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ABSTRACT

Table-text retrieval aims to retrieve relevant tables and text to support open-
domain question answering. Existing studies use either early or late fusion, but
face limitations. Early fusion pre-aligns a table row with its associated passages,
forming “stars,” which often include irrelevant contexts and miss query-dependent
relationships. Late fusion retrieves individual nodes, dynamically aligning them,
but it risks missing relevant contexts. Both approaches also struggle with advanced
reasoning tasks, such as column-wise aggregation and multi-hop reasoning. To ad-
dress these issues, we propose FusionMaestro, which combines the strengths
of both approaches. First, the edge-based bipartite subgraph retrieval identifies
finer-grained edges between table segments and passages, effectively avoiding the
inclusion of irrelevant contexts. Then, the query-relevant node expansion identi-
fies the most promising nodes, dynamically retrieving relevant edges to grow the
bipartite subgraph, minimizing the risk of missing important contexts. Lastly, the
star-based LLM refinement performs logical inference at the star subgraph rather
than the bipartite subgraph, supporting advanced reasoning tasks. Experimental
results show that FusionMaestro outperforms state-of-the-art models with a
significant improvement up to 42.6% and 39.9% in recall and nDCG, respectively,
on the OTT-QA benchmark.

1 INTRODUCTION

Open-domain question answering (ODQA) over tables and text is important as it leverages the com-
plementary strengths of structured and unstructured data. Tables offer vast amounts of related facts
but lack diversity, while text provides broader contextual information (Chen et al., 2020b;a), mak-
ing the integration of both modalities essential. Table-text retrieval, which retrieves question-relevant
tables and text, is a key task in ODQA as it provides question-relevant context to readers of retriever-
reader systems (Chen et al., 2020a; Huang et al., 2022; Ma et al., 2022; 2023; Kang et al., 2024).

Despite its importance, table-text retrieval faces two key challenges due to its multimodal nature.
First, it involves resolving multi-hop relationships across diverse corpora for structured tables and
textual passages (Chen et al., 2020a; Talmor et al., b). While textual data is generally unstructured
and narrative-driven, tabular data is highly structured. Understanding its rows and columns involves
interpreting structural semantics, making the integration of information from these two formats com-
plex. Second, the retrieval process should support advanced reasoning for modality-specific opera-
tions such as column-wise aggregations and multi-modal operations like multi-hop reasoning.

Existing methods have achieved some success by employing either early or late fusion techniques
in their top-k retrieval. The early fusion strategy attempts to reduce the search space by grouping
relevant documents before a query is presented. It pre-aligns a table row with associated passages
via entity linking, creating a fused block as the retrieval unit (Chen et al., 2020a; Huang et al.,
2022; Kang et al., 2024). In contrast, the late fusion strategy aligns relevant table rows and passages
dynamically after the query is given. This alignment is typically driven by entity linking or query-
based similarity matching. It returns a ranked sequence of evidence chains, where an evidence chain
refers to a pair consisting of a table row and a passage (Ma et al., 2022; 2023).

However, the existing studies have several significant limitations.
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Question: What are the school colors of the college that the player picked 27th in 
the 2012 MLS SuperDraft attended?
Answer: Gold and Blue

2012 MLS SuperDraft
Pick # MLS team Player Affiliation

26 Columbus Crew Aubrey Perry University of
South Florida

27 Portland Timbers Brendan King University of 
Notre Dame

28 Chicago Fire Hunter Jumper University of
Virginia

Notre Dame Fighting Irish University of Notre Dame

The University of Notre Dame du Lac
is a private Catholic research
university in Notre Dame, Indiana,
outside the city of South Bend. It
was founded in 1842 by Rev. Edward
Sorin.

The Notre Dame Fighting Irish are
the athletic teams that represent
the University of Notre Dame. The
school colors are Gold and Blue
and the mascot is the Leprechaun.

(b)

Relationships  inferable through 
advanced understanding ability

Relationships  inferable through
semantical similarity Correct answerLegend

(a) Question: What is the work of the Grammy-winning artist who was born on May 15, 1942?
Answer: 80s Ladies

Grammy Award for Best Female Country Vocal
Year Artist Work Nominees

1988 K. T. Oslin 80s Ladies Rosanne Cash, 
Love Me Like You Used To

SJPF Segunda Liga Player of the Month

Month Year Player Team

April 2009 Carlao Uniao de Leiria

October 2009 Paulo Santos Estoril

November 2009 Basilio Almeida Sporting da Covilha

Question: When was the most recent Segunda Liga player of the month born ?
Answer: 12 August 1971

Carlão
(footballer, born August 1986)

The University of Notre Dame du
Lac is a private Catholic
research university in Notre Dame,
Indiana, outside the city of
South Bend. It was founded in
1842 by Rev. Edward Sorin.

Basílio Almeida

Basílio Alexandre Neiva de Almeida
(born 12 August 1971) is a
Portuguese footballer who plays for
Grupo Desportivo São Roque as a left
winger. He amassed Primeira Liga
totals of 152 games and 22 goals
over eight seasons.

(c)

K. T. Oslin

Kay Toinette Oslin (born May 15,
1942) is an American country
music singer and songwriter.

Rosanne Cash

Rosanne Cash (born May 24, 1955) is
an American singer-songwriter and
author.

Grammy Award for Best Rock Instrumental
Year Performing Artist Work Nominees

1988 Frank Zappa Jazz from 
Hell 

Herbie 
Hancock

80s Ladies

80's Ladies is the debut album by
American country music artist K.
T. Oslin.

Love Me Like You Used To (song)
Love Me Like You Used To is a song
written by Paul Davis and Bobby Emmons,
and recorded by American country music
artist Johnny Cash.

Link between
two documents

Figure 1: Simplified examples of three cases where existing methods struggle to retrieve the
question-related documents correctly. (a) Inadequate granularity of retrieval units leading to inaccu-
rate retrieval results. (b) Entity linking results cannot estimate essential query-aware relationships.
(c) Inability of advanced reasoning such as table aggregation and multi-hop reasoning.

(1) Inadequate granularity of retrieval unit. The retrieval units used in the early fusion strategy are
formed independently of the query, often including query-irrelevant passages. This problem leads to
incorrect similarities between fused blocks and questions. For example in Figure 1(a), entity linking
connects the Grammy Award for Best Female Country Vocal table to four surrounding
passages. However, the irrelevant connections overwhelm the table, as the information related to
K. T. Oslin is only essential information (Figure 1(a)). In the late fusion strategy, retrieving a
single table segment or passage may be partially relevant to a query, incurring the risk of retrieving
incorrect tables. For instance, during the first iteration of retrieval, the system might retrieve the
Grammy Award for Best Rock Instrumental table instead of the correct one. Both this
table and the correct one share partial relationships with the query, containing overlapping words
such as Grammy, Artist, and Work, and can lead to confusion in identifying the correct target.
(2) Missing query-dependent relationships. The early fusion strategy relies on entity linking to
predefine relationships between tables and passages. It fails to account for query-dependent links
between documents that might contain the information necessary to answer the query. For instance,
in Figure 1(b), the table 2012 MLS SuperDraft is early fused with the entity University of
Notre Dame. However, when the question specifies the information about school colors, it
should be linked to the Notre Dame Fighting Irish passage.
(3) Lack of advanced reasoning. Queries that require complex reasoning, such as multi-hop or
column-wise aggregation, often demand advanced logical inference beyond simple semantic simi-
larity with the query. Since previous approaches rely on semantic similarity, they might fail to re-
trieve rows or passages identifiable through logical inference. For example, in Figure 1(c), the query
involves understanding the most recent Segunda Liga Player of the Month is Basilio
Almeida, where the row with the latest Year and Month combination has to be inferred.

We first formalize the terms proposed in previous studies using a bipartite graph, where table seg-
ments and passages are represented as two disjoint sets of nodes, and the links between them are
represented as edges. Therefore, the term fused block used in the early fusion strategy (Chen et al.,
2020a; Huang et al., 2022; Kang et al., 2024) can be represented as a star (Diestel, 2024) centered on
a node of type table segment, with connected nodes of type passage. Similarly, the evidence
chain used in the late fusion strategy (Ma et al., 2022; 2023) corresponds to an edge connecting a
pair of nodes: one of type table segment and one of type passage.
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In this paper, we propose FusionMaestro, a novel graph-based retrieval consisting of three
stages: early fusion, late fusion, and LLM reasoning. Specifically, FusionMaestro adopts the
following three key ideas:
(1) Combined usage of early and late fusion. We selectively leverage the advantages of both
early fusion and late fusion. The early fusion stage provides comprehensive retrieval units by pre-
aligning tables to their related passages before the query, mitigating the risk of retrieving incomplete
or partially relevant information inherent in late fusion. Conversely, the late fusion stage dynami-
cally captures query-dependent relationships during retrieval, addressing early fusion’s reliance on
predefined, query-independent links established via entity linking.
(2) Graph refinement. We leverage large language models (LLMs) to perform further advanced
reasoning over the retrieved graph, enabling deeper logical inference beyond simple semantic sim-
ilarity. For instance, in Figure 1(c), when the SJPF Segunda Liga Player of the Month
table is retrieved, the LLM can perform aggregation to identify the most recent player and conduct
multi-hop reasoning to select the corresponding passage for Basilio Almeida.
(3) Granularity determination for each retrieval stage. In our retrieval pipeline, each stage -
early fusion, late fusion, and graph refinement - serves a distinct purpose, necessitating the precise
determination of the appropriate operational units for each. For the early fusion stage, we propose
a novel edge-level retrieval mechanism, which balances the challenge of excluding query-irrelevant
context in star graph retrieval and avoiding the partial information problem in node-based retrieval.
In the late fusion stage, we set the unit as an individual node. We identify query-relevant nodes
within the graph produced by the early fusion stage so that we can design the late fusion process to
expand the graph using only nodes closely aligned with the query context. This approach mitigates
the challenge where the earlier stage may retrieve nodes irrelevant to the query. Finally, the graph
refinement stage provides the fully expanded graph from late fusion to the LLM, which can increase
hallucination risks due to the inclusion of unnecessary nodes. To mitigate this, we decompose the
graph into smaller star graphs.

Experimental results demonstrate that FusionMaestro significantly outperforms state-of-the-art
systems, with a 42.6% improvement in AR@2 and a 39.9% improvement in nDCG@50.

2 RELATED WORK

2.1 OPEN-DOMAIN QUESTION ANSWERING

Open-Domain Question Answering (ODQA) is the task aimed at answering factual questions using
a large knowledge corpus (Zhang et al., 2023). Representative ODQA benchmarks such as Natural
Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), and SearchQA (Dunn et al.,
2017) consist of single-hop queries that require information found in a single passage within a corpus
of unstructured texts. Further advances were shown by HotpotQA (Yang et al., 2018) and WikiHop
(Welbl et al., 2018), presenting challenging queries that require multi-hop reasoning across multiple
passages. However, these benchmarks support only unstructured passages and do not consider multi-
hop reasoning across structured tables and unstructured passages, which is essential in table-text
retrieval tasks. OTT-QA (Chen et al., 2020a) is the first ODQA benchmark that supports multi-hop
reasoning between tables and text. It introduces questions that require reasoning over both tables and
their associated passages, providing a more realistic and challenging scenario for retrieval methods.

2.2 TABLE-TEXT RETRIEVAL

Table-text retrieval methods can be broadly categorized into early fusion and late fusion approaches.
These terms, initially used in multimodal tasks like image-sentence retrieval and semantic video
analysis, describe whether different modalities are encoded jointly or separately (Wang et al., 2022;
Snoek et al., 2005; Gadzicki et al., 2020). Similarly in the context of table-text retrieval, early and
late fusion approaches differ based on whether tables and text are linked before or after the retrieval
process (Kang et al., 2024).

Early fusion approaches (Chen et al., 2020a; Huang et al., 2022; Kang et al., 2024), before the
query is given, connect each table row with its related passages using entity linking, forming ‘fused
blocks’ that serve as basic retrieval units. These fused blocks are later retrieved during online time by
measuring their similarity to the query. Early fusion approaches show two limitations: (i) The fused
blocks may include numerous query-irrelevant passages since they include all passages linked to a
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row, without considering the query. This large retrieval unit not only introduces unrelated passages
into the retrieval results but also increases information loss when encoding the embeddings for the
fused blocks, thereby reducing the overall retrieval accuracy. (ii) Offline-generated fused blocks
are unable to consider query-dependent relationships that must be resolved online, as illustrated in
Figure 1(b). Our retrieval method addresses limitation (i) by using edges as basic units of retrieval,
as they are more fine-grained than fused blocks. Furthermore, to address limitation (ii), we propose
a query-relevant node expansion that adds query-dependent relationships online.

Late fusion approaches (Ma et al., 2022; 2023) dynamically group relevant documents online. They
begin with retrieving table segments relevant to the question, followed by retrieving passages asso-
ciated with these segments to establish connections between the documents. These methods require
considering all possible pairs between table segments and passages online, resulting in a vast search
space. Search algorithms like beam search are employed to address this problem, but can lead to an
error propagation problem as retrieving a single table segment or passage may contain only partial
relevant information. Our approach utilizes an edge-based retrieval, which captures richer context
by connecting table segments and passages, enabling a more accurate seed document retrieval.

Both early fusion and late fusion approaches predominantly rely on semantic similarity for retrieval.
Therefore, it may fail to retrieve table segments and passages that require advanced reasoning (e.g.,
column-wise aggregation, multi-hop reasoning) to be found, as shown in Figure 1(c). To address the
limitations, we propose a star-based LLM refinement, which leverages the logical inference ability
of LLM to refine the retrieved results using advanced reasoning.

Additionally, our retrieval method applies different levels of granularity (e.g., edges, nodes, stars)
tailored to each retrieval phase. DRAMA (Yuan et al., 2024) also adopts a multi-granularity approach
but is limited to a constrained setting where relevant tables and passages are provided, unlike our
method, which operates in an open-domain context. GTR (Wang et al., 2021) and MGNETS (Chen
et al., 2021) focus on enhancing table encoding using graph-based methods, whereas our work tar-
gets bridging semantic relationships between tables and text in open-domain retrieval.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Table-text retrieval is involved from a retrieval corpus C, which comprises two distinct sets: a col-
lection of passages CP = {P (1), . . . , P (n)} and a collection of tables CT = {T (1), . . . , T (m)}. A
passage is defined as a sequence of tokens P , representing unstructured text. A table is a structured
matrix T , consisting of cells Ti,j , where i and j indicate the row index and the column index, re-
spectively. Each cell Ti,j may contain a number, date, phrase, or sentence. We define a document
as either a passage or a table. Given a query q, the objective of table-text retrieval is to retrieve
from corpus C a ranked list of documents such that the document containing the answer span a is
positioned among the top results.

We split a table into multiple table segments, as commonly used in existing studies. Because a single
table can easily exceed the token limits of language models, a table T is combined with its header
to form a list of table segments T = [S(1), . . . , S(m′)] (Chen et al. 2020a). This process results in (i)
a corpus C composed of table segments CS and passages CP (i.e., C = CS ∪ CP ) and (ii) a mapping
M : CS → CT to associate table segments with their original table.

3.2 TABLE-TEXT RETRIEVAL AS BIPARTITE GRAPH RETRIEVAL

We adopt a graph representation, denoted by G = (V,E,Φ,Γ,Λ), to generalize various methods
used in existing studies. Here, V is the set of vertices corresponding to a table segment or a passage,
and E is the set of edges representing relationships between (table segment, passage) pairs. The
mapping Φ : V → {table segment,passage} maps each node to its type, while Γ maps a
node to its attributes, such as the text of a passage or the matrix of table structures. The mapping
Λ : E → R maps each edge to its score.

The corpus can be expressed as the initial graph Ginit = (Vinit, ∅,Φ,Γ,Λinit), where each node in
Vinit one-to-one corresponds to a table segment or a passage in C. Early fusion generates table-text
relationships via entity linking and updates Ginit before a query q is presented. Given a query q, late
fusion dynamically generates query-dependent table-text relationships to update Ginit. Finally, we
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aim to retrieve a query-relevant edge-scored bipartite graph Gq = (Vq, Eq,Φ,Γ,Λq) from Ginit.
This problem is often interpreted as finding a ranked sequence of edges Eq from all possible edges,
as the retrieved results are fed to a reader with limited context size (Ma et al., 2022; 2023). Eq is
often generated by sorting each edge e in G using its edge scores Λ(e).

4 PROPOSED METHOD

(1)
Early 

Fusion

Table segment 
node

Legend Passage 
node

𝐺!

(2)
Edge-based 

Bipartite 
Subgraph
Retrieval

(3)
Query-

relevant 
Node 

Expansion

(4)
Star-based 

LLM
Refinement

𝐺"𝐺#

Early fused
edges

Late fused
edges

𝐺$𝐺%&%'

𝑞 Top 4 edges

ℇ!

Embedding
vector

ℳ

Figure 2: Overview of FusionMaestro: (1) The initial graph Ginit is first early fused to generate
a graph Gd. Each node and edge of Gd are embedded. (2) The edges of Gd are retrieved using the
query q, then integrated into a candidate bipartite subgraph Gc. (3) The most query-relevant nodes
in Gc are identified as seed nodes. Nodes from Ginit that are relevant to both the seed node and the
query are expanded into Gc, forming the expanded graph Gl. (4) LLM performs aggregation over
restored tables to identify new relevant table rows, and then eliminates irrelevant passages.

Overview. We propose FusionMaestro, a novel graph-based retrieval to leverage the advantages
of both early and late fusion. It operates in three main stages as follows.

Edge-based Bipartite Subgraph Retrieval. It uses edges as the basic retrieval unit on a bipartite
data graph generated by early fusion. It searches for edges relevant to the query within the bipartite
graph and integrates the retrieved edges into a single bipartite subgraph. The retrieval unit is set to
an edge in this process. This enables a more accurate retrieval of query-relevant subgraphs as it is
less likely to contain query-irrelevant nodes like fusion blocks, and it also provides richer context
than a single document.

Query-relevant Node Expansion. It reinforces the retrieved bipartite subgraph with new nodes
found by performing an additional hop (i.e., expansion) from the input subgraph. In this step, we
first identify the most promising nodes within the subgraph to perform an additional hop from. These
nodes are called seed nodes. Next, the seed nodes are combined with the query to generate expanded
queries, which are then used to find the candidate nodes to be expanded to the graph. Lastly, the most
promising ones among the candidates are actually expanded into the subgraph.

Star-based LLM Refinement. It further refines the expanded graph via LLM’s advanced reasoning,
such as aggregation or multi-hop reasoning. It first restores the original tables of the table segments
within the expanded graph, then performs an aggregation operation if a query contains one. The
output table segments are then added to the graph, along with its related passages. Second, it verifies
whether each edge in the graph is relevant to the query in a star-graph-wise manner. The edges
verified as irrelevant are excluded from the refined graph. Lastly, it decomposes the refined graph
into a ranked sequence of edges.

4.1 EDGE-BASED BIPARTITE SUBGRAPH RETRIEVAL

FusionMaestro initiates its process with the retrieval of a bipartite subgraph through two key
steps: early fusion and edge retrieval. (i) In the early fusion step, a bipartite data graph Gd is gener-
ated from Ginit by linking table segments and passages via entity linking. Each edge in this graph
represents a meaningful connection between the two passages of different modalities. An embed-
ding is also computed for each edge in this step. (ii) In the edge retrieval step, the set of most
query-relevant edges is identified by leveraging the semantic similarity between the query and the
edge embeddings. It is then integrated to construct the candidate bipartite subgraph Gc ⊂ Gd.

The early fusion step starts by generating edges from the initial graph Ginit that has no edges.
We follow the prior methods for the edge generation process, a two-step process of entity linking
followed by entity recognition (Ma et al., 2022; 2023). The output graph of this process Gd is a
bipartite graph, since the edges are generated only between passage nodes and table segment nodes.
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The next step is to generate embeddings for each edge. Previous early fusion techniques tend to
create an embedding for each star graph, and the embeddings share a fixed number of vectors. Here,
a star graph is a graph where one table segment node is linked to multiple connected passages. We
introduce a fine-grained approach that generates token-level embeddings at the edge level, aiming
to balance providing richer information and minimizing information loss. We also adopt a late inter-
action model (Santhanam et al., 2021) that dynamically adjusts the length of the embedded vector
sequence, preserving fine-grained token-level details.

The generated edges are then embedded into a sequence of vectors. They first are linearized into a
token sequence as follows.

x = [x1, ..., xlx ] = [ Linearize(Γ(S)); Γ(P ) ] e = (S, P ) (1)

where x is the resulting token sequence representing the edge, and lx denotes the length of this
sequence. x is then embedded into a sequence of vectors. Mathematically, the encoding of both the
query q and the token sequence x can be expressed as:

Q = fe(q) ∈ Rlq×d ; X = fe(x) ∈ Rlx×d (2)

based on the principles of ColBERTv2 (Santhanam et al. 2021). lq represents the length of the
query and fe is our late interaction edge encoder.

At online time, a bipartite candidate subgraph is generated by retrieving and merging the offline-
embedded edges. This step is conducted through a three-stage process. First, we apply an initial
retrieval where the late interaction edge encoder fe computes the similarity scores between the
query q and each edge e. The similarity is calculated as:

fe(q, x) =

lq∑
i=1

max
j∈[1,lx]

QiXj (3)

This score quantifies the degree of alignment between the query tokens and the tokens in the edge.
The top-k1 edges are selected based on these scores. In the second stage, these query-edge pairs
are passed through an all-to-all interaction reranker ge, which performs a more detailed similarity
evaluation. This identifies the most contextually relevant edges, allowing us to identify the top-k2
query-relevant edges (k2 < k1). Finally, the k2 edges are integrated into the bipartite subgraph
Gc = (Vc, Ec,Φ,Γ,Λc), forming the candidate bipartite subgraph that serves as the foundation
for further expansion and refinement. The score for each generated edge e is saved as ge(e) in the
score mapping Λc. Λc will not be used until Section 4.3 where the final ranked list of edges will be
generated.

The late interaction encoder fe was fine-tuned following the training scheme of ColBERTv2 (San-
thanam et al., 2021), and the all-to-all interaction reranker ge was fine-tuned using contrastive loss.
Detailed explanations of the fine-tuning process, including the construction of the training dataset,
can be found in Appendix § B.1.

4.2 QUERY-RELEVANT NODE EXPANSION

Table segment node

Legend

Passage node

Early Fused Edges Late Fused Edges

Seed Node 
Selection

𝐺!𝐺"
q+

q+

q Top 2 edgesSelect top 2 nodes

Table Segment
Retriever

Passage
Retriever

Seed Node Expansion

Figure 3: The overall procedure of query-relevant node expansion. The beam width b is set as 2 in
this example. The orange-colored nodes indicate the selected seed nodes.

The query-relevant node expansion process identifies query-relevant edges at the node level based on
late fusion. This on-the-fly expansion generates graph Gl, a graph that includes additional expanded
nodes, from Gc. We perform the expansion process at the node level, which is the most fine-grained
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level. This is to address the issue that early fusion inevitably includes query-irrelevant nodes in the
candidate subgraph as the fused blocks are determined independent of the query. Formally, the node-
based expansion process can be expressed as finding a set of edges that meet the following objective
function.

argmax
(u,v)∈E∗∧u∈Vc

p(u, v|q) = p(v|u, q)p(u|q) (4)

Here, u represents a node in the candidate graph Gc, and v is a node adjacent to u in the complete
bipartite graph G∗. The complete bipartite graph G∗ = (Cinit, E∗,Φ,Γ,Λinit) contains all possible
edges between table segments and passages.

We employ a two-step beam search to identify expanded edges.
(1) Seed node selection: From the candidate bipartite subgraph Gc, we select a set of nodes that
contain information most relevant to the query. This corresponds to finding the set of nodes that
show the highest p(u|q).
(2) Seed node expansion: For each seed node, we iterate through its neighbors in the complete
bipartite graph G∗, calculating the similarities between each expanding node and the pair of the
query and the seed node. Among these, node pairs that exhibit the highest similarity with the query
are returned as edges, further expanding the graph Gc to Gl by adding these edges.

The seed node selection calculates p(u|q) for each u ∈ Vc to identify the top-b (i.e., beam width)
nodes that contain the most relevant information to the query. The probability p(u|q) is determined
by calculating the semantic similarity between the query and each node u in Gc, which is normalized
using a softmax function. This similarity is computed through an all-to-all interaction-based node
reranker gn. The similarity scores gn([q; Γ(u)]) for all u are used to select the top-b seed nodes.

The seed node expansion computes p(v|u, q) for each node v connected to seed node u in the com-
plete bipartite graph G∗. These conditional probabilities are calculated using the expanded query
retrieval technique (Xiong et al.). In this technique, the score function is expressed with the ex-
panded query as s([q; Γ(u)], v), and it is calculated by two late interaction models: fP→S for a
table-segment-typed expanding node and a passage-typed seed node, and fS→P for the opposite.
The calculated scores are normalized using a softmax function to compute p(v|u, q). We then calcu-
late p(u, v|q) using Equation 4. The final probability is used to select the top-b probable edges from
the pairs of seed node u and expanding node v. They are added to Vc and Ec of Gc, forming the
updated bipartite graph Gl = (Vl, El,Φ,Γ,Λl). Each new edge is scored using the identical scoring
module ge discussed earlier in § 4.1.

The change in retrieval accuracy of FusionMaestro based on beam width b is discussed in Ap-
pendix § C.2. The node reranker gn are fine-tuned for node selection. The late interaction encoders
fP→S and fS→P used for expanded query retrieval are fine-tuned following the ColBERTv2 train-
ing scheme (Santhanam et al., 2021). Detailed explanations for fine-tuning, including the construc-
tion of the training dataset, for all the modules can be found in Appendix § B.2 and Appendix § B.3.

4.3 STAR-BASED LLM REFINEMENT

Traditional semantic similarity is insufficient to correctly retrieve documents for queries that re-
quire logical inference, such as column-wise aggregation or multi-hop reasoning. To overcome this
problem, we leverage the advanced reasoning capabilities of large language models (LLMs), which
allow us to refine the retrieved result through logical inference. The main goal is to use LLM’s
logical inference to add relevant edges to the graph Gl and remove irrelevant ones.

It is non-trivial to choose the specific format or unit of providing the graph Gl to the LLM. We
considered two approaches: including the entire graph Gl in a single prompt to return the relevant
set of nodes, and decomposing Gl into star graphs, with each star graph generating its own set
of relevant nodes. Among these, using star graphs as the unit proved to be 12.4% more effective,
leading us to select this as our unit for logical inference (§ 5.4).

The refinement process occurs in two phases: column-wise aggregation and passage verification.
The column-wise aggregation step restores tables from table segments, then identifies the candidate
rows based on the query and adds them back to the graph. The passage verification step evaluates
each star graph, returning the passages essential for answering the query. The refined edge-scored
graph is then decomposed into a ranked sequence of edges to produce the final retrieval output. A
detailed process is expressed in Figure 4.
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Column-wise Aggregation. It aims to accurately infer the correct result rows for table aggrega-
tion operations, as exemplified in Figure 1(c). In our early fused graph Gd, tables are divided into
individual row-based table segments, making it hard for the previous-stage retrievers to perform
proper aggregation. It becomes necessary to reconstruct the original tables and perform reasoning
over these full tables.

Since not every query requires aggregation, the first step is to prompt the LLM to determine whether
the input query necessitates an aggregation operation. If the query is classified as an aggregation
query, the process follows two steps: (i) Table restoration: For each table segment, we utilize the
mapping function M to restore the original table. (ii) Aggregation: The restored tables are provided
to the LLM in the format of star graph, where LLM performs the aggregation and returns the rows
corresponding to the aggregation result. The returned rows are subsequently added back to Gl along
with their associated passages to generate Ga.

Passage Verification. It aims to leverage the LLM’s logical inference capabilities to remove the
query-irrelevant passages within Ga. Similar to the column-wise aggregation step, we provide Ga

to the LLM in the form of star graphs, units that contain multi-hop relationships while not exceeding
the context limit. The LLM performs a binary verification to determine whether each edge is relevant
to the query, without recalculating their scores. As a result, query-irrelevant edges are eliminated,
leaving a refined, edge-scored graph Gq . Examples of prompts used for this step can be found in
Appendix § E.

Top-K Edge Selection. The graph Gq is then transformed into a ranked sequence of edges Eq by
applying the score mapping Λc. Specifically, all edges e in Gq are ranked in descending order based
on their scores Λc(e).

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Hardware and Software Settings. We conducted our experiments on a machine with Intel(R)
Xeon(R) Gold 6230 CPU @ 2.10GHz CPU and 1.5T of RAM with the OS of Ubuntu 22.04.4
and 4 RTX A6000 GPUs.

Compared Techniques. FusionMaestro is compared with the SOTA methods. The early fusion
methods include Fusion-Retriever (Chen et al., 2020a), OTTeR (Huang et al., 2022), and DoTTeR
(Kang et al., 2024). While, the late fusion approaches include Iterative-Retriever (Chen et al., 2020a),
CORE (Ma et al., 2022), and COS (Ma et al., 2023).

Datasets. We conducted our experiments using two datasets: OTT-QA (Chen et al., 2020a) and Mul-
timodalQA (MMQA) (Talmor et al., a). OTT-QA serves as the primary dataset for comparison, as it
is the only dataset specifically designed for open-domain QA involving both tables and texts. The
OTT-QA corpus contains 400K tables and 5M passages, and it is composed of a training set with
42K question-answer pairs, along with development and test sets of 2K question-answer pairs each.
MMQA is a QA dataset for multi-hop reasoning over images, passages, and tables. Though it does not
align perfectly with our task’s requirements, it was utilized as a supplementary dataset to test the
generalizability of our method. The MMQA corpus includes 10K tables and 210K passages, with a
development set of 1.3K question-answer pairs. We excluded image-based questions and conducted
experiments in an open-domain setting using the entire corpus, without utilizing the reference can-
didates provided for each question.

5.2 MAIN RESULTS

We evaluated the accuracy of the retrieved documents using top-k Answer Recall (AR@k),
nDCG@k, and Hits@4K as well as the end-to-end performance measured by EM and F1 scores.
AR@k measures the percentage of queries where the correct answer string appears within the top-k
retrieved edges (Ma et al., 2023). nDCG@k measures the ranking quality of the retrieved edges
up to position k, depending on each edge’s relevance to the query and its position in the ranked
list. Hits@4K measures the proportion of cases where the answer span exists within the top 4096
tokens after linearizing the sequence of ranked edges (Chen et al., 2020a). Additionally, we per-
form end-to-end question-answering experiments to evaluate how retrieval accuracy impacts overall
QA performance, using exact match (EM) accuracy and F1 score to assess the quality of generated
answer spans. If the number of edges in Eq is fewer than the target edges, we include the edges
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Table 1: Retrieval accuracy on OTT-QA’s dev set for FusionMaestro and six competitors. Re-
sults marked with † indicate reproduced values.

Model AR@2 AR@5 AR@10 AR@20 AR@50 nDCG@50 HITS@4k
Iterative Retriever – – – – – – 27.2
Fusion Retriever – – – – – – 52.4
OTTeR† 31.4 49.7 62.0 71.8 82.0 25.9 70.1
DoTTeR† 31.5 51.0 61.5 71.9 80.8 26.7 70.3
CORE† 35.3 50.7 63.1 74.5 83.1 25.4 77.2
COS† 44.4 61.6 70.8 79.5 87.8 33.6 81.8
FusionMaestro 63.3 76.7 85.0 90.4 94.2 47.0 91.8

Table 2: AR@k on MMQA’s dev set for FusionMaestro and COS. Results marked with † indicate
reproduced values.

Model AR@2 AR@5 AR@10 AR@20 AR@50

COS† 50.7 59.7 67.1 72.4 79.5
FusionMaestro 70.5 77.8 81.0 82.6 86.2

removed during the star-based LLM refinement stage to assess the retrieval accuracy. The values of
k ∈ {2, 5, 10, 20, 50} were selected based on the k-values used in the evaluation of SOTA early and
late fusion models (Kang et al., 2024; Ma et al., 2023).

We evaluated the retrieval accuracy of FusionMaestro on the OTT-QA and MMQA datasets.
For the OTT-QA dev set, we measured AR@k, nDCG@k, and Hits@4K across FusionMaestro
and six competitors, and the results summarized in Table 1. FusionMaestro consistently out-
performs other retrievers across different k values (k ∈ 2, 5, 10, 20, 50). It outperforms the state-
of-the-art COS model by an average of 19.0% in AR, with the performance gap widening as k
decreases. At k = 2, FusionMaestro achieves as much as 42.6% higher answer recall than COS.
This improvement is further reflected in nDCG@50, where FusionMaestro exhibits a 39.9%
gain. Additionally, the Hits@4K metric shows a 12.2% improvement over COS. To assess the gen-
eralizability of FusionMaestro, we extended our evaluation to the MMQA dataset, comparing its
AR@k performance against COS. As detailed in Table 2, FusionMaestro maintains its superior
performance across all k values, achieving an average improvement of 20.9% in AR across all k
values, further reinforcing its robustness across different datasets.

Table 3: End-to-end question answering accuracy for development and test set of OTT-QA.

Algorithm
Dev Test

EM F1 EM F1
OTTeR 37.1 42.8 37.3 43.1
DoTTeR 37.8 43.9 35.9 42.0
CORE 49.0 55.7 47.3 54.1
COS 56.9 63.2 54.9 61.5
FusionMaestro 59.3 65.8 57.0 64.3

To assess the impact of our retrieved results on the reading task, we evaluated the end-to-end
question-answering performance of FusionMaestro and COS on OTT-QA’s dev and test sets.
The results are shown in Table 3. As for the reader, we followed COS to employ a Fusion-in-Encoder
(FiE) model (Kedia et al., 2022) fine-tuned on the OTT-QA dataset. To ensure a fair comparison, we
provided 50 edges as input to the reader, following the evaluation protocol used by COS. The results
indicate that compared to the COS model, our approach improved both EM and F1 scores by 4.2%
and 4.1% on the development set, as well as by 3.8% and 4.6% on the test set, respectively. This
demonstrates that the well-retrieved documents from our algorithm effectively assist the reader in
generating more accurate answers.

5.3 ABLATION STUDY

We performed an ablation study to assess the contribution of query-relevant node expansion (QNE)
and star-based LLM refinement (SLR) to retrieval accuracy. We implemented two additional ver-
sions of FusionMaestro. In one version of w/o QNE, we removed the QNE module and
FusionMaestro passes the candidate bipartite subgraph Gc directly to the SLR module. In the
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Table 4: Retrieval accuracy of OTT-QA’s development set for FusionMaestro’s various design
factors (QNE = Query-relevant Node Expansion, SLR = Star-based LLM Refinement).

Algorithm AR@2 AR@5 AR@10 AR@20 AR@50 nDCG@50 EM F1
FusionMaestro 63.3 76.7 85.0 90.4 94.2 47.0 59.3 65.8

w/o QNE 62.5 74.7 82.7 88.4 92.7 45.1 56.9 63.2
w/o SLR 60.0 75.2 84.7 90.1 94.6 46.5 59.0 65.7

other of w/o SLR, the SLR module was removed and FusionMaestro decomposes the ex-
panded graph Gl into a list of edges.

As in Table 4, we found that removing the QNE module led to an average performance degradation
of 2.1% in AR across all k values and 4.2% in nDCG@50. This highlights the role of QNE in gener-
ating query-relevant edges missed by offline entity linking. Secondly, for the w/o SLR algorithm,
we observed a noticeable drop in AR@2, AR@5, AR@10, AR@20, and nDCG@50, with accuracy
decreases of 5.5%, 2.0%, 0.4%, 0.3%, and 1.1%, respectively. This suggests that LLM-based node
selection helps accurately identify the query-relevant nodes in complex queries where logical infer-
ence is needed. This tendency is particularly evident when k is small. Interestingly, for AR@50,
the w/o SLR version slightly outperformed FusionMaestro by 0.4%. This phenomenon can be
attributed to LLM hallucinations. In some cases, FusionMaestro’s SLR module failed to select
the correct query-relevant nodes. We present the qualitative analysis results in Appendix § D.

5.4 IMPACT OF GRANULARITY TO ACCURACY

We investigated the impact of retrieval unit granularity on accuracy by comparing three versions of
our subgraph retriever module, each with a distinct type of retrieval unit. (i) Node: it retrieves table
segments first then links the related passages via entity linking. (ii) Star graph: it retrieves the star
graphs and then integrates them into a graph. (iii) Edge: it retrieves the edges, and integrates them to
generate a graph. For a fair comparison, we conducted experiments using the ColBERTv2 baseline
model without fine-tuning it for each retrieval unit.

Table 5: Comparison between star-graph-based search and edge-based search.
Retrieval Unit AR@2 AR@5 AR@10 AR@20 AR@50 nDCG@50
Node 29.3 47.4 58.8 68.5 79.5 23.8
Star Graph 37.9 57.4 66.9 76.4 84.5 28.5
Edge 49.1 63.1 70.6 77.6 85.1 34.2

As shown in Table 5, the edge-based retrieval consistently outperformed the others. On average
across all values of k, edge-based retrieval outperformed star graph-based and node-based retrieval
by 6.9% and 12.4%, respectively. In terms of nDCG@50, it outperformed them by 20% and 43.7%,
respectively. This highlights edge-based retrieval’s ability to provide richer information while mini-
mizing information loss, striking an effective balance compared to the other methods. Additionally,
we conducted experiments using two refinement units with an LLM, comparing the performance
of a full graph prompt versus individual prompts for each star graph. The star graph setting, which
reduced irrelevant information in prompts, achieved an nDCG@50 score 12.4% higher than the full
graph setting (41.8), demonstrating improved performance and a reduced risk of hallucinations.

6 CONCLUSION

We presented FusionMaestro, a novel method for table-text retrieval that harmonizes the
strengths of both early fusion and late fusion techniques while incorporating large language model
(LLM) reasoning. It addresses the limitations of existing approaches by introducing a multi-granular
retrieval pipeline that optimally balances granularity across retrieval stages. By employing edge-
based bipartite subgraph retrieval, query-relevant node expansion, and star-based LLM refinement,
FusionMaestro provides more accurate retrieval by dynamically constructing query-relevant bi-
partite graphs. Experimental results demonstrate that FusionMaestro significantly outperforms
state-of-the-art models, with a 42.6% improvement in AR@2 and a 39.9% gain in nDCG@50, on
the OTT-QA benchmark.
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Reproducibility Statement We provide prompt examples for operations performed in star-based
LLM refinement, including aggregation query classification in Appendix E.1, column-wise aggrega-
tion in Appendix E.2, and passage verification in Appendix E.3. Additionally, OTTeR and DoTTeR
were reproduced using the official code available at OTTeR and DoTTeR, respectively. COS and
CORE were reproduced using the official code from UDT-QA. The source code, data, and other
artifacts for FusionMaestro have been made available at anonymous.4open.science.
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A STAR-BASED LLM REFINEMENT SUPPLEMENTARY
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Figure 4: The overall process of star-based LLM refinement for queries classified as aggregation
queries. Table segment nodes of the same color (green, purple) indicate segments that belong to the
same original table.

B TRAINING SCHEME

B.1 EDGE RETRIEVER AND RERANKER

The training scheme for our encoder fe follows the methodology outlined in ColBERTv2 (San-
thanam et al. 2021), leveraging a combination of in-batch negative loss and knowledge distillation
loss to train the model. Specifically, the in-batch negative loss treats the edges corresponding to other
queries within the same batch as negative samples. This approach calculates a contrastive loss be-
tween the positive and negative edges. In constructing the training dataset, it is crucial to have both
positive and negative edges for each query. To define the positive edge, we use passages contain-
ing the answer and the associated table segments as ground truth and denoted as xgt. Conversely,
negative edges are constructed by combining hard negative tables and passages from prior work
(Ma et al. 2023) with in-batch negative edges and are denoted as n(q). The contrastive loss Lcl is
represented as follows:

Lcl = −
∑

(q,xgt)

log
exp(s(q, xgt))

exp(s(q, xgt)) +
∑

z∈n(q) exp(s(q, z))
(5)

The knowledge distillation process refines the edge encoder using a teacher-student model setup.
The distillation loss is computed based on the KL divergence between the score distribution gener-
ated by the teacher model and the training encoder.

Here, the teacher model is the all-to-all interaction reranker ge fine-tuned with the contrastive loss,
which serves as a more precise reference for edge relevance. This method ensures that the encoder
learns from a more sophisticated model, improving its capacity to accurately rank edges based on
the query.

B.2 NODE RERANKER

The training method for the node reranker gn is identical to that of the edge reranker ge. For con-
structing the training dataset, we utilize the OTT-QA dataset (Chen et al., 2020a). Positive nodes
are defined as those directly connected to the nodes that contain the correct answer in OTT-QA. In
contrast, negative nodes are selected from the set of nodes retrieved through edge-based bipartite
subgraph retrieval, excluding any nodes connected to the answer-containing nodes.

B.3 EXPANDED QUERY RETRIEVERS

The training scheme for our expanded query retrievers fS→P , fP→S also follows the methodology
outlined in ColBERTv2 (Santhanam et al. 2021). To construct the training dataset, we generated
triples consisting of the expanded query, positive node, and negative node. Expanded queries were
created by incorporating nodes that are connected to the node containing the answer. Positive nodes
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consist of the nodes that contain the answer. Negative nodes are constructed using hard negative
nodes as outlined in prior work (Ma et al. 2023).

C EXPERIMENT SUPPLEMENTARIES

C.1 IMPLEMENTATION DETAILS

In our edge generation step (§ 4.1), we used the same named entity recognition and entity link-
ing models used by COS (Ma et al., 2023). For the late-interaction edge retriever fe (§ 4.1) and
the expanded query retrievers fP→S and fS→P (§ 4.2), we employed ColBERTv2 (Santhanam
et al., 2021) as the baseline model. For the all-to-all interaction edge reranker ge (§ 4.1) and node
reranker gn (§ 4.2), we used the bge-reranker-v2-minicpm-layerwise (BAAI, 2024),
specifically utilizing layer 24 as the baseline model. Lastly, for star-based LLM refinement (§ 4.3),
we used Llama-3.1-8B-Instruct (Dubey et al., 2024) as the large language model. In our
experiments, The value of k1 for the edge retriever fe was set to 400. Since COS selects the top-200
nodes as seed nodes, we fixed k2 for the edge reranker ge to 100 to ensure a fair comparison.

C.2 PARAMETER SENSITIVITY EXPERIMENT
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Beam Width

92.80
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Figure 5: Change in AR@50 with varying beam width

We explored the impact of varying beam width b on retrieval accuracy in terms of AR@50. The
beam width directly influences the number of expanded nodes (§ 4.2). We experimented with beam
widths of 0, 2, 5, 10, 25, 50 and measured the corresponding changes in AR@50.

Figure 5 illustrates the change in AR@50. We observed that AR@50 was improved by 1.7% as
the beam width monotone increased from 0 to 10. This indicates that larger beam widths lead to
more accurate node augmentations by performing a more exhaustive search across the expanding
node space. Interestingly, when the beam size increased to 50, AR@50 decreased slightly by 0.4%
compared to beam size 10. This drop may be due to LLM hallucinations in the star-based LLM
refinement (SLR) module, where irrelevant edges were added to Gl, causing the SLR to fail in
selecting the correct query-relevant nodes. This observation highlights the importance of selectively
expanding only the most probable nodes within the query-relevant node expansion module.
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D QUALITATIVE ANALYSIS

SJPF Segunda Liga Player of the Month

id Month Year Nationality Player Team Position

1 May 2009.5 2009 Portugal Nuno Laranjeira Oliveirense DF

2 September 2009.9 2009 Portugal Pedro Perira Desportivo das Aves FW

3 October 2009.10 2009 Portugal Paulo Santos Estoril GK

4 November 2009.11 2009 Portugal Basilio Almedia Sporting da Covilha FW

Paulo Santos

Paulo Jorge da Silva dos Santos
( born 11 December 1972 ) is a
Portuguese retired footballer
who played as a goalkeeper.

Basílio Almeida

Basílio Alexandre Neiva de
Almeida (born 12 August 1971)
is a Portuguese footballer who
plays for Grupo Desportivo

To answer this question, we need to find the most recent player of the month in the table, which is the player 
from the latest month listed, which is November 2009 (row 4). 
The player from row 4 is Basílio Almeida, who was born on 12 August 1971. 
Therefore, the relevant rows are : [row 4]

When was the most recent Segunda Liga player of the month born?

Portugal
Portugal ( Portuguese :
[ puɾtuˈɣal ] ), officially the
Portuguese Republic
( Portuguese : República
Portuguesa [

(a)

Pedro Pereira

Pedro dos Santos Pereira ( born
28 July 1978 in Lisbon ) is a
Portuguese retired footballer
who played mainly as a defender.

Nuno Laranjeiro
Nuno Filipe Rodrigues
Laranjeiro ( born 18 January
1983 ) is a Portuguese
professional footballer who
plays for C.D.

Morgan District Brigade

Unit Subordinate Brigade Created Disbanded Original Commander , Rank

Burke County Regiment Salisbury , Morgan 1777 1782 Armstrong , William , Lt Col

Burke County, North Carolina
Burke County is a county located in the
U.S. state of North Carolina. As of the
2010 census, the population was 90,912.
Its county seat is Morganton. Burke
County is part of the Hickory-Lenoir-
Morganton, NC Metropolitan Statistical
Area.

Salisbury, North Carolina

Salisbury is a city in the Piedmont
region of North Carolina ; it has been
the county seat of Rowan County since
1753 when Rowan County was much larger
and its territory extended to the
Mississippi River.

First, the Unit in the Morgan District Brigade that disbanded in 1782 is the Burke County Regiment. 
Second, the linked passage titled "Burke County, North Carolina" confirms that Burke County is located in the 
Province of North Carolina. 
Therefore, relevant passages are: ["Burke County, North Carolina“]

What is the Province where the Unit in the Morgan District Brigade that disbanded in 1782 , was founded in?

Montgomery County Regiment
The Montgomery County Regiment was
authorized on February 8, 1778 by the
North Carolina General Assembly of 1778.
It was created at the same time that
Montgomery County, North Carolina was
created out of the northern half of
Anson County, North Carolina.

(c)

2nd Rowan County Regiment
The 2nd Rowan County Regiment was first

established in October 22, 1775 as a
local militia in Rowan County in the
Province of North-Carolina. … On May 9,
1777, the regiment was renamed the Burke
County Regiment, which was active until
the end of the Revolutionary War in 1783

Travie McCoy discography (Guest Appearances)

Title Year Other artist (s) Album

This Is How It Goes Down 2008 Pink Funhouse

Funhouse (Pink album)

Funhouse is the fifth studio album by American singer and
songwriter Pink, released by LaFace Records worldwide on October
24, 2008. The album debuted at number two on the Billboard 200
chart, selling 180,000 copies in its first week and reached
number one on the charts in seven countries including Australia,
New Zealand, Netherlands and the United Kingdom.

First, the question asks about the first album of Travie McCoy's discography that he guest appeared on. 
Since the table does not specify the information about Travie McCoy, the relevant information is not found in the given table.
However, we can infer that the relevant information could be found in the linked passage titled "This Is How It Goes Down". 
It is likely that the information about the year the first album that Travie McCoy guest appeared on is mentioned in this passage. 
Therefore, relevant passages are: ["This Is How It Goes Down"]

When was the first album of Travie McCoy's discography that he guest appeared on?

Where Does This Door Go

Where Does This Door Go is the
third studio album by American
singer Mayer Hawthorne. It was
released on July 16, 2013, by
Republic Records.

(d)

Pink (singer)
Alecia Beth Moore (born September 8, 1979), known
professionally as Pink (stylized as P!nk), is an American
singer, songwriter, dancer, actress, record producer,
spokesperson and model. She was originally a member of the
girl group Choice. In 1995, LaFace Records saw potential in
Pink and offered her a solo recording contract. Her R & B-
influenced debut studio album Can't Take Me Home…

Zuzanna Szadkowski

Year Title Role Notes

April Guiding Light Sister Angelica 3 episodes

Guiding Light
Guiding Light ( known as The Guiding
Light before 1975 ) is an American
television soap opera. It is listed in
Guinness World Records as the longest-
running drama in television in American
history, broadcast on CBS for 57 years…

Sister Angelica

Sister Angelica may refer to:

First, Zuzanna Szadkowski appeared in the series "Guiding Light". 
Second, the linked passage titled "Guiding Light" mentions that it ran for 57 years on CBS  and had a 19-year 
broadcast on radio. 
Therefore, relevant passages are: ["Guiding Light"]

How many years did the series that Zuzanna Szadkowski appeared in for 3 episodes run for ?(b)

Figure 6: Qualitative analysis on four question-answer pairs. (a) A case where passage verification
is successful. (b) A first case where passage verification has failed. (c) A second case where passage
verification has failed. (d) A case where table aggregation is successful.
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In this section, we present a qualitative analysis of FusionMaestro’s Column-wise Aggregation mod-
ule and Passage Verification module, with the results illustrated in Figure 6. The subfigures in Fig-
ure 6 showcase the performance and distinctive scenarios for each module: (a) highlights successful
cases of the Column-wise Aggregation module, while (b), (c), and (d) demonstrate representative
cases related to the Passage Verification module. For each subfigure, the query is depicted in dark
blue, the data provided to submodule is shown in light blue, and the inference result from the LLM
are encapsulated in a purple speech bubble with a llama icon.

Figure 6(a) shows a successful case of the column-wise aggregation module in resolving a complex
query: identifying the birth date of the ”most recent Segunda Liga Player of the Month.” The essen-
tial part of answering this question was to recognize that the most recent player, Basilio Almeida,
was honored in November 2009, as indicated in the SJPF Segunda Liga Player of the Month table.
However, the initial data lacked the table segment containing the relevant row. The column-wise ag-
gregation module reconstructed the table as shown in Figure 6(a) to include this missing information,
enabling the system to restore the row with the necessary details. The LLM correctly inferred from
the reconstructed table that the row corresponding to the most recent player was Row 4, based on
the Year and Month columns. This lead FusionMaestro to accurately generate the final answer
in this question, which is ”12 August 1971.”

Figure 6(b) shows a successful case of the passage verification module in addressing the query,
”How many years did the series that Zuzanna Szadkowski appeared in for 3 episodes run for?”. The
module was provided with a Zuzanna Szadkowski table summarizing her appearances and a set of
associated passages. The ”Notes” column of the table segment confirmed that she appeared in three
episodes of the series Guiding Light. The module correctly identified the one mentioning Guiding
Light among the provided passages, the one which indicated that the series was broadcast on CBS
for 57 years. the module correctly verified that the passage using the passage’s information noting
its broadcast duration, leading to an accurate answer.

Figure 6(c) shows a failure case of the Passage Verification module when answering the query,
”What is the province where the unit in the Morgan District Brigade that disbanded in 1782 was
founded?”. The module correctly identified ’Burke County Regiment’ as relevant to the query by
recognizing from the ’Morgan District Brigade’ table segment that the ’Disbanded’ column value
was 1782. However, information related to this query was present in two passages: ’2nd Rowan
County Regiment’ and ’Burke County, North Carolina’. The LLM incorrectly verified only ’Burke
County, North Carolina’ as relevant, likely due to its more plausible-sounding title, while overlook-
ing the correct answer ’North-Carolina’ in the passage titled ’2nd Rowan County Regiment’. Con-
sequently, the system produced an incorrect response, ’North Carolina’. This error highlights two
problems: (i) a limitation of the LLM reasoning capability and (ii) an example case of the OTT-QA
benchmark’s wrong answer annotation.

Figure 6(d) shows another failure case of the passage verification module, this time for the query,
”When was the first album of Travie McCoy’s discography that he guest appeared on?”. Prior re-
trieval results correctly introduced the ground truth table titled ’Travie McCoy discography (Guest
Appearances)’ to the passage verification module. However, the LLM incorrectly inferred that ”the
table does not specify the information about Travie McCoy” as seen in the second line of its response
bubble. It then relied on its parameterized knowledge to wrongly verify a passage titled ’This Is How
It Goes Down as relevant’. The correct answer ’Funhouse (Pink album)’ was excluded from the final
retrieved document set due to the verification error.
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E PROMPTS USED IN STAR-BASED LLM REFINEMENT

Based on the prompt from Chain-of-Table (Wang et al.), originally used for selecting rele-
vant rows from tables, we extended it to create column-wise aggregation and passage verification
prompts, allowing for the joint consideration of table segments and linked passages.

E.1 PROMPT FOR AGGREGATION QUERY CLASSIFICATION

Aggregation Query Classification

Using f agg() API, return True to detect when a natural language query involves
performing aggregation operations (max, min, avg, group by). Strictly follow the format of
the below examples. Please provide your explanation first, then answer the question in a
short phrase starting by ’Therefore, the answer is:’

Question: when was the third highest paid Rangers F.C. player born?
Explanation: The question involves finding the birth date of the third highest paid player,
which requires aggregation to find the third highest paid player. Therefore, the answer is:
f agg([True])

Question: what is the full name of the Jesus College alumni who graduated in 1960?
Explanation: The question involves finding the full name of the alumni who graduated in
1960, which does not require aggregation. Therefore, the answer is: f agg([False])

Question: how tall, in feet, is the Basketball personality that was chosen as MVP most
recently?
Explanation: The question involves finding the most recent MVP winner, which requires
aggregation to identify the relevant player. Therefore, the answer is: f agg([True])

Question: what is the highest best score series 7 of Ballando con le Stelle for the best
dancer born 3 July 1969?
Explanation: The question involves finding the highest score in a series for a specific
dancer, which requires aggregation. Therefore, the answer is: f agg([True])

Question: which conquerors established the historical site in England that attracted
2,389,548 2009 tourists?
Explanation: The question involves identifying the conquerors who established a historical
site, which does not require aggregation. Therefore, the answer is: f agg([False])

Question: what is the NYPD Blue character of the actor who was born on January 29,
1962?
Explanation: The question involves finding the character played by an actor born on a spe-
cific date, which does not require aggregation. Therefore, the answer is: f agg([False])

Question: ‘{question}’
Explanation:
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E.2 PROMPT FOR COLUMN-WISE AGGREGATION

Column-wise Aggregation

Using f row() API to select relevant rows in the given table and linked passages that
support or oppose the question. Strictly follow the format of the below example. Please
provide your explanation first, then select relevant rows in a short phrase starting by:
“Therefore, the relevant rows are:”

/* table caption : list of rangers f.c. records and
statistics
col : # | player | to | fee | date
row 1 : 1 | alan hutton | tottenham hotspur | 9,000,000 | 30
january 2008
row 2 : 2 | giovanni van bronckhorst | arsenal | 8,500,000 |
20 june 2001
row 3 : 3 | jean-alain boumsong | newcastle united |
8,000,000 | 1 january 2005
row 4 : 4 | carlos cuellar | aston villa | 7,800,000 | 12
august 2008
row 5 : 5 | barry ferguson | blackburn rovers | 7,500,000 |
29 august 2003 */
/* Passages linked to row 1:
- Alan Hutton: Alan Hutton (born 30 November 1984) is a
Scottish former professional footballer, who played as a
right back. Hutton started his career with Rangers, and won
the league title in 2005.
- Tottenham Hotspur F.C.: Tottenham Hotspur Football Club,
commonly referred to as Tottenham or Spurs, is an English
professional football club in Tottenham, London, that
competes in the Premier League. */
/* Passages linked to row 2:
- Giovanni van Bronckhorst: Giovanni Christiaan van
Bronckhorst (born 5 February 1975), also known by his
nickname Gio, is a retired Dutch footballer and currently
the manager of Guangzhou RF. */
/* Passages linked to row 3:
- Jean-Alain Boumsong: Jean-Alain Boumsong Somkong (born 14
December 1979) is a former professional football defender,
including French international.
- Newcastle United F.C.: Newcastle United Football Club is
an English professional football club based in Newcastle upon
Tyne, Tyne and Wear, that plays in the Premier League, the
top tier of English football. */
Question: ’When was the third highest paid Rangers F.C . player
born ?’
Explanation: The third-highest paid Rangers F.C. player, Jean-Alain Boumsong (row 3).
Therefore, the relevant rows are: f row([row 3])’

/* ’{table}’ */

/* ’{linked passages}’ */

Question: ’{question}’
Explanation:
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E.3 PROMPT FOR PASSAGE VERIFICATION

Passage Verification

Using f passage() API to return a list of passage titles that are relevant to the question,
even if they are only partially related. Strictly follow the format of the below example.
Please provide your explanation first, then return a list of passages in a short phrase starting
by: “Therefore, relevant passages are:”

/* table caption : List of politicians, lawyers, and civil
servants educated at Jesus College, Oxford
col : Name | M | G | Degree | Notes
row 1 : Lalith Athulathmudali | 1955 | 1960 | BA
Jurisprudence (2nd, 1958), BCL (2nd, 1960) | President of
the Oxford Union (1958); a Sri Lankan politician; killed by
the Tamil Tigers in 1993 */
/* List of linked passages: ["Law degree", "Oxford Union",
"Lalith Athulathmudali"]
Title: Lalith Athulathmudali. Content: Lalith William
Samarasekera Athulathmudali, PC (Sinhala; 26 November 1936
- 23 April 1993), known as Lalith Athulathmudali, was a Sri
Lankan statesman. He was a prominent member of the United
National Party, who served as Minister of Trade and Shipping;
Minister of National Security and Deputy Minister of Defence;
Minister of Agriculture, Food and Cooperatives, and finally
Minister of Education.
Title: Law degree. Content: A law degree is an academic
degree conferred for studies in law. Such degrees are
generally preparation for legal careers; but while their
curricula may be reviewed by legal authority, they do not
themselves confer a license. A legal license is granted
(typically by examination) and exercised locally; while the
law degree can have local, international, and world-wide
aspects.
Title: Oxford Union. Content: The Oxford Union Society,
commonly referred to simply as the Oxford Union, is a
debating society in the city of Oxford, England, whose
membership is drawn primarily from the University of Oxford.
Founded in 1823, it is one of Britain’s oldest university
unions and one of the world’s most prestigious private
students’ societies. The Oxford Union exists independently
from the university and is separate from the Oxford
University Student Union. */

Question: What is the full name of the Jesus College alumni who graduated in 1960?
Explanation: First, Lalith Athulathmudali graduated in 1960. Second, the linked passage
titled “Lalith Athulathmudali” confirms his full name. Therefore, relevant passages are:
f passage(["Lalith Athulathmudali"])

/* ’{table}’ */

/* ‘{linked passages}’ */

Question: ‘{question}’
Explanation:
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