

Conv2d(input channel = n_channel, output channel = 32, kernel = 3, padding = 1)
BatchNorm2d
ReLU
MaxPool2d
Conv2d(input channel = 32, output channel = 32, kernel = 3, padding = 1)
BatchNorm2d
ReLU
MaxPool2d
Conv2d(input channel = 32, output channel = 32, kernel = 3, padding = 1)
BatchNorm2d
ReLU
MaxPool2d
Conv2d(input channel = 32, output channel = 32, kernel = 3, padding = 1)
BatchNorm2d
ReLU
MaxPool2d

Transformer Trans

Q: Linear(input dim = 32, output dim = 32)
K: Linear(input dim = 32, output dim = 32)
V : Linear(input dim = 32, output dim = 32)
U : Linear(input dim = 32, output dim = 32)
Linear(input dim = 32, output dim = 32)
Batchnorm1d
LeakyReLU

Classification Network LSTM

Linear(input dim = (32 * 32 + 32) + (32 * n_output + n_output), output dim = 128)
LSTM(input dim = 128, output dim = 128)
Linear(input dim = 128, output dim = (32 * 32 + 32) + (32 * n_output + n_output))

ĥt (Output of LSTM)
Linear(input dim = 32, output dim = 32)
ReLU
Linear(input dim = 32, output dim = n_output)
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Table 4: Detailed architecture of AIRL for Circle and Circle-Hard datasets.

Networks Layers

Encoder Enc

Linear(input dim = 2, output dim = 32)
ReLU
Linear(input dim = 32, output dim = 32)
ReLU
Linear(input dim = 32, output dim = 32)
ReLU
Linear(input dim = 32, output dim = 32)

Transformer Trans

Q: Linear(input dim = 32, output dim = 32)
K: Linear(input dim = 32, output dim = 32)
V : Linear(input dim = 32, output dim = 32)
U : Linear(input dim = 32, output dim = 32)
Linear(input dim = 32, output dim = 32)
Batchnorm1d
LeakyReLU

Classification Network LSTM

Linear(input dim = (32 * 32 + 32) + (32 * 1 + 1), output dim = 128)
LSTM(input dim = 128, output dim = 128)
Linear(input dim = 128, output dim = (32 * 32 + 32) + (32 * 1 + 1))

ĥt (Output of LSTM)
Linear(input dim = 32, output dim = 32)
ReLU
Linear(input dim = 32, output dim = 1)
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C DETAILS OF EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

C.1 EXPERIMENTAL SETUP

Datasets. Our experiments are conducted on two synthetic and two real-world datasets. The data
statistics of these datasets are presented in Table 5. For Eval-S scenario, the first half of domains in
the domain sequences are used for training and the following domains are used for testing. For Eval-D
scenario, we vary the size of the training set starting from the first half of domains by sequentially
adding new domains to this set. In both scenarios, we split the training set into smaller subsets with a
ratio 81 : 9 : 10; these subsets are used as training, validation, and in-distribution testing sets. The
data descriptions are given as follow:

• Circle (Pesaranghader & Viktor, 2016): A synthetic dataset containing 30 domains. Features
X := [X1, X2]

T in domain t are two-dimensional and Gaussian distributed with mean
X̄t = [r cos(πt/30), r sin(πt/30)] where r is radius of semicircle; the distributions of
different domains have the same covariance matrix but different means that uniformly evolve
from right to left on a semicircle. Binary label Y are generated based on labeling function
Y = 1

[
(X1 − xo

1)
2 + (X2 − xo

2)
2 ≤ r

]
, where (xo

1, x
o
2) are center of semicircle. Models

trained on the right part are evaluated on the left part of the semicircle.
• Circle-Hard: A synthetic dataset adapted from Circle dataset, where mean X̄t does not

uniformly evolve. Instead, X̄t = [r cos(θt), r sin(θt)] where θt = θt−1+π(t− 1)/180 and
θ1 = 0 rad.

• RMNIST: A dataset constructed from MNIST (LeCun et al., 1998) by R-degree counter-
clockwise rotation. We evenly select 30 rotation angles R from 0◦ to 180◦ with step size
6◦; each angle corresponds to a domain. The domains with R ≤ r are considered source
domains, those with R > r are the target domains used for evaluation. In this dataset, the
goal is to train a multi-class classifier on source domains that predicts the digits of images in
target.

• Yearbook (Ginosar et al., 2015): A real dataset consisting of frontal-facing American high
school yearbook photos from 1930-2013. Due to the evolution of fashion, social norms,
and population demographics, the distribution of facial images changes over time. In this
dataset, we aim to train a binary classifier using historical data to predict the genders of
images in the future.

• CLEAR (Lin et al., 2021): A real dataset built from existing large-scale image collections
(YFCC100M) which captures the natural temporal evolution of visual concepts in the real
world that spans a decade (2004-2014). In this dataset, we aim to train a multi-class classifier
using historical data to predict 10 object types in future images.

Table 5: Data statistics.

Data type Label type #instance #domain
Circle Synthetic Binary 30000 30
Circle-Hard Synthetic Binary 30000 30
RMNIST Semi-synthetic Multi 30000 30
Yearbook Real-world Binary 33431 84
CLEAR Real-world Multi 29747 10

Baseline methods. We compare the proposed AIRL with existing methods from related areas,
including the followings:

• Empirical risk minimization (ERM): A simple method that considers all source domains as
one domain.

• Last domain (LD): A method that only trains model using the most recent source domain.
• Fine tuning (FT): The baseline trained on all source domains in a sequential manner.
• Domain invariant representation learning: Methods that learn the invariant representations

across source domains and train a model based on the representations. We experiment with
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G2DM (Albuquerque et al., 2019), DANN (Ganin et al., 2016), CDANN (Li et al., 2018b),
CORAL (Sun & Saenko, 2016), IRM (Arjovsky et al., 2019).

• Data augmentation: We experiment with MIXUP (Zhang et al., 2018) that generates new
data using convex combinations of source domains to enhance the generalization capability
of models.

• Continual learning: We experiment with EWC (Kirkpatrick et al., 2017), method that learns
model from data streams that overcomes catastrophic forgetting issue.

• Continuous domain adaptation: We experiment with CIDA (Wang et al., 2020), an adversar-
ial learning method designed for DA with continuous domain labels.

• Distributionally robust optimization: We experiment with GROUPDRO (Sagawa et al., 2019)
that minimizes the worst-case training loss over pre-defined groups through regularization.

• Gradient-based DG: We experiment with FISH (Shi et al., 2022) that targets domain
generalization by maximizing the inner product between gradients from different domains.

• Contrastive learning-based DG: We experiment with SELFREG (Kim et al., 2021) that
utilizes the self-supervised contrastive losses to learn domain-invariant representation by
mapping the latent representation of the same-class samples close together.

• Non-stationary environment DG: We experiment with DRAIN (Bai et al., 2022), DPNET
(Wang et al., 2022), LSSAE (Qin et al., 2022). and DDA (Zeng et al., 2023). DRAIN,
DPNET, and DDA focus on domain DT+1 only so we use the same model when making
predictions for all target domains {Dt}t>T .

Evaluation method. In the experiments, models are trained on a sequence of source domains Dsrc,
and their performance is evaluated on target domains Dtgt under two different scenarios: Eval-S and
Eval-D.

In the scenario Eval-S, models are trained one time on the first half of domain sequence Dsrc =
[D1, D2, · · · , DT ] and are then deployed to make predictions on the next K domains in the second
half of domain sequence Dtgt = [DT+1, DT+2, · · · , DT+K ] (T + 1 ≤ K ≤ 2T ). The average and
worst-case performances can be evaluated using two matrices OODAvg and OODWrt defined below.

OODAvg =
1

K

K∑
k=1

accT+k; OODWrt = min
k∈[K]

accT+k

where accT+k denotes the accuracy of model on target domain DT+k.

In the scenario Eval-D, source and target domains are not static but are updated periodically
as new data/domain becomes available. This allows us to update models based on new source
domains. Specifically, at time step t ∈ [T, 2T − K], models are updated on source domains
Dsrc = [D1, D2, · · · , Dt] and are used to predict target domains Dtgt = [Dt+1, Dt+2, · · · , Dt+K ].
The average and worst-case performances of models in this scenario can be defined as follows.

OODAvg = 1
(T−K+1)K

∑2T−K
t=T

∑K
k=1 acct+k

OODWrt = min
t∈[T,2T−K]

1
K

∑K
k=1 acct+k

In our experiment, the time step t starts from the index denoting half of the domain sequence.

Implementation and training details. Data, model implementation, and training script are included
in the supplementary material. We train each model on each setting with 5 different random seeds
and report the average prediction performances. All experiments are conducted on a machine with
24-Core CPU, 4 RTX A4000 GPUs, and 128G RAM.

C.2 ADDITIONAL EXPERIMENT RESULTS

Performance gap between in-distribution and out-of-distribution predictions. This study is
motivated based on the assumption that the environment changes over time and that there exist
distribution shifts between training and test data. To verify this assumption in our datasets, we
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Table 6: Performances of DANN on RMNIST dataset.

Target Domain 0◦-rotated 15◦-rotated 30◦-rotated 45◦-rotated 60◦-rotated

Model Performance 51.2 59.1 70.0 69.2 53.9

compare the performances of ERM on in-distribution and out-of-distribution testing sets. Specifically,
we show the gaps between the performances of ERM measured on the in-distribution (i.e., IDAvg)
and out-of-distribution (i.e., OODAvg) testing sets under Eval-D scenario (i.e., K = 5) in Figure 4.

Performance of fixed invariant representation learning in conventional and non-stationary DG
settings. A key distinction from non-stationary DG is that the model evolves over the domain
sequence to capture non-stationary patterns (i.e., learn invariant representations between two con-
secutive domains but adaptive across domain sequence). This stands in contrast to the conventional
DG (Ganin et al., 2016; Phung et al., 2021) which relies on an assumption that target domains lie on
or are near the mixture of source domains, then enforcing fixed invariant representations across all
source domains can help to generalize the model to target domains. We argue that this assumption
may not hold in non-stationary DG where the target domains may be far from the mixture of source
domains resulting in the failure of the existing methods.

To verify this argument, we conduct an experiment on rotated RMNIST dataset with DANN (Ganin
et al., 2016) – a model that learns fixed invariant representations across all domains. Specifically,
we create 5 domains by rotating images by 0, 15, 30, 45, and 60 degrees, respectively, and follow
leave-one-out evaluation (i.e., one domain is target while the remaining domains are source). Clearly,
the setting where the target domain are images rotated by 0 or 60 degrees can be considered as
non-stationary domain generalization while other settings can be considered as conventional domain
generalization. The performances of DANN with different target domains are shown in Table 6. As
we can see, the accuracy drops significantly when the target domain are images rotated by 0 or 60
degrees. This result demonstrates that learning fixed invariant representations across all domains is
not suitable for non-stationary DG.

Experimental results for Eval-S scenario. The prediction performances of AIRL and baselines
on synthetic (i.e., Circle, Circle-Hard) and real-world (i.e., RMNIST, Yearbook) data under Eval-S
scenario are presented in Figure 5 below. In this scenario, the training set is fixed as the first half
of domains while the testing set is varied from the five subsequent domains to the second half of
domains in the domain sequences. We report averaged results with error bars (std) for training over 5
different random seeds.

We can see that AIRL consistently outperforms baselines in most datasets. We also observe that
the prediction performances decreases when the predictions are made for the distant target domains
(i.e., the number of testing domain increases) for all models in Circle, Circle-Hard, and RMNIST
datasets. This pattern is reasonable because domains in these datasets are generated monotonically.
For Yearbook dataset, the performance curves are U-shaped that they decrease first but increase
later. This dataset is from a real-world environment so we expect the shapes of the curves are more
complex compared to those in the other datasets.
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(a) Circle (b) Circle-Hard

(c) RMNIST (d) Yearbook

Figure 4: Gaps between the performances of ERM measured on the in-distribution and out-of-
distribution testing sets (i.e., IDAvg −OODAvg) under Eval-D scenario (i.e., K = 5). This experi-
ment is conducted on Circle, Circle-Hard, RMNIST, and Yearbook datasets.

(a) Circle (b) Circle-Hard

(c) RMNIST (d) Yearbook

Figure 5: Prediction performances (i.e., OODAvg) of AIRL and baselines under Eval-S scenario.
The training set is fixed as the first half of domains while the testing set is varied from the five
subsequent domains to the second half of domains in the domain sequences. We report average results
for training over 5 different random seeds. This experiment is conducted on Circle, Circle-Hard,
RMNIST, and Yearbook datasets.
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