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ABSTRACT

Large language model (LLM) agents are increasingly deployed in structured
biomedical data environments, yet they often produce fluent but overconfident out-
puts when reasoning over complex multi-table data. We introduce an uncertainty-
aware agent for query-conditioned multi-table summarization that leverages two
complementary signals: (i) retrieval uncertainty—entropy over multiple table-
selection rollouts—and (ii) summary uncertainty—combining self-consistency
and perplexity. Summary uncertainty is incorporated into reinforcement learning
(RL) with Group Relative Policy Optimization (GRPO), while both retrieval and
summary uncertainty guide inference-time filtering and support the construction
of higher-quality synthetic datasets.
On multi-omics benchmarks, our approach improves factuality and calibration,
just less than tripling correct and useful claims per summary (3.0→8.4 internal;
3.6→9.9 ulti-omics) and substantially improving downstream survival prediction
(C-index 0.32→0.63). These results demonstrate that uncertainty can serve as a
control signal—enabling agents to abstain, communicate confidence, and become
more reliable tools for complex structured-data environments.

1 INTRODUCTION

Imagine a biomedical researcher querying a large multi-omics database to identify candidate
biomarkers for survival outcomes Jin et al. (2024). A standard LLM-based agent may confidently
produce a fluent statement such as “gene X is strongly associated with survival in patients”—even
when the underlying tables contain contradictory or insufficient evidence. To the end user, this con-
fident but unqualified claim is indistinguishable from a reliable finding Omar et al. (2025); Martell
et al.. By contrast, an uncertainty-aware agent could detect the inconsistency, flag its own low con-
fidence, or abstain altogetherZhao et al. (2025; 2024); Hu et al. (2024); Han et al. (2024). This
ability to communicate not only what is said but also how certain it is transforms raw text generation
into actionable, trustworthy scientific insight Bolton et al. (2024); Omar et al. (2025); Hakim et al.
(2024).

Most modern scientific knowledge is encoded not in natural language but in high-dimensional ta-
bles such as genomic assays, proteomic screens, and electronic health records (Consortium, 2020;
Bycroft et al., 2018; Kang et al., 2022; Probst & Reymond, 2020). These resources contain invalu-
able information that could accelerate biomedical discovery, yet they remain largely inaccessible to
non-specialists. Extracting meaningful insights from such data, i.e. generating summaries, demands
not only computational power but also the ability to translate complex numerical signals into co-
herent narratives—an area where LLMs are uniquely positioned to contribute (Li et al., 2025; Yu
et al., 2025). The novelty of our work lies in using uncertainty-aware signals to both calibrate agents
and filter summary outputs, enabling their use as synthetic data (Lee et al., 2025). This approach
enhances the quality of training corpora, ultimately enabling more robust and reliable downstream
decision-making.

Recent work has begun adapting LLMs for tabular summarization and reasoning. Query-focused
methods such as QTSumm (Zhao et al., 2023) generate targeted textual insights from structured
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inputs, while StructText (Kashyap et al., 2025) and eC-Tab2Text (Guanilo et al., 2025) introduce
synthetic benchmarks across scientific and e-commerce domains. Evaluation frameworks such as
FineSurE (Song et al., 2024) and multi-agent debate approaches (Estornell & Liu, 2024) reveal
the challenges in measuring faithfulness and coverage in generated summaries, highlighting the
limitations of current single-pass generation methods Sui et al. (2025).

An emerging paradigm involves designing table agents—LLM-driven systems that integrate struc-
tured querying, strategic planning, and external tool use Bendinelli et al. (2025); Mathur et al.
(2024); Stoisser et al. (2025b). For example, Lu et al. (2025) outline design principles for real-
world table agents capable of combining SQL execution with reasoning chains, while demonstrate
multi-agent orchestration for multi-document reasoning tasks Sui et al. (2025). Beyond summa-
rization, frameworks such as MAG-V (Sengupta et al., 2024) exemplify iterative generation and
verification of synthetic data, illustrating a blueprint for refinement over one-shot output.

However, these promising approaches share a critical blind spot: uncertainty. LLMs are known to
produce fluent yet unfaithful outputs (Xu et al., 2024), a problem exacerbated when summarizing
high-dimensional data (Fang et al., 2024; Wu et al., 2025). We conceptualize uncertainty quan-
tification (UQ) as a form of agent–environment interaction (Han et al., 2024), where the focus is
not only on data quality but also on the agent’s confidence and reliability in navigating complex
tables. Recent efforts in UQ range from confidence–consistency scoring methods such as CoCoA
(Vashurin et al., 2025) to head-based uncertainty prediction (RAUQ, UQLM (Vazhentsev et al.,
2025; Bouchard et al., 2025)). Other works explore faithfulness-aware UQ in retrieval-augmented
generation (Fadeeva et al., 2025) and structured tasks such as text-to-SQL (Somov & Tutubalina,
2025), underscoring the necessity of calibration for trustworthy table understanding.

In this paper, we propose an uncertainty-aware LLM agent for summarizing high-dimensional tab-
ular data. Our agent generates candidate summaries from multi-omics datasets, quantifies its own
uncertainty, and filters outputs with high uncertainty. We evaluate the approach on biomedical multi-
omics tasks, where multiple valid summaries exist—highlighting the critical role of calibration be-
yond mere coverage.

Our contributions are threefold:

1. Uncertainty as control: We introduce the first LLM agent framework where uncertainty
is not just monitored but directly used as a reward signal during training, and as an absten-
tion/filtering signal at inference, moving beyond post-hoc diagnostics.

2. Robustness in structured environments: On biomedical multi-omics tasks, uncertainty-
aware agents achieve higher factuality, calibration, and downstream utility, with methods
applicable to any multi-table setting.

3. Uncertainty as data-quality signal: We show that filtering high-uncertainty samples im-
proves tabular text dataset quality, providing a practical tool for curating reliable corpora.

2 BACKGROUND

2.1 INTERACTIVE AGENT FRAMEWORKS FOR STRUCTURED REASONING

Early table summarization methods primarily relied on rule-based or statistical approaches, pro-
ducing template-based outputs and lacking explicit uncertainty modeling. Recent advances employ
neural and LLM-based methods that shift from static, single-pass generation to interactive reasoning
over structured environments. For example, LLM agents can now issue SQL queries or dataframe
operations Stoisser et al. (2025a;c), dynamically retrieving evidence before forming summaries.
Surveys of table agents Tian et al. (2025) highlight how symbolic querying and neural reasoning can
be combined to support exploratory analysis and hypothesis generation. More recently, multi-agent
frameworks such as MAG-V (generator–verifier) (Sengupta et al., 2024) and Multi2 (scalable multi-
document reasoning)(Cao et al., 2025) demonstrate how dividing labor among specialized agents
can improve reliability and scalability. These works suggest that interactive, tool-augmented agents
are a promising direction for table understanding.
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Figure 1: The uncertainty-aware agent framework. this diagram shows the two phases of our agent:
(a) training with reinforcement learning, and (b) inference. in training, the agent’s policy is refined
using a reward signal informed by summary uncertainty (perplexity). during inference, multiple
rollouts generate candidate summaries, which are then filtered based on a combined score of retrieval
and summary uncertainty, leading to more reliable outputs.

2.2 UNCERTAINTY QUANTIFICATION IN LLMS

Despite progress in interactivity, most agents remain prone to overconfidence and unfaithful out-
puts. Traditional metrics such as BLEU or ROUGE fail to capture factual reliability in structured
domains. This has led to the development of uncertainty quantification approaches and libraries such
as CoCoA (Vashurin et al., 2025) and LM-Polygraph (Fadeeva et al., 2023), which use probabilistic
confidence and/or semantic self-consistency to detect hallucinations. In structured tasks like text-
to-SQL (Shorinwa et al., 2025), confidence estimation has been shown to prevent execution errors
by flagging low-confidence predictions Maleki et al. (2025). Similarly, in retrieval-augmented gen-
eration, uncertainty-aware thresholds can trigger additional retrieval or abstention (Fadeeva et al.,
2025; Soudani et al., 2025). However, most of these methods treat uncertainty as a post-hoc diag-
nostic Hao et al. (2025). They are not integrated into the agent’s decision-making process during
interaction with tables, limiting their effectiveness in dynamic environmentsHu et al. (2025).

2.3 TOWARD SELF-ASSESSMENT IN SCALABLE AGENTS

A growing body of work suggests that scalable and trustworthy agents must go beyond post-hoc
uncertainty estimation toward learned self-assessment Han et al. (2024); Guan et al. (2024); Renze
& Guven (2024). Active learning studies (Melo et al., 2024; Ye et al., 2025) show that focusing
on uncertain cases improves efficiency, while debate-style multi-agent systems (Yin & Wang, 2025)
demonstrate how structured disagreement enhances reliability. Recent explorations of self-reflection
in LLMs indicate that agents can improve reasoning by monitoring their own confidence Liu et al.
(2025a). Yet, existing work has not combined these insights into a framework where uncertainty
directly controls both training optimization and inference-time behavior Cui et al. (2025); Zhang
et al. (2025). Structured domains such as databases, where repeated querying and summarization
are natural, provide fertile ground for such uncertainty-aware self-assessment. This paper builds
on these insights by proposing a framework in which retrieval stability and output consistency are
treated as first-class control signals, enabling LLM agents to produce more reliable and trustworthy
multi-table summaries.

3 METHODS

We cast query-conditioned multi-table summarization as an episodic agent problem and make un-
certainty a control signal: We (i) measure retrieval instability and output inconsistency, (ii) shape
training rewards with those signals, and (iii) apply them during inference to filter summaries and
enrich them with a quality signal.
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3.1 PROBLEM FORMULATION

Let D be a structured database and q a natural-language task. A policy πθ interacts with D via tools
and emits a summary s that encapsulates the information in the database relevant to the given task:

(q,D)
πθ−−→ s.

3.2 ENVIRONMENT AND EPISODE SETUP

Each episode takes place in an environment consisting of: (i) a structured database D containing
tables, columns, and descriptions, and (ii) a task q. At timestep t, the state xt includes the task q,
the schema snapshot of D, and the history of previous actions and results. The agent selects actions
at ∼ πθ(at | xt), which the environment executes deterministically. Available actions are:

• SQLExecutor(query) – Executes a SQL query to retrieve or join rows across tables in D.
• Schema(table) – Returns the structure, column names, and types of a specified table.
• PythonTool(code) – Runs Python code to process query results or perform computations

when SQL is insufficient.
• CommitSummary(summary) – Terminates the episode and outputs a final summary s.

Episode flow. An episode thus consists of a query, a sequence of tool calls, and a terminating
summary. Formally, invoking CommitSummary yields a trajectory

τ =
(
(x0, a0), (x1, a1), . . . , (xT , aT )

)
and a final output s. During training, trajectories are scored under GRPO with rewards combining (i)
code correctness, (ii) exploration coverage of D, and (iii) confidence in the summary (measured by
perplexity). During inference, we sample multiple trajectories per query. Uncertainty is estimated
via retrieval entropy and CoCoA; if uncertainty is high, the agent abstains. Otherwise, the lowest-
perplexity summary is returned, accompanied by confidence scores. Full algorithmic details are in
Algorithm A2 Appendix A.

3.3 UNCERTAINTY SIGNALS

Summary uncertainty (training: Perplexity, inference: CoCoA). We adopt perplexity-based
CoCoA from Vashurin et al. (2025), which unifies two signals: token-level confidence (perplexity)
and semantic consistency across samples. The resulting Minimum-Bayes-Risk-derived score uCoCoA
aligns more strongly with true error rates than either component alone. At inference, we sample K
candidate summaries and compute CoCoA to accept or abstain. By construction, CoCoA already
integrates perplexity, so no separate perplexity term is calculated at inference; during training, we
use perplexity uPerp alone as a cheaper proxy. Full details are described in Appendix A.

Example (CoCoA). For a query on “biomarkers associated with survival in cancer patients”, one
episode yields “The upregulation of genes X, Y, and Z is associated with a significant decrease
in predicted survival time for patients with aggressive cancer types,” while another outputs “The
expression levels of genes X, Y, and Z show no correlation with survival outcomes across the patient
cohort.” Low cross-sample consistency raises the CoCoA score, signaling semantic inconsistency
and triggering abstention despite both trajectories being individually plausible.

Retrieval uncertainty (inference-only). High-dimensional databases pose challenges in table
selection; we address this by quantifying retrieval uncertainty. For a fixed task q, run K re-
trieval episodes. Let R(k) be the set of tables touched in episode k, and define the candidate set
C =

⋃K
k=1 R

(k). The empirical selection frequency for t ∈ C is p̂t = 1
K

∑K
k=1 1[t ∈ R(k)]. We

compute normalized binary entropy H(t) = − p̂t log p̂t+(1−p̂t) log(1−p̂t)
log 2 and aggregate

uret(q) =
1
|C|

∑
t∈C

H(t). (1)

High uret indicates inconsistent evidence acquisition. We compute uret during inference but omit it
as a training reward due to the high computational cost of sampling.
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Example (Retrieval Uncertainty). For query “biomarkers associated with survival in cancer X”, the
agent first invokes SQLExecutor to retrieve candidate gene–expression tables. It then issues a
second targeted SQL to join clinical survival labels. If repeated episodes select different tables,
retrieval uncertainty uret is high, indicating unstable evidence and triggering abstention at inference.

3.4 TRAINING REWARDS

We use three terminal reward components: (i) Code execution which rewards the agent for cor-
rectly executing SQL queries and Python code, teaching it to effectively navigate the environment;
(ii) an LLM-judge score, which promotes broad, grounded factual coverage, encouraging explo-
ration of the dataset environment for information; and (iii) summary confidence, which favors low-
uncertainty summaries, promoting the exploitation of existing knowledge. The reward is a weighted
sum R(τ) = αcodeRcode +αjudgeRjudge +αconfRconf. Formulas and weights are given in Appendix A.

Schedules. To balance exploration (RJudge) and exploitation (Rconf) over the 100 training steps t,
we make αconf depend on t and introduce reward schedules. The Baseline schedule (R ≡ Rbase) ap-
plies fixed weights throughout training but risks harming early exploration of the dataset. Two-Phase
(R ≡ Rphase) prioritizes exploration in early steps and adds exploitation midway through. Step-
wise Addition (R ≡ Rstep) periodically boosts Rconf at regular intervals, while retaining exploration
focus. Adaptive Exploitation (R ≡ Radapt) dynamically adjusts αconf based on intermediate RJudge
performance, integrating continuous exploitation that gradually tapers off as summaries stabilize.
See Table A4 in Appendix A for details.

3.5 OPTIMIZATION WITH GRPO

We train with Group Relative Policy Optimization (GRPO), a PPO-style objective with a KL penalty
to a reference policy πref , effective for reasoning LLMs (Shao et al., 2024; Guo et al., 2025; Liu
et al., 2025b; Singh et al., 2025). With ratio rθ(τ) = πθ(τ)/πold(τ), we maximize

L(θ) = Eτ

[
min

(
rθA, clip(rθ, 1− ϵ, 1 + ϵ)A

)]
− β DKL(πθ∥πref), (2)

where A ≡ A(τ) is the advatage of trajectory τ , derived from the reward R(τ).

3.6 INFERENCE: POST-OUTPUT FILTERING

At inference we sample K trajectories, compute uret and uCoCoA, and apply a conservative rule:
abstain if the sum exceeds a tuned threshold 2κ; otherwise emit the candidate with lowest uPerp
and use uret and uCoCoA as reliabilty scores. Threshold values are determined on a validation split
through human inspection. Details are described in algorithm A2 in Appendix A.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our approach on two multi-omics databases: one public benchmark and one internal,
proprietary dataset. The MLOmics benchmark, which focuses on cancer research, has a flat structure
with only 45 tables, and consists mostly of raw measurements, while the internal dataset features a
tree-like schema with over 2,000 tables and includes aggregated summary statistics. This diversity
allows us to assess whether our agent remains robust across (i) compact, unprocessed data scenarios,
and (ii) highly structured, large-scale environments, as the schema is shown in Appendix B.

For agents, evaluating across multiple environments is critical: policies often overfit to the dynamics
of a single environment schema and fail to generalize when the relational structure or data granularity
changes Subbaswamy et al. (2021); Jiang et al. (2023). Recent work on environment generalization
in RL Gu et al. (2025); Teoh et al. (2025) shows that agents trained in one setting may exploit
spurious regularities and collapse when exposed to even minor distributional shifts. In line with these
findings, we deliberately test on both a compact raw benchmark and a large schema-rich dataset to
probe whether our approach adapts robustly to environment variation.

5
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MLOmics dataset. We also evaluate on the MLOmics benchmark Yang et al. (2025), an open
cancer multi-omics dataset with 8,314 patient samples across 32 cancer types. It provides four
modalities—mRNA, microRNA, DNA methylation, and copy number variation. We use the Top
feature version (ANOVA-selected subsets), which offers a standardized and reproducible public
testbed complementing our internal dataset. Details and visuals of the dataset schemas are available
in Appendix B.

Internal multi-omics dataset. Our internal dataset stems from layered biomedical omics. While
the contents are proprietary, it includes tens to thousands of tables across transcriptomics, pro-
teomics, and metabolomics. The schema combines a tree-like hierarchy from root entities with
a broad relational structure hinging on a central table—making it a compelling testbed for agent
adaptability.

4.2 IMPLEMENTATION DETAILS

The datasets are split into training and testing sets with a 70:30 ratio based on patient samples
(Figure 1), ensuring consistent representation of all tables. We define 100 summary tasks per dataset,
validated by scientists (examples in Appendix C), evaluated by LLMs and domain experts, and
designed to capture the most relevant information comprehensively. Of these, 80 tasks are used for
training and 20 for evaluation. During inference, each task is answered five times, and we report the
mean and standard deviation of the scores for robustness.

All experiments utilize the ART framework1, with Qwen2.5-14B-Instruct employed as the
policy backbone. Training is conducted on a single NVIDIA A100 GPU. Hyperparameters are
discussed in greater detail in Appendix D. Each training episode allows for up to six tool calls prior
to committing a summary. During inference, K = 5 episodes are sampled per task to estimate
retrieval and summary uncertainty.

4.3 METRICS

We evaluate the quality and uncertainty of summaries and the reliability of uncertainty measures as
follows:

Summary Quality. To quantify summary quality, we report three metrics: (Q1) the total number
of claims, reflecting the summary’s richness in terms of content; (Q2) the ratio of correct claims,
which measures factuality; and (Q3) the ratio of useful claims, which captures their relevance to
the task. We derive these metrics by decomposing the summary into claims that can be assessed by
an LLM fact-checking judge, following evidence that LLM judges provide reliable and fine-grained
evaluations Xie et al. (2025); Zhou et al. (2025). Specifically, given a summary s, a task q, and
a database D, an o4 mini judge decomposes s into atomic claims, validates them against D using
a set of five task-specific workflows (designed in collaboration with domain experts), and assigns
correctness and utility labels to each claim.

Uncertainty. To evaluate the model’s confidence in its generated summaries, we compute the aver-
age values of uCoCoA (Q4) and uret (Q5). To ensure this confidence is meaningful, we assess whether
uncertainty estimates align with summary quality, measured by the proportion of correct claims.

Follow prior work Vashurin et al. (2025), we quantify this alignment via the Prediction Rejection
Ratio (PRR):

PRR =
AUCunc − AUCrnd

AUCoracle − AUCrnd
,

where AUCunc is obtained via uncertainty-based rejection, AUCrnd is a random baseline, and
AUCoracle is an ideal oracle. Higher PRR values reflect better alignment between uncertainty and
factual accuracy.

4.4 BASELINES

We perform a comparative analysis against a carefully chosen set of baselines that represent (a) con-
ventional table agents, (b) reasoning agents with tool-use, (c) inference-time uncertainty filters. We

1https://art.openpipe.ai/
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Table 1: Cancer Multi-Omics dataset performance: average claims (Q1), correct claims (Q2), and
useful claims (Q3) per summary, with correctness/usefulness ratios; we also report uncertainty met-
rics uCoCoA (Q4) and uret (Q5); for each, the value outside parentheses is the uncertainty (↓), and
the value in parentheses is PRR (↑); arrows in headers indicate the direction of better results; the
LangChain/ReAct agents do not produce uncertainty metrics (shown as –).

System # claims / summary ↑ # correct / summary (ratio) ↑ # useful / summary (ratio) ↑ uCoCoA ↓ (PRR ↑) uret ↓ (PRR ↑)

LangChain agent 5.4± 0.7 3.6± 0.6 (0.67± 0.04) 2.0± 0.5 (0.37± 0.03) – –
ReAct agent 5.5± 0.8 3.7± 0.7 (0.67± 0.04) 2.1± 0.6 (0.38± 0.04) – –
Post-hoc filtering 6.1± 0.6 4.2± 0.5 (0.68± 0.03) 2.6± 0.8 (0.43± 0.03) 0.40± 0.05 (0.37± 0.08) 0.69± 0.05 (0.25± 0.07)
Ours (before training) 2.4± 0.5 1.5± 0.4 (0.63± 0.03) 0.9± 0.3 (0.40± 0.04) 0.47± 0.05 (0.37± 0.09) 0.84± 0.06 (0.24± 0.07)
Ours (Radapt, before filtering) 10.2± 1.3 8.4± 1.1 (0.82± 0.03) 4.0± 0.8 (0.39± 0.04) 0.25± 0.04 (0.38± 0.09) 0.67± 0.05 (0.25± 0.06)
Ours (Radapt, after filtering) 10.5± 1.5 9.9± 1.2 (0.94± 0.02) 4.5± 0.9 (0.43± 0.03) 0.19± 0.03 (0.45± 0.08) 0.44± 0.04 (0.28± 0.08)

include (i) a standard LangChain SQL agent2 augmented with Python-based tools. This agent trans-
lates natural-language questions into SQL, executes the query, and produces one-shot summaries
without any uncertainty modeling. We use OpenAI-o4-mini as the backbone, a strong model for
agents and structured database tasks. (ii) a ReAct-style agent that interleaves reasoning traces with
SQL/Python tool calls but, again, using OpenAI-o4-mini as the backbone; (iii) a post-hoc filter-
ing baseline that uses an untrained model and applies CoCoA thresholds after generation, isolating
the value of inference-time abstention from uncertainty-aware training. (iv) our agent before GRPO
training; (v) our model after GRPO training, which incorporates uncertainty-aware reward shaping;
and (vi) our GRPO-trained agent with inference-time filtering as described in Section 3.6.

4.5 RESULTS

Our uncertainty-aware agent advances multi-table summarization, delivering significant improve-
ments in summary quality and reliability across both test datasets, as evidenced in Tables 1 and
2. As the first to tackle this task with the MLOmics dataset, our approach sets a new benchmark,
producing more claims with substantially higher correctness and usefulness ratios. Correctness in-
creased from 1.5 to 9.9 average correct claims per summary in the cancer multi-omics dataset and
from 0.9 to 8.4 in the internal dataset, a clear demonstration of the power of uncertainty-based re-
wards in curbing spurious outputs. Usefulness ratios rose from 0.60 to 0.78 on the internal dataset,
reflecting enhanced schema navigation and evidence synthesis across diverse environments.

These gains generalize across a proprietary schema-rich multi-omics corpus and the MLOmics
benchmark, underscoring the agent’s adaptability. While the lack of prior work on this specific
task/dataset combination highlights the pioneering nature of our results, they also outstrip the
LangChain SQL-agent baseline (e.g., 3.6 vs. 9.9 correct claims in cancer, 3.0 vs. 8.4 internally)
and the ReAct Agent, which lack uncertainty modeling. Our approach sharpens uncertainty esti-
mates, with retrieval entropy (uret) and summary uncertainty (uCoCoA) decreasing, signaling more
stable evidence acquisition and consistent outputs. The Prediction Rejection Ratio (PRR) improve-
ments—rising to 0.45 (cancer) and 0.47 (internal) for CoCoA—validate that uncertainty signals
serve as potent control mechanisms, aligning confidence with factual reliability and enhancing trust-
worthiness.

Focusing on the filtering step during inference, this component improved performance metrics,
boosting correctness from 0.82 to 0.94 (cancer) and from 0.84 to 0.90 (internal), while useful-
ness climbed from 0.39 to 0.43 and 0.71 to 0.78, respectively. This underscores the critical role
of inference-time refinement in producing reliable summaries across heterogeneous settings.

4.6 ABLATION

We study four factors that could explain our improvements: reward schedules, uncertainty signals,
judge dependence, and inference thresholds. Tables and details can be found in Appendix E.

Reward schedules. Reward shaping substantially affects optimization trajectories. Table A5 com-
pares Rzero, Rbase, Rphase, Rstep, and Radapt. Importantly, we include RZero, an RL baseline
trained without any uncertainty-derived rewards, to demonstrate that gains are not merely due to

2https://python.langchain.com/docs/integrations/tools/sql_database/
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Table 2: Internal dataset performance: average claims (Q1), correct claims (Q2), and useful
claims (Q3) per summary, with correctness/usefulness ratios; we also report uncertainty metrics
uCoCoA (Q4) and uret (Q5); for each, the value outside parentheses is the uncertainty (↓), and the
value in parentheses is PRR (↑); arrows in headers indicate the direction of better results; the
LLangChain/ReAct agents do not produce uncertainty metrics (shown as –).

System # claims / summary ↑ # correct / summary (ratio) ↑ # useful / summary (ratio) ↑ uCoCoA ↓ (PRR ↑) uret ↓ (PRR ↑)

LangChain agent 4.5± 0.8 3.0± 0.6 (0.67± 0.05) 3.0± 0.5 (0.65± 0.04) – –
ReAct agent 4.5± 0.7 2.9± 0.5 (0.64± 0.04) 2.9± 0.6 (0.64± 0.03) – –
Post-hoc filtering 5.0± 1.2 3.4± 0.9 (0.68± 0.03) 3.3± 0.8 (0.66± 0.03) 0.36± 0.05 (0.38± 0.07) 0.76± 0.06 (0.30± 0.06)
Ours (before training) 1.5± 0.3 0.9± 0.2 (0.60± 0.03) 0.9± 0.2 (0.60± 0.02) 0.45± 0.05 (0.39± 0.09) 0.84± 0.04 (0.29± 0.07)
Ours (Radapt, before filtering) 9.3± 1.2 7.2± 1.0 (0.84± 0.03) 6.6± 0.7 (0.71± 0.04) 0.27± 0.04 (0.42± 0.08) 0.65± 0.07 (0.33± 0.07)
Ours (Radapt, after filtering) 9.3± 1.1 8.4± 0.9 (0.90± 0.02) 7.2± 0.8 (0.78± 0.03) 0.20± 0.04 (0.47± 0.08) 0.42± 0.06 (0.38± 0.08)

Table 3: Concordance index (c-index) scores on the held-out test set: results compare a LangChain
baseline with our method under different refinement strategies (Rbase, Rphase, Rstep, Radapt);
higher values indicate better predictive alignment.

Model LangChain/ReAct agent Ours (before training) Ours (Rbase) Ours (Rphase) Ours (Rstep) Ours (Radapt)

C-index 0.22/0.21 0.32 0.55 0.60 0.64 0.63

reinforcement learning itself but arise from incorporating uncertainty as a control signal. Radapt

yields the highest useful-claims ratio (0.78 vs 0.30 for Rbase on Internal) and stronger PRR align-
ment. Learning curves (Fig. A5) show Radapt avoids early collapse seen in Rbase, indicating that
adaptive weighting of uncertainty stabilizes training.

Uncertainty signals. We ablate the contributions of individual uncertainty signals within the
Rjudge schedule by training with each signal in isolation. Specifically, we compare summary-based
uncertainties vs retrieval-based uncertainties and consistency based uncertainties vs information the-
oretic ones. Perplexity yields a baseline Useful Ratio of 0.78 with PRR 0.47. CoCoA improves
calibration slightly (Useful Ratio 0.72, PRR 0.50) but requires 2.6× more compute and adapts
more slowly. Entropy (0.76, PRR 0.46) and retrieval variance (0.76, PRR 0.39) achieve stronger
cost–benefit tradeoffs. The mechanism seems to be: training purely for consistency encourages
rigidity, while lighter signals adapt more flexibly. Full results are in Appendix Table A6.

Judge robustness. Optimizing a single judge invites reward hacking (Ziegler et al., 2019; Gao
et al., 2023). We compared Radapt models scored by (i) our strong Rjudge, (ii) a weaker LLM judge
(GPT-4.1 Nano and Gemini 2.5 Flash Lite), and (iii) a 40-query human holdout. Correlations were
moderate-to-strong (r = 0.62 ± 0.08 vs weak; r = 0.64 ± 0.07 vs human). Importantly, system
rankings were identical: Radapt > Rstep¿ Rphase > Rbase. This indicates the gains are not artifacts
of one evaluator.

Inference thresholds. Finally, we varied uncertainty thresholds κ ∈ {0.2, 0.5, 0.8} for post-hoc
filtering. Table A8 shows the trade-off: higher κ reduces coverage but improves precision. Radapt

models dominate at all thresholds.

4.7 PREDICTION RESULTS

Beyond evaluating summary correctness and usefulness, it is important to test whether the agent’s
knowledge transfer produces meaningful downstream outcomes. Survival prediction provides such
a test, connecting textual reasoning with a clinically relevant endpoint. To perform this task, we
prompt the agent to estimate survival times for held-out patients by leveraging in-context knowl-
edge from summaries related to survival, rather than task-specific supervision. The predictions are
evaluated using the concordance index (C-index), which measures how well predicted survival times
align with ground-truth outcomes.

As shown in Table 3, our framework consistently outperforms the LangChain baseline, with the
largest improvement from Rstep. The stable performance highlights the role of uncertainty-aware
refinement in producing reliable predictions.
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Additionally, it is important to note that untrained agents performed worse than random chance.
They exhibited a tendency to systematically focus on incorrect features drawn from the literature,
rather than accurately interpreting the dataset. This underscores the necessity of training and appro-
priate methodology to improve predictive performance.

5 DISCUSSION

We propose uncertainty-aware LLM agents that integrate retrieval and summary uncertainty into
training and inference, addressing the challenge of reliable tabular summarization. The key contri-
bution is to treat uncertainty as a control signal that shapes optimization, guides agent behavior, and
governs inference-time filtering.

Empirically, uncertainty-aware agents produce nearly twice as many useful claims as baseline SQL
agents, with gains confirmed by fact-checking and downstream survival analysis. Uncertainty esti-
mates themselves are predictive: the PRR roughly doubles, showing that confidence tracks factual
reliability. Thus, uncertainty serves as an actionable lever rather than a diagnostic byproduct. A
central design principle emerges: agents should know when not to answer. Abstention on high-
uncertainty queries and filtering of synthetic data yield a conservative, safety-first behavior, crucial
in biomedical applications but relevant more broadly.

Although evaluated on biomedical multi-omics data, the framework is domain-agnostic and ap-
plies to finance, e-commerce, or clinical EHRs. Its components—entropy-based retrieval uncer-
tainty, self-consistency signals, and GRPO training—are modular and can be integrated into exist-
ing pipelines without architectural changes. Embedding uncertainty into the decision loop does
not eliminate hallucinations but enables calibrated, trustworthy behavior beyond post-hoc filtering,
moving toward safer deployment in high-stakes settings.

6 LIMITATIONS

Our current evaluation is limited to biomedical multi-omics data. While this domain highlights the
need for reliability in high-stakes settings, testing across finance, e-commerce, and other structured
environments will demonstrate the broader generality of the framework.

We also rely on automated LLM-based judges for reward shaping and fact-checking. This enables
scalable experimentation but could potentially induce bias. Expanding systematic human validation
will be an important next step, and our uncertainty annotations can help guide such expert audits.

Finally, the method requires multiple rollouts (e.g., K=5) and CoCoA-based self-consistency, which
add inference cost. Preliminary results suggest smaller K retains most benefits, and leveraging
a lightweight uncertainty proxy eg. perplexity instead of CoCoA could make the approach more
efficient.

7 CONCLUSION

This work shows that uncertainty can be treated not just as a diagnostic signal, but as an active
control mechanism for agentic systems operating over structured data. By combining retrieval and
summary uncertainty during both training and inference, our agent learns when to proceed and when
to abstain, improving both correctness and safety in multi-table reasoning tasks. While early results
suggest benefits for downstream analysis, open challenges remain in calibration, evaluation beyond
proprietary datasets, and reducing inference costs. We see this as a step toward building agents that
scale responsibly, and we invite the community to explore stronger uncertainty estimation methods,
richer benchmarks, and ethical safeguards.
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8 ETHICS

This work relies primarily on publicly available, de-identified datasets (e.g., MLOmics and other
open cancer databases) under their original licenses; no patient-identifiable data were used. Code,
prompts, and configurations will be released to support replication, with hyperparameters and train-
ing details in Appendix D. Automated judge scores were validated against expert assessments
(N=40), with agreement metrics and audit protocols in the supplementary materials. The system
is intended for research purposes only and should not be considered medical advice without expert
validation.
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A ADDITIONAL METHODS DETAILS

This section collects additional details about our setup that were omitted from the main text for
clarity.

Summary Uncertainty. Perplexity. For a summary token sequence s1:T :

uPerp(s1:T ) = exp

(
− 1

T

T∑
t=1

log pθ(st | s<t, context)

)
, (3)

where pθ(st | s<t, context) represents the probability assigned by the model to token st given the
sequence of preceding tokens s<t and any task-specific contextual information. Lower perplexity
implies higher model confidence in the token-level generation process.

CoCoA. We use the COCOA metric (Vashurin et al., 2025), which enhances perplexity-based confi-
dence – relying solely on LLM probabilities and providing no information about the answer distri-
bution – with semantic self-consistency.

Given an actual output sequence s∗ and K−1 sampled sequences s(k), k = 1, ...,K−1, we compute
a consistency-based uncertainty metric Vashurin et al. (2025)

ucons(s
∗, {s(k)}) = 1− 1

K − 1

K−1∑
k=1

sim(s(k), s∗),

where, for the similarity metric sim we use the RoBERTa-large cross-encoder model, fine-tuned on
the Semantic Textual Similarity benchmark dataset Reimers & Gurevych (2019); Liu et al. (2019);
Cer et al. (2017). Multiplying ucons(s

∗, {s(k)}) with the perplexity of s∗ produces the CoCoA metric
uCoCoA(s

∗, {s(k)}).
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Reward Design. Code Execution Reward. To incentivize correct database interactions, the tra-
jectory receives a reward based on the number of correctly executed SQL queries or Python code
executions, with a stronger emphasis on rewarding initial successes to encourage learning. Let
x(τ) ∈ N be the number of correctly executed code actions in trajectory τ . The code execution
reward is:

Rcode(τ) = min

(
1,

log(10x(τ) + 1)

log(31)

)
,

where the reward is capped at a maximum value of 1 for three correctly executed actions. This design
aims to teach the model to produce correct executable code early in training. The reward cap ensures
the model saturates the benefit from code execution once it reliably achieves three successful actions,
encouraging it to focus on higher-level tasks, such as summary generation, as training progresses.

Exploration Judge Reward. An external o4-mini LLM counts the number c(τ) of grounded, non-
overlapping atomic facts in the trajectory τ that are relevant to the user’s topic. The reward is:

RJudge(τ) = min

(
c(τ)

20
, 1

)
,

promoting thorough database exploration to uncover relevant and diverse information. The nor-
malization factor 20 reflects our empirical observation that trajectories with around 20 grounded,
non-overlapping facts typically provide sufficient diversity and coverage for most queries.

Summary Confidence Reward. The inverse perplexity of the generated summary s(τ) corresponding
to the trajectory τ , serves as a measure of token-level confidence, normalized to (0, 1]:

Rconf(τ) =
1

uPerp(s(τ))
.

While RJudge promotes database exploration, Rconf incentivizes exploitation by rewarding low-
uncertainty summaries. Consistency-based uncertainty metrics, such as CoCoA, are omitted during
training to sidestep the high computational overhead of sampling.

Reward Schedules. We explore various reward schedules over the 100 training steps t to balance
exploration and exploitation. A summary of these schedules is provided in Table A4. Constants are
empirically chosen to balance the contributions of individual reward components, ensuring effective
training dynamics. Ablation studies of these constants are left for future work.

Table A4: Summary of reward schedules, their formulas, and descriptions.

Schedule Formula Description
Zero Rzero(τ) = Rcode(τ) + 4RJudge(τ) Does not use the uncer-

tainty signal in reward.
Baseline Rbase(τ) = Rcode(τ) + 4RJudge(τ) +

1
3
Rconf(τ) Uses a fixed combina-

tion of all three reward
components.

Two-Phase Rphase(τ) =

{
Rcode(τ) + 4RJudge(τ), if t ≤ 50,

Rcode(τ) + 4RJudge(τ) +
1
3
Rconf(τ), if t > 50.

Focuses on exploration
during the first half, in-
corporates exploitation
in the second training
half.

Stepwise
Addition

Rstep(τ) =

{
Rcode(τ) + 4RJudge(τ), if t mod 10 ̸= 0,

Rcode(τ) + 4RJudge(τ) + 2Rconf(τ), if t mod 10 = 0.
Periodically empha-
sizes exploitation every
10 steps.

Adaptive
Exploita-
tion

α = exp
(
− 50

(
RJudge(τ)−

1

2

)2)
,

Radapt(τ) = Rcode(τ) + 4RJudge(τ) + 2αRconf(τ).
Initially promotes ex-
ploration, then gradu-
ally integrates exploita-
tion, and tapers off to
prevent generic sum-
maries.

Episode algorithms. Figure A2 describes algorithms for full training and inference episodes.
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Algorithm 1 Episode Algorithms for Training and Inference
procedure SINGLE EPISODE(q,D, πθ , M)

Initialize empty trajectory τ ← {}
for t = 1, ..., M do

Sample action at ∼ πθ(· | xt)
if at is SQLExecutor(query) then

rt ← Execute SQL query on D
Append (at, rt) to τ

else if at is PythonTool(code) then
rt ← Execute Python code on relevant database parts
Append (at, rt) to τ

else if at is Schema(Table) then
rt ← Retrieve schema of the specified table
Append (at, rt) to τ

else if at is CommitSummary(summary) then
Extract summary s, including token logits
Append (at, s) to τ
break

end if
end for
return τ, s

end procedure
procedure TRAINING EPISODE(q,D, πθ , M)

τ, s← SINGLE EPISODE(q,D, πθ,M)
Compute token-level perplexity uPPL(s)
Compute rewards RJudge(τ), Rcode(τ), Rconf (τ)
Combine RJudge(τ), Rcode(τ), Rconf (τ) to compute terminal reward R(τ)
Store (τ, R(τ)) for GRPO update

end procedure
procedure INFERENCE EPISODE(q,D, πθ , K)

Initialize S ← {} and T ← {}
for k = 1, ...,K do

τk, sk ← SINGLE EPISODE(q,D, πθ,M)
Append sk to S, τk to T

end for
Compute summary uncertainty uCoCoA(S)
Compute retrieval uncertainty uret(T ) from SQL queries in trajectories
τ̃ , s̃← (trajectory, summary) pair with lowest-perplexity summary from zip(T ,S)
Store (τ̃ , s̃, uCoCoA(S), uret(T ))

end procedure

Figure A2: Episode algorithms. Training uses a single episode to compute terminal reward based
on code execution, confidence and exploration. Inference samples multiple episodes to compute
summary and retrieval uncertainties.

B DATASETS

This section describes the datasets used in our experiments.

B.1 INTERNAL MULTI-OMICS DATASET

The internal dataset is built from multi-layered omics data. While the specific table contents cannot
be disclosed, its structure can be summarized as:

• Architecture: Multi-layered, with each layer corresponding to a distinct omics modality
(e.g., transcriptomics, proteomics, metabolomics).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Scale: Each layer consists of between tens and hundreds of relational tables.
• Topologies: Two primary schema structures are observed: (a) a tree-like hierarchy, in

which child tables branch recursively from root entities, and (b) a broad schema, in which
many tables connect directly to a central entity.

These schema variations provide structurally distinct environments that stress-test an agent’s ability
to adapt to different database organizations.

B.2 DATASET SCHEMATIC FOR INTERNAL MULTI-OMICS DATASET

Figure A3 contains dataset Schematic for the Internal Multi-Omics Dataset.

Figure A3: Internal multi-omics dataset showing tree-like schema topology.

B.3 MLOMICS: CANCER MULTI-OMICS DATABASE FOR MACHINE LEARNING

MLOmics Yang et al. (2025) is an open multi-omics dataset comprising 8,314 patients across 32
cancer types. It provides four standardized omics modalities:

• mRNA expression: Gene-level transcriptional profiles.
• microRNA expression: Small noncoding RNAs regulating gene expression.
• DNA methylation: CpG site methylation fractions representing epigenetic regulation.
• Copy number variation (CNV): Segment-level gene copy alterations.

Each modality is released in three feature versions:

• Original: full feature set,
• Aligned: subsets harmonized across modalities,
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• Top: statistically filtered subsets (ANOVA-based).

MLOmics additionally includes baseline machine learning benchmarks (6–10 methods), clustering
and survival analyses, and external knowledge integration (STRING, KEGG). These resources make
it a reproducible benchmark for developing and evaluating uncertainty-aware agents.

B.4 DATASET SCHEMATIC FOR MLOMICS

Figure A4 contains dataset Schematic for Cancer MLOmics Dataset.

Figure A4: Public MLOmics dataset, with standardized parallel modalities spanning 9 cancer types.

C SUMMARY TASKS

This section provides examples task templates used in training and inference for the Cancer
MLOmics Dataset. Each task outlines specific objectives and details the steps required to obtain
relevant information about different cancer types using molecular data. The complete list of tasks
will be released on GitHub upon completion.

Task 1: Basic Cancer-Survival Characterization

Objective: For a specified cancer type CANCER TYPE, answer the following questions:
1. How many patients are in the training set?
2. What is the median survival time?
3. What is the event rate (percentage of deaths)?
4. Describe the survival distribution.
5. Compare this cancer’s survival patterns to other cancers in the database.

Task 2: Molecular Data Profile

Objective: For a specified cancer type CANCER TYPE, analyze each omic layer:
1. Data distribution characteristics for each omic type.
2. Missing value analysis.
3. Create a molecular profile summary specific to this cancer type.
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Task 3: Cancer-Specific Biomarkers

Objective: For a specified cancer type CANCER TYPE, identify and analyze biomarkers:
1. Identify top survival-associated features from each omic type:

• Top 20 mRNA features
• Top 20 miRNA features
• Top 20 methylation sites
• Top 20 CNV regions

2. Analyze their biological relevance.
3. Compare with known markers for this cancer type.
4. Create a prioritized biomarker list.

Task 4: Multi-omic Integration

Objective: For a specified cancer type CANCER TYPE, integrate various omic layers:
1. Find correlations between features across different omic types.
2. Identify multi-omic patterns associated with survival.
3. Create an integrated molecular profile.
4. Highlight unique molecular characteristics of this cancer type.

Task 5: Clinical-Molecular Summary

Objective: Create a comprehensive summary for a specified cancer type CANCER TYPE:
1. Key survival characteristics.
2. Most important molecular features.
3. Multi-omic patterns.
4. Clinical-molecular associations.
5. Comparison with other cancer types.
6. Potential clinical implications.

D HYPERPARAMETERS

The backbone of the model used in this work is Qwen2.5-14B-Instruct, implemented within the ART
framework. Training was conducted on 1×NVIDIA A100 80GB GPU, with a total computational
cost of approximately 22 GPU-hours per model. We use sampling defaults of M = K = 5.

The training process employs Grouped Relative Policy Optimization (GRPO) to optimize the sum-
marization agent. We set the clipping parameter ϵ = 0.2 and the KL penalty weight β = 0.01.
The learning rate is defined as 5e-5, selected after searching for optimal values in the range be-
tween 1e-7 and 1e-4. The model is allowed up to 6 tool calls per query for performing retrievals
and summary generation, determined through a search over 4{10 tool calls per query, where only
marginal improvements were observed beyond 6 tool calls.

Training is conducted in mini-batches consisting of 3 groups per step, with each group con-
taining 4 rollouts, ensuring that every query is processed multiple times as part of GRPO opti-
mization. Each training run spans 4 epochs.

All code, prompts, and configuration files will be released to ensure reproducibility.
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Table A5: Reward schedule ablations across the internal and Multi-Omics cancer datasets: average
number of claims per summary, claim correctness and usefulness ratios; we also report uncertainty
metrics uCoCoA and uret with PRR indicating alignment with correctness.

Internal Internal (UQ) Cancer Cancer (UQ)
Schedule # claims Correct ratio Useful ratio uCoCoA/PRR uret/PRR # claims Correct ratio Useful ratio uCoCoA/PRR uret/PRR

Rzero 5.2± 0.3 0.27± 0.05 0.27± 0.02 0.51/0.35 0.86/0.25 5.5± 0.4 0.33± 0.06 0.29± 0.03 0.49/0.36 0.87/0.24
Rbase 4.5± 0.4 0.64± 0.04 0.30± 0.03 0.13/0.33 0.72/0.28 5.2± 0.5 0.65± 0.04 0.25± 0.03 0.14/0.31 0.75/0.26
Rphase 6.0± 0.5 0.67± 0.03 0.50± 0.03 0.15/0.39 0.65/0.33 6.8± 0.6 0.66± 0.03 0.41± 0.03 0.17/0.34 0.68/0.28
Rstep 8.3± 0.6 0.75± 0.03 0.55± 0.02 0.22/0.32 0.58/0.32 9.0± 0.7 0.78± 0.02 0.44 ± 0.03 0.25/0.39 0.61/0.29
Radapt 9.3± 1.1 0.90 ± 0.02 0.78 ± 0.03 0.20/0.47 0.42/0.38 10.5± 1.5 0.94 ± 0.01 0.43± 0.03 0.19/0.45 0.44/0.28

E ABLATION DETAILS

E.1 REWARD SCHEDULES

We evaluate five reward schedules (Rzero, Rbase, Rphase, Rstep, and Radapt with definitions in Table
A4) to analyze the impact of uncertainty during training (Table A5). The Rzero schedule, which
excludes uncertainty rewards, has the worst correct claims ratio of 0.27 due to frequent hallucinated
claims with high uncertainty.

Rbase, applying uncertainty rewards from the start, improves the correct claims ratio to 0.64 but
achieves limited exploration (see Rcode and RJudge in Figure A5), leading to shallow summaries
with useful claims ratios of 0.30 for the Internal dataset and 0.25 for Cancer Multi-Omics.

To address these limitations, Rphase defers uncertainty rewards to encourage early exploration. It
raises the correct claims ratio to 0.67 and improves useful claims ratios to 0.50 on Internal and
0.41 on Cancer Multi-Omics, though outputs remain conservative and shallow due to excessive
uncertainty minimization, as reflected by summary uncertainty trends in Figure A5.

Rstep introduces rewards periodically, boosting useful claims ratios to 0.55 (Internal) and 0.44 (Can-
cer Multi-Omics). However, abrupt uncertainty application every tenth step causes instability, re-
flected in unsmooth training plots in Figure A5 and inconsistent PRR values such as 0.32 for uCoCoA
on Internal.

Finally, Radapt dynamically adjusts uncertainty rewards, integrating them smoothly throughout train-
ing. This yields the best performance: correct claims ratios of 0.90 and 0.94, and useful claims ratios
of 0.78 (Internal) and 0.43 (Cancer Multi-Omics), with strong uncertainty alignment (e.g., PRR of
0.47 for uCoCoA).

Figure A5: Performance metrics (RCode, RJudge, and uncertainty) during 100 training steps under
different reward schedules (Rzero, Rbase, Rphase, Rstep, Radapt).

E.2 UNCERTAINTY SIGNALS

Table A6 compares four uncertainty reward signals. CoCoA improves consistency but is compute-
inefficient.
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Table A6: Uncertainty signal ablations (internal dataset, Radapt schedule).

Signal Useful Ratio PRR Relative Cost

Perplexity 0.78± 0.03 0.47 1.0
CoCoA 0.72± 0.03 0.50 2.6
Entropy 0.76± 0.02 0.46 1.0
Retrieval variance 0.76± 0.02 0.39 2.1

Table A7: Judge robustness. Rankings were consistent across reward schedules (internal dataset).

Comparison Pearson r Ranking preserved?

Rjudge vs Weak Judge 0.62± 0.08 Yes
Rjudge vs Human (40q) 0.64± 0.07 Yes

E.3 JUDGE ROBUSTNESS

Table A7 gives correlations between Rjudge, a weak LLM judge, and human labels. Preserved
ranking: Radapt > Rstep¿ Rphase > Rbase

E.4 INFERENCE THRESHOLDS

Table A8 shows coverage–accuracy tradeoffs for different thresholds κ.
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Table A8: Inference thresholds. Post-hoc filtering improves slightly but underperforms full
uncertainty-aware training (internal dataset).

Method Threshold κ Coverage (%) Useful Ratio PRR

Radapt 0.5 70 0.78± 0.03 0.47
Radapt 0.2 95 0.72± 0.03 0.43
Radapt 0.8 40 0.85± 0.02 0.50
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