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ABSTRACT

Resource allocation (RA) is critical to efficient service deployment in Network
Function Virtualization (NFV), a transformative networking paradigm. Recently,
deep Reinforcement Learning (RL)-based methods have been showing promising
potential to address this complexity. However, the field lacks a systematic bench-
mark for comprehensive simulation and rigorous evaluation. This gap hinders
in-depth performance analysis and slows algorithm development for emerging
networks, resulting in fragmented assessments. In this paper, we introduce Virne, a
comprehensive benchmarking framework designed to accelerate the research and
application of deep RL for NFV-RA. Virne provides customizable simulations for
diverse network scenarios, including cloud, edge, and 5G environments. It features
a modular and extensible implementation pipeline that integrates over 30 methods
of various types. Virne also establishes a rigorous evaluation protocol that extends
beyond online effectiveness to include practical perspectives such as solvability,
generalizability, and scalability. Furthermore, we conduct in-depth analysis through
extensive experiments to provide valuable insights into performance trade-offs for
efficient implementation and offer actionable guidance for future research direc-
tions. Overall, with its capabilities of diverse simulations, rich implementations,
and thorough evaluation, Virne could serve as a comprehensive benchmark for
advancing NFV-RA methods and deep RL applications. The code and resources
are available at https://anonymous.4open.science/r/anonymous-virne.

1 INTRODUCTION

Network Function Virtualization (NFV) has emerged as an essential enabler for modern networks,
such as cloud data centers, edge computing and 5G, due to its remarkable flexibility and scalability (Yi
et al., 2018). By transforming traditional hardware-bound network services into flexible software
modules, NFV enables the deployment of Virtual Network Functions (VNFs) on general-purpose
servers (Zhuang et al., 2020). A central challenge in NFV is Resource Allocation (NFV-RA) that is
essential for effective resource management and service quality (Yang et al., 2021). As illustrated in
Figure 1, NFV-RA involves mapping service requests (modeled as virtual networks of interconnected
VNFs) onto shared physical infrastructure while satisfying constraints. It is an NP-hard combinatorial
optimization problem (Rost & Schmid, 2020), highlighting the need for efficient solutions.

Traditional approaches to NFV-RA, such as exact solvers (Chowdhury et al., 2009; Shahriar et al.,
2018) that seek optimal solutions or heuristics (Gong et al., 2014; Fan et al., 2023) dependent
on manual design, suffer from neither excessive time consumption nor suboptimal performance.
Recently, Reinforcement Learning (RL) has shown promise in solving NFV-RA, which enables the
autonomous learning of efficient heuristics by interacting with simulated network environments (Haeri
& Trajković, 2017; Yan et al., 2020; Wang et al., 2024b; Wu et al., 2024b). This training paradigm
operates without requiring high-quality labeled datasets, which are difficult to obtain due to the
computational complexity and privacy concerns, making it particularly well-suited for NFV-RA.

However, the advancement of RL for NFV-RA is significantly hampered by the lack of standardized,
comprehensive benchmarking. On the one hand, existing benchmarks, as summarized in Table 1,
are limited to specific scenarios (e.g., cloud) and a narrow range of non-RL methods. On the other
hand, the increasing complexity of modern networks leads to fragmented problem definitions and
inconsistent simulations, making fair comparisons and robust evaluations difficult. We summarize
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Table 1: Comparison of NFV-RA benchmarks.
Supported
Simulation

Implemented
Algorithms

RL & Gym
Support

Evaluation
Perspectives

Last
Update

VNE-Sim (Haeri & Trajković, 2016) Cloud 3 heuristics % Effectiveness 2014
ALEVIN (Beck et al., 2014) Cloud 5 heuristics % Effectiveness 2016

ALib (Rost et al., 2019) Cloud 1 exact % Effectiveness 2019
SFCSim (Xu et al., 2022) Cloud 3 heuristics % Effectiveness 2022
Iflye (Tomaszek, 2021) Cloud 3 heuristics % Effectiveness 2024

Virne (Ours) Cloud, Edge,
5G Slicing, etc.

30+ algorithms
(10+ non-RL) !

Effectiveness
& 3 Practicality 2025

the current state of NFV-RA research in Table 4 to highlight these issues. Developing a framework
to address these issues poses significant technical challenges, including unifying diverse models,
standardizing numerous algorithms, and designing comprehensive evaluations. A unified, accessible
framework for reproducible research and standardized evaluation is urgently needed.

In this paper, we introduce Virne, a comprehensive benchmarking framework for NFV-RA that offers
diverse simulations, unified implementations and thorough evaluations. Firstly, Virne is designed to
serve as a unified and readily accessible framework for researchers from both the machine learning
and networking communities. It provides a highly customizable simulation environment capable
of accurately modeling a wide array of NFV scenarios, from cloud data centers to edge and 5G
networks, allowing for the exploration of various resource types, constraints, and service requirements.
Secondly, Virne features a modular architecture that simplifies the implementation of various NFV-RA
algorithms, which facilitates both efficient utilization and new algorithm development. It includes
over 30 NFV-RA algorithms, covering both exact, heuristic and advanced learning-based methods.
Thirdly, beyond standard performance metrics, Virne enables in-depth analysis through practical
evaluation perspectives such as solution feasibility, generalization across varying network conditions,
and scalability with increasing problem size. Finally, through extensive empirical studies conducted
within Virne, we offer valuable insights into the effectiveness and characteristics of various algorithms,
providing data-driven guidance for future research directions and practical deployments.

Our main contributions, aimed at accelerating data-centric ML research in network optimization, are:

• Comprehensive Simulations. Virne is the most comprehensive benchmark for NFV-RA to
date, along with gym-style environments supporting highly customizable simulations.

• Streamlined Implementations. To facilitate community use, we design a modular and easily
expandable implementation pipeline and integrate a wide range of NFV-RA algorithms.

• Emerging Evalutions. Beyond online effectiveness alone, Virne enables practical evalua-
tions of solution feasibility, generalization across diverse network conditions, and scalability.

• Insighful Findings. Extensive results reveal the impact of different modules and nuanced
performance comparisons, providing actionable insights for future applied ML research.

2 NFV-RA PROBLEM DEFINITIONS

Due to distinct considerations of network scenarios, existing studies formulate NFV-RA varying in
system models, constraints, and objectives. To enhance clarity and consistency, we provide a unified
definition that combines a basic cost optimization model with extensions for emerging scenarios.

2.1 BASIC DEFINITION FOR COST OPTIMIZATION

System Model. In NFV, user network services and the physical infrastructure are virtualized as
virtual networks (VNs) and physical network (PN), respectively. As illustrated in Figure 1, in online
network systems, service requests represented as VNs are continuously arriving at PN, seeking
the physical resource with specific service requirements. Each arrived VN and the corresponding
snapshot of PN consist of an instance I = (Gv,Gp), where the PN Gp and VN Gv are modeled as
undirected graphs, Gp = (Np,Lp) and Gv = (Nv,Lv, ω,ϖ), respectively. Here, Np and Lp denote
the sets of physical nodes and links, indicating servers and their interconnections; Nv and Lv denote
the sets of virtual nodes and links, representing services and their relationships; ω and ϖ denote the
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Figure 2: The architecture of Virne benchmark. Virne offers a streamlined workflow for supporting
comprehensive experimentation of NFV-RA algorithms. The process begins with customizing
simulation configurations that define network scenarios and conditions. Then, the network system
is instantiated, triggering a series of service request events to process. At each event, the selected
NFV-RA algorithm interacts with the system to resolve the instance. For each simulation, both the
processing and final results are automatically recorded for subsequent analysis.

arrival time and lifetime of VN. We denote C(np) as available computing resources for physical
node np ∈ Np, and B(lp) as available bandwidth resources of physical link lp ∈ Lp. Besides, C(nv)
and B(lv) denote the demands for computing resource by a virtual node nv ∈ Nv and bandwidth
resource by a virtual link lv ∈ Lv . Over a specific period, we collect all instances into a set I.
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Figure 1: A brief illustration of the NFV-RA problem.

Embedding Constraints. Mapping a VN
Gv onto the sub-PN Gp′ is formulated as a
mapping function fG : Gv → Gp′. It con-
sists of two sub-mapping processes, i.e.,
node mapping fN and link mapping fL.
Node mapping fN , aims to find a suitable
physical node np = fN (nv) to place each
virtual node nv while adhering to the one-
to-one mapping and resource availability
constraints. Concretely, virtual nodes in the
same VN must be placed in different phys-
ical nodes and each physical node can host
at most one virtual node. And the phys-
ical node np must have enough available
resources to place the corresponding virtual
node nv, i.e., C(nv) ≤ C(np), ∀nv ∈ Nv.
Link mapping aims to find a connected
physical path ρp = fL(lv) to route each virtual link lv while satisfying the path connectivity and
resource capacity constraints. Concretely, the physical path ρp should connect physical nodes hosting
the two endpoints of virtual link lv . And each physical link lp ∈ ρp of physical path ρp should have
enough bandwidth to route the corresponding virtual link lv , i.e., B(lv) ≤ B(lp), ∀lv ∈ Lv, lp ∈ ρp.

Optimization Objective. Considering the randomness of online service requests, NFV-RA mainly
aims to maximize the resource utilization of each instance I , which facilitates long-term resource
profit and request acceptance (He et al., 2023; Zhang et al., 2023). To assess the solution quality
S = fG(I) of instance I , the revenue-to-cost ratio (R2C) is a widely used metric, defined as follows:

maxR2C (S) = (κ · REV (S)) /COST (S) . (1)

Here, κ is a binary variable indicating the feasibility of the solution S: κ = 0 if S violates some
constraints, and κ = 1 otherwise. REV(S) and COST(S) denote the generated revenue and incurred
cost by embedding VN Gv. If κ = 1, REV(S) denotes the revenue from the VN, calculated as∑

nv∈Nv
C(nv)+

∑
lv∈Lv

B(lv) and COST(S) denotes the resource consumption of PN, calculated
as

∑
nv∈Nv

C(nv) +
∑

lv∈Lv
(|fL(lv)| ×B(lv)). Here, |fL(lv)| quantifies the length of the physical

path ρp routing the virtual link lv . See Appendix A.1 for the detailed formulation.
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Figure 3: A unified pipeline of gym-style environment and RL-based NFV-RA methods in Virne.

2.2 EXTENSIONS IN EMERGING NETWORKS

The application of NFV is pivotal in emerging network scenarios, such as heterogeneous resourcing
networks, latency-aware edge networks, and energy-efficient green networks. These scenarios require
additional consideration of their unique challenges. To better align NFV-RA with practical require-
ments, we discuss several extended definitions of NFV-RA in popular scenarios in Appendix A.2.

3 VIRNE: A COMPREHENSIVE NFV-RA BENCHMARK

To provide high-quality simulation and implementation, we introduce three design principles for
Virne, following established software engineering practices (Van Vliet et al., 2008): (a) Versatile
customization allows the platform to meet diverse simulation needs on varying network scenarios and
conditions. (b) Scalable modularity built platforms with a modular architecture to support flexible
configurations and easy extensibility. (c) Intuitive usability prioritizes a user-friendly interface,
enabling users to focus on experiment outcomes rather than implementation complexities. Guided by
these principles, as illustrated in Figure 2, we implement Virne with five key modules as follows.

3.1 SIMULATION CONFIGURATION

Modern network systems are diverse and intricate, associated with various realistic factors such
as resource availability and service requirements. To support high customization for simulating
different network scenarios and conditions, Virne abstracts both the PN and VN as graphs, with
customizable attributes for nodes, links, and the overall network. Specifically, Virne provides
the following key customizable elements: (a) Network Topologies. Users can select from various
topological synthesis methods or real-world physical infrastructure topologies, such as those from
SDNLib . (b) Resource Availability. Virne enables users to define multiple resource types (e.g.,
CPU, GPU, bandwidth) and their availability across different levels of the network (i.e., nodes,
links and graph), allowing the reflection of the specific resource characteristics of different network
environments (c) Service Requirements. Users can specify additional service requirements, such as
latency, energy efficiency, and reliability, to ensure that the simulation reflects the needs of different
network applications. By adjusting these parameters, Virne provides the flexibility to simulate a wide
array of network scenarios, including cloud-based infrastructures, edge computing and 5G networks.
This customization enables comprehensive testing, accommodating fluctuating resource demands and
evolving network conditions. We provide configuration examples in Figure 5 and Appendix C.1.

3.2 NETWORK SYSTEM

With the above-mentioned configurations, Virne automatically creates a network system that functions
as an event-driven simulator, which mainly consists of a PN as infrastructure and a series of sequential
arrived VN requests. Virne treats each VN request arrival as a discrete event that triggers the
corresponding resource scheduling and allocation procedures. An event represents the interaction
between the VN request Gv and a snapshot of the PN Gp at the time of the request’s arrival, denoted
as an instance I . The specific NFV-RA algorithm then solves the corresponding NFV-RA problem
for that instance to obtain a solution, S = fG(I). Next, the system evaluates the feasibility of
the solution based on the resource availability constraints and service requirements satisfaction.
If feasible, the VN request is accepted; otherwise, it is rejected. This event-driven mechanism is
designed to simulate realistic, complex network environments while enabling efficient handling of
diverse network scenarios and fluctuating conditions.

4
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3.3 ALGORITHM IMPLEMENTATION

To facilitate direct utilization and further extensions, Virne integrates diverse NFV-RA algorithms,
covering both learning-based and traditional methods (see Appendix C.3). These algorithms are
systematically organized to streamline the implementation process. Here, we highlight our unified
pipeline of gym-style environments and RL-based NFV-RA methods, as illustrated in Figure 3.

3.3.1 NFV-RA AS A MARKOV DECISION PROCESS

To address the randomness of online networks, most existing works model NFV-RA solution con-
struction as a Markov Decision Process (MDP), which sequentially selects a physical node to place a
virtual node at each decision step t, until all virtual nodes are placed or any constraints are violated.

Formally, we define this process as a tuple (S,A, P,R, λ). Concretely, S is the state space, where
st ∈ S represents the embedding status of VN and PN. A is the action space, where at referring
to a set of physical nodes. P : S × A × S → [0, 1] is the state transition function, indicating the
conditional transition probabilities between states. During one transition, the system will attempt to
place the selected action, i.e., a physical node at = np to route the to-be-decided virtual node nv.
If node placement succeeds, link routing will be conducted to route the virtual links connecting nv

and its already-placed neighbor nodes. The shortest-path algorithms are used to identify the shortest
and constraint-satisfied physical paths for these virtual links. Only when both node placement and
link routing are successful, the physical network’s available resources are updated with the VNR’s
requirements. Otherwise, the VN is rejected. R : S ×A → R is a designed reward function to guided
optimization. λ ∈ [0, 1) is the discount factor.

At each decision timestep y, observing the state st of the environment, the agent takes an action
at ∼ π(·|st) according to a policy πθ parameterized by θ. Then, the environment will transit to a
new state st+1 ∼ P (·|st, at) and feedback a reward R(st, at) and. During interactions, a trajectory
memory collects these step information as experiences. Using these experiences, the objective of
the agent is to learn an optimal policy for resource allocation that maximizes the expected sum of
discounted reward, i.e., the solution quality of NFV- π∗

θ = argmaxπθ
Eπθ

[∑T
i=0 γ

iR(st, at)
]

Note that the above MDP introduced is the most adopted version. As a holistic framework, Virne
also supports the emerging MDP version in recent studies. Due to the presentation clarity and page
limit, we offer other MDP versions of NFV-RA in Appendix C.2, such as Constrained MDP (Wang
et al., 2025) for constraint handling and Multi-task MDP (Wang et al., 2024b) for generalization.

3.3.2 UNIFIED PIPELINE FOR EFFICIENT IMPLEMENTATIONS

Considering this widely-used MDP model, we generally unify existing NFV-RA RL-based algorithms
into three key components: MDP modeling, policy architecture, and training methods. These methods
model the NFV-RA solution construction process as above-introduced MDPs with a specific reward
design and feature engineering. Subsequently, they use various neural networks to build policy
architectures, such as Convolutional Neural Networks (CNN) (Krizhevsky et al., 2012) and Graph
Convolutional Network (GCN) (Kipf & Welling, 2017). These policies are trained with a selected
RL method, such as Asynchronous Advantage Actor-critic (A3C) (Mnih et al., 2016) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017).

Following this insight, Virne implements NFV-RA algorithms through a modular and extensible
pipeline comprising several core components as illustrated in Figure 3. Specifically, an instance-
level environment enable interactions with the agent for sequentially constructing solutions, where
a customized reward function provides feedback at each step. The RL agent consists of a feature
constructor, which extracts relevant features as inputs for the neural networks, and a neural policy,
implemented with various architectures. To support RL training, an experience memory module
continuously collects interaction data, while a designated training method optimizes the policy.
This modular design is central to Virne’s ability to integrate diverse approaches seamlessly, due
to the high customization of each module. By standardizing the implementation process, Virne
ensures consistency, reusability, and reduced complexity of implementation, which accelerates the
development of new algorithms by providing a unified pipeline.

3.3.3 IMPLEMENTED RL-BASED NFV-RA ALGORITHMS

As summarized in Table 4 in Appendix B.2, various studies on NFV-RA often share similar core
methodologies in their core RL framework design but differ primarily in terms of the specific network
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scenarios considered or specialized implementation techniques employed. Virne offers a compre-
hensive suite of state-of-the-art reinforcement learning methods for NFV resource allocation. The
framework flexibly combines various RL training approaches (including MCTS, PG, A3C, and PPO)
with different neural network architectures (such as MLP, CNN, S2S, GCN, GAT, BiGCN, BiGAT,
and HeteroGAT). It also incorporates various implementation enhancements like custom reward
functions, feature engineering combinations, and action masking mechanisms. See Appendix C.3.1
for descriptions of these RL methods, neutral policies, and implementation techniques.

To provide clarity in both implementation and evaluation, we categorize these works under common
names that reflect RL algorithms and their neural policy architectures. For example, the PPO-GCN
method uses graph convolutional networks as feature encoders while employing Proximal Policy
Optimization for efficient training. In the subsequent experiments, we will first investigate the impact
of distinct implementation techniques, such as reward function and feature engineering, and identify
the most efficient configurations for general implementation. Then, we evaluate their effectiveness in
the cloud and other popular scenarios.

3.4 AUXILIARY UTILITY

To enhance usability and streamline analysis, Virne includes several key auxiliary utilities, as shown
in Figure 2. These are designed to simplify the process of managing simulations and interpreting
results, particularly including: (a) A system controller manages the simulation of physical and
virtual networks, providing method choices for customization; (b) A solution monitor tracks solution
feasibility and performance during execution, helping users assess whether solutions meet their
defined criteria; (c) Visualization tools offer interactive and visual representations of simulation
results, providing users with an intuitive way to analyze network system behaviors. These utilities
support more advanced customizations for algorithm design and result analysis.

3.5 EVALUATION CRITERIA

To offer a systematic evaluation, Virne provides a suite of metrics and multiple practical perspectives.

Performance Metrics. Virne includes the critical performance metrics of NFV-RA algorithms (Fis-
cher et al., 2013; Wu et al., 2024a), including request acceptance rate (RAC), long-term revenue-to-
cost (LRC), long-term average revenue (LAR) and average solving time (AST). See Appendix C.5
for their definitions.

Practicality Perspectives. To comprehensively assess the practicality of NFV-RA algorithms, we
develop multiple emerging evaluation protocols that extend beyond mere online effectiveness. In
particular, we consider three aspects of NFV-RA algorithms: (a) Solvability denotes the ability to
find feasible solutions; (b) Generalization indicates reliable performance across various network
conditions; (c) Scalability measures how effectively it accommodates increases in network size and
complexity. Gaining these insights with our pre-provided evaluation interfaces, Virne helps users
understand the practical viability of an algorithm and guides further development and application.

4 EMPIRICAL ANALYSIS

4.1 EXPERIMENTAL SETUP

We consider the most general scenarios as main network systems, i.e., cloud computing, and describe
default settings for simulation and implementation. Subsequently, some parameters may be changed
to simulate diverse network scenarios and conditions.

Simulation Settings. We adopt the widely-used topologies as physical networks: synthetic
WX100 (Waxman, 1988), and real-world GEANT and BRAIN (Orlowski et al., 2010), which
cover various network scales and densities. See Appendix D.1.2 for their detailed descriptions.
Computing resources of physical nodes and bandwidth resources of physical links are uniformly
distributed within the same range of units, i.e., XC(np) ∼ U(50, 100) and XB(lp) ∼ U(50, 100). In
default settings, for each simulation run, we create 1000 VN with varying sizes following a uniform
distribution, X|Gv| ∼ U(2, 10). The computing resource demands of the nodes and the bandwidth
requirements of the links within each VN are uniformly distributed, i.e., XC(nv) ∼ U(0, 20) and
XB(lv) ∼ U(0, 50), respectively. The virtual nodes in each VN are randomly interconnected with a
probability of 50%. The lifetime of each VN follows an exponential distribution with an average of

6
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Table 2: Impact of key implementation techniques. Reward function is specified by its type (fixed
or adaptive) and the intermediate reward value (0, 0.01, 0.1, 0.2; where 0 indicates no intermediate
reward). Features indicate whether node Status (S) and/or Topological (T) metrics were used (✓ for
used, ✗ for not used). Action Mask indicates whether action masking was applied (✓) or not (✗).

Reward Function Features Action
Mask

PPO-MLP PPO-ATT PPO-DualGAT

Type Value S T RAC LRC LAR RAC LRC LAR RAC LRC LAR

Fixed 0.1 ✓ ✓ ✗ 0.666 0.670 11745.0 0.667 0.644 12174.0 0.648 0.750 12430.1
Fixed 0.1 ✓ ✗ ✓ 0.678 0.675 11159.0 0.660 0.667 11134.3 0.766 0.754 15054.7
Fixed 0.1 ✗ ✓ ✓ 0.703 0.654 12693.8 0.579 0.575 9323.5 0.733 0.685 13333.1

Adaptive - ✓ ✓ ✓ 0.705 0.619 12139.6 0.702 0.643 12368.6 0.772 0.744 14216.6
Fixed 0.2 ✓ ✓ ✓ 0.616 0.643 11869.4 0.706 0.675 12420.7 0.769 0.731 15045.5
Fixed 0.01 ✓ ✓ ✓ 0.709 0.645 12719.1 0.517 0.601 8339.7 0.766 0.748 14516.6
Fixed 0 ✓ ✓ ✓ 0.560 0.596 8259.5 0.716 0.658 12629.0 0.741 0.753 14047.6

Fixed 0.1 ✓ ✓ ✓ 0.719 0.647 12944.4 0.712 0.661 12657.7 0.781 0.738 15138.6

500 time units. The arrival of these VNs follows a Poisson process with an average rate η, where η
denotes the average arrived VN count per unit of time. Due to the varying physical resource supply
in these topologies caused by distinct scale and density, we use different η, i.e., (0.16, 0.016, 0.004)
for (WX100, GEANT, BRAIN), to accommodate the reasonable request demand. In the subsequent
experiments, we manipulate the distribution settings of VNs and change the PN topologies to simulate
various network systems.

Algorithm Implementation. In Appendix D.1.1, we provide the details of parameter setting, experi-
mental methods on training and testing, and descriptions of computing resources.

4.2 PERFORMANCE COMPARISON

4.2.1 EXPLORATION ON IMPLEMENTATION TECHNIQUES

Due to its training efficiency and strong empirical performance (Wang et al., 2022), we adopt PPO as
the default RL algorithm in subsequent experiments. This choice is further supported by the study of
Impact on RL Training Methods in Appendix D.2.1 and learning curves in Figure 9. Furthermore,
there are several core implementation choices, such as reward design, feature engineering, and action
masking, that substantially affect the performance of RL-based NFV-RA algorithms. To quantify
these effects, we systematically evaluate three representative policy architectures (PPO-MLP, PPO-
ATT, PPO-DualGAT) on WX100, with results summarized in Table 2. Here, we summarize the key
findings of each impact study and place their detailed analysis in Appendix D.2.

Impact on Reward Function Design in Appendix D.2.2 suggests that 1 while integrating adaptive-
ness to network scale is conceptually appealing, a fixed and moderate reward signal is more effective
for guiding policy learning in the NFV-RA context. Thus, we adopt a fixed reward signal of 0.1.

Impact on Feature Engineering Combination in Appendix D.2.3 reveals that 2 topological metrics
serve as a valuable augmentation, capturing global network context and node importance, even for
graph neural networks. Thus, we augment features with both node status and topological metrics.

Impact on Action Mask Strategy in Appendix D.2.4 demonstrates that 3 explicit constraint
enforcement is vital for robust RL-based NFV-RA solutions, since the constraints of NFV-RA are
intricate and hard. Thus, we always use the action mask mechanism to enhance performance.

This study reveals that the most effective implementation techniques of the RL-based NFV-RA method
are achieved by combining moderate intermediate rewards, comprehensive feature engineering, and
action masking. In subsequent experiments, we consider them as the default implementation.

4.2.2 EFFECTIVENESS IN ONLINE ENVIRONMENTS

To evaluate the effectiveness of these NFV-RA algorithms, we conduct online simulations across
three distinct network topologies: WX100, GEANT, and BRAIN, each with different traffic rates
(η) as specified. Table 3 reports experimental results of the implemented RL-based and traditional
algorithms on key metrics. While traditional heuristics are exceptionally fast, they fall short in
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Table 3: Performance comparison of implemented RL-based and traditional NFV-RA algorithms.
Solver WX100 (η = 0.14) GEANT (η = 0.016) BRAIN (η = 0.004)

RAC↑ LRC↑ LAR↑ AST ↓ RAC↑ LRC↑ LAR↑ AST ↓ RAC↑ LRC↑ LAR↑ AST ↓
PPO-MLP 71.90 0.65 12944.40 0.13 55.80 0.67 645.04 0.03 51.30 0.69 155.10 0.14
PPO-CNN 71.70 0.65 12964.87 0.13 54.80 0.65 643.83 0.09 51.10 0.69 151.51 0.13
PPO-ATT 71.20 0.66 12657.69 0.14 54.50 0.65 707.01 0.10 51.00 0.68 156.40 0.15
PPO-GCN 66.80 0.64 11462.65 0.14 58.70 0.72 763.68 0.12 49.50 0.71 125.63 0.09
PPO-GAT 71.90 0.70 13178.13 0.15 58.40 0.70 724.31 0.07 44.60 0.51 95.32 0.09

PPO-GCN&S2S 65.80 0.63 11501.94 0.13 58.50 0.72 718.76 0.06 44.40 0.59 99.83 0.18
PPO-GAT&S2S 67.90 0.67 12445.03 0.16 57.30 0.69 754.61 0.15 51.80 0.68 136.67 0.19
PPO-DualGCN 70.20 0.71 13467.57 0.17 60.40 0.75 791.75 0.22 54.80 0.78 176.15 0.23
PPO-DualGAT 78.10 0.74 14938.60 0.18 59.10 0.72 739.27 0.10 58.90 0.75 180.78 0.13

PPO-HeteroGAT 72.50 0.66 12691.03 0.27 53.30 0.66 621.47 0.30 49.30 0.66 133.52 0.38
MCTS 74.30 0.44 12642.27 3.38 48.20 0.45 494.64 2.96 40.80 0.47 83.91 3.59

SA-Meta 65.50 0.63 10467.60 1.58 38.60 0.62 396.49 0.49 36.10 0.58 75.50 1.13
GA-Meta 71.70 0.59 11977.41 3.22 49.90 0.58 517.63 2.34 42.50 0.57 85.45 3.75
PSO-Meta 69.10 0.52 10706.48 4.29 45.30 0.46 457.93 3.68 41.50 0.46 80.67 4.20
TS-Meta 65.70 0.66 11141.91 1.35 40.90 0.69 402.04 0.62 37.10 0.64 68.41 1.11

NRM-Rank 60.70 0.52 9826.94 0.07 37.90 0.51 394.29 0.03 48.30 0.64 142.99 0.04
RW-Rank 60.10 0.56 9396.32 0.04 38.70 0.52 418.14 0.01 50.20 0.65 147.64 0.05

GRC-Rank 58.90 0.56 9269.03 0.04 36.70 0.47 353.21 0.01 48.40 0.64 144.55 0.03
PL-Rank 68.10 0.67 11570.27 0.32 55.30 0.66 661.93 0.04 48.70 0.70 136.79 0.36

NEA-Rank 64.00 0.66 10837.51 0.83 47.20 0.62 543.18 0.11 53.90 0.70 148.70 1.46
RW-BFS 40.00 0.57 7771.38 0.05 56.70 0.64 736.28 0.01 48.00 0.64 140.38 0.16

solution quality. Similarly, meta-heuristics, despite achieving competitive acceptance rates, are
hindered by significant computational overhead, making them impractical for real-time environments.
This highlights that 4 RL-based methods often offer a favorable balance between solution quality
and efficiency, making them a compelling choice for NFV-RA. Advanced RL agents, specifically those
with dual graph neural network architectures like PPO-DualGAT and PPO-DualGCN, consistently
deliver superior performance. This suggests that 5 dual-GNN models’ ability to concurrently process
and relate features from both the virtual and physical network graphs provides a significant edge in
finding high-quality embeddings. Furthermore, it is notable that 6 the topological characteristics of
PN, such as scale and density, impact the relative performance of NFV-RA algorithms, particularly
GNN architectures. For instance, on the smaller-scale GEANT and BRAIN, GCN-based methods
achieve more competitive and even better performance. This reveals that GATs with an adaptive
aggregation mechanism may be more advantageous in denser topologies for prioritizing critical
connections, but provide less improvement in sparse topologies.

4.3 EVALUATION FROM PRACTICALITY PERSPECTIVES
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Figure 4: Results on the solvability study. For each
size of VN, we highlight the worst-performing solver in
green and the best-performing solver in red.

Solvability via Offline Evaluation. Tra-
ditional online testing of NFV-RA algo-
rithms, while reflecting real-world scenar-
ios, complicates direct comparisons of algo-
rithmic solvability. The continuous evolu-
tion of the PN state, coupled with dynamic
VN arrivals and lifetimes, makes it diffi-
cult to isolate performance. Specifically,
it is challenging to determine if solution
failures arise from an algorithm’s inher-
ent limitations or from transient unsolvable
network states, thereby hindering fair com-
parisons on solvability. To address this,
Virne provides a controlled offline evalu-
ation environment. This features a series
of static instances, each comprising a PN
and a VN, evaluating algorithms’ abilities
to find high-quality, feasible solutions un-
der reproducible conditions. Through such
evaluation, we assess the fundamental solv-
ability of each method, not only across an entire dataset but also for distinct VN scales. This
evaluation protocol offers a granular view of algorithmic solvability as VN complexity grows.
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Concretely, we evaluate the solution quality, i.e., R2C, achieved by different algorithms for VNs of
varying sizes. We conduct experiments on the representative PN, WX100. The results are shown
in Figure 4, which presents average solution quality for VN sizes ranging from 2 to 10. There is a
generally decreasing trend as the size of the VN increases due to increased complexity. We observe
that 7 RL methods with advanced graph representations exhibit superior solvability across most
VN sizes. For instance, PPO-DualGAT consistently achieves the highest R2C ratios, particularly for
larger VNs. Conversely, simpler RL policies like PPO-MLP perform well on small VNs but degrade
noticeably on larger ones due to limited representation ability. This highlights that 8 more powerful
foundation policies excel in the vast search space of large VNs, dynamically prioritizing the most
critical nodes and links for embedding. Additionally, it is obvious that 9 traditional heuristics and
meta-heuristics show mixed results and generally underperform compared to the top RL methods,
especially for larger VNs. Particularly, NEA-Rank initially achieves excellent performance for 2-node
VNs, but as the VN size increases, it declines and then falls behind the top RL methods.

Generalization on Network Conditions. Network conditions are inherently complex and subject
to continuous changes, such as fluctuations in request frequencies and varying resource demands.
As such, evaluating the generalization of these trained NFV-RA policies is critical to ensure they
can adapt effectively to different, evolving network environments. To address this, we conduct the
experiments in various network conditions to study the generalization to conditions of pretrained
models, including (a) Evaluation on Varying Traffic Rates and (b) Evaluation on Fluctuating Demand
Distribution. See Appendix D.3 for detailed experimental setup and result analysis.

Scalability on Network Sizes. Network systems are growing in size as the physical infrastructure
extends and service requests increase. Thus, assessing the scalability of NFV-RA policies is essential
to ensure they can maintain their effectiveness as the network size and complexity increase. To
assess this, Virne supports scalability evaluations through two primary perspectives: (a) Performance
on Large-scaled Networks and (b) analysis of Solving Time Scale as problem size grows. Detailed
experimental setups and results for these evaluations are placed in Appendix D.4.

4.4 VALIDATION ON EMERGING NETWORKS

NFV is widely applied across diverse modern networks, where specific scenarios often present unique
characteristics. To further validate the adaptability of NFV-RA algorithms in emerging networks,
we conduct evaluations in two key environments: (a) heterogeneous resourcing networks, which
involve varied resource types, and (b) latency-aware edge networks, where delay constraints should
be satisfied. See Appendix D.5 for experimental analysis.

4.5 DISCUSSION ON FUTURE DIRECTION

While RL-based methods for NFV-RA show promise, there are still practical challenges, as observed
through our empirical observation. To advance deep RL for NFV-RA, we identify several future
directions that also pose significant challenges to existing ML methods. They are included but
not limited to (a) developing sophisticated representation learning for cross-graph statuses and
attributed constraints, (b) achieving generalizable policies adaptable to varying network scales
and dynamic conditions, (c) creating robust learning frameworks to enable learning in conflicting
operational constraints, and (d) engineering highly scalable algorithms for extremely large-scale
physical infrastructures. We also provide experimental analysis of emerging solutions along these
directions, such as safe RL and meta RL-based methods. See Appendix E and Figure 13 for details.

5 CONCLUSION

In this paper, we introduce Virne, a comprehensive and unified benchmarking framework specifically
designed for evaluating deep RL-based algorithms for NFV-RA problem. Virne supports diverse net-
work scenarios, including cloud, edge, and 5G environments, facilitated by customizable simulations.
In addition, we provide a modular and extensible pipeline that integrates over 30 diverse algorithms,
particularly deep RL-based methods, enabling extensible implementation. Beyond traditional effec-
tiveness metrics, Virne offers practical evaluation perspectives such as solvability, generalization,
and scalability. Furthermore, we conduct extensive experiments to evaluate the deep RL-based
NFV-RA method from comprehensive perspectives. We provide crucial insights on the impact of
implementation techniques and algorithm performance trade-offs. Our extensive empirical analysis
also reveals valuable findings on potential challenges of RL-based NFV-RA methods, guiding future
research on the interaction of data-driven networking optimization and applied machine learning.
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ETHICS STATEMENT

This work introduces Virne, a benchmarking framework designed to accelerate scientific research
in ML for network optimization. This study does not involve human subjects or sensitive data. All
datasets are either synthetically generated or based on publicly available network topologies from
SNDlib. As such, we identify no direct negative societal impacts from this research.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have made our benchmark and all necessary resources publicly available.
The complete source code for the Virne framework, including all algorithm implementations and
simulation environments, is provided in the anonymous codebase link. We provide a detailed
description of the experimental setup in Section 4.1 and Appendix D. These details consist of
implementation details, network topologies, and data generation. Overall, these resources ensure the
full reproducibility of our work and empower the community to build upon our findings.
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A NFV-RA PROBLEM DEFINITIONS

A.1 BASIC FORMULATION OF NFV-RA

Here, we provide the mathematical formulation of the basic cost minimization model, including
constraints and the objective.

A.1.1 CONSTRAINT CONDITIONS

During the embedding process of a VN Gv onto the PN Gp, we need to decide two types of boolean
variables: (1) xm

i = 1 if virtual node nm
v is placed in physical node ni

p, and 0 otherwise; (2) ym,w
i,j = 1

if virtual link lvm,w = (nm
v , nw

v ) traverses physical link lpi,j = (ni
p, n

j
p), and 0 otherwise. Here, m and

w are identifiers for virtual nodes, while i and j are identifiers for physical nodes. A VN request is
successfully embedded if a feasible mapping solution is found, satisfying the following constraints:∑

ni
p∈np

xm
i = 1,∀nm

v ∈ nv, (2)

∑
nm
v ∈Nv

xm
i ≤ 1,∀ni

p ∈ Np, (3)

xm
i C(nm

v ) ≤ C(ni
p), ∀nm

v ∈ Nv, n
i
p ∈ Np, (4)∑

ni
p∈Ω(nk

p)

ym,w
i,k −

∑
nj
p∈Ω(nk

p)

ym,w
k,j = xm

k − xw
k , ∀lvm,w ∈ Lv, n

k
v ∈ Np, (5)

ym,w
i,j + ym,w

j,w ≤ 1,∀lvm,w ∈ Lv, l
p
i,j ∈ Lp, (6)∑

lvm,w∈Lv

(ym,w
i,j + ym,w

j,i )B(lvm,w) ≤ B((lpi,j)), ∀(l
p
i,j) ∈ Lp. (7)

Here, Ω(nk
p) denotes the neighbors of nk

p . Constraint (2) ensures that every virtual node is mapped
to one and only one physical node. Conversely, constraint (3 )limits each physical node to hosting
at most one virtual node, thus enforcing a unique mapping relationship. Constraint (4) verifies that
virtual nodes are allocated to physical nodes with adequate resources. Following the principle of
flow conservation, constraint (5) guarantees that each virtual link (nm

v , nw
v ) is routed along a physical

path from ni
p (the physical node where nm

v is placed) to nj
p (the physical node where nw

v is placed).
Constraint (6) eliminates the possibility of routing loops, thereby ensuring that virtual links are
routed acyclically. Lastly, constraint (7) ensures that the bandwidth usage on each physical link
remains within its available capacity. Overall, constraints (2,3,4) enforce the one-to-one placement
and computing resource availability required in the node mapping process. And constraints (5,6,7)
ensure the path connectivity and bandwidth resource availability required in the link mapping process.

A.1.2 OPTIMIZATION OBJECTIVE

Revenue-to-Consumption (R2C) ratio is a widely used metric to measure the quality of solution
S = fG(I). The objective function is maximize the resource utilization as follows:

maxR2C(S) = κ · (REV (S) /COST (S)) , (8)

where κ is a binary variable indicating the solution’s feasibility; κ = 1 for a feasible solution
and κ = 0 otherwise. When the solution is feasible, REV(S) represents the revenue from the
VN, calculated as

∑
nv∈Nv

C(nv) +
∑

lv∈Lv
B(lv). If κ = 1, COST(S) denotes the resource

consumption of PN, calculated as
∑

nv∈Nv
C(nv) +

∑
lv∈Lv

(|fL(lv)| × B(lv)). Here, |fL(lv)|
quantifies the length of the physical path ρp routing the virtual link lv .

A.2 EXTENSIONS IN EMERGING NETWORKS

The application of NFV is pivotal in emerging network scenarios, which require additional considera-
tions of their unique challenges. Particularly, we discuss several extended definitions of NFV-RA in
popular scenarios to better align with their practical requirements.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Resource Heterogeneity In modern data center networks, computing resources are often hetero-
geneous, meaning physical nodes may have varying capacities in terms of CPU, GPU, memory,
etc. To account for this, we extend the basic model by incorporating heterogeneous resources,
where both virtual and physical nodes are associated with a set of computing resources C. Thus,
a physical node np for placing virtual node nv must have enough resources across all types, i.e.,
C(nv) ≤ C(np), ∀nv ∈ Nv, C ∈ C, np = fN (nv).

Latency Requirement In time-sensitive networks (e.g., edge computing and 5G), satisfying latency
requirements is crucial. We consider the latency requirement of virtual link lv as D(lv) and the
incurred latency of physical link pv as D(lp). The latency of physical path ρp that routes lv should
not exceed such specified threshold, i.e., D(ρp) ≤ D(lv),where D(ρp) =

∑
lp∈ρp

D(lp).

Energy Efficiency Energy consumption is a significant concern in green data centers due to
high sustainability and economic efficiency. Energy-efficient NFV-RA also considers the energy
consumption minimization of physical infrastructure. We denote the energy consumed by the
physical node np as E(np), associated with its status (idle or active) and workload. The objective
function is to optimize both resource utilization and energy consumption, formulated as: max−wa ·∑

np∈Np
E(np) + wb · R2C(S), where wa and wb are weights of different objectives.

Note that these definitions extend the basic concepts of modeling, constraints, and objectives. Varia-
tions of NFV-RA for other scenarios can be easily derived using the approaches discussed above.

B RELATED WORK

As network scenarios become increasingly diverse and complex (e.g., cloud, edge, 5G), many studies
explore NFV-RA in emerging networks while addressing additional factors (e.g., latency, energy,
heterogeneity). Despite these variations, many of these studies share a common core methodology. In
this section, we focus on the methodological aspects and review the development of key approaches
in NFV-RA. Then, we describe existing benchmarks to emphasize the gap between Virne. Finally,
we compare NFV-RA with other COPs, highlighting the need for specific designs.

B.1 TRADITIONAL NFV-RA ALGORITHMS

Earlier studies for the NFV-RA problem employed exact solvers, such as integer linear programming
(ILP)(Shahriar et al., 2018) and mixed integer programming (MIP)(Chowdhury et al., 2009), to
find optimal solutions. However, their high computational complexity makes them impractical for
real-world scenarios, especially in larger networks where dynamic service requests require rapid
solutions. To address these limitations, heuristic-based methods emerged as alternatives, offering
suboptimal yet computationally efficient solutions. Among these, node-ranking strategies stand out as
a prominent approach (Gong et al., 2014; Zhang et al., 2018; Fan et al., 2021; 2023). These strategies
construct solutions by prioritizing the virtual and physical nodes based on specific metrics to guide
the node mapping process, followed by link mapping. For instance, Node Resource Management
(NRM) (Zhang et al., 2018) ranks nodes by weighting both node and link resources, while the Node
Essentiality Assessment (NEA) (Fan et al., 2023) incorporates topology connectivity into decision-
making. Although reducing computational overhead, they rely heavily on manual design with
domain-specific knowledge and lack adaptation to diverse scenarios, which can lead to inferior results
in complex NFV-RA requirements. Furthermore, meta-heuristics have been adopted to solve NFV-RA
by modeling the solution search as an evolutionary process (Dehury & Sahoo, 2019; Leivadeas et al.,
2013; Fajjari et al., 2011). These algorithms, such as Genetic Algorithms (GA) (Zhang et al., 2019;
Dehury & Sahoo, 2019) and Particle Swarm Optimization (PSO) (Su et al., 2014; Jiang & Zhang,
2021), explore the solution space by iteratively evolving a population of candidate solutions. However,
they are computationally expensive and hyperparameter-sensitive, limiting their practicality.

B.2 RL-BASED NFV-RA ALGORITHMS

In recent years, machine learning (ML)-based methods have gained prominence in solving NFV-RA
problems due to their superior performance and adaptability to dynamic network conditions (Wu et al.,
2024a). Several works (Blenk et al., 2016; Thakkar et al., 2020) have explored predictive models
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Table 4: Summary of existing studies on RL-based NFV-RA algorithms. (a) Existing studies
investigate RL-based NFV-RA algorithms in various network scenarios, such as cloud computing and
latency-aware edge computing. (b) These studies employ different RL methods, such as DQN and
PPO, to optimize customized neural policies, including CNN- or GNN-based architectures. (c) They
also vary in implementation techniques, including whether they incorporate intermediate rewards
in the reward function, use action masking mechanisms to prevent selecting nodes with insufficient
resources, or leverage topological features as augmented inputs. (d) Additionally, we summarize the
benchmarks used in these studies, noting whether they rely on existing benchmarks or use custom
ones that are not publicly available.

Network Scenario Core RL Framework Implementation Techniques Code Base
Network
System

Additional
Considerations

Training
Method

Neural
Policy

Intermediate
Rewards

Action
Masking

Topological
Features

Used
Benchmark

(He et al., 2023) Edge / A2C LSTM, Attention ! % % Not available
(Zhang et al., 2024a) Edge Energy, Latency PG CNN % ! ! Not available

(Tan et al., 2024) 5G Slicing Security DQN Heterogeneous GCN ! % % Not available
(Liu et al., 2020) 5G Slicing Latency PPO MLP % ! % Not available

(Irawan et al., 2023) 5G Slicing Latency PPO GCN % ! % Virne
(Tian et al., 2024) Internet of Things Latency PPO GNN ! ! ! Not available
(Fu et al., 2020) Internet of Things Latency DQN CNN ! % % Not available

(Guo et al., 2022) Internet of Things - A3C MLP % % % Not available
(Maity et al., 2024) Satellite Latency DQN MLP % % % Not available
(Zhang et al., 2023) Data Plane Latency A3C GCN ! ! ! Not available
(Zhang et al., 2024b) Space-Air-Ground Latency PG CNN % % % Not available

(Haeri & Trajković, 2017) Cloud / MCTS / % % % VNE-Sim
(Dolati et al., 2019) Cloud / PG CNN ! % % Not available
(Xiao et al., 2019) Cloud Latency PG MLP ! % % Self-implemented

(Solozabal et al., 2020) Cloud Energy PG LSTM; Attention ! % % Self-implemented
(Yao et al., 2020) Cloud / PG RNN % % % Not available
(Yan et al., 2020) Cloud / A3C GCN ! ! ! VNE-Sim

(Huang et al., 2021) Cloud / DQN MLP ! % % VNE-Sim
(Wang et al., 2021) Cloud / A3C GCN, GRU % ! ! Virne
(Zhang et al., 2021) Cloud Security PG CNN ! % ! Not available

(Ma et al., 2023) Cloud / PG GCN % % % Not available
(Zhang et al., 2022) Cloud / A3C GCN, GRU ! ! % VNE-Sim
(Geng et al., 2023) Cloud / PPO GNN ! ! ! Virne

(Xiao, 2023) Cloud / PG MLP ! ! ! Not available
(Wang et al., 2023) Cloud / PPO Edge-aware GAT ! ! ! Virne

(Sahraoui et al., 2024) Cloud Energy A2C Attention ! ! % Virne
(Wang et al., 2024b) Cloud Heterogeneity PPO Cross-GCN ! ! ! Virne
(Wang et al., 2025) Cloud, Edge Latency PPO Heterogeneous GAT % ! ! Virne
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trained on high-quality datasets to forecast the future service requests. However, acquiring labeled,
high-quality datasets for large-scale and unseen network scenarios remains impractical, limiting
their applicability. More dominantly, RL has demonstrated its promise for NFV-RA tasks (Haeri
& Trajković, 2017; Xiao et al., 2019; Yao et al., 2020; Wang et al., 2021; Yan et al., 2020; Zhang
et al., 2022; Dolati et al., 2019; Wang et al., 2023; Geng et al., 2023; Wang et al., 2024b), mainly
due to its label-free nature and adaptation to handle dynamics of network. RL-based methods model
NFV-RA as a Markov Decision Process (MDP), allowing an agent to learn optimal policies through
iterative interactions with the environment. In general, we unified existing RL-based methods for
NFV-RA under a framework with three core components: MDP modeling, policy architecture, and
training methods. These methods conceptualize the node mapping allocation process as a sequential
decision-making task, where physical nodes are incrementally selected to host VNFs. To execute
these decisions, various policy network architectures are designed to represent the network state and
generate corresponding actions. Then, they leverage a specific RL method to optimize the policy
network with collected experience during interactions. For example, (Xiao et al., 2019) utilized
a multilayer perceptron (MLP) and trained it using the policy gradient (PG) algorithm, while the
work (Yan et al., 2020) combined MLPs with graph convolutional networks (GCNs) and employed
the asynchronous advantage actor-critic (A3C) algorithm. While RL-based methods offer notable
advantages in terms of performance and adaptability, there is a lack of in-depth analysis of the impact
of specific model design choices and consistent performance comparison. Moreover, systematically
identifying the remaining significant challenges in RL-based NFV-RA is critical to open opportunities
for future exploration and innovation.

B.3 EXISTING NFV-RA BENCHMARKS

For the NFV-RA problem, several benchmarks have been developed for simulation and evaluation. As
summarized in Table 1, the most notable existing benchmarks include: VNE-Sim1 (Haeri & Trajković,
2016), ALEVIN 2 (Beck et al., 2014), ALib3 (Beck et al., 2014), SFCSim4 (Xu et al., 2022), and
Iflye5 (Tomaszek, 2021). For instance, VNESim(Haeri & Trajković, 2016) supports three heuristic
algorithms and focuses exclusively on cloud-based simulations, evaluating solutions based on their
effectiveness. Similarly, SFCSim (Xu et al., 2022), incorporates three additional heuristic methods,
continuing the trend of focusing on cloud-based scenarios However, most of these benchmarks are
limited to cloud-based simulations and lack the flexibility to accommodate more modern network
scenarios, such as edge computing or 5G environments. Moreover, these benchmarks generally
implement only a few exact and heuristic algorithms and focus mainly on effectiveness evaluation.
These limitations highlight the need for more comprehensive benchmarks that can assess algorithms
across a broader range of network environments and evaluation perspectives.

B.4 RL FOR COMBINATORIAL OPTIMIZATION

RL has gained significant attention for solving Combinatorial Optimization Problems (COPs), where
the goal is to learn high-quality solutions (Bengio et al., 2021). These problems span various domains,
including the Traveling Salesman Problem (TSP) (Kool et al., 2018), Vehicle Routing Problem
(VRP) (Zhou et al., 2023), and bin packing (Zhao et al., 2021). RL-based approaches to solving these
problems generally fall into two categories: construction methods that build a solution incrementally
from scratch and improvement methods that start with an initial solution and iteratively refine it.
Compared with these classic COPs, the NFV-RA problem presents unique challenges, highlighting
the need for specialization of RL approach design. First, NFV-RA requires real-time decision-making
to meet strict network service requirements. NFV-RA algorithms must execute decisions almost
immediately, making construction methods more suitable to incrementally build solutions within
time constraints. Second, NFV-RA operates in highly dynamic environments where both service
demands and network resources fluctuate in real time. This variability requires RL methods that can
adapt to changes in network topologies, resource availability, and demand patterns. Lastly, the state
space of NFV-RA is highly complex, involving intricate interactions such as cross-graph mapping

1https://tehreemf.wixsite.com/vne-sim
2https://sourceforge.net/p/alevin/wiki/home/
3https://github.com/vnep-approx/alib
4https://github.com/SFCSim/SFCSim
5https://github.com/Echtzeitsysteme/iflye
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and bandwidth-constrained routing. These factors require RL methods to navigate a multidimensional
decision space, accounting for diverse resource types and connectivity requirements.

C BENCHMARK DETAILS

C.1 SIMULATION CONFIGURATION

Virne offers a highly customizable simulation framework designed to accommodate the diverse and
complex nature of modern network environments. As illustrated in Figure 5, users can define the net-
work scenarios and conditions within the simulator through configuration files. These configurations
cover two key components: PN settings and VN requests, providing users the flexibility to simulate a
variety of network scenarios.

Network Topologies Virne provides a range of customizable network topologies to simulate differ-
ent network conditions. Users can select between: (a) synthetic topologies that are generated using
algorithms such as Waxman and FatTree, which provide structured and predictable network designs
for controlled testing; and (b) realistic topologies that are sourced from SDNLib and the Topology
Zoo, offering more realistic and complex network structures that mimic real-world environments.
Users can specify both the PN and VN topologies through their configuration files, allowing the
reflection of various network scales and topological characteristics.

Resource Availability Virne supports the customization of resource availability across multiple
levels of the network, including nodes, links, and graph. This flexibility enables simulations that
represent different resource conditions, such as: (a) resource types: Users can define various types of
resources, including computing resources (e.g., CPU, GPU, memory) and network resources (e.g.,
bandwidth). This allows for the modeling of diverse resource requirements in both PN and VN
settings; (b) availability distribution: The resources can be distributed across the network using
different statistical models, such as uniform or exponential distributions, which reflect real-world
variations in resource supply and demand. This level of customization provides users with the ability
to model networks with differing levels of resource availability.

Service Requirements Virne allows users to define specific service requirements, which add
complexity and realism to the simulations. These requirements can be tailored to address a wide
range of network use cases, reflecting varying demands and constraints. As illustrated in Figure 5,
we introduce three key types of service awareness that can be customized:

• Heterogeneous resources. To configure this, users can add two new types of node resources
(e.g., CPU, GPU) into the node_attrs_setting section of the PN and VN configuration files.

• Latency constraints. By introducing the latency into the link_attrs_setting section of the PN
and VN configuration files, users can specify maximum latency thresholds for virtual links
and the physical paths used for routing.

• Energy efficiency. By including energy consumption parameters into the graph_attrs_setting
section of the PN configuration files, users can simulate green data centers and optimize
resource allocation with sustainability in mind.

Through these service requirements, Virne enables the simulation of networks with diverse operational
demands, providing users with the flexibility to model complex and dynamic network systems.

C.2 MDP VARIATION FOR NFV-RA

Apart from the MDP formulations introduced in Section 3.3.1, several extended MDPs for NFV-RA
are also proposed to handle the specific aspects of NFV-RA problems.

C.2.1 MULTI-TASK MDP FOR META RL METHODS

In practical network systems, VNRs often exhibit significant diversity in their characteristics, such
as varying sizes, topologies, and resource demands. A standard single-policy approach struggles to
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num_v_nets: 1000
topology:
random_prob: 0.5
type: random

v_net_size:
distribution: uniform
dtype: int
low: 8
high: 8

arrival_rate:
distribution: possion
dtype: float
lam: 0.04
reciprocal: true

lifetime:
distribution: exponential
dtype: float
scale: 500

node_attrs_setting:
- name: cpu
distribution: uniform
dtype: int
generative: true
low: 0
high: 20
owner: node
type: resource

link_attrs_setting:
- name: bw
distribution: uniform
dtype: int
generative: true
low: 0
high: 50
owner: link
type: resource

save_dir: dataset/v_nets
v_nets_file_name: v_net.gml
v_nets_save_dir: v_nets

topology:
# file_path: './dataset_dir/Geant.gml'
type: waxman
num_nodes: 100
wm_alpha: 0.5
wm_beta: 0.2

node_attrs_setting:
- name: cpu
distribution: uniform
dtype: int
generative: true
high: 100
low: 50
owner: node
type: resource

link_attrs_setting:
- name: bw
distribution: uniform
dtype: int
generative: true
high: 100
low: 50
owner: link
type: resource

save_dir: dataset/p_net
file_name: p_net.gml

Basic Configuration Of PN Basic Configuration Of VNs

Extension A: Resource-heterogenous Networks

Extension B: Latency-sensitive Networks

- name: ltc
owner: link
type: customized
generative: true
distribution: customized
max: 100.
min: 0.

Extension C: Energy-efficient Networksgraph_attrs_setting
- name: energy_cons_idle
type: info
value: 1

- name: energy_cons_factor
type: info
value: 10

- name: ltc
owner: link
type: latency
generative: true
distribution: uniform
high: 500.
low: 100.

+ +

+
- name: gpu
distribution: uniform
dtype: int
generative: true
high: 20
low: 0
owner: node
type: resource

- name: ram
distribution: uniform
dtype: int
generative: true
high: 20
low: 0
owner: node
type: resource

- name: gpu
distribution: uniform
dtype: int
generative: true
high: 100
low: 50
owner: node
type: resource

- name: ram
distribution: uniform
dtype: int
generative: true
high: 100
low: 50
owner: node
type: resource

+ +

Figure 5: An example of basic configurations on both PN and VNs, along with their extensions. By
adding specific settings on the levels of node, link, or graph, Virne can be easily extended to support
emerging networks with additional awareness.

generalize across this wide spectrum. To address this, a multi-task MDP formulation can be employed,
framing the embedding of different categories of VNRs as distinct tasks. Specifically, VNRs are
grouped into tasks Mi drawn from a distribution p(M). The objective is to train a meta-policy
πϕ that captures common, transferable strategic knowledge across all tasks. This meta-policy can
then be rapidly adapted with minimal data to derive specialized sub-policies πθi for each task. The
meta-optimization objective is to find meta-parameters ϕ that maximize the expected performance
over the task distribution after adaptation:

max
ϕ

EMi∼p(M) [J(θi)] = EMi∼p(M) [J(fϕ(Di))] (9)

where J(θi) is the expected return for the policy πθi on task Mi, and θi = fϕ(Di) represents the
parameters of the sub-policy adapted from the meta-policy ϕ using a small amount of task-specific
experience Di. The meta-policy is then updated by aggregating gradients from the adapted policies,
for instance, using a second-order meta-gradient over the task-specific losses.

C.2.2 CONSTRAINED MDP FOR SAFE RL METHODS

The NFV-RA problem is fundamentally defined by its hard resource constraints, where any violation
renders a solution infeasible. Standard MDPs, which typically integrate constraint violations into the
reward signal via simple penalties or doing nothing, often fail to guarantee zero-violation solutions. A
more rigorous approach is to formulate the problem as a Constrained CMDP. This method explicitly
separates the primary reward from costs associated with constraint violations and is formally expressed
as a tuple ⟨S,A, P,R,H,C, γ⟩. Here, in addition to standard MDP components, H is a violation
function that measures the degree of constraint violation at each state, and C is a cost function that
maps violations to a non-negative cost, i.e., C(s) = max(H(s), 0). The objective is to learn a policy
π that maximizes the expected cumulative reward Jr(π) while ensuring the expected cumulative cost
Jc(π) remains below a predefined threshold d (e.g., d = 0):

max
π

Jr(π) = Eτ∼π

[
T∑

t=0

γtR(st, at)

]

s.t. Jc(π) = Eτ∼π

[
T∑

t=0

γtC(st)

]
≤ d

(10)

To enforce stricter state-wise safety, this model can be enhanced with reachability analysis. This
extension aims to ensure the policy remains within a feasible region where future constraint violations
are avoidable, often by optimizing an objective that guarantees the worst-case long-term violation, or
feasible value function V π

h (s), remains non-positive.
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C.3 IMPLEMENTED NFV-RA ALGORITHMS

C.3.1 RL-BASED ALGORITHM IMPLEMENTATIONS

Our RL-based implementations are structured around core components: RL training algorithms
that define the learning paradigm, neural policy architectures that parameterize the agent’s decision-
making function, and additional techniques that can enhance learning or address specific challenges
in NFV-RA. This modularity allows researchers to easily experiment with different combinations and
contribute new components.

RL training Methods Virne supports several foundational and advanced RL training algorithms,
which are used to guide the learning process of the neural policies.

• Monte Carlo Tree Search (MCTS) (Haeri & Trajković, 2017) is a planning algorithm that
explores the decision space by building a search tree, balancing exploration and exploitation
to find action sequences.

• Policy Gradient (PG or REINFORCE) (Sutton et al., 1999) is a policy-based RL method
that learns a parameterized policy to maximize expected returns, i.e., solution quality.

• Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016) is an actor-critic-based
RL algorithm that uses multiple parallel actors, each interacting with its own copy of the
environment. It learns both a policy (actor) and a value function (critic) to estimate the
advantage of taking certain actions, leading to more efficient learning than pure PG methods.

• Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a popular RL method known
for its stability and strong empirical performance across a wide range of tasks. It achieves
policy optimization stability by using a clipped surrogate objective.

• Deep Q-Network (DQN) and variants (Mnih et al., 2013) are value-based RL methods that
aim to learn the state-action value space. However, NFV-RA often involves large, structured
action spaces not directly amenable to these methods.

Neural Policy Architectures The neural policy architecture defines how the RL agent perceives the
environment (state representation) and decides on actions. Virne implements a range of architectures
to capture attribute and structural information in both the PN and VN.

• Multi-Layer Perceptron (MLP)-based Policy (Liu et al., 2020; Maity et al., 2024; Xiao, 2023;
Xiao et al., 2019). It concatenates the features of the current to-be-placed virtual node with
every physical node’s features. Then, it fed them into multiple fully connected layers and
outputs probabilities for selecting each physical node for placement.

• Convolutional Neural Network (CNN)-based Policy (Zhang et al., 2024a; Fu et al., 2020;
Zhang et al., 2024b; 2021; Dolati et al., 2019). They use CNN to process graph-structured
data by treating node features and adjacency information as grid-like inputs. Similar to the
MLP, virtual link demands are integrated as node features.

• Attention-based Policy(He et al., 2023; Solozabal et al., 2020). It first embeds the features of
the current to-be-placed virtual node to form a query. Then, the features of each physical
node are similarly embedded to form keys and values. The attention mechanism then
computes a weighted sum of physical node values based on their compatibility with the
virtual node query.

• Graph Convolutional Network (GCN)-based policy (Zhang et al., 2023; Ma et al., 2023;
Yan et al., 2020) . It uses GCN to learn node representations by aggregating information
from their local neighborhoods. In Virne, GCNs are used to process the PN topology, often
with virtual node demands incorporated as additional node features on the PN nodes.

• Graph Convolutional Network (GCN)-based policy. It uses GCN to learn node representa-
tions by aggregating information from their local neighborhoods. GCNs is mainly used to
process the PN topology, often with virtual node demands incorporated as additional node
features on the PN nodes.

• GCN & Sequence-to-Sequence (GCN&S2S) Policy (Wang et al., 2021). This hybrid architec-
ture combines GCNs for graph representation learning with a Sequence-to-Sequence (S2S)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

model (Sutskever et al., 2014), an RNN-based encoder-decoder with attention, to generate
an ordered sequence of actions.

• GAT&S2S Policy (Wang et al., 2023). Similar to GCN&S2S, but replaces the GCN encoder(s)
with GAT(s).

• Graph Attention Network (GAT)-based policy (Wang et al., 2023). GATs extend GCNs by
incorporating attention mechanisms into the neighborhood aggregation process. Particularly,
it also incorporates edge features (e.g., link bandwidth, latency) into the attention calculation.

• Dual GCN (DualGCN)-based policy (Wang et al., 2024b). This architecture uses two
separate GCNs, i.e., one to embed the topology and features of the VN, and another for the
PN. The embeddings from both graphs are then combined into an MLP to make placement.

• Dual GAT (DualGAT)-based Policy (Wang et al., 2024b): Similar to DualGCN, but it utilizes
GATs for both VN and PN embedding.

• Heterogeneous Graph Attention Network (HeteroGAT)-based Policy (Tan et al., 2024;
Wang et al., 2025). Recent studies model NFV-RA instances as a heterogeneous graph,
where virtual nodes, physical nodes, virtual links, and physical links are different types of
nodes/edges with distinct features. Additionally, HeteroGAT introduces the cross-graph
connection links to represent the historical mapping status, i.e, if a virtual node is placed
onto a physical node, a heterogeneous link will be created.

Additional Implementation Techniques

• Reward Function Design. NFV-RA is characterized by its combinatorial space and complex
constraints for NFV-RA, which may present a challenging sparse reward problem. Virne
allows exploration of different reward structures.

– No Intermediate Reward (NoIR). The agent only receives a terminal reward based on
the final R2C(S) if the entire VN is successfully embedded, and 0 otherwise.

– Fixed Intermediate Reward (FIR). The agent receives a small positive fixed reward
(ImR_value) for each successful virtual node placement and link routing step. A
negative reward is given for failed steps. The final R2C(S) is added to the sum of
intermediate rewards if the overall embedding is successful.

– Adaptive Intermediate Reward (AIR). A specialized version of FIR considers 1
|Nv| as

an intermediate reward value, where |Nv| is the number of virtual nodes in the VN.
This normalizes the scale of intermediate rewards based on the complexity of the VN.

• Feature Engineering Combinations. Raw node/link attributes and basic topology might not
be sufficient for optimal RL performance. Some studies use engineered features to augment
the input to neural policies. These include:

– (a) Node Embedding Status. Binary flags indicating whether a physical node is currently
hosting a virtual node or whether a virtual node has already been placed.

– (b) Topological Features. Standard graph centrality measures computed for both PN
nodes and VN nodes, i.e., degree, closeness, betweenness, and eigenvector.

• Action Masking Mechanism. During training, not all actions (e.g., placing a virtual node
on a physical node) are valid at every step due to resource constraints or additional service
requirements. Action masking is a technique where invalid actions are explicitly disallowed
by placing the selection probability with zero.

C.3.2 TRADITIONAL ALGORITHM IMPLEMENTATION

Virne implements 10+ traditional algorithms, which can be broadly categorized into three primary
types: exact and rounding methods, node ranking-based approaches, and meta-heuristic methods.
We summarize these key algorithms and their core strategies in Table 5. Next, we elaborate on each
category and introduce implemented algorithms as follows.

Exact and rounding methods for NFV-RA either guarantee optimal solutions or provide approxi-
mate solutions through rounding techniques, mainly based on mathematical solvers.
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Table 5: Implemented Traditional NFV-RA Algorithms
Core Strategy

MIP (Chowdhury et al., 2009) Mixed-Integer Programming (MIP)
R-Rounding (Chowdhury et al., 2012) Random Rounding
D-Rounding (Chowdhury et al., 2012) Deterministic Rounding

RW-Rank (Cheng et al., 2011) Random Walk (RW)
GRC-Rank (Gong et al., 2014) Global Resource Control (GRC)

NRM-Rank (Zhang et al., 2018) Node Resource Management (NRM)
NEA-Rank (Fan et al., 2023) Node Essentiality Assessment (NEA)
PL-Rank (Fan et al., 2021) Priority of Location (RL)

GA-Meta (Zhang et al., 2019) Genetic Algorithm (GA)
PSO-Meta (Jiang & Zhang, 2021) Particle Swarm Optimization (PSO)
ACO-Meta (Fajjari et al., 2011) Ant Colony Optimization (ACO)

SA-Meta (Wang et al., 2013) Simulated Annealing (SA)
TS-Meta (Wang et al., 2017) Tabu Search (TS)

• MIP (Chowdhury et al., 2009): Mixed-Integer Programming (MIP) is an exact method that
provides optimal solutions by solving a system of linear equations with integer constraints.

• R-Rounding (Chowdhury et al., 2012): A rounding method that applies random rounding to
generate approximate solutions for NFV-RA.

• D-Rounding (Chowdhury et al., 2012): This method uses deterministic rounding to map
continuous variables to discrete values while providing an approximation to the optimal
solution.

Node ranking-based methods for NFV-RA that first prioritize nodes using different strategies for
node mapping, then execute the link mapping stage with the shortest path algorithm.

• NRM-Rank (Zhang et al., 2018): A heuristic method based on Node Resource Management
(NRM) metric. This approach ranks virtual and physical nodes before mapping with a
greedy selection method.

• GRC-Rank (Gong et al., 2014): This method uses a Global Resource Control (GRC) strategy
based on random walks for node ranking. After ranking, the nodes are mapped accordingly.

• NEA-Rank (Fan et al., 2023): It ranks nodes using the Node Essentiality Assessment (NEA).
• RW-Rank (Cheng et al., 2011): A node ranking approach based on random walks to estimate

node priorities in the embedding process.
• PL-Rank (Fan et al., 2021): This algorithm considers node proximity and evaluates paths

comprehensively, ranking nodes based on their location priorities and the overall efficiency
of the physical infrastructure.

Meta-heuristic methods for NFV-RA employ nature-inspired processes to iteratively improve
solutions. Virne implements the following meta-heuristics for NFV-RA:

• GA-Meta (Zhang et al., 2019): A meta-heuristic method based on genetic algorithms. It
models each node mapping solution as a chromosome and iteratively explores the solution
space by simulating the process of genetic selection and evolution.

• PSO-Meta (Su et al., 2014): A meta-heuristic using Particle Swarm Optimization (PSO),
where particles explore the NFV-RA solution space by adjusting their positions based on
their own and neighbors’ experiences.

• ACO-Meta (Fajjari et al., 2011): A meta-heuristic based on Ant Colony Optimization (ACO)
that simulates ant foraging behavior to explore the NFV-RA solution space and update
pheromone trails to guide the search.

• SA-Meta (Wang et al., 2013): A meta-heuristic using Simulated Annealing (SA) to approx-
imate the global optimum, exploring the NFV-RA solution space with both upward and
downward transitions to escape local minima.
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Figure 6: The modular architecture of the RL-based implementation pipeline in Virne. The pipeline
is decoupled into three core, interchangeable modules: Instance Environment, RL Agent, and RL
Trainer. Each module contains several sub-components (e.g., feature constructor, neural policy,
learning algorithm) that can be individually customized and combined.

• TS-Meta (Wang et al., 2017): A meta-heuristic based on Tabu Search (TS), which uses a
memory structure to store visited solutions, promoting diversity and avoiding local optima.

C.4 MODULAR AND EXTENSIBLE IMPLEMENTATION PIPELINE

To facilitate rapid implementation and community-driven development, Virne is with a highly
modular and extensible implementation pipeline for RL-based methods. This design is guided by the
principle of separation of concerns, where distinct functional components of the RL workflow can be
independently developed, configured, and interchanged. This section outlines the architecture of this
pipeline and a customized configuration example, as illustrated in Figures 6 and 7.

C.4.1 MODULARITY DESCRIPTION OF PIPELINE

As shown in Figure 6, our pipeline consists of the following high-level, interoperable modules.

Instance Environment simulates the NFV system and handles the agent’s interactions. It is designed
with customizable components, including the Action Controller, which defines the step-wise logic for
state transition in a gym-style environment; the Reward Calculator, which allows for different reward
schemes to be easily plugged in.

Feature Constructor is responsible for processing the raw state information from the environment
(PN and VN) and extracting meaningful features. It supports various feature engineering strategies,
such as including basic node/edge attributes or augmenting them with advanced topological metrics.

Neural Policy represents the core of the agent’s learned strategy. Our pipeline supports a wide array
of Neural Networks, from simple MLPs to more complex structures like CNNs, RNNs, and various
GNNs. The user can also customize the Decoding Strategy that translates the probabilistic output of
the neural policy into a concrete action.

RL Trainer manages the learning process, which includes the rollout buffer that stores the interaction
experiences (state, action, reward, etc.) used for training; and Learning Algorithms: that is used to
update the agent’s policy. Virne integrates a comprehensive suite of solvers, such as PG, A2C, PPO,
and more advanced options like SafeRL and MetaRL solvers.

C.4.2 EXTENSIBILITY IN PRACTICE

This modular design enables users to develop new algorithms flexibly, as shown in Figure 7.

Configuration-driven Customization: Users can easily assemble different pipelines by modifying
configuration files. As shown in the top part of Figure 7, parameters like the reward calculator or
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# Modular Settings of Instance Environment

action_step_env_cls: BaseEnv = ... # e.g., JointPRInstanceRLEnv

config.reward_calculator_name: str = ...       # e.g., adaptive

# Modular Settings of Feature Constructor

config.if_use_topological_metrics: bool = ... 

config.if_use_node_status_flags: bool = ... 

class CustomEnv(action_step_env_cls): 

def __init__(self, p_net, v_net, controller, recorder, counter, logger, config, **kwargs): 

super(CustomEnv, self).__init__(p_net, v_net, controller, recorder, counter, logger, 

config, **kwargs) 

# Modular Settings of Neural Policy

tensor_obseration_func: Callable = ... # e.g., TensorConvertor.obs_as_tensor_for_gnn

policy_builder: Callable = ... # e.g., PolicyBuilder.build_gcn_mlp_policy

# Modular Setting of RL Trainer

rl_solver_cls: BaseRLSolver = ... # e.g., PGGcnMlpSolver

class CustomSolver(InstanceAgent, rl_solver_cls): 

def __init__(self, controller, recorder, counter, logger, config, **kwargs): 

InstanceAgent.__init__(self, CustomEnv) 

rl_solver_cls.__init__(self, controller, recorder, counter, logger, config, 

policy_builder, tensor_obseration_func, **kwargs)

Figure 7: A code example of implementing a new NFV-RA algorithm via module customization.

the types of features to use can be set with simple string or boolean flags. This enables extensive
experimentation without writing any new code.

Class-based Extension: For more advanced customization of flexible components, as shown in
the bottom part of Figure 7, users can create custom environments or solvers (e.g., CustomEnv,
CustomSolver) by inheriting from base classes. New components, such as a novel policy architecture
or a custom RL solver, can be injected as callable functions or classes during instantiation. This
powerful design pattern significantly lowers the barrier for implementing and testing new research
ideas within a standardized framework.

C.5 EVALUATION METRIC DEFINITIONS

We provide the definitions of key evaluation metrics commonly used to evaluate the NFV-RA
algorithms as follows.

• Request Acceptance Rate (RAC) measures the proportion of VN requests that the system
successfully accepts. Formally, it is given by

RAC =

∑T
t=0 |Ĩ(t)|∑T
t=0 |I(t)|

× 100, (11)

where T denotes the total operational time of the network system. I(t) is the set of all VN
requests arriving at time slot t, and Ĩ(t) is the subset of those requests that are accepted.
The notation | · | denotes the cardinality of a set.

• Long-term Revenue-to-cost Ratio (LRC) evaluates the economic efficiency of the system
by comparing revenue to resource consumption. It is formulated as

LRC =

∑T
t=0

∑
I∈Ĩ(t) REV(S)×ϖ∑T

t=0

∑
I∈Ĩ(t) COST(S)×ϖ

× 100, (12)

where S = fG(I) as before, and REV(S) and COST(S) denote the revenue obtained and
resources consumed by the embedding, respectively.
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Table 6: Key simulation parameters and their default values.
Symbol Description Default Distribution
XNp Physical Node Resources U(50, 100)
XLp

Physical Link Bandwidth U(50, 100)
XGv

VN Request Size U(2, 10)
XNv Virtual Node Resources U(0, 20)
XLv Virtual Link Bandwidth U(0, 50)
XI VN Arrival Rate Poisson(η)

• Long-term Average Revenue (LAR) quantifies the total revenue generated over a period,
reflecting the economic benefits of processing VN requests. It is defined as

LAR =
1

T

T∑
t=0

∑
I∈Ĩ(t)

REV(S)×ϖ, (13)

where E = fG(I) represents the embedded VN request, and ϖ is the lifetime of the
corresponding VN.

• Average Solving Time (AST) indicates the efficiency of the NFV-RA algorithm by measur-
ing the average consumed time (in seconds) for solving one simulation run.

C.6 BENCHMARK DOCUMENTATION

To ensure usability and facilitate community adoption, we provide comprehensive and well-structured
documentation website for Virne project. This documentation includes detailed guides on installation,
simulation configuration, API usage, and tutorials for developing new algorithms. For the anonymous
requirement of the double-blind review, we include a static version of the documentation in PDF
format at https://anonymous.4open.science/r/anonymous-virne/virne-document.pdf.

D EXPERIMENT DETAILS

D.1 EXPERIMENTAL SETUP

We summarize the key simulation parameters in Table 6, including the settings of PN and VNs.

D.1.1 IMPLEMENTATION SETTINGS

We provide the details on algorithm implementation (e.g., neural networks and RL training), experi-
mental methods on training and testing, and computing resources.

Algorithm Implementation. The implementation of the RL-based NFV-RA algorithm is based on
PyTorch (Paszke et al., 2019). Regarding neural policies (e.g., MLP, CNN, GNN, etc), we generally
set their layers to 3 and the hidden dimension of neural networks to 128. For RL optimization, we set
the reward discount factor λ to 0.99 and use the Adam optimizer with a learning rate of 0.001 and a
batch size of 128. The action section during training and testing follows a sampling strategy and a
greedy strategy, respectively. Additionally, we employ the k-shortest paths algorithm with k = 10
for link routing, selecting the shortest physical path that meets the bandwidth requirements for each
virtual link.

Training and Testing. For RL-based methods, we train policies for each average arrival rate η, with
random initialization of seeds in every simulation. The number of training epochs is set to 50, which
is sufficient for all algorithms to converge. Typically, training a deep RL-based NFV-RA method
completes within 5 hours. During testing, we evaluate the performance of all algorithms by repeating
each test with 10 different random seeds (i.e., 0, 1111, 2222, . . ., 9999) for each average arrival rate
η, thereby ensuring statistical significance.
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Table 7: Key Information on Evaluated Network Topologies
Network Node Count Link Count Network Density
WX100 100 500 0.05
WX500 500 13,000 0.1042
GEANT 40 64 0.0821
BRAIN 161 166 0.0129

Computing Resources. We conducted all experiments on a Linux server running Ubuntu 22.04.2
LTS. This server is equipped with 8 × NVIDIA H20 GPU, 128 × AMD EPYC 9K84 96-Core
Processor, and 1.2 TB of memory.

D.1.2 EVALUATED PHYSICAL TOPOLOGIES

To comprehensively evaluate the performance of NFV-RA algorithms, we conducted experiments
using both simulated and real-world network topologies from SNDlib6, widely adopted in existing
studies. These topologies cover a wide range of network scales and densities, ensuring that the
evaluation reflects diverse operational scenarios. Below, we describe the characteristics of the
evaluated PN topologies.

Node Resource

Link Resource

Min                    Max

Min                    Max

Figure 8: GEANT topology visualization.

WX100 is a medium-scale network generated by the
Waxman method (Waxman, 1988). It consists of
100 nodes connected by approximately 500 links,
resulting in a density of 0.05.

WX500 is a larger variant of the Waxman topology,
extending the scale to simulate large-scale network
systems. With 500 nodes and around 1300 links, it
exhibits a higher density of 0.1042.

GEANT is a well-known academic research network,
designed for high-speed data transfer across Europe.
It consists of 40 nodes interconnected by 64 edges, a
density of 0.0821.

BRAIN is a high-speed data network for scientific
and cultural institutions in Berlin. It consists of 161
nodes and 166 edges, with a density of 0.0129, which
is the largest topology in SDNLib.

We summarize the key characteristics of these topologies in Table 7. Furthermore, we provide a
visualization of the topology of GEANT in Figure 8 to better understand the topological information.

D.2 EXPLORATION ON IMPLEMENTATION TECHNIQUES

D.2.1 IMPACT ON RL TRAINING METHODS

We evaluate the impact of different RL training algorithms by comparing the performance of PG,
A3C, and PPO. All three methods are paired with the same PPO-DualGAT policy architecture. As
illustrated by the learning curves in Figure 9, PPO demonstrates significantly superior performance.
It converges rapidly to the highest average return, stabilizing at a high level of solution quality early
in the training process. In contrast, A3C shows slower convergence and reaches a lower performance
plateau. PG struggles the most, exhibiting the slowest learning rate and the lowest final performance
among the three. These findings highlight PPO’s sample efficiency and robust performance, justifying
its selection as the default RL method for our subsequent experiments.

6SNDlib is a well-known open-source library for telecommunication network design that offers a collection
of realistic network system topologies. We use network topologies like GEANT and BRAIN from SNDlib. You
can access this resource at https://sndlib.put.poznan.pl, though the specific licensing terms aren’t clearly stated.
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PPO-DualGAT and its variations
PPO-DualGAT (Reward=Fixed 0.1, Features=S+T, Mask)
PPO-DualGAT (Reward=Fixed 0.01, Features=S+T, Mask)
PPO-DualGAT (Reward=Adaptive, Features=S+T, Mask)
PPO-DualGAT (Reward=Fixed 0.1, Features=S, Mask)
PPO-DualGAT (Reward=Fixed 0.1, Features=T, Mask)
A3C-DualGAT (Reward=Fixed 0.1, Features=S+T, Mask)
PG-DualGAT (Reward=Fixed 0.1, Features=S+T, Mask)

Figure 9: Training curves of PPO-DualGAT and its variations. Each point represents the R2C ratio
over all VN Requests within a single training simulation round.

Table 8: [Note: Same as Table 2 for readability]. Impact of key implementation techniques. Reward
function is specified by its type (fixed or adaptive) and the intermediate reward value (0, 0.01, 0.1,
0.2; where 0 indicates no intermediate reward). Features indicate whether node Status (S) and/or
Topological (T) metrics were used (✓ for used, ✗ for not used). Action Mask indicates whether action
masking was applied (✓) or not (✗).

Reward Function Features Action
Mask

PPO-MLP PPO-ATT PPO-DualGAT

Type Value S T RAC LRC LAR RAC LRC LAR RAC LRC LAR

Fixed 0.1 ✓ ✓ ✗ 0.666 0.670 11745.0 0.667 0.644 12174.0 0.648 0.750 12430.1
Fixed 0.1 ✓ ✗ ✓ 0.678 0.675 11159.0 0.660 0.667 11134.3 0.766 0.754 15054.7
Fixed 0.1 ✗ ✓ ✓ 0.703 0.654 12693.8 0.579 0.575 9323.5 0.733 0.685 13333.1

Adaptive - ✓ ✓ ✓ 0.705 0.619 12139.6 0.702 0.643 12368.6 0.772 0.744 14216.6
Fixed 0.2 ✓ ✓ ✓ 0.616 0.643 11869.4 0.706 0.675 12420.7 0.769 0.731 15045.5
Fixed 0.01 ✓ ✓ ✓ 0.709 0.645 12719.1 0.517 0.601 8339.7 0.766 0.748 14516.6
Fixed 0 ✓ ✓ ✓ 0.560 0.596 8259.5 0.716 0.658 12629.0 0.741 0.753 14047.6

Fixed 0.1 ✓ ✓ ✓ 0.719 0.647 12944.4 0.712 0.661 12657.7 0.781 0.738 15138.6

D.2.2 IMPACT ON REWARD FUNCTION DESIGN

The design and magnitude of intermediate rewards strongly affect training and final performance.
Across all solvers, a moderate fixed intermediate reward (fixed, 0.1) consistently yields the best
or near-best results. In contrast, very small or no intermediate rewards result in clear performance
drops, highlighting the importance of sufficient reward signals for effective exploration. Interestingly,
the adaptive intermediate reward, which intuitively normalizes the total reward for different VN
sizes, does not achieve optimal performance in practice. As illustrated in Figure 9, we observe that a
well-tuned fixed reward of 0.1 has higher convergence than the adaptive reward, which validates our
initial performance observations. The adaptive reward is also outperformed by a smaller fixed reward
of 0.01, which further demonstrates that it may introduce a noisy signal for the optimization process,
leading to sub-optimality. This suggests that, 1 while normalization is conceptually appealing, a
fixed and moderate reward signal is more effective for guiding policy learning in the NFV-RA context.

D.2.3 IMPACT ON FEATURE ENGINEERING COMBINATION

We compare the use of Status (S), Topological (T), and their combination in the feature constructor.
The results show that combining both Status and Topological features (✓, ✓) generally leads to the
best or second-best outcomes for acceptance rate and revenue, regardless of the solver architecture.
For example, PPO-ATT+ achieves the best acceptance rate (0.712) and LRC (0.661) with both
features, and a marked drop when using only one. As illustrated in Figure 9, leveraging these
advanced features also contributes to faster and higher convergence. This demonstrates that 2

topological metrics serve as a valuable augmentation, capturing global network context and node
importance, even for graph neural networks such as GATs.
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D.2.4 IMPACT ON ACTION MASK STRATEGY

Impact on Action Mask Strategy Applying action masking (✓), which prevents the agent from se-
lecting infeasible actions (e.g., resource availability satisfaction), consistently improves performance
across all methods. For instance, in PPO-MLP+ and PPO-DualGAT+, enabling action masking
increases acceptance rate by up to 0.053 compared to otherwise identical configurations without
masking. This demonstrates that 3 explicit constraint enforcement is vital for robust RL-based
NFV-RA solutions, since the constraints of NFV-RA are intricate and hard.

D.3 GENERALIZATION ON NETWORK CONDITIONS

Network conditions in real-world deployments are characterized by their inherent complexity and
continuous evolution, including fluctuations in request frequencies and varying resource demands.
Therefore, evaluating the generalization capabilities of trained NFV-RA policies is critical to ensure
their adaptability and robust performance in diverse and dynamic network environments. Virne
facilitates this by allowing pre-trained models to be tested under conditions different from their
initial training setup. In this section, we investigate the generalization of various NFV-RA algorithms
to two key aspects, i.e., varying traffic rates and fluctuating demand distributions. The algorithms
are pre-trained under the default settings described in the main paper (Section 4.1 on Experimental
Setup), and then evaluated under these new conditions. In the following experiments, to ensure figure
clarity, we selected NFV-RA methods that demonstrated strong performance across various NFV-RA
types in the main paper (Section 4.2.2 on Effectiveness in Online Environments).

D.3.1 EVALUATION ON VARYING TRAFFIC RATES

To assess how well different NFV-RA algorithms adapt to changes in network load, we evaluate their
performance under a range of VN request arrival rates (η). The pre-trained policies, originally trained
with specific η values for each topology (WX100 with η = 0.16, GEANT with η = 0.016, BRAIN
with η = 0.004), are tested across a spectrum of η values. For WX100, this range is from 0.04 to
0.28; for GEANT, from 0.004 to 0.028; and for BRAIN, from 0.001 to 0.007. This setup simulates
scenarios from low to high network congestion, while ensuring the comparability of results. The
results across WX100, GEANT, and BRAIN topologies are presented in Figure 10.

As illustrated in Figure 10 (a), (d), and (g), there is a general downward trend in the RAC for all
algorithms as the average arrival rate η increases across all three topologies. This is an expected
outcome, as higher traffic intensity leads to increased competition for finite physical network resources,
inevitably resulting in more VN request rejections. As shown in Figure 10 (b), (e), and (h), many
RL-based algorithms, particularly PPO-DualGAT and PPO-DualGCN, demonstrate remarkable
stability in LRC across varying traffic rates. The results on LAR are depicted in Figure 10 (c),
(f), and (I). Generally increasing with η, most algorithms process more VN requests. Algorithms
like PPO-DualGAT and PPO-DualGCN consistently achieve higher LAR across the range of η
values, showcasing their superior capability in maximizing revenue even as conditions change. These
experiments highlight that 10 while some algorithms (often sophisticated RL policies like PPO-
DualGAT) exhibit graceful performance degradation and maintain high efficiency, others are more
sensitive to load changes. Additionally, from the perspective of network density, it is notable that 11

the performance difference is more significant in sparser topologies, such as BRAIN, mainly due to
limited feasible action space. The denser topologies, like WX100, often have more path diversity for
routing virtual links. This richer connectivity makes the embedding problem slightly less constrained,
and most algorithms, including heuristics like PL-Rank, perform relatively well. However, in sparser
PNs, each placement is critical because fewer alternate routes mean a poor choice can drain a key
bridge’s resources and trigger subsequent failures.

Overall, this study allows researchers and practitioners to select algorithms that are well-suited to the
anticipated traffic dynamics of their target environments. For instance, for networks expecting highly
variable loads, algorithms demonstrating flatter RAC and LRC curves across η would be preferable.

D.3.2 EVALUATION ON FLUCTUATING DEMAND DISTRIBUTION

In practical NFV environments, the characteristics of VN requests, such as the number of virtual
nodes (VN size) or their resource requirements, can change over time due to evolving service
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Figure 10: Results on the generalization study on varying traffic rates.
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Figure 11: Results on the generalization study on fluctuating demand distribution.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

demands. To simulate such dynamic conditions and evaluate algorithmic adaptability, we subject
pre-trained policies to a sequence of VN requests where the underlying distribution of these requests’
characteristics changes. Figure 11 illustrates the performance trends during a simulation run with
these changing demands. The simulation comprises 1000 VN requests, divided into four distinct
sub-groups (250 requests each). Compared to the default simulation settings, we modified one
parameter related to the distribution of VN resource demand or VN node size for each subgroup:
For the first group, the VN node and link resource distributions were changed to [0, 30] and [0, 75],
respectively. For the second group, the VN node and link resource distributions were adjusted to [0,
40] and [0, 100], respectively. For the third group, the VN node size distribution was changed to [2,
15]. For the fourth group, the VN node size distribution was altered to [2, 20].

As illustrated in Figure 11 (a), (d), and (g) for RAC, most algorithms exhibit an initial sharp decrease,
particularly as the simulation transitions through phases with increasing VN resource demands. This
phase quickly consumes available physical resources, leading to lower acceptance rates. As the
simulation progresses into phases where VN sizes increase, the RAC for many algorithms continues
to decline or stabilizes at a lower level. This is because larger and more complex VNs are inherently
more challenging to embed. The results on R2C shown in Figure 11 (b), (e), and (h) show a dip when
the demand characteristics change, but PPO-DualGCN keeps a relatively higher LRC. For WX100
(η = 0.04) under changeable demands, PPO-DualGAT records an LRC of 0.703, whereas PPO-MLP
has an LRC of 0.643. This suggests they are better at finding resource-efficient embeddings even
when faced with unfamiliar or more challenging VN request types. The total revenue (i.e., cumulative
LAR), depicted in Figure 11 (c), (f), and (i), shows a clear differentiation in the algorithms’ ability to
accumulate revenue under these dynamic conditions. Algorithms that adapt well and maintain higher
RAC and LRC will naturally accrue more total revenue. Notably, advanced RL methods like PPO-
DualGAT and PPO-DualGCN tend to maintain a higher performance compared to others throughout
these fluctuations, indicating better adaptation. From the perspective of stage evolution, in stages
1 and 2 with increased resource demands, 12 the superior performance of dual-GNN models here
suggests that their learned policies latently identify action space with sufficient and rich resources
within the PN to leave sufficient resources for future. Regarding stages 3 and 4 related to increased
topological complexity, this mainly estimates the ability to solve a more complex graph mapping
problem. The great performance of GNN-based methods further demonstrates the importance of the
representation power of neural network architectures.

Overall, these results highlight that 13 policies trained on a specific VN distribution may not generalize
well to others, underscoring the need to generalize not only across load levels but also across demand
types. For practical systems where service characteristics can evolve, choosing algorithms that
demonstrate robustness in such fluctuating scenarios, as identifiable through Virne, is important.

D.4 SCALABILITY ON NETWORK SIZES

The ability of an NFV-RA algorithm to scale effectively with increasing network size and complexity
is paramount for its practical deployment in real-world, large-scale infrastructures. Virne facilitates a
thorough assessment of scalability from two primary perspectives, i.e., (1) performance quality on
large-scale network topologies, and (2) the growth trend of average solving time as both PN and VN
sizes increase.

D.4.1 PERFORMANCE ON LARGE-SCALE NETWORKS

To evaluate how algorithms perform when the underlying physical infrastructure is extensive, we
utilize the WX500 topology within Virne. WX500, with 500 nodes and approximately 13,000 links,
represents a significantly larger and denser environment compared to WX100 (100 nodes, 500
links) or other real-world topologies like GEANT (40 nodes) and BRAIN (161 nodes) used in earlier
evaluations. The VN arrival rate (η) for WX500 is appropriately adjusted to reflect its increased
capacity, ensuring a comparable level of resource contention. The performance of various algorithms
on WX500 is detailed in Table 9.

We observe that PPO-DualGAT and PPO-DualGCN continue to exhibit strong performance on
the large-scale WX500 network. This demonstrates the good scalability of their learned policies
to more complex physical infrastructures. While other RL methods with simpler extractors, like
PPO-MLP, exhibit limited performance, this suggests that 14 the capability to effectively capture
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Table 9: Results on the large-scale network, WX500.
RAC↑ LRC↑ LAR↑ AST ↓

PPO-MLP 69.50 0.646 924217.96 4.98
PPO-CNN 69.70 0.654 826532.68 5.16
PPO-ATT 68.10 0.647 923953.53 5.64
PPO-GCN 59.50 0.610 660552.71 3.80
PPO-GAT 68.80 0.698 920725.67 5.04

PPO-GCN&S2S 61.70 0.541 682516.68 4.89
PPO-GAT&S2S 58.10 0.540 699216.61 4.74
PPO-DualGCN 69.90 0.682 909759.61 5.10
PPO-DualGAT 69.80 0.715 917515.34 5.08

PPO-HeteroGAT 61.20 0.546 774076.11 7.42
MCTS 62.19 0.543 77138.32 18.13

SA-Meta 61.40 0.591 691030.70 15.09
GA-Meta 64.10 0.568 72314.48 16.49
PSO-Meta 68.90 0.566 750871.95 6.31
TS-Meta 62.10 0.614 678597.92 14.34

NRM-Rank 55.10 0.553 597325.51 0.22
RW-Rank 55.50 0.561 592502.79 0.24

GRC-Rank 58.50 0.559 656379.96 0.22
PL-Rank 64.17 0.632 79374.48 18.83

NEA-Rank 66.70 0.641 837297.93 12.97
RW-BFS 5.30 0.592 38341.41 0.27

and process complex topological information becomes increasingly critical in larger networks.
Additionally, while MCTS and meta-heuristics (GA-Meta, PSO-Meta, SA-Meta, TS-Meta) can
sometimes achieve competitive solution quality, their AST becomes a significant bottleneck on larger
networks. Furthermore, it is interesting that 15 there is also a trade-off between maximizing immediate
revenue and ensuring long-term network efficiency. Simpler models like PPO-MLP exemplify the
first approach, achieving the highest total revenue (LAR) by aiming to maximize acceptance volume.
In contrast, sophisticated models like PPO-DualGAT exemplify the second, securing the highest
resource efficiency (LRC) with a strategic policy that prioritizes high-quality placements to preserve
resource utilization efficiency.

D.4.2 ANALYSIS OF SOLVING TIME SCALE

Beyond solution quality, the computational efficiency, measured by the Average Solving Time (AST),
is a critical factor for scalability. Virne allows for detailed profiling of how AST evolves with
increasing problem scales. We investigate this from two angles:

• The impact of increasing VN size (number of virtual nodes from 5 to 30) on AST, typically
keeping the PN fixed (i.e., WX100).

• The impact of increasing PN size (number of physical nodes from 200 to 1000) on AST, for
a consistent distribution of VN requests.

Figure 12 illustrates these relationships for various algorithms. We observe that rRL-based methods
generally maintain a much flatter and lower AST curve, while meta-heuristics exhibit a substantial
increase. Their inference time is primarily dictated by the forward pass through the trained neural
network, which scales less dramatically with VN size compared to exhaustive search or numerous
iterations. For other heuristics, they are typically the fastest, exhibiting very low and stable ASTs
irrespective of VN size. While MCTS and certain meta-heuristics might achieve competitive solution
quality in some scenarios, their substantial computational overhead, especially with increasing
problem dimensions, limits their applicability in dynamic, large-scale NFV environments. This further
highlights that 16 as the problem space grows exponentially, explicit search strategies at decision
time become computationally prohibitive, rendering them infeasible for dynamic environments that
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Figure 12: Results on Inference Time Scale with both VN and PN.

Table 10: Results on emerging networks with heterogeneous resources and latency-awareness.
Heterogenous Resourcing WX100 (η = 0.16) Latency-aware Edge WX100 (η = 0.08)

RAC↑ LRC↑ LAR↑ AST ↓ RAC↑ LRC↑ LAR↑ AST ↓
PPO-MLP 71.10 0.665 12694.51 0.14 56.70 0.609 9792.61 0.20
PPO-ATT 69.30 0.655 12477.79 0.16 57.70 0.605 9460.70 0.21
PPO-GCN 56.30 0.623 10019.26 0.15 54.50 0.653 9045.22 0.20
PPO-GAT 73.40 0.683 13214.29 0.16 53.30 0.635 9570.29 0.26

PPO-GCN&S2S 54.20 0.619 9770.58 0.16 52.10 0.652 9144.30 0.22
PPO-GAT&S2S 75.00 0.688 13857.09 0.18 63.30 0.663 10703.74 0.22
PPO-DualGCN 66.10 0.715 12823.80 0.24 66.70 0.690 11301.84 0.33
PPO-DualGAT 75.10 0.735 14172.26 0.21 68.20 0.714 12056.58 0.32

PPO-HeteroGAT 71.20 0.663 13225.30 0.39 64.70 0.673 11563.99 0.40
MCTS 73.60 0.448 12847.17 1.72 52.70 0.480 8920.53 2.42

SA-Meta 62.10 0.617 10397.84 0.72 44.80 0.557 7789.51 0.80
GA-Meta 72.30 0.589 12245.59 1.16 56.10 0.542 9193.42 1.60
PSO-Meta 67.80 0.519 10837.89 1.37 52.50 0.488 8371.48 1.46
TS-Meta 65.50 0.650 11574.57 0.68 45.90 0.579 7970.68 0.77

NRM-Rank 60.30 0.525 9713.59 0.03 46.30 0.528 7385.33 0.05
RW-Rank 60.20 0.543 8947.27 0.02 39.40 0.554 7042.06 0.05

GRC-Rank 57.50 0.550 9008.80 0.01 42.50 0.556 7313.99 0.04
PL-Rank 69.70 0.659 12485.17 0.14 51.60 0.617 8546.75 0.23

NEA-Rank 64.60 0.671 10304.28 0.23 45.80 0.624 7367.66 0.34
RW-BFS 33.70 0.572 6472.31 0.02 36.70 0.594 5944.21 0.05

require near-instantaneous decisions. Additionally, 17 RL-based methods, particularly those utilizing
GNNs, strike a more favorable balance. Simpler RL methods and traditional heuristics offer the
highest computational speed but may compromise on optimality.

Overall, through systematic AST profiling analysis, Virne starkly highlights the trade-off between
solution quality and computational scalability.

D.5 VALIDATION ON EMERGING NETWORK

NFV is a cornerstone technology for a variety of modern and emerging network paradigms, each
presenting unique characteristics and operational requirements. The Virne benchmark is designed to
validate the adaptability and effectiveness of NFV-RA algorithms in such specialized environments.
This section focuses on two prominent emerging scenarios, i.e., (1) networks with heterogeneous
computing resources, and (2) latency-aware edge networks where delay constraints are critical.
Performance in these scenarios is detailed in Table 10.
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D.5.1 HETEROGENEOUS RESOURCING NETWORKS

Modern data centers and network infrastructures often deploy servers with diverse computing ca-
pabilities (e.g., varying CPU cores, GPU availability, memory capacities). Handling such resource
heterogeneity is crucial for efficient VNF placement. Virne simulates this by configuring both PN
nodes and VN nodes with multiple, distinct types of computing resources. For this evaluation, the
WX100 topology is used with a VN arrival rate η = 0.16. An embedding is successful only if a
physical node can satisfy all specified resource demands (i.e., CPU, GPU, and memory) of a virtual
node simultaneously, adding a layer of complexity to the node mapping process.

As illustrated in Table 10, we observe that PPO-DualGAT and PPO-GAT&S2S demonstrate superior
performance in heterogeneous resourcing environments, outperforming PPO-DualGCN. In hetero-
geneous resource scenarios, GAT-based models (e.g., PPO-DualGAT and PPO-GAT&S2S) excel
because they can dynamically weigh the importance of different resource types, such as CPU versus
a scarcer GPU, which is a more nuanced approach than the uniform feature treatment in GCNs.
This highlights that 18 attention mechanisms over features and neighbors are highly effective for
multi-dimensional node-level constraints. Simpler RL architectures like PPO-MLP and PPO-GCN,
while competent, tend to show a slight dip in performance compared to scenarios with homogeneous
resources. This reveals that 19 Effectively managing and balancing multiple, diverse resource require-
ments simultaneously poses a greater challenge for architectures that may not explicitly differentiate
or dynamically weigh these varied resource dimensions.

D.5.2 LATENCY-AWARE EDGE NETWORKS

Edge computing networks bring computational resources closer to end-users, making them ideal for
latency-sensitive applications. In such scenarios, NFV-RA algorithms must not only allocate resources
efficiently but also strictly adhere to the delay requirements of services. This evaluation uses the
WX100 topology with a VN arrival rate η = 0.08, which could represent a typical edge deployment
with specific traffic characteristics. The critical factor introduced here is a latency constraint for each
virtual link. When a virtual link is mapped to a physical path, the cumulative propagation delay
of the physical links constituting that path must not exceed the virtual link’s specified maximum
tolerable latency, i.e., 100ms. This necessitates that the algorithms should possess the ability to
manage constraint management. We additionally consider the latency attributes as the input features
of neural networks for all deep RL-based methods.

As illustrated in Table 10, the introduction of latency constraints generally leads to lower RAC
and LRC values across all algorithms compared to scenarios without such strict path requirements.
However, PPO-DualGAT again shows the most robust performance, achieving the highest RAC
(68.20%), LRC (0.714), and LAR (12056.58). In contrast, traditional heuristics and MCTS struggle
to satisfy resource and latency simultaneously, suffering larger drops. This reveals that 20 The
fundamental weakness of traditional heuristics is exposed in scenarios with path-level constraints.
Their decoupled "rank nodes, then find paths" approach is brittle, as an optimal node choice based
on local metrics can make it impossible to subsequently find a valid low-latency path, leading to
cascading failures.

E DISCUSSION ON FUTURE DIRECTIONS

The empirical analysis enabled by the Virne benchmark illuminates several promising avenues for
advancing deep RL-based NFV-RA methods. Although state-of-the-art algorithms show substantial
capability, significant challenges remain that hinder more robust, efficient, and practical solutions.
In this section, we outline several key future directions, and we provide an empirical study of an
emerging algorithm addressing some of these directions in Figure 13.

E.1 REPRESENTATION LEARNING FOR CROSS-GRAPH STATUS

Future research should focus on developing more sophisticated representation learning techniques
to capture the intricate, dynamic interplay between VN requirements and PN states, including
the evolving mapping status itself. While Virne shows the strength of dual-GNN architectures in
processing VN and PN features separately, then combining them, there’s a need for models that
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Figure 13: Performance comparison of PPO-DualGAT and its advanced variations that are augmented
by the safe RL method proposed in Wang et al. (2025) and the meta-RL proposed in Wang et al.
(2024b) training methods. Please see their MDP formulation in Appendix C.2. The results show
that both the safe RL and meta-RL variants consistently outperform the basic algorithm, with the
safe RL approach achieving higher improvements. This underscores the importance of robust
constraint management and generalization in solving complex resource allocation problems, which
are highlighted in this section for future algorithmic innovation.

can learn even richer cross-graph relational embeddings and path-level attribute awareness (Wang
et al., 2019; Guo et al., 2025). This includes better capturing dependencies across multiple resource
types and complex constraints, potentially leading to more nuanced and context-aware embedding
decisions. Techniques that explicitly model the partially embedded state of VNs and the resultant
constraints on future placements are crucial.

E.2 ROBUST LEARNING FOR COMPLEX AND HARD CONSTRAINTS

The management of multifaceted and often conflicting constraints (e.g., resource capacity, latency,
reliability, energy consumption) remains a central challenge in NFV-RA, which requires guaran-
teeing zero-violation. Thus, it is significant to explore constraint-aware RL frameworks that more
explicitly model and navigate these hard constraints. This could involve advancing constrained
policy optimization methods and developing novel reward structures that better reflect constraint
satisfaction (Gu et al., 2022; Wang et al., 2025). The goal is to train safe policies that are not
only effective in optimizing primary objectives but are also inherently robust in satisfying diverse
operational constraints.

E.3 SCALABILITY IN EXTREMELY LARGE-SCALE NETWORKS

Virne’s scalability studies demonstrate that while current RL methods, particularly GNN-based ones,
scale better than many traditional approaches, their computational and memory demands can still
grow significantly with network size. Addressing NFV-RA in truly massive, carrier-grade networks
requires further breakthroughs in algorithmic scalability. Future directions could include exploring
hierarchical RL where policies operate at different levels of abstraction, building a non-autoregressive
solution modeling method (Bengio et al., 2021), or designing GNN architectures that are less sensitive
to the global network scale (Wang et al., 2024a). Methods that can learn transferable knowledge or
localizable policies that effectively stitch together solutions for very large infrastructures are highly
desirable (Geng et al., 2023).

E.4 GENERALIZABLE POLICY CROSS VARYING SCALE

Achieving policies that generalize effectively not only to unseen network topologies but also across
varying scales (both PN and VN sizes) and highly dynamic operational conditions (e.g., non-stationary
demand patterns, unexpected resource outages) is a critical frontier. Virne’s generalization exper-
iments provide a baseline, but future research should investigate advanced techniques such as
meta-RL (Beck et al., 2023) to train agents that can quickly adapt to new VNR sizes or types, curricu-
lum learning to incrementally expose agents to more complex scenarios, and domain randomization
to enhance robustness against a wider array of unseen conditions (Zhou et al., 2023; Wang et al.,
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2024b). The ultimate aim is to develop omni-generalizable NFV-RA solutions that require minimal
retraining for deployment in diverse and evolving network environments.

F THE USE OF LARGE LANGUAGE MODELS STATEMENT

The authors use Large Language Models (LLMs) as an assistive tool in the preparation of this
manuscript, in accordance with the ICLR 2026 policy. The core roles of LLMs are described as
follows. First, we utilize the LLM-powered search and summarization tools to survey related works
and understand the current state of the field. Second, we use LLM-based coding assistants to assist
in coding and suggest optimizations, thereby accelerating the development of the Virne codebase.
Third, while preparing the manuscript, we use LLMs to proofread, check grammar, and refine the
language in the manuscript for improved clarity and readability.
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