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Abstract

Emotion Recognition in Conversation (ERC)001
plays a crucial role in enabling dialogue sys-002
tems to effectively respond to user requests.003
The emotions in a conversation can be identi-004
fied by the representations from various modal-005
ities, such as audio, visual, and text. How-006
ever, due to the weak contribution of non-verbal007
modalities to recognize emotions, multimodal008
ERC has always been considered a challenging009
task. In this paper, we propose Teacher-leading010
Multimodal fusion network for ERC (TelME).011
TelME incorporates cross-modal knowledge012
distillation to transfer information from a lan-013
guage model acting as the teacher to the non-014
verbal students, thereby optimizing the efficacy015
of the weak modalities. We then combine multi-016
modal features using a shifting fusion approach017
in which student networks support the teacher.018
TelME achieves state-of-the-art performance in019
MELD, a multi-speaker conversation dataset020
for ERC. Finally, we demonstrate the effec-021
tiveness of our components through additional022
experiments.023

1 Introduction024

Emotion recognition holds paramount importance,025

enhancing the engagement of conversations by pro-026

viding appropriate responses to the emotions of027

users in dialogue systems (Ma et al., 2020). The ap-028

plication of emotion recognition spans various do-029

mains, including chatbots, healthcare systems, and030

recommendation systems, demonstrating its versa-031

tility and potential to enhance a wide range of appli-032

cations (Poria et al., 2019). Emotion Recognition033

in Conversation (ERC) aims to identify emotions034

expressed by participants at each turn within a con-035

versation. The dynamic emotions in a conversation036

can be detected through multiple modalities such037

as textual utterances, facial expressions, and acous-038

tic signals (Baltrušaitis et al., 2018; Liang et al.,039

2022; Majumder et al., 2019; Hu et al., 2022b;040

Chudasama et al., 2022). Figure 1 illustrates an041

Figure 1: Examples of multimodal ERC. Even the same
"Okay" answer varies depending on the conversation
situation and captures emotions in various modalities.

example of a multimodal ERC. 042

Much research on ERC has mainly focused on 043

context modeling from text modality, disregarding 044

the rich representations that can be obtained from 045

audio and visual modalities. Text-based ERC meth- 046

ods have demonstrated that contextual information 047

derived from text data is a powerful resource for 048

emotion recognition (Kim and Vossen, 2021; Lee 049

and Lee, 2021; Song et al., 2022a,b). However, 050

non-verbal cues such as facial expressions and tone 051

of voice, which are not covered by text-based meth- 052

ods, provide important information that needs to 053

be explored in the field of ERC. Multimodal ap- 054

proaches demonstrate the possibility of integrating 055

features from three modalities to improve the ro- 056

bustness of ERC systems (Mao et al., 2021; Chu- 057

dasama et al., 2022; Hu et al., 2022b). Nevertheless, 058

these frameworks frequently ignore the varying de- 059

grees of impact the individual modalities have on 060

emotion recognition and instead treat them as ho- 061

mogeneous components. This implies a promising 062

opportunity to improve the ERC system by differ- 063

entiating the level of contribution made by each 064

modality. 065

In this paper, we propose Teacher-leading Mul- 066

timodal fusion network for the ERC task (TelME) 067
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that strengthens and fuses multimodal information068

by accentuating the powerful modality while bol-069

stering the weak modalities. Knowledge Distilla-070

tion (KD) can be extended to transfer knowledge071

across modalities, where a powerful modality can072

play the role of a teacher to transfer knowledge to073

a weak modality (Hinton et al., 2015; Xue et al.,074

2022). As shown in Figure 2, in ERC tasks, in-075

formation from the text modality is stronger com-076

pared to the other two modalities. Thus TelME en-077

hances the representations of the two weak modal-078

ities through KD utilizing the text encoder as the079

teacher. The comparison experiments in Appendix080

A.1 also support our decision to set the text model081

as the teacher. Our approach aims to adjust the dis-082

crepancies in predictions between the teacher and083

non-verbal students while generating emotional fea-084

tures that are exceptionally well-suited for fusion.085

TelME then incorporates Attention-based modal-086

ity Shifting Fusion, where the student networks087

strengthened by the teacher at the distillation stage088

assist the robust teacher encoder in reverse. Specif-089

ically, our fusion method creates displacement vec-090

tors from non-verbal modalities, which are used to091

shift the emotional embeddings of the teacher.092

We conduct experiments on two widely used093

benchmark datasets and compare our proposed094

method with existing ERC methods. Our results095

show that TelME performs well on both datasets096

and particularly excels in multi-party conversations,097

achieving state-of-the-art performance. The abla-098

tion study also demonstrates the effectiveness of099

our knowledge distillation strategy and its interac-100

tion with our fusion method. Our contributions can101

be summarized as follows:102

• We propose Teacher-leading Multimodal fu-103

sion network for Emotion Recognition in Con-104

versation (TelME). The proposed method con-105

siders different contributions of text and non-106

verbal modalities to emotion recognition for107

better prediction.108

• To the best of our knowledge, we are the109

first to enhance the effectiveness of weak non-110

verbal modalities for the ERC task through111

cross-modal distillation.112

• TelME shows exceptional performance in two113

widely used benchmark datasets and espe-114

cially achieves state-of-the-art in multi-party115

conversational scenarios.116

Figure 2: Unimodal Performance on MELD dataset

2 Related Work 117

2.1 Emotion Recognition in Conversation 118

Recently, ERC has become an increasingly atten- 119

tion in the field of emotion analysis. ERC can be 120

categorized into text-based and multimodal meth- 121

ods, depending on the input format. Text-based 122

methods primarily focus on context modeling and 123

speaker relationships (Jiao et al., 2019; Li et al., 124

2020; Hu et al., 2021a). In recent studies (Lee 125

and Lee, 2021; Song et al., 2022a), context mod- 126

eling has been carried out to enhance the under- 127

standing of contextual information by pre-trained 128

language models using dialogue-level input com- 129

positions. Additionally, there are graph-based ap- 130

proaches (Zhang et al., 2019; Ishiwatari et al., 2020; 131

Shen et al., 2021; Ghosal et al., 2019) and ap- 132

proaches that utilize external knowledge (Zhong 133

et al., 2019; Ghosal et al., 2020; Zhu et al., 2021). 134

Multimodal methods (Poria et al., 2017; Haz- 135

arika et al., 2018a,b; Majumder et al., 2019) reflect 136

dialogue-level multimodal features through recur- 137

rent neural network-based models. Other multi- 138

modal approaches (Mao et al., 2021; Chudasama 139

et al., 2022) integrate and manipulate utterance- 140

level features through hierarchical structures to ex- 141

tract dialogue-level features from each modality. 142

EmoCaps (Li et al., 2022) considers both multi- 143

modal information and contextual emotional ten- 144

dencies to predict emotions. UniMSE (Hu et al., 145

2022b) proposes a framework that leverages com- 146

plementary information between Multimodal Senti- 147

ment Analysis and ERC. Unlike these methods, our 148

proposed TelME is a method in which the strong 149

teacher leads emotion recognition while reinforc- 150

ing features from weak modalities to support the 151
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Figure 3: The overview of TelME

teacher.152

2.2 Knowledge Distillation153

The initial proposition of KD (Hinton et al., 2015)154

involves transferring knowledge by reducing the155

KL divergence between the prediction logits of156

teachers and students. Subsequently, KD method157

has been extended to distillation between inter-158

mediate features (Heo et al., 2019). KD ap-159

proaches (Gupta et al., 2016; Jin et al., 2021; Tran160

et al., 2022) are also utilized for transferring knowl-161

edge between modalities in multimodal studies. Li162

et al. (2023b) mitigate multimodal heterogeneity163

by constructing dynamic graphs in which each ver-164

tex exhibits modality and each edge exhibits dy-165

namic KD. However, since this work is not a study166

of the ERC task and is based on graph distilla-167

tion, there is an intrinsic difference from our KD168

strategy. Ma et al. (2023) proposes a transformer-169

based model utilizing self-distillation for ERC. Our170

proposed method, in contrast, uses response and171

feature-based distillation at the same time to fo-172

cus on maximizing the effectiveness of two other173

modalities by the teacher network based on text174

modality.175

3 Method176

3.1 Problem Statement177

Given a set of conversation participants S, ut-178

terances U , and emotion labels Y , a conver-179

sation consisting of k utterances is represented180

as [(si, u1, y1), (sj , u2, y2, ..., (si, uk, yk)], where181

si, sj ∈ S are the conversation participants. If i = j,182

then si and sj refer to the same speaker. yk ∈ Y is 183

the emotion of the k-th utterance in a conversation, 184

which belongs to one of the predefined emotion cat- 185

egories. Additionally, uk ∈ U is the k-th utterance. 186

uk is provided in the format of a video clip, speech 187

segment, and text transcript. i.e. uk = {tk, ak, vk}, 188

where {t, a, v} denotes a text transcript, speech 189

segment, and a video clip. The objective of ERC 190

is to predict yk, the emotion corresponding to the 191

k-th utterance in a conversation. 192

3.2 TelME 193

3.2.1 Model Overview 194

We propose Teacher-leading Multimodal fusion 195

network for ERC (TelME), as illustrated in Fig- 196

ure 3. This framework is devised based on the 197

hypothesis that by exploiting the varying levels of 198

modality-specific contributions to emotion recog- 199

nition, there is a potential to enhance the overall 200

performance of an ERC system. Therefore, we in- 201

troduce a strategic approach that focuses on accen- 202

tuating the powerful modality while bolstering the 203

weak modalities. We first extract powerful emo- 204

tional representations through context modeling 205

from text modality while capturing auditory and vi- 206

sual features of the current speaker from non-verbal 207

modalities. However, due to the limited emotional 208

recognition capability of audio and visual features 209

as well as the heterogeneity between the modali- 210

ties, effective multimodal interactions cannot be 211

guaranteed (Zheng et al., 2022). We thus mitigate 212

the heterogeneity between modalities while maxi- 213

mizing the effectiveness of non-verbal modalities 214
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by distilling emotion-relevant knowledge of the215

teacher model into non-verbal students. We also216

use a fusion method in which strong emotional217

features from the teacher encoder are shifted by re-218

ferring to representations of students strengthened219

in reverse. In the subsequent sections, we discuss220

the three components of TelME: Feature Extrac-221

tion, Knowledge Distillation, and Attention-based222

modality Shifting Fusion.223

3.2.2 Feature Extraction224

Figure 3 visually illustrates how each modality en-225

coder receives its corresponding input to extract226

emotional features. In this section, we explain the227

methodologies employed to generate emotional fea-228

tures that correspond to the input signals of each229

modality.230

Text: Following previous research (Lee and Lee,231

2021; Song et al., 2022a), we conduct context mod-232

eling, considering all utterances from the inception233

of the conversation up to the k-th turn as the context.234

To handle speaker dependencies and differentiate235

between speakers, we represent speakers using the236

special token, < si >. Additionally, we construct237

the prompt, "Now < si > feels < mask >" to238

emphasize the emotion of the most recent speaker.239

We report the effect of the prompt in Appendix A.2.240

The emotional features are derived from the em-241

bedding of the special token, < mask >. For our242

text encoder, we employ the modified Roberta (Liu243

et al., 2019). Roberta is a language model that has244

undergone extensive pretraining on a large-scale245

text corpus and has exhibited its efficacy across246

various natural language processing tasks. We can247

extract emotional features from the text encoder as248

follows.249

Ck = [< si >, t1, < sj >, t2, ..., < si >, tk] (1)250

251
Pk = Now < si > feels < mask > (2)252

253
FTk

= TextEncoder(Ck < /s > Pk) (3)254

where < si > is the special token indicating the255

speaker and < /s > is the separation token of256

Roberta. FTk
∈ R1×d is the embeddings of the257

mask token, < mask > and d is the dimension of258

the encoder.259

Audio: Self-supervised learning using Trans-260

former has witnessed remarkable achievement, not261

only within the field of natural language processing262

but also in the realms of audio and video (Berta-263

sius et al., 2021; Baevski et al., 2022). In line264

with this trend, we set the initial state of our audio 265

encoder with data2vec (Baevski et al., 2022). To 266

focus solely on the voice of the current speaker, we 267

only utilize a speech segment of the k-th utterance, 268

denoted as ak. This speech segment is processed 269

according to the pre-trained processor. The audio 270

encoder then extracts emotional features from the 271

processed input as follows. 272

Fak = AudioEncoder(ak) (4) 273

where Fak ∈ R1×d is the embeddings of ak and d 274

is the dimension of the encoder. 275

Visual: Following the same reasoning as the 276

audio modality, we configure the initial state of 277

our visual encoder using Timesformer (Bertasius 278

et al., 2021). In order to concentrate exclusively 279

on the facial expressions of the current speaker, 280

we solely utilize a video clip of the k-th utterance, 281

denoted as vk. We extract the frames corresponding 282

to the k-th utterance from the video and construct 283

vk through image processing. The visual encoder 284

then extracts emotional features from the processed 285

input as follows. 286

Fvk = V isualEncoder(vk) (5) 287

where Fvk ∈ R1×d is the embedding of vk and d is 288

the dimension of the encoder. 289

3.2.3 Knowledge Distillation 290

Addressing the challenge of heterogeneity between 291

modalities and low emotional recognition contri- 292

butions of non-verbal modalities holds great poten- 293

tial in facilitating satisfactory multimodal interac- 294

tions (Zheng et al., 2022). Thus, we distill strong 295

emotion-related knowledge of a language model 296

that understands linguistic contexts, thereby aug- 297

menting the emotional features extracted from the 298

other two modalities that have comparatively lower 299

contributions. We employ two distinct types of 300

knowledge distillation concurrently: response and 301

feature-based distillation. The overall loss for the 302

student can be composed of the classification loss, 303

response-based distillation loss, and feature-based 304

distillation loss, i.e., 305

Lstudent = Lcls + αLresponse + βLfeature (6) 306

where α and β are the factors for balancing the 307

losses. 308

Lresponse utilizes DIST (Huang et al., 2022), a 309

technique originally used in image networks, as a 310
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cross-modal distillation for ERC. As shown in Fig-311

ure 2, due to the significant gap between the text312

modality and the other two modalities, effective313

knowledge distillation can be challenging. There-314

fore, unlike conventional KD methods, we use a315

KD approach(Lresponse) that utilizes Pearson cor-316

relation coefficients instead of KL divergence as317

follows.318

d(µ, υ) = 1− ρ(µ, υ) (7)319

where ρ(µ, υ) is the Pearson correlation coefficient320

between two probability vectors µ and υ.321

Specifically, Lresponse aims to distill prefer-322

ences (relative rankings of predictions) by teach-323

ers through the correlations between teacher and324

student predictions, which can usefully perform325

knowledge distillation even in the extreme differ-326

ences between teacher and student. We gather the327

predicted probability distributions for all instances328

within a batch and calculate the Pearson correla-329

tion coefficient between the teacher and student for330

inter-class and intra-class relations (Figure 3). Sub-331

sequently, we transfer the inter-class and intra-class332

relation to the student. The specific formulation of333

the response-based distillation can be described as334

follows.335

Y t
i,: = softmax(Zt

i,:/τ) (8)336

Y s
i,: = softmax(Zs

i,:/τ) (9)337

Linter =
τ2

B

B∑
i=1

d(Y s
i,:, Y

t
i,:) (10)338

Lintra =
τ2

C

C∑
j=1

d(Y s
:,j , Y

t
:,j) (11)339

Lresponse = Linter + Lintra (12)340

Given a training batch B and the emotion cate-341

gories C, Zs ∈ RB×C is the prediction matrix of342

the student and Zt ∈ RB×C is the prediction ma-343

trix of the teacher. τ > 0 is a temperature parameter344

to control the softness of logits.345

However, rather than relying solely on Lresponse,346

we introduce Lfeature as an additional distillation347

loss to better leverage the embedded information in348

the teacher network. Lfeature aims to mitigate the349

heterogeneity between the representations of the350

teacher and student models, allowing us to distill351

Figure 4: Attention-based modality Shifting Fusion

richer knowledge from the teacher compared to us- 352

ing only Lresponse. Through this, the features of the 353

students can faithfully support the teacher during 354

the multimodal fusion stage. Lfeature leverages the 355

similarity among normalized representation vectors 356

of the teacher and the student within a batch (Fig- 357

ure 3). We construct the target similarity matrix 358

by performing a dot product between the represen- 359

tation matrix of the teacher and its transposition 360

matrix. By applying the softmax function to this 361

matrix, we derive the target probability distribution 362

as follows. 363

Pi =
exp(Mi,j/τ)∑B
l=1 exp(Mi,l/τ)

, ∀i, j ∈ B (13) 364

where B is a training batch and M ∈ RB×B is 365

the target similarity matrix. τ > 0 is a temperature 366

parameter controlling the smoothness of the distri- 367

bution. Pi is the target probability distribution. 368

Similarly, we can compute the similarity matrix 369

between the teacher and the student by taking the 370

dot product of their representations. Subsequently, 371

we can calculate the similarity probability distribu- 372

tion as follows. 373

Qi =
exp(M ′

i,j/τ)∑B
l=1 exp(M

′
i,l/τ)

,∀i, j ∈ B (14) 374

where M ′ ∈ RB×B is the similarity matrix of stu- 375

dent and teacher. Qi is the similarity probability 376

distribution of teacher and student. 377
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With these two probability distributions, we com-378

pute the KL-divergence as the loss for the feature-379

based distillation.380

Lfeature =
1

B

B∑
i=1

KL(Pi ∥ Qi) (15)381

where KL is the Kullback–Leibler divergence.382

3.2.4 Attention-based modality Shifting383

Fusion384

The emotional features from the enhanced student385

networks have the potential to impact the emotion-386

relevant representations of the teacher model, pro-387

viding information that may not be captured from388

the text. To fully utilize these features, we adopt a389

multimodal fusion approach where feature vectors390

from the student models manipulate the representa-391

tion vectors from the teacher, effectively incorpo-392

rating non-verbal information into the representa-393

tion vector. To highlight non-verbal characteristics,394

we concatenate the vectors of the student models395

and perform multi-head self-attention. The vec-396

tors of non-verbal information generated through397

the multi-head self-attention process and emotional398

features of the teacher encoder enter the input of399

the shifting step (Figure 4). We are inspired by400

Rahman et al. (2020) to construct the shifting step.401

In the shifting step, a gating vector is generated402

by concatenating and transforming the vector of403

the teacher model and the vector of the non-verbal404

information.405

gkAV = R(W1· < FTk
, F k

attention > +b1) (16)406

where <,> is the operation of vector concatenation,407

R(x) is a non-linear activation function, W1 is the408

weight matrix for linear transform, and b1 is scalar409

bias. Fattention is the emotional representation vec-410

tors of non-verbal information. gAV is the gating411

vector. The gating vector highlights the relevant in-412

formation in the non-verbal vector according to the413

representations of the teacher model. We define the414

displacement vector by applying the gating vector415

as follows.416

Hk = gkAV · (W2 · F k
attention + b2) (17)417

where W2 is the weight matrix for linear trans-418

form and b2 is scalar bias. H is the non-verbal419

information-based displacement vector.420

We subsequently utilize the weighted sum be-421

tween the representation vector of the teacher and422

Dataset
IEMOCAP MELD

train dev test train dev test
Dialogue 108 12 31 1038 114 280
Utterance 5163 647 1623 9989 1109 2610
Classes 6 7

Table 1: Statistics of the two benchmark datasets.

the displacement vector to generate a multimodal 423

vector. Finally, we predict emotions using the mul- 424

timodal vector. 425

Zk = FTk
+ λ ·Hk (18) 426

427

λ = min(
∥Fk∥2
∥Hk∥2

· θ, 1) (19) 428

where Z is the multimodal vector. We apply the 429

scaling factor λ to control the magnitude of the 430

displacement vector and θ as a threshold hyperpa- 431

rameter. ∥Fk∥2, ∥Hk∥2 denote the L2 norm of the 432

Fk and Hk vectors respectively. 433

4 Experiments 434

4.1 Datasets 435

We evaluate our proposed network on MELD (Po- 436

ria et al., 2018) and IEMOCAP (Busso et al., 2008) 437

that include text, audio and visual modalities. The 438

statistics are shown in Table 1. 439

MELD is a multi-party dataset consisting of 440

over 1400 dialogues and over 13,000 utterances 441

extracted from the TV series Friends. This dataset 442

contains seven emotion categories for each utter- 443

ance: neutral, surprise, fear, sadness, joy, disgust, 444

and anger. 445

IEMOCAP consists of a total of 7433 utterances 446

and 151 dialogues in 5 sessions, each involving 447

two speakers per session. Each utterance is labeled 448

as one of six emotional categories: happy, sad, 449

angry, excited, frustrated and neutral. The train 450

and development datasets consist of the first four 451

sessions randomly divided at a 9:1 ratio. The test 452

dataset consists of the last session. 453

4.2 Experiment Settings 454

We evaluate all experiments using the weighted av- 455

erage F1 score on two class-imbalanced datasets. 456

We use the initial weight of the pre-trained mod- 457

els from Huggingface’s Transformers (Wolf et al., 458

2019). The output dimension of all encoders is uni- 459

fied to 768. The optimizer is AdamW and the initial 460

learning rate is 1e-5. We use a linear schedule with 461
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Models
MELD: Emotion Categories IEMOCAP

Neutral Surprise Fear Sadness Joy Disgust Anger F1 F1
DialogueRNN (Majumder et al., 2019) 73.50 49.40 1.20 23.80 50.70 1.70 41.50 57.03 62.75

ConGCN (Zhang et al., 2019) 76.70 50.30 8.70 28.50 53.10 10.60 46.80 59.40 64.18
MMGCN (Hu et al., 2021b) - - - - - - - 58.65 66.22

DialogueTRM (Mao et al., 2021) - - - - - - - 63.50 69.23
DAG-ERC (Shen et al., 2021) - - - - - - - 63.65 68.03
MM-DFN (Hu et al., 2022a) 77.76 50.69 - 22.94 54.78 - 47.82 59.46 68.18

M2FNet (Chudasama et al., 2022) - - - - - - - 66.71 69.86
EmoCaps (Li et al., 2022) 77.12 63.19 3.03 42.52 57.50 7.69 57.54 64.00 71.77
UniMSE (Hu et al., 2022b) - - - - - - - 65.51 70.66
GA2MIF (Li et al., 2023a) 76.92 49.08 - 27.18 51.87 - 48.52 58.94 70.00

FacialMMT (Zheng et al., 2023) 80.13 59.63 19.18 41.99 64.88 18.18 56.00 66.58 -
TelME 80.22 60.33 26.97 43.45 65.67 26.42 56.70 67.37 70.48

Table 2: Performance comparisons on MELD (7-way) and IEMOCAP

Dataset ASF L_response L_feature F1

IEMOCAP

✗ ✗ ✗ 63.33
✓ ✗ ✗ 68.19
✓ ✓ ✗ 69.42
✓ ✓ ✓ 70.48

MELD

✗ ✗ ✗ 67.04
✓ ✗ ✗ 66.75
✓ ✓ ✗ 67.23
✓ ✓ ✓ 67.37

Table 3: Results of ablation study. Here, Lresponse is
our response-based distillation, Lfeature is our feature-
based distillation and ASF is our fusion method.

warmup for the learning rate scheduler. All experi-462

ments are conducted on a single NVIDIA GeForce463

RTX 3090. More details are in Appendix A.3.464

4.3 Main Results465

We compare TelME with various multimodal-based466

ERC methods (explained in Appendix A.4) on467

both datasets in Table 2. TelME demonstrates ro-468

bust results in both datasets and achieves state-469

of-the-art performance on MELD. Specifically,470

TelME exhibits a substantial 3.37% difference com-471

pared to EmoCaps with the current state-of-the-art472

performance in IEMOCAP and improves 0.66%473

over the previous state-of-the-art method (M2FNet)474

in MELD. Previous methods such as EmoCaps475

and UniMSE have shown effectiveness in IEMO-476

CAP but exhibit somewhat weaker performance477

on MELD. This makes our findings particularly478

significant.479

As shown in Table 2, we report the performance480

of various methods for emotion labels in MELD.481

TelME outperforms other models in all emotions482

except Surprise and Anger. However, assuming483

that Surprise and Fear, as well as Disgust and484

Anger, are similar emotions, Emocaps shows a 485

bias towards Surprise and Anger during inference, 486

only achieving 3.03% and 7.69% in F1 score for 487

Fear and Disgust, respectively. On the other hand, 488

TelME distinguishes these similar emotions bet- 489

ter, bringing the scores for Fear and Disgust up to 490

26.97% and 26.42%. We speculate that our frame- 491

work predicts minority emotions more accurately 492

as the non-verbal modality information (e.g., inten- 493

sity and pitch of an utterance) enhanced through 494

our KD strategy better assists the teacher in judging 495

the confusing emotions. 496

4.4 Ablation Study 497

We conduct an ablation study to validate our knowl- 498

edge distillation and fusion strategies in Table 3. 499

The initial row for each dataset represents the out- 500

come of training each modality encoder using cross- 501

entropy loss and concatenating the embeddings 502

without incorporating distillation loss and our fu- 503

sion method. 504

Using our fusion method alone, IEMOCAP 505

showed performance improvement, but MELD 506

showed poor performance. The effectiveness of 507

our fusion method in achieving optimal modality 508

interaction cannot be guaranteed without knowl- 509

edge distillation. Because each encoder is trained 510

independently, focusing solely on improving its per- 511

formance without considering the multimodal inter- 512

action. On the other hand, As our knowledge dis- 513

tillation components are added, these bring about 514

consistent improvements for both datasets. 515

When we examine the specific effects of the KD 516

strategy, we observe performance improvements 517

for both datasets, even when using only Lresponse. 518

From these results, we confirm that Lresponse is 519

a knowledge distillation approach capable of ad- 520
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Figure 5: Individual performance of audio and visual
modalities according to knowledge distillation type.

dressing the between modalities. Furthermore,521

adding Lfeature aimed to leverage the richer knowl-522

edge of the teacher is more effective in IEMOCAP523

and shows marginal performance enhancements524

in MELD. However, we speculate that the slight525

improvement in MELD may be attributed to the526

fundamental issue of class imbalance, limiting the527

effectiveness of the overall architecture. We show528

an analysis of this problem in Appendix A.5 as529

well as an error analysis of the emotion classes in530

Appendix A.6.531

Figure 5 shows the individual performance of532

the audio and visual modalities based on the distil-533

lation loss. We observe that applying both types of534

distillation loss is more effective compared to not535

applying them. The performance of visual modal-536

ity on the IEMOCAP dataset has declined, possi-537

bly because facial expressions are not effectively538

captured in the limited image frames of a short539

utterance. However, even with lower individual540

performance, all modalities have been shown to541

contribute to the improvement of emotion recogni-542

tion performance through our approach (Table 3,543

4).544

In summary, we demonstrate that by applying545

both types of knowledge distillation, we can maxi-546

mize the effectiveness of non-verbal modalities and547

effectively interact with our fusion method.548

Methods Remarks IEMOCAP MELD
Audio KD 48.11 46.60
Visual KD 18.85 36.72
Text - 66.60 66.57

Text + Visual ASF 67.94 67.05
Text + Audio ASF 69.26 67.19

TelME 70.48 67.37

Table 4: Performance comparison for single modality
and multiple multimodal combinations

4.5 The Impact of Each Modality 549

Table 4 presents the results for single-modality and 550

multimodal combinations. The single-modality per- 551

formances for audio and visual are the results after 552

applying our knowledge distillation method, and 553

the same fusion approach as TelME is used for 554

dual-modality results. The text modality performs 555

the best among the single-modality, which supports 556

our decision to use the text encoder as the teacher 557

model. In addition, the combination of non-verbal 558

modalities and text modality achieves superior per- 559

formance compared to using only text. Our find- 560

ings indicate that the audio modality significantly 561

contributes more to emotion recognition and holds 562

greater importance compared to the visual modality. 563

We speculate this can be attributed to its ability to 564

capture the intensity of emotion through variations 565

in the tone and pitch of the speaker. Overall, our 566

method achieves 3.52% improvement in IEMO- 567

CAP and 0.8% in MELD over using only text. 568

5 Conclusion 569

This paper proposes Teacher-leading Multimodal 570

fusion network for ERC (TelME), a novel mul- 571

timodal ERC framework. TelME incorporates a 572

cross-modal distillation that transfers the knowl- 573

edge of text encoders trained in linguistic contexts 574

to enhance the effectiveness of non-verbal modali- 575

ties. Moreover, we employ the fusion method that 576

shifts the features of the teacher model by referring 577

to non-verbal information. We show through ex- 578

periments on two benchmarks that our approach 579

is practical in ERC. TelME delivers robust per- 580

formance in both datasets and especially achieves 581

state-of-the-art in the MELD dataset consisting of 582

multi-party conversational scenarios. We believe 583

that this research presents a new direction that can 584

incorporate multimodal information for ERC. 585
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Limitations586

This study has a limitation wherein the visual587

modality shows a lower capability to recognize588

emotions compared to the audio modality. To ad-589

dress this limitation, future research should focus590

on developing techniques to accurately capture and591

interpret the facial expressions of the speaker dur-592

ing brief utterances. By improving the extraction of593

visual features, the effectiveness of knowledge dis-594

tillation can be significantly enhanced, thus show-595

casing its potential to make a more substantial con-596

tribution to emotion recognition.597
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A Appendix835

A.1 Study on Teacher Modality836

MELD IEMOCAP
TelME (Audio Teacher) 56.28 49.36
TelME (Visual Teacher) 56.85 56.78
TelME (Text Teacher) 67.37 70.48

Table 5: TelME Performance by Teacher Modality

We conduct comparative experiments by set-837

ting each modality as the teacher modality. Ta-838

ble 5 shows the performance of our framework839

based on the teacher modality setting. Our study840

shows that the TelME framework performs best841

with the text encoder as the teacher, while treat-842

ing the other modalities as the teacher significantly843

hinders model performance.844

Additionally, Tables 6 and 7 report the individ-845

ual performance of the student models based on846

the teacher modality. The diagonals (cases where847

Audio Student Visual Student Text Student
Audio Teacher 44.55 34.86 54.83
Visual Teacher 40.18 36.14 59.72
Text Teacher 46.60 36.72 66.60

Table 6: Teacher Modality Study on MELD

Audio Student Visual Student Text Student
Audio Teacher 42.24 20.45 57.42
Visual Teacher 44.13 22.06 63.94
Text Teacher 48.11 18.85 66.57

Table 7: Teacher Modality Study on IEMOCAP

the teacher and student modalities are the same) in 848

Tables 6 and 7 represent results without performing 849

Knowledge Distillation (KD). Through our com- 850

parative experiment results, we observe that a ro- 851

bust text encoder can most effectively serve as the 852

teacher. Specifically, designating the text encoder 853

as the teacher enhances the performance of all stu- 854

dent models except for the visual student in IEMO- 855

CAP. On the other hand, it is evident that treating 856

a weak non-verbal model as the teacher impairs 857

student performance. We believe this provides sig- 858

nificant evidence for why the text encoder should 859

be assigned the role of the teacher. 860

A.2 Effect of the prompt 861

MELD IEMOCAP
w/o prompt ([cls]+context) 65.25 66.48

context + prompt 66.57 66.60

Table 8: Comparison of the teacher performance based
on the use of the prompt

Table 8 shows an ablation experiment on the 862

prompt. We remove the prompt and use the CLS 863

token to compare emotion prediction results with 864

the results using the prompt. We observe from the 865

results that the prompt helps to infer the emotion 866

of a recent speaker from a set of textual utterances. 867

A.3 Hyperparameter Settings 868

Hyperparameter IEMOCAP MELD
Knowledge distillation
Balance factors for Lstudent α=0.1 1
Temperature for Lresponse 4 2
Temperature for Lfeature 1 1
Attention modality Shifting Fusion
Threshold parameter 0.01 0.1
Dropout 0.2 0.1
The number of heads for multi-head attention 4 3

Table 9: hyperparameter settings of TelME on two
datasets
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Through our KD strategy, audio and visual en-869

coders are trained using the loss functions men-870

tioned in Equation 6. In Lstudent, the balancing871

factors are all set to 1 excluding α for IEMOCAP.872

The temperature parameter for the Lresponse func-873

tion is adjusted to 4 for MELD and 2 for IEMO-874

CAP. The temperature parameter for Lfeature is875

set to 1 regardless of the dataset. We also use a876

fusion method that shifts vectors in the teacher877

model, where the threshold parameter is set to 0.01878

for IEMOCAP and 0.1 for MELD. Furthermore,879

Dropout is adjusted to 0.2 for MELD and 0.1 for880

IEMOCAP. The number of heads used in the multi-881

head attention process is 4 for IEMOCAP and 3 for882

MELD.883

A.4 Compared Models884

We compare TelME against the following models:885

DialogueRNN (Majumder et al., 2019) employs886

Recurrent Neural Networks (RNNs) to capture the887

speaker identity as well as the historical context and888

the emotions of past utterances to capture the nu-889

ances of conversation dynamics. ConGCN (Zhang890

et al., 2019) utilizes a Graph Convolutional Net-891

work (GCN) to represent relationships within a892

graph that incorporates both context and speaker893

information of multiple conversations. MMGCN894

(Hu et al., 2021b) also proposes a GCN-based ap-895

proach, but captures representations of a conver-896

sation through a graph that contains long-distance897

flow of information as well as speaker information.898

DialogueTRM (Mao et al., 2021) focuses on mod-899

eling both local and global context of conversations900

to capture the temporal and spatial dependencies.901

DAG-ERC (Shen et al., 2021) studies how conver-902

sation background affects information of the sur-903

rounding context of a conversation. MMDFN (Hu904

et al., 2022a) proposes a framework that aims to en-905

hance integration of multimodal features through906

dynamic fusion. EmoCaps (Li et al., 2022) in-907

troduces an emotion capsule that fuses informa-908

tion from multiple modalities with emotional ten-909

dencies to provide a more nuanced understanding910

of emotions within a conversation. UniMSE (Hu911

et al., 2022b) seeks to unify ERC with multimodal912

sentiment analysis through a T5-based framework.913

GA2MIF (Li et al., 2023a) introduces a two-stage914

multimodal fusion of information from a graph and915

an attention network. FacialMMT (Zheng et al.,916

2023) focuses on extracting the real speaker’s face917

sequence from multi-party conversation videos and918

then leverages auxiliary frame-level facial expres- 919

sion recognition tasks to generate emotional visual 920

representations. 921

A.5 Class Imbalance 922

Figure 6: Count distribution of emotion classes for both
MELD and IEMOCAP datasets

Figure 6 illustrates the label distribution within 923

the MELD and IEMOCAP datasets. Notably, the 924

MELD dataset exhibits a pronounced imbalance, 925

with the "neutral" class comprising the majority 926

at 47% of the data, followed by "joy" with 17% 927

and "surprise" with 12%. This substantial class 928

imbalance presents a challenge in the context of 929

distillation, specifically for the teacher encoder to 930

initially identify the minority classes and subse- 931

quently transfer this information to the non-verbal 932

student encoders. We believe that this class im- 933

balance is a contributing factor to the limited ob- 934

served improvements associated with Lfeature in 935

the MELD dataset as compared to the IEMOCAP 936

dataset. 937

A.6 Error Analysis 938

Figure 7 shows the normalized confusion matrices 939

of the TelME and the understated model for two 940

datasets. We can evaluate the quality of the emotion 941

prediction through the confusion matrix. TelME 942

shows better True Positive results in almost all emo- 943

tion classes. This suggests that TelME is extracting 944

and fusing finer-grained features to infer emotions 945

without bias. TelME better classifies similar emo- 946

tions compared to the understated model(e.g., ex- 947
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Figure 7: Confusion Matrices on IEMOCAP and MELD

cited and happy, angry and frustrated). However,948

the result of misclassifying happy as exciting is949

a little high. This result is due to the lowest per-950

centage of happy in IEMOCAP with unbalanced951

classes. Even in the case of MELD, the emotion952

in which most emotion classes are misclassified is953

neutral, with the highest count. We can observe a954

similar misclassification tendency in other research955

(Chudasama et al., 2022; Hu et al., 2023) as well.956

Hence, we suspect that the cause of misclassifica-957

tion is not a problem with the method we proposed958

but rather stems from a class imbalance issue.959
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