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Abstract

Emotion Recognition in Conversation (ERC)
plays a crucial role in enabling dialogue sys-
tems to effectively respond to user requests.
The emotions in a conversation can be identi-
fied by the representations from various modal-
ities, such as audio, visual, and text. How-
ever, due to the weak contribution of non-verbal
modalities to recognize emotions, multimodal
ERC has always been considered a challenging
task. In this paper, we propose Teacher-leading
Multimodal fusion network for ERC (TeIME).
TelME incorporates cross-modal knowledge
distillation to transfer information from a lan-
guage model acting as the teacher to the non-
verbal students, thereby optimizing the efficacy
of the weak modalities. We then combine multi-
modal features using a shifting fusion approach
in which student networks support the teacher.
TelME achieves state-of-the-art performance in
MELD, a multi-speaker conversation dataset
for ERC. Finally, we demonstrate the effec-
tiveness of our components through additional
experiments.

1 Introduction

Emotion recognition holds paramount importance,
enhancing the engagement of conversations by pro-
viding appropriate responses to the emotions of
users in dialogue systems (Ma et al., 2020). The ap-
plication of emotion recognition spans various do-
mains, including chatbots, healthcare systems, and
recommendation systems, demonstrating its versa-
tility and potential to enhance a wide range of appli-
cations (Poria et al., 2019). Emotion Recognition
in Conversation (ERC) aims to identify emotions
expressed by participants at each turn within a con-
versation. The dynamic emotions in a conversation
can be detected through multiple modalities such
as textual utterances, facial expressions, and acous-
tic signals (BaltruSaitis et al., 2018; Liang et al.,
2022; Majumder et al., 2019; Hu et al., 2022b;
Chudasama et al., 2022). Figure 1 illustrates an
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Figure 1: Examples of multimodal ERC. Even the same
"Okay" answer varies depending on the conversation
situation and captures emotions in various modalities.
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example of a multimodal ERC.

Much research on ERC has mainly focused on
context modeling from text modality, disregarding
the rich representations that can be obtained from
audio and visual modalities. Text-based ERC meth-
ods have demonstrated that contextual information
derived from text data is a powerful resource for
emotion recognition (Kim and Vossen, 2021; Lee
and Lee, 2021; Song et al., 2022a,b). However,
non-verbal cues such as facial expressions and tone
of voice, which are not covered by text-based meth-
ods, provide important information that needs to
be explored in the field of ERC. Multimodal ap-
proaches demonstrate the possibility of integrating
features from three modalities to improve the ro-
bustness of ERC systems (Mao et al., 2021; Chu-
dasama et al., 2022; Hu et al., 2022b). Nevertheless,
these frameworks frequently ignore the varying de-
grees of impact the individual modalities have on
emotion recognition and instead treat them as ho-
mogeneous components. This implies a promising
opportunity to improve the ERC system by differ-
entiating the level of contribution made by each
modality.

In this paper, we propose Teacher-leading Mul-
timodal fusion network for the ERC task (TeIME)



that strengthens and fuses multimodal information
by accentuating the powerful modality while bol-
stering the weak modalities. Knowledge Distilla-
tion (KD) can be extended to transfer knowledge
across modalities, where a powerful modality can
play the role of a teacher to transfer knowledge to
a weak modality (Hinton et al., 2015; Xue et al.,
2022). As shown in Figure 2, in ERC tasks, in-
formation from the text modality is stronger com-
pared to the other two modalities. Thus TelME en-
hances the representations of the two weak modal-
ities through KD utilizing the text encoder as the
teacher. The comparison experiments in Appendix
A.1 also support our decision to set the text model
as the teacher. Our approach aims to adjust the dis-
crepancies in predictions between the teacher and
non-verbal students while generating emotional fea-
tures that are exceptionally well-suited for fusion.
TeIME then incorporates Attention-based modal-
ity Shifting Fusion, where the student networks
strengthened by the teacher at the distillation stage
assist the robust teacher encoder in reverse. Specif-
ically, our fusion method creates displacement vec-
tors from non-verbal modalities, which are used to
shift the emotional embeddings of the teacher.

We conduct experiments on two widely used
benchmark datasets and compare our proposed
method with existing ERC methods. Our results
show that TeIME performs well on both datasets
and particularly excels in multi-party conversations,
achieving state-of-the-art performance. The abla-
tion study also demonstrates the effectiveness of
our knowledge distillation strategy and its interac-
tion with our fusion method. Our contributions can
be summarized as follows:

* We propose Teacher-leading Multimodal fu-
sion network for Emotion Recognition in Con-
versation (TeIME). The proposed method con-
siders different contributions of text and non-
verbal modalities to emotion recognition for
better prediction.

* To the best of our knowledge, we are the
first to enhance the effectiveness of weak non-
verbal modalities for the ERC task through
cross-modal distillation.

* TeIME shows exceptional performance in two
widely used benchmark datasets and espe-
cially achieves state-of-the-art in multi-party
conversational scenarios.
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Figure 2: Unimodal Performance on MELD dataset

2 Related Work

2.1 Emotion Recognition in Conversation

Recently, ERC has become an increasingly atten-
tion in the field of emotion analysis. ERC can be
categorized into text-based and multimodal meth-
ods, depending on the input format. Text-based
methods primarily focus on context modeling and
speaker relationships (Jiao et al., 2019; Li et al.,
2020; Hu et al., 2021a). In recent studies (Lee
and Lee, 2021; Song et al., 2022a), context mod-
eling has been carried out to enhance the under-
standing of contextual information by pre-trained
language models using dialogue-level input com-
positions. Additionally, there are graph-based ap-
proaches (Zhang et al., 2019; Ishiwatari et al., 2020;
Shen et al., 2021; Ghosal et al., 2019) and ap-
proaches that utilize external knowledge (Zhong
et al., 2019; Ghosal et al., 2020; Zhu et al., 2021).
Multimodal methods (Poria et al., 2017; Haz-
arika et al., 2018a,b; Majumder et al., 2019) reflect
dialogue-level multimodal features through recur-
rent neural network-based models. Other multi-
modal approaches (Mao et al., 2021; Chudasama
et al., 2022) integrate and manipulate utterance-
level features through hierarchical structures to ex-
tract dialogue-level features from each modality.
EmoCaps (Li et al., 2022) considers both multi-
modal information and contextual emotional ten-
dencies to predict emotions. UniMSE (Hu et al.,
2022b) proposes a framework that leverages com-
plementary information between Multimodal Senti-
ment Analysis and ERC. Unlike these methods, our
proposed TelIME is a method in which the strong
teacher leads emotion recognition while reinforc-
ing features from weak modalities to support the
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Figure 3: The overview of TeIME

teacher.

2.2 Knowledge Distillation

The initial proposition of KD (Hinton et al., 2015)
involves transferring knowledge by reducing the
KL divergence between the prediction logits of
teachers and students. Subsequently, KD method
has been extended to distillation between inter-
mediate features (Heo et al., 2019). KD ap-
proaches (Gupta et al., 2016; Jin et al., 2021; Tran
et al., 2022) are also utilized for transferring knowl-
edge between modalities in multimodal studies. Li
et al. (2023b) mitigate multimodal heterogeneity
by constructing dynamic graphs in which each ver-
tex exhibits modality and each edge exhibits dy-
namic KD. However, since this work is not a study
of the ERC task and is based on graph distilla-
tion, there is an intrinsic difference from our KD
strategy. Ma et al. (2023) proposes a transformer-
based model utilizing self-distillation for ERC. Our
proposed method, in contrast, uses response and
feature-based distillation at the same time to fo-
cus on maximizing the effectiveness of two other
modalities by the teacher network based on text
modality.

3 Method

3.1 Problem Statement

Given a set of conversation participants S, ut-
terances U, and emotion labels Y, a conver-
sation consisting of k utterances is represented
as [(si,u1,y1), (55, u2,y2, ..., (8i, uk, yi)], where
si, 8; € S are the conversation participants. If 7 = j,

then s; and s; refer to the same speaker. y, € Y is
the emotion of the k-th utterance in a conversation,
which belongs to one of the predefined emotion cat-
egories. Additionally, u;, € U is the k-th utterance.
uy, is provided in the format of a video clip, speech
segment, and text transcript. i.e. ug = {tx, ax, vk},
where {¢,a,v} denotes a text transcript, speech
segment, and a video clip. The objective of ERC
is to predict yg, the emotion corresponding to the
k-th utterance in a conversation.

3.2 TeIME
3.21

We propose Teacher-leading Multimodal fusion
network for ERC (TeIME), as illustrated in Fig-
ure 3. This framework is devised based on the
hypothesis that by exploiting the varying levels of
modality-specific contributions to emotion recog-
nition, there is a potential to enhance the overall
performance of an ERC system. Therefore, we in-
troduce a strategic approach that focuses on accen-
tuating the powerful modality while bolstering the
weak modalities. We first extract powerful emo-
tional representations through context modeling
from text modality while capturing auditory and vi-
sual features of the current speaker from non-verbal
modalities. However, due to the limited emotional
recognition capability of audio and visual features
as well as the heterogeneity between the modali-
ties, effective multimodal interactions cannot be
guaranteed (Zheng et al., 2022). We thus mitigate
the heterogeneity between modalities while maxi-
mizing the effectiveness of non-verbal modalities

Model Overview



by distilling emotion-relevant knowledge of the
teacher model into non-verbal students. We also
use a fusion method in which strong emotional
features from the teacher encoder are shifted by re-
ferring to representations of students strengthened
in reverse. In the subsequent sections, we discuss
the three components of TeIME: Feature Extrac-
tion, Knowledge Distillation, and Attention-based
modality Shifting Fusion.

3.2.2 Feature Extraction

Figure 3 visually illustrates how each modality en-
coder receives its corresponding input to extract
emotional features. In this section, we explain the
methodologies employed to generate emotional fea-
tures that correspond to the input signals of each
modality.

Text: Following previous research (Lee and Lee,
2021; Song et al., 2022a), we conduct context mod-
eling, considering all utterances from the inception
of the conversation up to the k-th turn as the context.
To handle speaker dependencies and differentiate
between speakers, we represent speakers using the
special token, < s; >. Additionally, we construct
the prompt, "Now < s; > feels < mask >" to
emphasize the emotion of the most recent speaker.
We report the effect of the prompt in Appendix A.2.
The emotional features are derived from the em-
bedding of the special token, < mask >. For our
text encoder, we employ the modified Roberta (Liu
etal., 2019). Roberta is a language model that has
undergone extensive pretraining on a large-scale
text corpus and has exhibited its efficacy across
various natural language processing tasks. We can
extract emotional features from the text encoder as
follows.

Crp =[<si>,t1,< 85 >,t,...,< s >, t] (1)

P = Now < s; > feels < mask > (2)
Fr, = TextEncoder(Cy < /s > P;) (3)

where < s; > is the special token indicating the
speaker and < /s > is the separation token of
Roberta. Fr, € R is the embeddings of the
mask token, < mask > and d is the dimension of
the encoder.

Audio: Self-supervised learning using Trans-
former has witnessed remarkable achievement, not
only within the field of natural language processing
but also in the realms of audio and video (Berta-
sius et al., 2021; Baevski et al., 2022). In line

with this trend, we set the initial state of our audio
encoder with data2vec (Baevski et al., 2022). To
focus solely on the voice of the current speaker, we
only utilize a speech segment of the k-th utterance,
denoted as ay. This speech segment is processed
according to the pre-trained processor. The audio
encoder then extracts emotional features from the
processed input as follows.

F,, = AudioEncoder(ay,) 4)

where F,, € R i5 the embeddings of aj, and d
is the dimension of the encoder.

Visual: Following the same reasoning as the
audio modality, we configure the initial state of
our visual encoder using Timesformer (Bertasius
et al., 2021). In order to concentrate exclusively
on the facial expressions of the current speaker,
we solely utilize a video clip of the k-th utterance,
denoted as v. We extract the frames corresponding
to the k-th utterance from the video and construct
vy, through image processing. The visual encoder
then extracts emotional features from the processed
input as follows.

F,, = Visual Encoder(vy,) 5)

where F,, € R'*9 is the embedding of v and d is
the dimension of the encoder.

3.2.3 Knowledge Distillation

Addressing the challenge of heterogeneity between
modalities and low emotional recognition contri-
butions of non-verbal modalities holds great poten-
tial in facilitating satisfactory multimodal interac-
tions (Zheng et al., 2022). Thus, we distill strong
emotion-related knowledge of a language model
that understands linguistic contexts, thereby aug-
menting the emotional features extracted from the
other two modalities that have comparatively lower
contributions. We employ two distinct types of
knowledge distillation concurrently: response and
feature-based distillation. The overall loss for the
student can be composed of the classification loss,
response-based distillation loss, and feature-based
distillation loss, i.e.,

Lstudent = Lcls + aLresponse + /BLfeature (6)

where « and 3 are the factors for balancing the
losses.

L esponse utilizes DIST (Huang et al., 2022), a
technique originally used in image networks, as a



cross-modal distillation for ERC. As shown in Fig-
ure 2, due to the significant gap between the text
modality and the other two modalities, effective
knowledge distillation can be challenging. There-
fore, unlike conventional KD methods, we use a
KD approach(Lyesponse) that utilizes Pearson cor-
relation coefficients instead of KL divergence as
follows.

d(lh U) =1- p(:uﬂ U) (7)

where p(, v) is the Pearson correlation coefficient
between two probability vectors p and v.

Specifically, Lyesponse aims to distill prefer-
ences (relative rankings of predictions) by teach-
ers through the correlations between teacher and
student predictions, which can usefully perform
knowledge distillation even in the extreme differ-
ences between teacher and student. We gather the
predicted probability distributions for all instances
within a batch and calculate the Pearson correla-
tion coefficient between the teacher and student for
inter-class and intra-class relations (Figure 3). Sub-
sequently, we transfer the inter-class and intra-class
relation to the student. The specific formulation of
the response-based distillation can be described as
follows.

th = softma:n(ZZ-t?:/T) (8)

Y’ = softmax(Z;./T) 9)
'7_2 B

Linter = E Zl d(Y;,sa }/zf) (10)
i=
7_2 =

Lintra = 6 Z d(Y:sj’ Y:ﬁ]) (1 1)
7=1

Lresponse = Linter + Lintra (12)

Given a training batch B and the emotion cate-
gories C, Z° € RB*C is the prediction matrix of
the student and Z* € RP*C is the prediction ma-
trix of the teacher. 7 > 0 is a temperature parameter
to control the softness of logits.

However, rather than relying solely on Li¢sponses
we introduce L feqture as an additional distillation
loss to better leverage the embedded information in
the teacher network. L feq1yrc aims to mitigate the
heterogeneity between the representations of the
teacher and student models, allowing us to distill
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Figure 4: Attention-based modality Shifting Fusion

richer knowledge from the teacher compared to us-
ing only L,¢sponse. Through this, the features of the
students can faithfully support the teacher during
the multimodal fusion stage. L feqture leverages the
similarity among normalized representation vectors
of the teacher and the student within a batch (Fig-
ure 3). We construct the target similarity matrix
by performing a dot product between the represen-
tation matrix of the teacher and its transposition
matrix. By applying the softmax function to this
matrix, we derive the target probability distribution
as follows.

_ exp(M; ;/T)
S eap(M;y/7)

where B is a training batch and M € RB*B is
the target similarity matrix. 7 > 0 is a temperature
parameter controlling the smoothness of the distri-
bution. F; is the target probability distribution.

Similarly, we can compute the similarity matrix
between the teacher and the student by taking the
dot product of their representations. Subsequently,
we can calculate the similarity probability distribu-
tion as follows.

P (13)

\Vi,j € B

_exp(M];/T)
- B

>i=1 e:vp(Mi’J/T)
where M’ € RB*B is the similarity matrix of stu-

dent and teacher. @); is the similarity probability
distribution of teacher and student.

(14)
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With these two probability distributions, we com-
pute the KL-divergence as the loss for the feature-
based distillation.

B
1
Lfeature = E § KL(JDz H Qz) (15)
=1

where K L is the Kullback—Leibler divergence.

3.2.4 Attention-based modality Shifting
Fusion

The emotional features from the enhanced student
networks have the potential to impact the emotion-
relevant representations of the teacher model, pro-
viding information that may not be captured from
the text. To fully utilize these features, we adopt a
multimodal fusion approach where feature vectors
from the student models manipulate the representa-
tion vectors from the teacher, effectively incorpo-
rating non-verbal information into the representa-
tion vector. To highlight non-verbal characteristics,
we concatenate the vectors of the student models
and perform multi-head self-attention. The vec-
tors of non-verbal information generated through
the multi-head self-attention process and emotional
features of the teacher encoder enter the input of
the shifting step (Figure 4). We are inspired by
Rahman et al. (2020) to construct the shifting step.
In the shifting step, a gating vector is generated
by concatenating and transforming the vector of
the teacher model and the vector of the non-verbal
information.

gfﬂ/ = R(Wl < FTk’ Fcf:ttention > +b1) (16)

where <,> is the operation of vector concatenation,
R(z) is a non-linear activation function, W is the
weight matrix for linear transform, and b; is scalar
bias. Fyttention 15 the emotional representation vec-
tors of non-verbal information. g4y is the gating
vector. The gating vector highlights the relevant in-
formation in the non-verbal vector according to the
representations of the teacher model. We define the
displacement vector by applying the gating vector
as follows.

Hy, = g,’E\V : (W2 : Ffttention + bQ) (17)

where W5 is the weight matrix for linear trans-
form and by is scalar bias. H is the non-verbal
information-based displacement vector.

We subsequently utilize the weighted sum be-
tween the representation vector of the teacher and

IEMOCAP
train dev test train dev test
Dialogue 108 12 31 1038 114 280
Utterance 5163 647 1623 9989 1109 2610
Classes 6 7

MELD
Dataset

Table 1: Statistics of the two benchmark datasets.

the displacement vector to generate a multimodal
vector. Finally, we predict emotions using the mul-
timodal vector.

Zy=Fr, +X-Hy (18)
N Fk 2

A = min( -6,1) (19)
| H |2

where Z is the multimodal vector. We apply the
scaling factor A to control the magnitude of the
displacement vector and 6 as a threshold hyperpa-
rameter. ||Fy||2, || Hk||2 denote the L2 norm of the
Fy and Hj, vectors respectively.

4 Experiments

4.1 Datasets

We evaluate our proposed network on MELD (Po-
ria et al., 2018) and IEMOCAP (Busso et al., 2008)
that include text, audio and visual modalities. The
statistics are shown in Table 1.

MELD is a multi-party dataset consisting of
over 1400 dialogues and over 13,000 utterances
extracted from the TV series Friends. This dataset
contains seven emotion categories for each utter-
ance: neutral, surprise, fear, sadness, joy, disgust,
and anger.

IEMOCAP consists of a total of 7433 utterances
and 151 dialogues in 5 sessions, each involving
two speakers per session. Each utterance is labeled
as one of six emotional categories: happy, sad,
angry, excited, frustrated and neutral. The train
and development datasets consist of the first four
sessions randomly divided at a 9:1 ratio. The test
dataset consists of the last session.

4.2 Experiment Settings

We evaluate all experiments using the weighted av-
erage F1 score on two class-imbalanced datasets.
We use the initial weight of the pre-trained mod-
els from Huggingface’s Transformers (Wolf et al.,
2019). The output dimension of all encoders is uni-
fied to 768. The optimizer is AdamW and the initial
learning rate is 1e-5. We use a linear schedule with



Models Neutral ~ Surprise

MELD: Emotion Categories IEMOCAP
Fear Sadness Joy Disgust Anger Fl F1

DialogueRNN (Majumder et al., 2019) ~ 73.50 49.40
ConGCN (Zhang et al., 2019) 76.70 50.30

1.20 2380 50.70 1.70  41.50 57.03 62.75
870 2850 53.10 10.60 46.80 59.40 64.18

MMGCN (Hu et al., 2021b) - - - - - - 58.65 66.22
DialogueTRM (Mao et al., 2021) - - - - - - - 63.50 69.23
DAG-ERC (Shen et al., 2021) - - - - - - - 63.65 68.03
MM-DFN (Hu et al., 2022a) 77.76 50.69 - 2294 5478 - 47.82  59.46 68.18
M2FNet (Chudasama et al., 2022) - - - - - - - 66.71 69.86
EmoCaps (Li et al., 2022) 77.12 63.19 3.03 4252 5750  7.69 57.54 64.00 71.77
UniMSE (Hu et al., 2022b) - - - - - - - 65.51 70.66
GA2MIF (Li et al., 2023a) 76.92 49.08 - 27.18 51.87 - 48.52 58.94 70.00

FacialMMT (Zheng et al., 2023) 80.13 59.63  19.18 4199 6488 18.18 56.00 66.58 -
TelME 80.22 60.33 2697 4345 65.67 2642 56770 67.37 70.48

Table 2: Performance comparisons on MELD (7-way) and [IEMOCAP

Dataset ASF L _response L_feature F1
X 63.33
68.19
69.42
70.48
67.04
66.75
67.23
67.37

IEMOCAP

MELD

ANENENENENENEN
NN X XN N X% X
N X X% XN X X X%

Table 3: Results of ablation study. Here, L csponse 18
our response-based distillation, L fcqture is our feature-
based distillation and ASF is our fusion method.

warmup for the learning rate scheduler. All experi-
ments are conducted on a single NVIDIA GeForce
RTX 3090. More details are in Appendix A.3.

4.3 Main Results

We compare TelME with various multimodal-based
ERC methods (explained in Appendix A.4) on
both datasets in Table 2. TeIME demonstrates ro-
bust results in both datasets and achieves state-
of-the-art performance on MELD. Specifically,
TelME exhibits a substantial 3.37% difference com-
pared to EmoCaps with the current state-of-the-art
performance in IEMOCAP and improves 0.66%
over the previous state-of-the-art method (M2FNet)
in MELD. Previous methods such as EmoCaps
and UniMSE have shown effectiveness in IEMO-
CAP but exhibit somewhat weaker performance
on MELD. This makes our findings particularly
significant.

As shown in Table 2, we report the performance
of various methods for emotion labels in MELD.
TelIME outperforms other models in all emotions
except Surprise and Anger. However, assuming
that Surprise and Fear, as well as Disgust and

Anger, are similar emotions, Emocaps shows a
bias towards Surprise and Anger during inference,
only achieving 3.03% and 7.69% in F1 score for
Fear and Disgust, respectively. On the other hand,
TelME distinguishes these similar emotions bet-
ter, bringing the scores for Fear and Disgust up to
26.97% and 26.42%. We speculate that our frame-
work predicts minority emotions more accurately
as the non-verbal modality information (e.g., inten-
sity and pitch of an utterance) enhanced through
our KD strategy better assists the teacher in judging
the confusing emotions.

4.4 Ablation Study

We conduct an ablation study to validate our knowl-
edge distillation and fusion strategies in Table 3.
The initial row for each dataset represents the out-
come of training each modality encoder using cross-
entropy loss and concatenating the embeddings
without incorporating distillation loss and our fu-
sion method.

Using our fusion method alone, IEMOCAP
showed performance improvement, but MELD
showed poor performance. The effectiveness of
our fusion method in achieving optimal modality
interaction cannot be guaranteed without knowl-
edge distillation. Because each encoder is trained
independently, focusing solely on improving its per-
formance without considering the multimodal inter-
action. On the other hand, As our knowledge dis-
tillation components are added, these bring about
consistent improvements for both datasets.

When we examine the specific effects of the KD
strategy, we observe performance improvements
for both datasets, even when using only L;.csponse-
From these results, we confirm that L, csponse 18
a knowledge distillation approach capable of ad-
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Figure 5: Individual performance of audio and visual
modalities according to knowledge distillation type.

dressing the between modalities. Furthermore,
adding L feqture aimed to leverage the richer knowl-
edge of the teacher is more effective in [IEMOCAP
and shows marginal performance enhancements
in MELD. However, we speculate that the slight
improvement in MELD may be attributed to the
fundamental issue of class imbalance, limiting the
effectiveness of the overall architecture. We show
an analysis of this problem in Appendix A.5 as
well as an error analysis of the emotion classes in
Appendix A.6.

Figure 5 shows the individual performance of
the audio and visual modalities based on the distil-
lation loss. We observe that applying both types of
distillation loss is more effective compared to not
applying them. The performance of visual modal-
ity on the IEMOCAP dataset has declined, possi-
bly because facial expressions are not effectively
captured in the limited image frames of a short
utterance. However, even with lower individual
performance, all modalities have been shown to
contribute to the improvement of emotion recogni-
tion performance through our approach (Table 3,
4).

In summary, we demonstrate that by applying
both types of knowledge distillation, we can maxi-
mize the effectiveness of non-verbal modalities and
effectively interact with our fusion method.

Methods Remarks IEMOCAP MELD
Audio KD 48.11 46.60
Visual KD 18.85 36.72

Text - 66.60 66.57
Text + Visual ASF 67.94 67.05
Text + Audio ASF 69.26 67.19

TelME 70.48 67.37

Table 4: Performance comparison for single modality
and multiple multimodal combinations

4.5 The Impact of Each Modality

Table 4 presents the results for single-modality and
multimodal combinations. The single-modality per-
formances for audio and visual are the results after
applying our knowledge distillation method, and
the same fusion approach as TelME is used for
dual-modality results. The text modality performs
the best among the single-modality, which supports
our decision to use the text encoder as the teacher
model. In addition, the combination of non-verbal
modalities and text modality achieves superior per-
formance compared to using only text. Our find-
ings indicate that the audio modality significantly
contributes more to emotion recognition and holds
greater importance compared to the visual modality.
We speculate this can be attributed to its ability to
capture the intensity of emotion through variations
in the tone and pitch of the speaker. Overall, our
method achieves 3.52% improvement in IEMO-
CAP and 0.8% in MELD over using only text.

5 Conclusion

This paper proposes Teacher-leading Multimodal
fusion network for ERC (TeIME), a novel mul-
timodal ERC framework. TelME incorporates a
cross-modal distillation that transfers the knowl-
edge of text encoders trained in linguistic contexts
to enhance the effectiveness of non-verbal modali-
ties. Moreover, we employ the fusion method that
shifts the features of the teacher model by referring
to non-verbal information. We show through ex-
periments on two benchmarks that our approach
is practical in ERC. TeIME delivers robust per-
formance in both datasets and especially achieves
state-of-the-art in the MELD dataset consisting of
multi-party conversational scenarios. We believe
that this research presents a new direction that can
incorporate multimodal information for ERC.



Limitations

This study has a limitation wherein the visual
modality shows a lower capability to recognize
emotions compared to the audio modality. To ad-
dress this limitation, future research should focus
on developing techniques to accurately capture and
interpret the facial expressions of the speaker dur-
ing brief utterances. By improving the extraction of
visual features, the effectiveness of knowledge dis-
tillation can be significantly enhanced, thus show-
casing its potential to make a more substantial con-
tribution to emotion recognition.
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A Appendix
A.1 Study on Teacher Modality

MELD IEMOCAP
TeIME (Audio Teacher) 56.28 49.36
TelIME (Visual Teacher) 56.85 56.78
TeIME (Text Teacher) 67.37 70.48

Table 5: TeIME Performance by Teacher Modality

We conduct comparative experiments by set-
ting each modality as the teacher modality. Ta-
ble 5 shows the performance of our framework
based on the teacher modality setting. Our study
shows that the TelME framework performs best
with the text encoder as the teacher, while treat-
ing the other modalities as the teacher significantly
hinders model performance.

Additionally, Tables 6 and 7 report the individ-
ual performance of the student models based on
the teacher modality. The diagonals (cases where
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Audio Student  Visual Student  Text Student

Audio Teacher 44.55 34.86 54.83
Visual Teacher 40.18 36.14 59.72
Text Teacher 46.60 36.72 66.60

Table 6: Teacher Modality Study on MELD

Audio Student  Visual Student  Text Student

Audio Teacher 42.24 20.45 57.42
Visual Teacher 44.13 22.06 63.94
Text Teacher 48.11 18.85 66.57

Table 7: Teacher Modality Study on IEMOCAP

the teacher and student modalities are the same) in
Tables 6 and 7 represent results without performing
Knowledge Distillation (KD). Through our com-
parative experiment results, we observe that a ro-
bust text encoder can most effectively serve as the
teacher. Specifically, designating the text encoder
as the teacher enhances the performance of all stu-
dent models except for the visual student in IEMO-
CAP. On the other hand, it is evident that treating
a weak non-verbal model as the teacher impairs
student performance. We believe this provides sig-
nificant evidence for why the text encoder should
be assigned the role of the teacher.

A.2 Effect of the prompt

MELD IEMOCAP
w/o prompt ([cls]+context)  65.25 66.48
context + prompt 66.57 66.60

Table 8: Comparison of the teacher performance based
on the use of the prompt

Table 8 shows an ablation experiment on the
prompt. We remove the prompt and use the CLS
token to compare emotion prediction results with
the results using the prompt. We observe from the
results that the prompt helps to infer the emotion
of a recent speaker from a set of textual utterances.

A.3 Hyperparameter Settings

Hyperparameter IEMOCAP MELD
Knowledge distillation
Balance factors for Lsydent
Temperature for L;esponse
Temperature for Leqrure 1 1

Attention modality Shifting Fusion

Threshold parameter 0.01 0.1
Dropout 0.2 0.1
The number of heads for multi-head attention 4 3

Table 9: hyperparameter settings of TeIME on two
datasets



Through our KD strategy, audio and visual en-
coders are trained using the loss functions men-
tioned in Equation 6. In Lgyy,dent, the balancing
factors are all set to 1 excluding o for IEMOCAP.
The temperature parameter for the Ly.csponse func-
tion is adjusted to 4 for MELD and 2 for IEMO-
CAP. The temperature parameter for L eqiyre 18
set to 1 regardless of the dataset. We also use a
fusion method that shifts vectors in the teacher
model, where the threshold parameter is set to 0.01
for IEMOCAP and 0.1 for MELD. Furthermore,
Dropout is adjusted to 0.2 for MELD and 0.1 for
IEMOCAP. The number of heads used in the multi-
head attention process is 4 for IEMOCAP and 3 for
MELD.

A4 Compared Models

We compare TeIME against the following models:
DialogueRNN (Majumder et al., 2019) employs
Recurrent Neural Networks (RNNs) to capture the
speaker identity as well as the historical context and
the emotions of past utterances to capture the nu-
ances of conversation dynamics. ConGCN (Zhang
et al., 2019) utilizes a Graph Convolutional Net-
work (GCN) to represent relationships within a
graph that incorporates both context and speaker
information of multiple conversations. MMGCN
(Hu et al., 2021b) also proposes a GCN-based ap-
proach, but captures representations of a conver-
sation through a graph that contains long-distance
flow of information as well as speaker information.
DialogueTRM (Mao et al., 2021) focuses on mod-
eling both local and global context of conversations
to capture the temporal and spatial dependencies.
DAG-ERC (Shen et al., 2021) studies how conver-
sation background affects information of the sur-
rounding context of a conversation. MMDFN (Hu
et al., 2022a) proposes a framework that aims to en-
hance integration of multimodal features through
dynamic fusion. EmoCaps (Li et al., 2022) in-
troduces an emotion capsule that fuses informa-
tion from multiple modalities with emotional ten-
dencies to provide a more nuanced understanding
of emotions within a conversation. UniMSE (Hu
et al., 2022b) seeks to unify ERC with multimodal
sentiment analysis through a T5-based framework.
GA2MIF (Li et al., 2023a) introduces a two-stage
multimodal fusion of information from a graph and
an attention network. FacialMMT (Zheng et al.,
2023) focuses on extracting the real speaker’s face
sequence from multi-party conversation videos and

then leverages auxiliary frame-level facial expres-
sion recognition tasks to generate emotional visual
representations.

A.5 Class Imbalance

MELD Emotion Count
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Figure 6: Count distribution of emotion classes for both
MELD and IEMOCAP datasets

Figure 6 illustrates the label distribution within
the MELD and IEMOCAP datasets. Notably, the
MELD dataset exhibits a pronounced imbalance,
with the "neutral” class comprising the majority
at 47% of the data, followed by "joy" with 17%
and "surprise”" with 12%. This substantial class
imbalance presents a challenge in the context of
distillation, specifically for the teacher encoder to
initially identify the minority classes and subse-
quently transfer this information to the non-verbal
student encoders. We believe that this class im-
balance is a contributing factor to the limited ob-
served improvements associated with L feqtyre 0
the MELD dataset as compared to the IEMOCAP
dataset.

A.6 Error Analysis

Figure 7 shows the normalized confusion matrices
of the TeIME and the understated model for two
datasets. We can evaluate the quality of the emotion
prediction through the confusion matrix. TelME
shows better True Positive results in almost all emo-
tion classes. This suggests that TeIME is extracting
and fusing finer-grained features to infer emotions
without bias. TeIME better classifies similar emo-
tions compared to the understated model(e.g., ex-
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Figure 7: Confusion Matrices on IEMOCAP and MELD

cited and happy, angry and frustrated). However,
the result of misclassifying happy as exciting is
a little high. This result is due to the lowest per-
centage of happy in IEMOCAP with unbalanced
classes. Even in the case of MELD, the emotion
in which most emotion classes are misclassified is
neutral, with the highest count. We can observe a
similar misclassification tendency in other research
(Chudasama et al., 2022; Hu et al., 2023) as well.
Hence, we suspect that the cause of misclassifica-
tion is not a problem with the method we proposed
but rather stems from a class imbalance issue.
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